xref: /linux/kernel/dma/direct.c (revision 132db93572821ec2fdf81e354cc40f558faf7e4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25 
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 		phys_addr_t phys)
28 {
29 	if (force_dma_unencrypted(dev))
30 		return __phys_to_dma(dev, phys);
31 	return phys_to_dma(dev, phys);
32 }
33 
34 static inline struct page *dma_direct_to_page(struct device *dev,
35 		dma_addr_t dma_addr)
36 {
37 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39 
40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 	u64 max_dma = phys_to_dma_direct(dev, phys);
44 
45 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47 
48 gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49 				  u64 *phys_limit)
50 {
51 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52 
53 	if (force_dma_unencrypted(dev))
54 		*phys_limit = __dma_to_phys(dev, dma_limit);
55 	else
56 		*phys_limit = dma_to_phys(dev, dma_limit);
57 
58 	/*
59 	 * Optimistically try the zone that the physical address mask falls
60 	 * into first.  If that returns memory that isn't actually addressable
61 	 * we will fallback to the next lower zone and try again.
62 	 *
63 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
64 	 * zones.
65 	 */
66 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
67 		return GFP_DMA;
68 	if (*phys_limit <= DMA_BIT_MASK(32))
69 		return GFP_DMA32;
70 	return 0;
71 }
72 
73 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
74 {
75 	return phys_to_dma_direct(dev, phys) + size - 1 <=
76 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78 
79 /*
80  * Decrypting memory is allowed to block, so if this device requires
81  * unencrypted memory it must come from atomic pools.
82  */
83 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
84 					      unsigned long attrs)
85 {
86 	if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
87 		return false;
88 	if (gfpflags_allow_blocking(gfp))
89 		return false;
90 	if (force_dma_unencrypted(dev))
91 		return true;
92 	if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
93 		return false;
94 	if (dma_alloc_need_uncached(dev, attrs))
95 		return true;
96 	return false;
97 }
98 
99 static inline bool dma_should_free_from_pool(struct device *dev,
100 					     unsigned long attrs)
101 {
102 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
103 		return true;
104 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
105 	    !force_dma_unencrypted(dev))
106 		return false;
107 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
108 		return true;
109 	return false;
110 }
111 
112 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
113 		gfp_t gfp, unsigned long attrs)
114 {
115 	size_t alloc_size = PAGE_ALIGN(size);
116 	int node = dev_to_node(dev);
117 	struct page *page = NULL;
118 	u64 phys_limit;
119 
120 	if (attrs & DMA_ATTR_NO_WARN)
121 		gfp |= __GFP_NOWARN;
122 
123 	/* we always manually zero the memory once we are done: */
124 	gfp &= ~__GFP_ZERO;
125 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
126 					   &phys_limit);
127 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
128 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
129 		dma_free_contiguous(dev, page, alloc_size);
130 		page = NULL;
131 	}
132 again:
133 	if (!page)
134 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
135 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
136 		dma_free_contiguous(dev, page, size);
137 		page = NULL;
138 
139 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
140 		    phys_limit < DMA_BIT_MASK(64) &&
141 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
142 			gfp |= GFP_DMA32;
143 			goto again;
144 		}
145 
146 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
147 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
148 			goto again;
149 		}
150 	}
151 
152 	return page;
153 }
154 
155 void *dma_direct_alloc_pages(struct device *dev, size_t size,
156 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
157 {
158 	struct page *page;
159 	void *ret;
160 
161 	if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
162 		ret = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &page, gfp);
163 		if (!ret)
164 			return NULL;
165 		goto done;
166 	}
167 
168 	page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
169 	if (!page)
170 		return NULL;
171 
172 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
173 	    !force_dma_unencrypted(dev)) {
174 		/* remove any dirty cache lines on the kernel alias */
175 		if (!PageHighMem(page))
176 			arch_dma_prep_coherent(page, size);
177 		/* return the page pointer as the opaque cookie */
178 		ret = page;
179 		goto done;
180 	}
181 
182 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
183 	     dma_alloc_need_uncached(dev, attrs)) ||
184 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
185 		/* remove any dirty cache lines on the kernel alias */
186 		arch_dma_prep_coherent(page, PAGE_ALIGN(size));
187 
188 		/* create a coherent mapping */
189 		ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
190 				dma_pgprot(dev, PAGE_KERNEL, attrs),
191 				__builtin_return_address(0));
192 		if (!ret)
193 			goto out_free_pages;
194 		memset(ret, 0, size);
195 		goto done;
196 	}
197 
198 	if (PageHighMem(page)) {
199 		/*
200 		 * Depending on the cma= arguments and per-arch setup
201 		 * dma_alloc_contiguous could return highmem pages.
