xref: /linux/kernel/dma/direct.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25 
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28 	if (!dev->dma_mask) {
29 		dev_err_once(dev, "DMA map on device without dma_mask\n");
30 	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_limit) {
31 		dev_err_once(dev,
32 			"overflow %pad+%zu of DMA mask %llx bus limit %llx\n",
33 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
34 	}
35 	WARN_ON_ONCE(1);
36 }
37 
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39 		phys_addr_t phys)
40 {
41 	if (force_dma_unencrypted(dev))
42 		return __phys_to_dma(dev, phys);
43 	return phys_to_dma(dev, phys);
44 }
45 
46 static inline struct page *dma_direct_to_page(struct device *dev,
47 		dma_addr_t dma_addr)
48 {
49 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
50 }
51 
52 u64 dma_direct_get_required_mask(struct device *dev)
53 {
54 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
55 
56 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
57 }
58 
59 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
60 		u64 *phys_limit)
61 {
62 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
63 
64 	if (force_dma_unencrypted(dev))
65 		*phys_limit = __dma_to_phys(dev, dma_limit);
66 	else
67 		*phys_limit = dma_to_phys(dev, dma_limit);
68 
69 	/*
70 	 * Optimistically try the zone that the physical address mask falls
71 	 * into first.  If that returns memory that isn't actually addressable
72 	 * we will fallback to the next lower zone and try again.
73 	 *
74 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
75 	 * zones.
76 	 */
77 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
78 		return GFP_DMA;
79 	if (*phys_limit <= DMA_BIT_MASK(32))
80 		return GFP_DMA32;
81 	return 0;
82 }
83 
84 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
85 {
86 	return phys_to_dma_direct(dev, phys) + size - 1 <=
87 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
88 }
89 
90 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
91 		gfp_t gfp, unsigned long attrs)
92 {
93 	size_t alloc_size = PAGE_ALIGN(size);
94 	int node = dev_to_node(dev);
95 	struct page *page = NULL;
96 	u64 phys_limit;
97 
98 	if (attrs & DMA_ATTR_NO_WARN)
99 		gfp |= __GFP_NOWARN;
100 
101 	/* we always manually zero the memory once we are done: */
102 	gfp &= ~__GFP_ZERO;
103 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
104 			&phys_limit);
105 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
106 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
107 		dma_free_contiguous(dev, page, alloc_size);
108 		page = NULL;
109 	}
110 again:
111 	if (!page)
112 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
113 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
114 		dma_free_contiguous(dev, page, size);
115 		page = NULL;
116 
117 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
118 		    phys_limit < DMA_BIT_MASK(64) &&
119 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
120 			gfp |= GFP_DMA32;
121 			goto again;
122 		}
123 
124 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
125 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
126 			goto again;
127 		}
128 	}
129 
130 	return page;
131 }
132 
133 void *dma_direct_alloc_pages(struct device *dev, size_t size,
134 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136 	struct page *page;
137 	void *ret;
138 
139 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
140 	    dma_alloc_need_uncached(dev, attrs) &&
141 	    !gfpflags_allow_blocking(gfp)) {
142 		ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
143 		if (!ret)
144 			return NULL;
145 		goto done;
146 	}
147 
148 	page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
149 	if (!page)
150 		return NULL;
151 
152 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
153 	    !force_dma_unencrypted(dev)) {
154 		/* remove any dirty cache lines on the kernel alias */
155 		if (!PageHighMem(page))
156 			arch_dma_prep_coherent(page, size);
157 		/* return the page pointer as the opaque cookie */
158 		ret = page;
159 		goto done;
160 	}
161 
162 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
163 	     dma_alloc_need_uncached(dev, attrs)) ||
164 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
165 		/* remove any dirty cache lines on the kernel alias */
166 		arch_dma_prep_coherent(page, PAGE_ALIGN(size));
167 
168 		/* create a coherent mapping */
169 		ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
170 				dma_pgprot(dev, PAGE_KERNEL, attrs),
171 				__builtin_return_address(0));
172 		if (!ret) {
173 			dma_free_contiguous(dev, page, size);
174 			return ret;
175 		}
176 
177 		memset(ret, 0, size);
178 		goto done;
179 	}
180 
181 	if (PageHighMem(page)) {
182 		/*
183 		 * Depending on the cma= arguments and per-arch setup
184 		 * dma_alloc_contiguous could return highmem pages.
