xref: /linux/kernel/dma/coherent.c (revision 0df2c90eba60791148cee1823c0bf5fc66e3465c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 
12 struct dma_coherent_mem {
13 	void		*virt_base;
14 	dma_addr_t	device_base;
15 	unsigned long	pfn_base;
16 	int		size;
17 	unsigned long	*bitmap;
18 	spinlock_t	spinlock;
19 	bool		use_dev_dma_pfn_offset;
20 };
21 
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23 
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 	if (dev && dev->dma_mem)
27 		return dev->dma_mem;
28 	return NULL;
29 }
30 
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 					     struct dma_coherent_mem * mem)
33 {
34 	if (mem->use_dev_dma_pfn_offset)
35 		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 	else
37 		return mem->device_base;
38 }
39 
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111 				dma_addr_t device_addr, size_t size)
112 {
113 	struct dma_coherent_mem *mem;
114 	int ret;
115 
116 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117 	if (ret)
118 		return ret;
119 
120 	ret = dma_assign_coherent_memory(dev, mem);
121 	if (ret)
122 		dma_release_coherent_memory(mem);
123 	return ret;
124 }
125 
126 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
127 		ssize_t size, dma_addr_t *dma_handle)
128 {
129 	int order = get_order(size);
130 	unsigned long flags;
131 	int pageno;
132 	void *ret;
133 
134 	spin_lock_irqsave(&mem->spinlock, flags);
135 
136 	if (unlikely(size > (mem->size << PAGE_SHIFT)))
137 		goto err;
138 
139 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
140 	if (unlikely(pageno < 0))
141 		goto err;
142 
143 	/*
144 	 * Memory was found in the coherent area.
145 	 */
146 	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
147 	ret = mem->virt_base + (pageno << PAGE_SHIFT);
148 	spin_unlock_irqrestore(&mem->spinlock, flags);
149 	memset(ret, 0, size);
150 	return ret;
151 err:
152 	spin_unlock_irqrestore(&mem->spinlock, flags);
153 	return NULL;
154 }
155 
156 /**
157  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
158  * @dev:	device from which we allocate memory
159  * @size:	size of requested memory area
160  * @dma_handle:	This will be filled with the correct dma handle
161  * @ret:	This pointer will be filled with the virtual address
162  *		to allocated area.
163  *
164  * This function should be only called from per-arch dma_alloc_coherent()
165  * to support allocation from per-device coherent memory pools.
166  *
167  * Returns 0 if dma_alloc_coherent should continue with allocating from
168  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
169  */
170 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
171 		dma_addr_t *dma_handle, void **ret)
172 {
173 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
174 
175 	if (!mem)
176 		return 0;
177 
178 	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
179 	return 1;
180 }
181 
182 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
183 {
184 	if (!dma_coherent_default_memory)
185 		return NULL;
186 
187 	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
188 			dma_handle);
189 }
190 
191 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
192 				       int order, void *vaddr)
193 {
194 	if (mem && vaddr >= mem->virt_base && vaddr <
195 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
196 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
197 		unsigned long flags;
198 
199 		spin_lock_irqsave(&mem->spinlock, flags);
200 		bitmap_release_region(mem->bitmap, page, order);
201 		spin_unlock_irqrestore(&mem->spinlock, flags);
202 		return 1;
203 	}
204 	return 0;
205 }
206 
207 /**
208  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
209  * @dev:	device from which the memory was allocated
210  * @order:	the order of pages allocated
211  * @vaddr:	virtual address of allocated pages
212  *
213  * This checks whether the memory was allocated from the per-device
214  * coherent memory pool and if so, releases that memory.
215  *
216  * Returns 1 if we correctly released the memory, or 0 if the caller should
217  * proceed with releasing memory from generic pools.
