xref: /linux/kernel/dma/direct.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
48 {
49 	u64 dma_limit = min_not_zero(
50 		dev->coherent_dma_mask,
51 		dev->bus_dma_limit);
52 
53 	/*
54 	 * Optimistically try the zone that the physical address mask falls
55 	 * into first.  If that returns memory that isn't actually addressable
56 	 * we will fallback to the next lower zone and try again.
57 	 *
58 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 	 * zones.
60 	 */
61 	*phys_limit = dma_to_phys(dev, dma_limit);
62 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 		return GFP_DMA;
64 	if (*phys_limit <= DMA_BIT_MASK(32))
65 		return GFP_DMA32;
66 	return 0;
67 }
68 
69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72 
73 	if (dma_addr == DMA_MAPPING_ERROR)
74 		return false;
75 	return dma_addr + size - 1 <=
76 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78 
79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80 {
81 	if (!force_dma_unencrypted(dev))
82 		return 0;
83 	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
84 }
85 
86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87 {
88 	int ret;
89 
90 	if (!force_dma_unencrypted(dev))
91 		return 0;
92 	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
93 	if (ret)
94 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95 	return ret;
96 }
97 
98 static void __dma_direct_free_pages(struct device *dev, struct page *page,
99 				    size_t size)
100 {
101 	if (swiotlb_free(dev, page, size))
102 		return;
103 	dma_free_contiguous(dev, page, size);
104 }
105 
106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 {
108 	struct page *page = swiotlb_alloc(dev, size);
109 
110 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111 		swiotlb_free(dev, page, size);
112 		return NULL;
113 	}
114 
115 	return page;
116 }
117 
118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119 		gfp_t gfp, bool allow_highmem)
120 {
121 	int node = dev_to_node(dev);
122 	struct page *page = NULL;
123 	u64 phys_limit;
124 
125 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
126 
127 	if (is_swiotlb_for_alloc(dev))
128 		return dma_direct_alloc_swiotlb(dev, size);
129 
130 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131 	page = dma_alloc_contiguous(dev, size, gfp);
132 	if (page) {
133 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 		    (!allow_highmem && PageHighMem(page))) {
135 			dma_free_contiguous(dev, page, size);
136 			page = NULL;
137 		}
138 	}
139 again:
140 	if (!page)
141 		page = alloc_pages_node(node, gfp, get_order(size));
142 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143 		dma_free_contiguous(dev, page, size);
144 		page = NULL;
145 
146 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147 		    phys_limit < DMA_BIT_MASK(64) &&
148 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 			gfp |= GFP_DMA32;
150 			goto again;
151 		}
152 
153 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 			goto again;
156 		}
157 	}
158 
159 	return page;
160 }
161 
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170 
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 		dma_addr_t *dma_handle, gfp_t gfp)
173 {
174 	struct page *page;
175 	u64 phys_limit;
176 	void *ret;
177 
178 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 		return NULL;
180 
181 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183 	if (!page)
184 		return NULL;
185 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186 	return ret;
187 }
188 
189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190 		dma_addr_t *dma_handle, gfp_t gfp)
191 {
192 	struct page *page;
193 
194 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195 	if (!page)
196 		return NULL;
197 
198 	/* remove any dirty cache lines on the kernel alias */
199 	if (!PageHighMem(page))
200 		arch_dma_prep_coherent(page, size);
201 
202 	/* return the page pointer as the opaque cookie */
203 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204 	return page;
205 }
206 
207 void *dma_direct_alloc(struct device *dev, size_t size,
208 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210 	bool remap = false, set_uncached = false;
211 	struct page *page;
212 	void *ret;
213 
214 	size = PAGE_ALIGN(size);
215 	if (attrs & DMA_ATTR_NO_WARN)
216 		gfp |= __GFP_NOWARN;
217 
218 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221 
222 	if (!dev_is_dma_coherent(dev)) {
223 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
224 		    !is_swiotlb_for_alloc(dev))
225 			return arch_dma_alloc(dev, size, dma_handle, gfp,
226 					      attrs);
227 
228 		/*
229 		 * If there is a global pool, always allocate from it for
230 		 * non-coherent devices.