185 		 * Without remapping there is no way to return them here,
186 		 * so log an error and fail.
187 		 */
188 		dev_info(dev, "Rejecting highmem page from CMA.\n");
189 		dma_free_contiguous(dev, page, size);
190 		return NULL;
191 	}
192 
193 	ret = page_address(page);
194 	if (force_dma_unencrypted(dev))
195 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
196 
197 	memset(ret, 0, size);
198 
199 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
200 	    dma_alloc_need_uncached(dev, attrs)) {
201 		arch_dma_prep_coherent(page, size);
202 		ret = uncached_kernel_address(ret);
203 	}
204 done:
205 	if (force_dma_unencrypted(dev))
206 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
207 	else
208 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
209 	return ret;
210 }
211 
212 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
213 		dma_addr_t dma_addr, unsigned long attrs)
214 {
215 	unsigned int page_order = get_order(size);
216 
217 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
218 	    !force_dma_unencrypted(dev)) {
219 		/* cpu_addr is a struct page cookie, not a kernel address */
220 		dma_free_contiguous(dev, cpu_addr, size);
221 		return;
222 	}
223 
224 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
225 	    dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
226 		return;
227 
228 	if (force_dma_unencrypted(dev))
229 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
230 
231 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
232 		vunmap(cpu_addr);
233 
234 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
235 }
236 
237 void *dma_direct_alloc(struct device *dev, size_t size,
238 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
239 {
240 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
241 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
242 	    dma_alloc_need_uncached(dev, attrs))
243 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
244 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
245 }
246 
247 void dma_direct_free(struct device *dev, size_t size,
248 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
249 {
250 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
251 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
252 	    dma_alloc_need_uncached(dev, attrs))
253 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
254 	else
255 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
256 }
257 
258 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
259     defined(CONFIG_SWIOTLB)
260 void dma_direct_sync_single_for_device(struct device *dev,
261 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
262 {
263 	phys_addr_t paddr = dma_to_phys(dev, addr);
264 
265 	if (unlikely(is_swiotlb_buffer(paddr)))
266 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
267 
268 	if (!dev_is_dma_coherent(dev))
269 		arch_sync_dma_for_device(paddr, size, dir);
270 }
271 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
272 
273 void dma_direct_sync_sg_for_device(struct device *dev,
274 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
275 {
276 	struct scatterlist *sg;
277 	int i;
278 
279 	for_each_sg(sgl, sg, nents, i) {
280 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
281 
282 		if (unlikely(is_swiotlb_buffer(paddr)))
283 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
284 					dir, SYNC_FOR_DEVICE);
285 
286 		if (!dev_is_dma_coherent(dev))
287 			arch_sync_dma_for_device(paddr, sg->length,
288 					dir);
289 	}
290 }
291 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
292 #endif
293 
294 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
295     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
296     defined(CONFIG_SWIOTLB)
297 void dma_direct_sync_single_for_cpu(struct device *dev,
298 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
299 {
300 	phys_addr_t paddr = dma_to_phys(dev, addr);
301 
302 	if (!dev_is_dma_coherent(dev)) {
303 		arch_sync_dma_for_cpu(paddr, size, dir);
304 		arch_sync_dma_for_cpu_all();
305 	}
306 
307 	if (unlikely(is_swiotlb_buffer(paddr)))
308 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
309 }
310 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
311 
312 void dma_direct_sync_sg_for_cpu(struct device *dev,
313 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
314 {
315 	struct scatterlist *sg;
316 	int i;
317 
318 	for_each_sg(sgl, sg, nents, i) {
319 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
320 
321 		if (!dev_is_dma_coherent(dev))
322 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
323 
324 		if (unlikely(is_swiotlb_buffer(paddr)))
325 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
326 					SYNC_FOR_CPU);
327 	}
328 
329 	if (!dev_is_dma_coherent(dev))
330 		arch_sync_dma_for_cpu_all();
331 }
332 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
333 
334 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
335 		size_t size, enum dma_data_direction dir, unsigned long attrs)
336 {
337 	phys_addr_t phys = dma_to_phys(dev, addr);
338 
339 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
