xref: /linux/kernel/dma/coherent.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 
12 struct dma_coherent_mem {
13 	void		*virt_base;
14 	dma_addr_t	device_base;
15 	unsigned long	pfn_base;
16 	int		size;
17 	unsigned long	*bitmap;
18 	spinlock_t	spinlock;
19 	bool		use_dev_dma_pfn_offset;
20 };
21 
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23 
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 	if (dev && dev->dma_mem)
27 		return dev->dma_mem;
28 	return NULL;
29 }
30 
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 					     struct dma_coherent_mem * mem)
33 {
34 	if (mem->use_dev_dma_pfn_offset)
35 		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 	else
37 		return mem->device_base;
38 }
39 
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111 				dma_addr_t device_addr, size_t size)
112 {
113 	struct dma_coherent_mem *mem;
114 	int ret;
115 
116 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117 	if (ret)
118 		return ret;
119 
120 	ret = dma_assign_coherent_memory(dev, mem);
121 	if (ret)
122 		dma_release_coherent_memory(mem);
123 	return ret;
124 }
125 EXPORT_SYMBOL(dma_declare_coherent_memory);
126 
127 void dma_release_declared_memory(struct device *dev)
128 {
129 	struct dma_coherent_mem *mem = dev->dma_mem;
130 
131 	if (!mem)
132 		return;
133 	dma_release_coherent_memory(mem);
134 	dev->dma_mem = NULL;
135 }
136 EXPORT_SYMBOL(dma_release_declared_memory);
137 
138 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
139 		ssize_t size, dma_addr_t *dma_handle)
140 {
141 	int order = get_order(size);
142 	unsigned long flags;
143 	int pageno;
144 	void *ret;
145 
146 	spin_lock_irqsave(&mem->spinlock, flags);
147 
148 	if (unlikely(size > (mem->size << PAGE_SHIFT)))
149 		goto err;
150 
151 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
152 	if (unlikely(pageno < 0))
153 		goto err;
154 
155 	/*
156 	 * Memory was found in the coherent area.
157 	 */
158 	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
159 	ret = mem->virt_base + (pageno << PAGE_SHIFT);
160 	spin_unlock_irqrestore(&mem->spinlock, flags);
161 	memset(ret, 0, size);
162 	return ret;
163 err:
164 	spin_unlock_irqrestore(&mem->spinlock, flags);
165 	return NULL;
166 }
167 
168 /**
169  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
170  * @dev:	device from which we allocate memory
171  * @size:	size of requested memory area
172  * @dma_handle:	This will be filled with the correct dma handle
173  * @ret:	This pointer will be filled with the virtual address
174  *		to allocated area.
175  *
176  * This function should be only called from per-arch dma_alloc_coherent()
177  * to support allocation from per-device coherent memory pools.
178  *
179  * Returns 0 if dma_alloc_coherent should continue with allocating from
180  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
181  */
182 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
183 		dma_addr_t *dma_handle, void **ret)
184 {
185 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
186 
187 	if (!mem)
188 		return 0;
189 
190 	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
191 	return 1;
192 }
193 
194 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
195 {
196 	if (!dma_coherent_default_memory)
197 		return NULL;
198 
199 	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
200 			dma_handle);
201 }
202 
203 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
204 				       int order, void *vaddr)
205 {
206 	if (mem && vaddr >= mem->virt_base && vaddr <
207 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
208 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
209 		unsigned long flags;
210 
211 		spin_lock_irqsave(&mem->spinlock, flags);
212 		bitmap_release_region(mem->bitmap, page, order);
213 		spin_unlock_irqrestore(&mem->spinlock, flags);
214 		return 1;
215 	}
216 	return 0;
217 }
218 
219 /**
220  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
221  * @dev:	device from which the memory was allocated
222  * @order:	the order of pages allocated
223  * @vaddr:	virtual address of allocated pages
224  *
225  * This checks whether the memory was allocated from the per-device
226  * coherent memory pool and if so, releases that memory.
227  *
228  * Returns 1 if we correctly released the memory, or 0 if the caller should
229  * proceed with releasing memory from generic pools.
