xref: /linux/kernel/dma/coherent.c (revision 4eb7ae7a301d3586c3351e81d5c3cfe2304a1a6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 
12 struct dma_coherent_mem {
13 	void		*virt_base;
14 	dma_addr_t	device_base;
15 	unsigned long	pfn_base;
16 	int		size;
17 	unsigned long	*bitmap;
18 	spinlock_t	spinlock;
19 	bool		use_dev_dma_pfn_offset;
20 };
21 
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23 
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 	if (dev && dev->dma_mem)
27 		return dev->dma_mem;
28 	return NULL;
29 }
30 
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 					     struct dma_coherent_mem * mem)
33 {
34 	if (mem->use_dev_dma_pfn_offset)
35 		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 	else
37 		return mem->device_base;
38 }
39 
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111 				dma_addr_t device_addr, size_t size)
112 {
113 	struct dma_coherent_mem *mem;
114 	int ret;
115 
116 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117 	if (ret)
118 		return ret;
119 
120 	ret = dma_assign_coherent_memory(dev, mem);
121 	if (ret)
122 		dma_release_coherent_memory(mem);
123 	return ret;
124 }
125 
126 static void *__dma_alloc_from_coherent(struct device *dev,
127 				       struct dma_coherent_mem *mem,
128 				       ssize_t size, dma_addr_t *dma_handle)
129 {
130 	int order = get_order(size);
131 	unsigned long flags;
132 	int pageno;
133 	void *ret;
134 
135 	spin_lock_irqsave(&mem->spinlock, flags);
136 
137 	if (unlikely(size > (mem->size << PAGE_SHIFT)))
138 		goto err;
139 
140 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
141 	if (unlikely(pageno < 0))
142 		goto err;
143 
144 	/*
145 	 * Memory was found in the coherent area.
146 	 */
147 	*dma_handle = dma_get_device_base(dev, mem) + (pageno << PAGE_SHIFT);
148 	ret = mem->virt_base + (pageno << PAGE_SHIFT);
149 	spin_unlock_irqrestore(&mem->spinlock, flags);
150 	memset(ret, 0, size);
151 	return ret;
152 err:
153 	spin_unlock_irqrestore(&mem->spinlock, flags);
154 	return NULL;
155 }
156 
157 /**
158  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
159  * @dev:	device from which we allocate memory
160  * @size:	size of requested memory area
161  * @dma_handle:	This will be filled with the correct dma handle
162  * @ret:	This pointer will be filled with the virtual address
163  *		to allocated area.
164  *
165  * This function should be only called from per-arch dma_alloc_coherent()
166  * to support allocation from per-device coherent memory pools.
167  *
168  * Returns 0 if dma_alloc_coherent should continue with allocating from
169  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
170  */
171 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
172 		dma_addr_t *dma_handle, void **ret)
173 {
174 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
175 
176 	if (!mem)
177 		return 0;
178 
179 	*ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
180 	return 1;
181 }
182 
183 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
184 				     dma_addr_t *dma_handle)
185 {
186 	if (!dma_coherent_default_memory)
187 		return NULL;
188 
189 	return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
190 					 dma_handle);
191 }
192 
193 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
194 				       int order, void *vaddr)
195 {
196 	if (mem && vaddr >= mem->virt_base && vaddr <
197 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
198 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
199 		unsigned long flags;
200 
201 		spin_lock_irqsave(&mem->spinlock, flags);
202 		bitmap_release_region(mem->bitmap, page, order);
203 		spin_unlock_irqrestore(&mem->spinlock, flags);
204 		return 1;
205 	}
206 	return 0;
207 }
208 
209 /**
210  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
211  * @dev:	device from which the memory was allocated
212  * @order:	the order of pages allocated
213  * @vaddr:	virtual address of allocated pages
214  *
215  * This checks whether the memory was allocated from the per-device
216  * coherent memory pool and if so, releases that memory.
217  *
218  * Returns 1 if we correctly released the memory, or 0 if the caller should
219  * proceed with releasing memory from generic pools.