340 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
341 
342 	if (unlikely(is_swiotlb_buffer(phys)))
343 		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
344 }
345 EXPORT_SYMBOL(dma_direct_unmap_page);
346 
347 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
348 		int nents, enum dma_data_direction dir, unsigned long attrs)
349 {
350 	struct scatterlist *sg;
351 	int i;
352 
353 	for_each_sg(sgl, sg, nents, i)
354 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
355 			     attrs);
356 }
357 EXPORT_SYMBOL(dma_direct_unmap_sg);
358 #endif
359 
360 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
361 		size_t size)
362 {
363 	return swiotlb_force != SWIOTLB_FORCE &&
364 		dma_capable(dev, dma_addr, size, true);
365 }
366 
367 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
368 		unsigned long offset, size_t size, enum dma_data_direction dir,
369 		unsigned long attrs)
370 {
371 	phys_addr_t phys = page_to_phys(page) + offset;
372 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
373 
374 	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
375 	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
376 		report_addr(dev, dma_addr, size);
377 		return DMA_MAPPING_ERROR;
378 	}
379 
380 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
381 		arch_sync_dma_for_device(phys, size, dir);
382 	return dma_addr;
383 }
384 EXPORT_SYMBOL(dma_direct_map_page);
385 
386 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
387 		enum dma_data_direction dir, unsigned long attrs)
388 {
389 	int i;
390 	struct scatterlist *sg;
391 
392 	for_each_sg(sgl, sg, nents, i) {
393 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
394 				sg->offset, sg->length, dir, attrs);
395 		if (sg->dma_address == DMA_MAPPING_ERROR)
396 			goto out_unmap;
397 		sg_dma_len(sg) = sg->length;
398 	}
399 
400 	return nents;
401 
402 out_unmap:
403 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
404 	return 0;
405 }
406 EXPORT_SYMBOL(dma_direct_map_sg);
407 
408 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
409 		size_t size, enum dma_data_direction dir, unsigned long attrs)
410 {
411 	dma_addr_t dma_addr = paddr;
412 
413 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
414 		report_addr(dev, dma_addr, size);
415 		return DMA_MAPPING_ERROR;
416 	}
417 
418 	return dma_addr;
419 }
420 EXPORT_SYMBOL(dma_direct_map_resource);
421 
422 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
423 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
424 		unsigned long attrs)
425 {
426 	struct page *page = dma_direct_to_page(dev, dma_addr);
427 	int ret;
428 
429 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
430 	if (!ret)
431 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
432 	return ret;
433 }
434 
435 #ifdef CONFIG_MMU
436 bool dma_direct_can_mmap(struct device *dev)
437 {
438 	return dev_is_dma_coherent(dev) ||
439 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
440 }
441 
442 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
443 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
444 		unsigned long attrs)
445 {
446 	unsigned long user_count = vma_pages(vma);
447 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
448 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
449 	int ret = -ENXIO;
450 
451 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
452 
453 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
454 		return ret;
455 
456 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
457 		return -ENXIO;
458 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
459 			user_count << PAGE_SHIFT, vma->vm_page_prot);
460 }
461 #else /* CONFIG_MMU */
462 bool dma_direct_can_mmap(struct device *dev)
463 {
464 	return false;
465 }
466 
467 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
468 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
469 		unsigned long attrs)
470 {
471 	return -ENXIO;
472 }
473 #endif /* CONFIG_MMU */
474 
475 /*
476  * Because 32-bit DMA masks are so common we expect every architecture to be
477  * able to satisfy them - either by not supporting more physical memory, or by
478  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
479  * use an IOMMU instead of the direct mapping.
480  */
481 int dma_direct_supported(struct device *dev, u64 mask)
482 {
483 	u64 min_mask;
484 
485 	if (IS_ENABLED(CONFIG_ZONE_DMA))
486 		min_mask = DMA_BIT_MASK(zone_dma_bits);
487 	else
488 		min_mask = DMA_BIT_MASK(32);
489 
490 	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
491 
492 	/*
493 	 * This check needs to be against the actual bit mask value, so
494 	 * use __phys_to_dma() here so that the SME encryption mask isn't
495 	 * part of the check.
496 	 */
497 	return mask >= __phys_to_dma(dev, min_mask);
498 }
499 
500 size_t dma_direct_max_mapping_size(struct device *dev)
501 {
502 	/* If SWIOTLB is active, use its maximum mapping size */
503 	if (is_swiotlb_active() &&
504 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
505 		return swiotlb_max_mapping_size(dev);
506 	return SIZE_MAX;
507 }
508