231 		 */
232 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233 			return dma_alloc_from_global_coherent(dev, size,
234 					dma_handle);
235 
236 		/*
237 		 * Otherwise we require the architecture to either be able to
238 		 * mark arbitrary parts of the kernel direct mapping uncached,
239 		 * or remapped it uncached.
240 		 */
241 		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
242 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243 		if (!set_uncached && !remap) {
244 			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
245 			return NULL;
246 		}
247 	}
248 
249 	/*
250 	 * Remapping or decrypting memory may block, allocate the memory from
251 	 * the atomic pools instead if we aren't allowed block.
252 	 */
253 	if ((remap || force_dma_unencrypted(dev)) &&
254 	    dma_direct_use_pool(dev, gfp))
255 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256 
257 	/* we always manually zero the memory once we are done */
258 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259 	if (!page)
260 		return NULL;
261 
262 	/*
263 	 * dma_alloc_contiguous can return highmem pages depending on a
264 	 * combination the cma= arguments and per-arch setup.  These need to be
265 	 * remapped to return a kernel virtual address.
266 	 */
267 	if (PageHighMem(page)) {
268 		remap = true;
269 		set_uncached = false;
270 	}
271 
272 	if (remap) {
273 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274 
275 		if (force_dma_unencrypted(dev))
276 			prot = pgprot_decrypted(prot);
277 
278 		/* remove any dirty cache lines on the kernel alias */
279 		arch_dma_prep_coherent(page, size);
280 
281 		/* create a coherent mapping */
282 		ret = dma_common_contiguous_remap(page, size, prot,
283 				__builtin_return_address(0));
284 		if (!ret)
285 			goto out_free_pages;
286 	} else {
287 		ret = page_address(page);
288 		if (dma_set_decrypted(dev, ret, size))
289 			goto out_free_pages;
290 	}
291 
292 	memset(ret, 0, size);
293 
294 	if (set_uncached) {
295 		arch_dma_prep_coherent(page, size);
296 		ret = arch_dma_set_uncached(ret, size);
297 		if (IS_ERR(ret))
298 			goto out_encrypt_pages;
299 	}
300 
301 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302 	return ret;
303 
304 out_encrypt_pages:
305 	if (dma_set_encrypted(dev, page_address(page), size))
306 		return NULL;
307 out_free_pages:
308 	__dma_direct_free_pages(dev, page, size);
309 	return NULL;
310 }
311 
312 void dma_direct_free(struct device *dev, size_t size,
313 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
314 {
315 	unsigned int page_order = get_order(size);
316 
317 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
318 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
319 		/* cpu_addr is a struct page cookie, not a kernel address */
320 		dma_free_contiguous(dev, cpu_addr, size);
321 		return;
322 	}
323 
324 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
325 	    !dev_is_dma_coherent(dev) &&
326 	    !is_swiotlb_for_alloc(dev)) {
327 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
328 		return;
329 	}
330 
331 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
332 	    !dev_is_dma_coherent(dev)) {
333 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
334 			WARN_ON_ONCE(1);
335 		return;
336 	}
337 
338 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
339 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
340 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
341 		return;
342 
343 	if (is_vmalloc_addr(cpu_addr)) {
344 		vunmap(cpu_addr);
345 	} else {
346 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
347 			arch_dma_clear_uncached(cpu_addr, size);
348 		if (dma_set_encrypted(dev, cpu_addr, size))
349 			return;
350 	}
351 
352 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
353 }
354 
355 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
356 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
357 {
358 	struct page *page;
359 	void *ret;
360 
361 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
362 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
363 
364 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
365 	if (!page)
366 		return NULL;
367 
368 	ret = page_address(page);
369 	if (dma_set_decrypted(dev, ret, size))
370 		goto out_free_pages;
371 	memset(ret, 0, size);
372 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
373 	return page;
374 out_free_pages:
375 	__dma_direct_free_pages(dev, page, size);
376 	return NULL;
377 }
378 
379 void dma_direct_free_pages(struct device *dev, size_t size,
380 		struct page *page, dma_addr_t dma_addr,
381 		enum dma_data_direction dir)
382 {
383 	void *vaddr = page_address(page);
384 
385 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
386 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
387 	    dma_free_from_pool(dev, vaddr, size))
388 		return;
389 
390 	if (dma_set_encrypted(dev, vaddr, size))
391 		return;
392 	__dma_direct_free_pages(dev, page, size);
393 }
394 
395 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
396     defined(CONFIG_SWIOTLB)
397 void dma_direct_sync_sg_for_device(struct device *dev,
398 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
399 {
400 	struct scatterlist *sg;
401 	int i;
402 