220  */
221 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
222 {
223 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
224 
225 	return __dma_release_from_coherent(mem, order, vaddr);
226 }
227 
228 int dma_release_from_global_coherent(int order, void *vaddr)
229 {
230 	if (!dma_coherent_default_memory)
231 		return 0;
232 
233 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
234 			vaddr);
235 }
236 
237 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
238 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
239 {
240 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
241 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
242 		unsigned long off = vma->vm_pgoff;
243 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
244 		int user_count = vma_pages(vma);
245 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
246 
247 		*ret = -ENXIO;
248 		if (off < count && user_count <= count - off) {
249 			unsigned long pfn = mem->pfn_base + start + off;
250 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
251 					       user_count << PAGE_SHIFT,
252 					       vma->vm_page_prot);
253 		}
254 		return 1;
255 	}
256 	return 0;
257 }
258 
259 /**
260  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
261  * @dev:	device from which the memory was allocated
262  * @vma:	vm_area for the userspace memory
263  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
264  * @size:	size of the memory buffer allocated
265  * @ret:	result from remap_pfn_range()
266  *
267  * This checks whether the memory was allocated from the per-device
268  * coherent memory pool and if so, maps that memory to the provided vma.
269  *
270  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
271  * should return @ret, or 0 if they should proceed with mapping memory from
272  * generic areas.
273  */
274 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
275 			   void *vaddr, size_t size, int *ret)
276 {
277 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
278 
279 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
280 }
281 
282 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
283 				   size_t size, int *ret)
284 {
285 	if (!dma_coherent_default_memory)
286 		return 0;
287 
288 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
289 					vaddr, size, ret);
290 }
291 
292 /*
293  * Support for reserved memory regions defined in device tree
294  */
295 #ifdef CONFIG_OF_RESERVED_MEM
296 #include <linux/of.h>
297 #include <linux/of_fdt.h>
298 #include <linux/of_reserved_mem.h>
299 
300 static struct reserved_mem *dma_reserved_default_memory __initdata;
301 
302 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
303 {
304 	struct dma_coherent_mem *mem = rmem->priv;
305 	int ret;
306 
307 	if (!mem) {
308 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
309 					       rmem->size, &mem);
310 		if (ret) {
311 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
312 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
313 			return ret;
314 		}
315 	}
316 	mem->use_dev_dma_pfn_offset = true;
317 	rmem->priv = mem;
318 	dma_assign_coherent_memory(dev, mem);
319 	return 0;
320 }
321 
322 static void rmem_dma_device_release(struct reserved_mem *rmem,
323 				    struct device *dev)
324 {
325 	if (dev)
326 		dev->dma_mem = NULL;
327 }
328 
329 static const struct reserved_mem_ops rmem_dma_ops = {
330 	.device_init	= rmem_dma_device_init,
331 	.device_release	= rmem_dma_device_release,
332 };
333 
334 static int __init rmem_dma_setup(struct reserved_mem *rmem)
335 {
336 	unsigned long node = rmem->fdt_node;
337 
338 	if (of_get_flat_dt_prop(node, "reusable", NULL))
339 		return -EINVAL;
340 
341 #ifdef CONFIG_ARM
342 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
343 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
344 		return -EINVAL;
345 	}
346 
347 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
348 		WARN(dma_reserved_default_memory,
349 		     "Reserved memory: region for default DMA coherent area is redefined\n");
350 		dma_reserved_default_memory = rmem;
351 	}
352 #endif
353 
354 	rmem->ops = &rmem_dma_ops;
355 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
356 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
357 	return 0;
358 }
359 
360 static int __init dma_init_reserved_memory(void)
361 {
362 	const struct reserved_mem_ops *ops;
363 	int ret;
364 
365 	if (!dma_reserved_default_memory)
366 		return -ENOMEM;
367 
368 	ops = dma_reserved_default_memory->ops;
369 
370 	/*
371 	 * We rely on rmem_dma_device_init() does not propagate error of
372 	 * dma_assign_coherent_memory() for "NULL" device.
373 	 */
374 	ret = ops->device_init(dma_reserved_default_memory, NULL);
375 
376 	if (!ret) {
377 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
378 		pr_info("DMA: default coherent area is set\n");
379 	}
380 
381 	return ret;
382 }
383 
384 core_initcall(dma_init_reserved_memory);
385 
386 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
387 #endif
388