202 		 * Without remapping there is no way to return them here,
203 		 * so log an error and fail.
204 		 */
205 		dev_info(dev, "Rejecting highmem page from CMA.\n");
206 		goto out_free_pages;
207 	}
208 
209 	ret = page_address(page);
210 	if (force_dma_unencrypted(dev))
211 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
212 
213 	memset(ret, 0, size);
214 
215 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
216 	    dma_alloc_need_uncached(dev, attrs)) {
217 		arch_dma_prep_coherent(page, size);
218 		ret = arch_dma_set_uncached(ret, size);
219 		if (IS_ERR(ret))
220 			goto out_free_pages;
221 	}
222 done:
223 	if (force_dma_unencrypted(dev))
224 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
225 	else
226 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
227 	return ret;
228 out_free_pages:
229 	dma_free_contiguous(dev, page, size);
230 	return NULL;
231 }
232 
233 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
234 		dma_addr_t dma_addr, unsigned long attrs)
235 {
236 	unsigned int page_order = get_order(size);
237 
238 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
239 	if (dma_should_free_from_pool(dev, attrs) &&
240 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
241 		return;
242 
243 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
244 	    !force_dma_unencrypted(dev)) {
245 		/* cpu_addr is a struct page cookie, not a kernel address */
246 		dma_free_contiguous(dev, cpu_addr, size);
247 		return;
248 	}
249 
250 	if (force_dma_unencrypted(dev))
251 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
252 
253 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
254 		vunmap(cpu_addr);
255 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
256 		arch_dma_clear_uncached(cpu_addr, size);
257 
258 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
259 }
260 
261 void *dma_direct_alloc(struct device *dev, size_t size,
262 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
263 {
264 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
265 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
266 	    dma_alloc_need_uncached(dev, attrs))
267 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
268 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
269 }
270 
271 void dma_direct_free(struct device *dev, size_t size,
272 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
273 {
274 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
275 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
276 	    dma_alloc_need_uncached(dev, attrs))
277 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
278 	else
279 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
280 }
281 
282 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
283     defined(CONFIG_SWIOTLB)
284 void dma_direct_sync_single_for_device(struct device *dev,
285 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
286 {
287 	phys_addr_t paddr = dma_to_phys(dev, addr);
288 
289 	if (unlikely(is_swiotlb_buffer(paddr)))
290 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
291 
292 	if (!dev_is_dma_coherent(dev))
293 		arch_sync_dma_for_device(paddr, size, dir);
294 }
295 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
296 
297 void dma_direct_sync_sg_for_device(struct device *dev,
298 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
299 {
300 	struct scatterlist *sg;
301 	int i;
302 
303 	for_each_sg(sgl, sg, nents, i) {
304 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
305 
306 		if (unlikely(is_swiotlb_buffer(paddr)))
307 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
308 					dir, SYNC_FOR_DEVICE);
309 
310 		if (!dev_is_dma_coherent(dev))
311 			arch_sync_dma_for_device(paddr, sg->length,
312 					dir);
313 	}
314 }
315 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
316 #endif
317 
318 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
319     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
320     defined(CONFIG_SWIOTLB)
321 void dma_direct_sync_single_for_cpu(struct device *dev,
322 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
323 {
324 	phys_addr_t paddr = dma_to_phys(dev, addr);
325 
326 	if (!dev_is_dma_coherent(dev)) {
327 		arch_sync_dma_for_cpu(paddr, size, dir);
328 		arch_sync_dma_for_cpu_all();
329 	}
330 
331 	if (unlikely(is_swiotlb_buffer(paddr)))
332 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
333 }
334 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
335 
336 void dma_direct_sync_sg_for_cpu(struct device *dev,
337 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
338 {
339 	struct scatterlist *sg;
340 	int i;
341 
342 	for_each_sg(sgl, sg, nents, i) {
343 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
344 
345 		if (!dev_is_dma_coherent(dev))
346 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
347 
348 		if (unlikely(is_swiotlb_buffer(paddr)))
349 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
350 					SYNC_FOR_CPU);
351 	}
352 
353 	if (!dev_is_dma_coherent(dev))
354 		arch_sync_dma_for_cpu_all();
355 }
356 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
357 
358 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
359 		size_t size, enum dma_data_direction dir, unsigned long attrs)
360 {
361 	phys_addr_t phys = dma_to_phys(dev, addr);
362 