403 	for_each_sg(sgl, sg, nents, i) {
404 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
405 
406 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
407 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
408 						       dir);
409 
410 		if (!dev_is_dma_coherent(dev))
411 			arch_sync_dma_for_device(paddr, sg->length,
412 					dir);
413 	}
414 }
415 #endif
416 
417 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419     defined(CONFIG_SWIOTLB)
420 void dma_direct_sync_sg_for_cpu(struct device *dev,
421 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
422 {
423 	struct scatterlist *sg;
424 	int i;
425 
426 	for_each_sg(sgl, sg, nents, i) {
427 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
428 
429 		if (!dev_is_dma_coherent(dev))
430 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
431 
432 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
433 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
434 						    dir);
435 
436 		if (dir == DMA_FROM_DEVICE)
437 			arch_dma_mark_clean(paddr, sg->length);
438 	}
439 
440 	if (!dev_is_dma_coherent(dev))
441 		arch_sync_dma_for_cpu_all();
442 }
443 
444 /*
445  * Unmaps segments, except for ones marked as pci_p2pdma which do not
446  * require any further action as they contain a bus address.
447  */
448 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
449 		int nents, enum dma_data_direction dir, unsigned long attrs)
450 {
451 	struct scatterlist *sg;
452 	int i;
453 
454 	for_each_sg(sgl,  sg, nents, i) {
455 		if (sg_dma_is_bus_address(sg))
456 			sg_dma_unmark_bus_address(sg);
457 		else
458 			dma_direct_unmap_page(dev, sg->dma_address,
459 					      sg_dma_len(sg), dir, attrs);
460 	}
461 }
462 #endif
463 
464 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
465 		enum dma_data_direction dir, unsigned long attrs)
466 {
467 	struct pci_p2pdma_map_state p2pdma_state = {};
468 	enum pci_p2pdma_map_type map;
469 	struct scatterlist *sg;
470 	int i, ret;
471 
472 	for_each_sg(sgl, sg, nents, i) {
473 		if (is_pci_p2pdma_page(sg_page(sg))) {
474 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
475 			switch (map) {
476 			case PCI_P2PDMA_MAP_BUS_ADDR:
477 				continue;
478 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
479 				/*
480 				 * Any P2P mapping that traverses the PCI
481 				 * host bridge must be mapped with CPU physical
482 				 * address and not PCI bus addresses. This is
483 				 * done with dma_direct_map_page() below.
484 				 */
485 				break;
486 			default:
487 				ret = -EREMOTEIO;
488 				goto out_unmap;
489 			}
490 		}
491 
492 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
493 				sg->offset, sg->length, dir, attrs);
494 		if (sg->dma_address == DMA_MAPPING_ERROR) {
495 			ret = -EIO;
496 			goto out_unmap;
497 		}
498 		sg_dma_len(sg) = sg->length;
499 	}
500 
501 	return nents;
502 
503 out_unmap:
504 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
505 	return ret;
506 }
507 
508 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
509 		size_t size, enum dma_data_direction dir, unsigned long attrs)
510 {
511 	dma_addr_t dma_addr = paddr;
512 
513 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
514 		dev_err_once(dev,
515 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
516 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
517 		WARN_ON_ONCE(1);
518 		return DMA_MAPPING_ERROR;
519 	}
520 
521 	return dma_addr;
522 }
523 
524 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
525 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
526 		unsigned long attrs)
527 {
528 	struct page *page = dma_direct_to_page(dev, dma_addr);
529 	int ret;
530 
531 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
532 	if (!ret)
533 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
534 	return ret;
535 }
536 
537 bool dma_direct_can_mmap(struct device *dev)
538 {
539 	return dev_is_dma_coherent(dev) ||
540 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
541 }
542 
543 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
544 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
545 		unsigned long attrs)
546 {
547 	unsigned long user_count = vma_pages(vma);
548 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
549 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
550 	int ret = -ENXIO;
551 
552 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
553 	if (force_dma_unencrypted(dev))
554 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
555 
556 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
557 		return ret;
558 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
559 		return ret;
560 
561 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
562 		return -ENXIO;
563 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
564 			user_count << PAGE_SHIFT, vma->vm_page_prot);
565 }
566 
567 int dma_direct_supported(struct device *dev, u64 mask)
568 {
569 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
570 
571 	/*
572 	 * Because 32-bit DMA masks are so common we expect every architecture
573 	 * to be able to satisfy them - either by not supporting more physical
574 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
575 	 * architecture needs to use an IOMMU instead of the direct mapping.