218  */
219 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
220 {
221 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
222 
223 	return __dma_release_from_coherent(mem, order, vaddr);
224 }
225 
226 int dma_release_from_global_coherent(int order, void *vaddr)
227 {
228 	if (!dma_coherent_default_memory)
229 		return 0;
230 
231 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
232 			vaddr);
233 }
234 
235 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
236 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
237 {
238 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
239 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
240 		unsigned long off = vma->vm_pgoff;
241 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
242 		int user_count = vma_pages(vma);
243 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
244 
245 		*ret = -ENXIO;
246 		if (off < count && user_count <= count - off) {
247 			unsigned long pfn = mem->pfn_base + start + off;
248 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
249 					       user_count << PAGE_SHIFT,
250 					       vma->vm_page_prot);
251 		}
252 		return 1;
253 	}
254 	return 0;
255 }
256 
257 /**
258  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
259  * @dev:	device from which the memory was allocated
260  * @vma:	vm_area for the userspace memory
261  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
262  * @size:	size of the memory buffer allocated
263  * @ret:	result from remap_pfn_range()
264  *
265  * This checks whether the memory was allocated from the per-device
266  * coherent memory pool and if so, maps that memory to the provided vma.
267  *
268  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
269  * should return @ret, or 0 if they should proceed with mapping memory from
270  * generic areas.
271  */
272 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
273 			   void *vaddr, size_t size, int *ret)
274 {
275 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
276 
277 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
278 }
279 
280 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
281 				   size_t size, int *ret)
282 {
283 	if (!dma_coherent_default_memory)
284 		return 0;
285 
286 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
287 					vaddr, size, ret);
288 }
289 
290 /*
291  * Support for reserved memory regions defined in device tree
292  */
293 #ifdef CONFIG_OF_RESERVED_MEM
294 #include <linux/of.h>
295 #include <linux/of_fdt.h>
296 #include <linux/of_reserved_mem.h>
297 
298 static struct reserved_mem *dma_reserved_default_memory __initdata;
299 
300 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
301 {
302 	struct dma_coherent_mem *mem = rmem->priv;
303 	int ret;
304 
305 	if (!mem) {
306 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
307 					       rmem->size, &mem);
308 		if (ret) {
309 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
310 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
311 			return ret;
312 		}
313 	}
314 	mem->use_dev_dma_pfn_offset = true;
315 	rmem->priv = mem;
316 	dma_assign_coherent_memory(dev, mem);
317 	return 0;
318 }
319 
320 static void rmem_dma_device_release(struct reserved_mem *rmem,
321 				    struct device *dev)
322 {
323 	if (dev)
324 		dev->dma_mem = NULL;
325 }
326 
327 static const struct reserved_mem_ops rmem_dma_ops = {
328 	.device_init	= rmem_dma_device_init,
329 	.device_release	= rmem_dma_device_release,
330 };
331 
332 static int __init rmem_dma_setup(struct reserved_mem *rmem)
333 {
334 	unsigned long node = rmem->fdt_node;
335 
336 	if (of_get_flat_dt_prop(node, "reusable", NULL))
337 		return -EINVAL;
338 
339 #ifdef CONFIG_ARM
340 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
341 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
342 		return -EINVAL;
343 	}
344 
345 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
346 		WARN(dma_reserved_default_memory,
347 		     "Reserved memory: region for default DMA coherent area is redefined\n");
348 		dma_reserved_default_memory = rmem;
349 	}
350 #endif
351 
352 	rmem->ops = &rmem_dma_ops;
353 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
354 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
355 	return 0;
356 }
357 
358 static int __init dma_init_reserved_memory(void)
359 {
360 	const struct reserved_mem_ops *ops;
361 	int ret;
362 
363 	if (!dma_reserved_default_memory)
364 		return -ENOMEM;
365 
366 	ops = dma_reserved_default_memory->ops;
367 
368 	/*
369 	 * We rely on rmem_dma_device_init() does not propagate error of
370 	 * dma_assign_coherent_memory() for "NULL" device.
371 	 */
372 	ret = ops->device_init(dma_reserved_default_memory, NULL);
373 
374 	if (!ret) {
375 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
376 		pr_info("DMA: default coherent area is set\n");
377 	}
378 
379 	return ret;
380 }
381 
382 core_initcall(dma_init_reserved_memory);
383 
384 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
385 #endif
386