363 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
364 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
365 
366 	if (unlikely(is_swiotlb_buffer(phys)))
367 		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
368 }
369 EXPORT_SYMBOL(dma_direct_unmap_page);
370 
371 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
372 		int nents, enum dma_data_direction dir, unsigned long attrs)
373 {
374 	struct scatterlist *sg;
375 	int i;
376 
377 	for_each_sg(sgl, sg, nents, i)
378 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
379 			     attrs);
380 }
381 EXPORT_SYMBOL(dma_direct_unmap_sg);
382 #endif
383 
384 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
385 		unsigned long offset, size_t size, enum dma_data_direction dir,
386 		unsigned long attrs)
387 {
388 	phys_addr_t phys = page_to_phys(page) + offset;
389 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
390 
391 	if (unlikely(swiotlb_force == SWIOTLB_FORCE))
392 		return swiotlb_map(dev, phys, size, dir, attrs);
393 
394 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
395 		if (swiotlb_force != SWIOTLB_NO_FORCE)
396 			return swiotlb_map(dev, phys, size, dir, attrs);
397 
398 		dev_WARN_ONCE(dev, 1,
399 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
400 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
401 		return DMA_MAPPING_ERROR;
402 	}
403 
404 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
405 		arch_sync_dma_for_device(phys, size, dir);
406 	return dma_addr;
407 }
408 EXPORT_SYMBOL(dma_direct_map_page);
409 
410 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
411 		enum dma_data_direction dir, unsigned long attrs)
412 {
413 	int i;
414 	struct scatterlist *sg;
415 
416 	for_each_sg(sgl, sg, nents, i) {
417 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
418 				sg->offset, sg->length, dir, attrs);
419 		if (sg->dma_address == DMA_MAPPING_ERROR)
420 			goto out_unmap;
421 		sg_dma_len(sg) = sg->length;
422 	}
423 
424 	return nents;
425 
426 out_unmap:
427 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
428 	return 0;
429 }
430 EXPORT_SYMBOL(dma_direct_map_sg);
431 
432 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
433 		size_t size, enum dma_data_direction dir, unsigned long attrs)
434 {
435 	dma_addr_t dma_addr = paddr;
436 
437 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
438 		dev_err_once(dev,
439 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
440 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
441 		WARN_ON_ONCE(1);
442 		return DMA_MAPPING_ERROR;
443 	}
444 
445 	return dma_addr;
446 }
447 EXPORT_SYMBOL(dma_direct_map_resource);
448 
449 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
450 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
451 		unsigned long attrs)
452 {
453 	struct page *page = dma_direct_to_page(dev, dma_addr);
454 	int ret;
455 
456 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
457 	if (!ret)
458 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
459 	return ret;
460 }
461 
462 #ifdef CONFIG_MMU
463 bool dma_direct_can_mmap(struct device *dev)
464 {
465 	return dev_is_dma_coherent(dev) ||
466 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
467 }
468 
469 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
470 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
471 		unsigned long attrs)
472 {
473 	unsigned long user_count = vma_pages(vma);
474 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
475 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
476 	int ret = -ENXIO;
477 
478 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
479 
480 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
481 		return ret;
482 
483 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
484 		return -ENXIO;
485 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
486 			user_count << PAGE_SHIFT, vma->vm_page_prot);
487 }
488 #else /* CONFIG_MMU */
489 bool dma_direct_can_mmap(struct device *dev)
490 {
491 	return false;
492 }
493 
494 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
495 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
496 		unsigned long attrs)
497 {
498 	return -ENXIO;
499 }
500 #endif /* CONFIG_MMU */
501 
502 int dma_direct_supported(struct device *dev, u64 mask)
503 {
504 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
505 
506 	/*
507 	 * Because 32-bit DMA masks are so common we expect every architecture
508 	 * to be able to satisfy them - either by not supporting more physical
509 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
510 	 * architecture needs to use an IOMMU instead of the direct mapping.
511 	 */
512 	if (mask >= DMA_BIT_MASK(32))
513 		return 1;
514 
515 	/*
516 	 * This check needs to be against the actual bit mask value, so
517 	 * use __phys_to_dma() here so that the SME encryption mask isn't
518 	 * part of the check.
519 	 */
520 	if (IS_ENABLED(CONFIG_ZONE_DMA))
521 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
522 	return mask >= __phys_to_dma(dev, min_mask);
523 }
524 
525 size_t dma_direct_max_mapping_size(struct device *dev)
526 {
527 	/* If SWIOTLB is active, use its maximum mapping size */
528 	if (is_swiotlb_active() &&
529 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
530 		return swiotlb_max_mapping_size(dev);
531 	return SIZE_MAX;
532 }
533