576 	 */
577 	if (mask >= DMA_BIT_MASK(32))
578 		return 1;
579 
580 	/*
581 	 * This check needs to be against the actual bit mask value, so use
582 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
583 	 * part of the check.
584 	 */
585 	if (IS_ENABLED(CONFIG_ZONE_DMA))
586 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
587 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
588 }
589 
590 /*
591  * To check whether all ram resource ranges are covered by dma range map
592  * Returns 0 when further check is needed
593  * Returns 1 if there is some RAM range can't be covered by dma_range_map
594  */
595 static int check_ram_in_range_map(unsigned long start_pfn,
596 				  unsigned long nr_pages, void *data)
597 {
598 	unsigned long end_pfn = start_pfn + nr_pages;
599 	const struct bus_dma_region *bdr = NULL;
600 	const struct bus_dma_region *m;
601 	struct device *dev = data;
602 
603 	while (start_pfn < end_pfn) {
604 		for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
605 			unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
606 
607 			if (start_pfn >= cpu_start_pfn &&
608 			    start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
609 				bdr = m;
610 				break;
611 			}
612 		}
613 		if (!bdr)
614 			return 1;
615 
616 		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
617 	}
618 
619 	return 0;
620 }
621 
622 bool dma_direct_all_ram_mapped(struct device *dev)
623 {
624 	if (!dev->dma_range_map)
625 		return true;
626 	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
627 				      check_ram_in_range_map);
628 }
629 
630 size_t dma_direct_max_mapping_size(struct device *dev)
631 {
632 	/* If SWIOTLB is active, use its maximum mapping size */
633 	if (is_swiotlb_active(dev) &&
634 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
635 		return swiotlb_max_mapping_size(dev);
636 	return SIZE_MAX;
637 }
638 
639 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
640 {
641 	return !dev_is_dma_coherent(dev) ||
642 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
643 }
644 
645 /**
646  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
647  * @dev:	device pointer; needed to "own" the alloced memory.
648  * @cpu_start:  beginning of memory region covered by this offset.
649  * @dma_start:  beginning of DMA/PCI region covered by this offset.
650  * @size:	size of the region.
651  *
652  * This is for the simple case of a uniform offset which cannot
653  * be discovered by "dma-ranges".
654  *
655  * It returns -ENOMEM if out of memory, -EINVAL if a map
656  * already exists, 0 otherwise.
657  *
658  * Note: any call to this from a driver is a bug.  The mapping needs
659  * to be described by the device tree or other firmware interfaces.
660  */
661 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
662 			 dma_addr_t dma_start, u64 size)
663 {
664 	struct bus_dma_region *map;
665 	u64 offset = (u64)cpu_start - (u64)dma_start;
666 
667 	if (dev->dma_range_map) {
668 		dev_err(dev, "attempt to add DMA range to existing map\n");
669 		return -EINVAL;
670 	}
671 
672 	if (!offset)
673 		return 0;
674 
675 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
676 	if (!map)
677 		return -ENOMEM;
678 	map[0].cpu_start = cpu_start;
679 	map[0].dma_start = dma_start;
680 	map[0].offset = offset;
681 	map[0].size = size;
682 	dev->dma_range_map = map;
683 	return 0;
684 }
685