230  */
231 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
232 {
233 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
234 
235 	return __dma_release_from_coherent(mem, order, vaddr);
236 }
237 
238 int dma_release_from_global_coherent(int order, void *vaddr)
239 {
240 	if (!dma_coherent_default_memory)
241 		return 0;
242 
243 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
244 			vaddr);
245 }
246 
247 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
248 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
249 {
250 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
251 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
252 		unsigned long off = vma->vm_pgoff;
253 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
254 		int user_count = vma_pages(vma);
255 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
256 
257 		*ret = -ENXIO;
258 		if (off < count && user_count <= count - off) {
259 			unsigned long pfn = mem->pfn_base + start + off;
260 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
261 					       user_count << PAGE_SHIFT,
262 					       vma->vm_page_prot);
263 		}
264 		return 1;
265 	}
266 	return 0;
267 }
268 
269 /**
270  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
271  * @dev:	device from which the memory was allocated
272  * @vma:	vm_area for the userspace memory
273  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
274  * @size:	size of the memory buffer allocated
275  * @ret:	result from remap_pfn_range()
276  *
277  * This checks whether the memory was allocated from the per-device
278  * coherent memory pool and if so, maps that memory to the provided vma.
279  *
280  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
281  * should return @ret, or 0 if they should proceed with mapping memory from
282  * generic areas.
283  */
284 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
285 			   void *vaddr, size_t size, int *ret)
286 {
287 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
288 
289 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
290 }
291 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
292 
293 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
294 				   size_t size, int *ret)
295 {
296 	if (!dma_coherent_default_memory)
297 		return 0;
298 
299 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
300 					vaddr, size, ret);
301 }
302 
303 /*
304  * Support for reserved memory regions defined in device tree
305  */
306 #ifdef CONFIG_OF_RESERVED_MEM
307 #include <linux/of.h>
308 #include <linux/of_fdt.h>
309 #include <linux/of_reserved_mem.h>
310 
311 static struct reserved_mem *dma_reserved_default_memory __initdata;
312 
313 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
314 {
315 	struct dma_coherent_mem *mem = rmem->priv;
316 	int ret;
317 
318 	if (!mem) {
319 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
320 					       rmem->size, &mem);
321 		if (ret) {
322 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
323 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
324 			return ret;
325 		}
326 	}
327 	mem->use_dev_dma_pfn_offset = true;
328 	rmem->priv = mem;
329 	dma_assign_coherent_memory(dev, mem);
330 	return 0;
331 }
332 
333 static void rmem_dma_device_release(struct reserved_mem *rmem,
334 				    struct device *dev)
335 {
336 	if (dev)
337 		dev->dma_mem = NULL;
338 }
339 
340 static const struct reserved_mem_ops rmem_dma_ops = {
341 	.device_init	= rmem_dma_device_init,
342 	.device_release	= rmem_dma_device_release,
343 };
344 
345 static int __init rmem_dma_setup(struct reserved_mem *rmem)
346 {
347 	unsigned long node = rmem->fdt_node;
348 
349 	if (of_get_flat_dt_prop(node, "reusable", NULL))
350 		return -EINVAL;
351 
352 #ifdef CONFIG_ARM
353 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
354 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
355 		return -EINVAL;
356 	}
357 
358 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
359 		WARN(dma_reserved_default_memory,
360 		     "Reserved memory: region for default DMA coherent area is redefined\n");
361 		dma_reserved_default_memory = rmem;
362 	}
363 #endif
364 
365 	rmem->ops = &rmem_dma_ops;
366 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
367 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
368 	return 0;
369 }
370 
371 static int __init dma_init_reserved_memory(void)
372 {
373 	const struct reserved_mem_ops *ops;
374 	int ret;
375 
376 	if (!dma_reserved_default_memory)
377 		return -ENOMEM;
378 
379 	ops = dma_reserved_default_memory->ops;
380 
381 	/*
382 	 * We rely on rmem_dma_device_init() does not propagate error of
383 	 * dma_assign_coherent_memory() for "NULL" device.
384 	 */
385 	ret = ops->device_init(dma_reserved_default_memory, NULL);
386 
387 	if (!ret) {
388 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
389 		pr_info("DMA: default coherent area is set\n");
390 	}
391 
392 	return ret;
393 }
394 
395 core_initcall(dma_init_reserved_memory);
396 
397 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
398 #endif
399