xref: /linux/kernel/dma/coherent.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12 
13 struct dma_coherent_mem {
14 	void		*virt_base;
15 	dma_addr_t	device_base;
16 	unsigned long	pfn_base;
17 	int		size;
18 	unsigned long	*bitmap;
19 	spinlock_t	spinlock;
20 	bool		use_dev_dma_pfn_offset;
21 };
22 
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24 
25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27 	if (dev && dev->dma_mem)
28 		return dev->dma_mem;
29 	return NULL;
30 }
31 
32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33 					     struct dma_coherent_mem * mem)
34 {
35 	if (mem->use_dev_dma_pfn_offset)
36 		return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
37 	return mem->device_base;
38 }
39 
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 /*
111  * Declare a region of memory to be handed out by dma_alloc_coherent() when it
112  * is asked for coherent memory for this device.  This shall only be used
113  * from platform code, usually based on the device tree description.
114  *
115  * phys_addr is the CPU physical address to which the memory is currently
116  * assigned (this will be ioremapped so the CPU can access the region).
117  *
118  * device_addr is the DMA address the device needs to be programmed with to
119  * actually address this memory (this will be handed out as the dma_addr_t in
120  * dma_alloc_coherent()).
121  *
122  * size is the size of the area (must be a multiple of PAGE_SIZE).
123  *
124  * As a simplification for the platforms, only *one* such region of memory may
125  * be declared per device.
126  */
127 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
128 				dma_addr_t device_addr, size_t size)
129 {
130 	struct dma_coherent_mem *mem;
131 	int ret;
132 
133 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
134 	if (ret)
135 		return ret;
136 
137 	ret = dma_assign_coherent_memory(dev, mem);
138 	if (ret)
139 		dma_release_coherent_memory(mem);
140 	return ret;
141 }
142 
143 static void *__dma_alloc_from_coherent(struct device *dev,
144 				       struct dma_coherent_mem *mem,
145 				       ssize_t size, dma_addr_t *dma_handle)
146 {
147 	int order = get_order(size);
148 	unsigned long flags;
149 	int pageno;
150 	void *ret;
151 
152 	spin_lock_irqsave(&mem->spinlock, flags);
153 
154 	if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
155 		goto err;
156 
157 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
158 	if (unlikely(pageno < 0))
159 		goto err;
160 
161 	/*
162 	 * Memory was found in the coherent area.
163 	 */
164 	*dma_handle = dma_get_device_base(dev, mem) +
165 			((dma_addr_t)pageno << PAGE_SHIFT);
166 	ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
167 	spin_unlock_irqrestore(&mem->spinlock, flags);
168 	memset(ret, 0, size);
169 	return ret;
170 err:
171 	spin_unlock_irqrestore(&mem->spinlock, flags);
172 	return NULL;
173 }
174 
175 /**
176  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
177  * @dev:	device from which we allocate memory
178  * @size:	size of requested memory area
179  * @dma_handle:	This will be filled with the correct dma handle
180  * @ret:	This pointer will be filled with the virtual address
181  *		to allocated area.
182  *
183  * This function should be only called from per-arch dma_alloc_coherent()
184  * to support allocation from per-device coherent memory pools.
185  *
186  * Returns 0 if dma_alloc_coherent should continue with allocating from
187  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
188  */
189 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
190 		dma_addr_t *dma_handle, void **ret)
191 {
192 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
193 
194 	if (!mem)
195 		return 0;
196 
197 	*ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
198 	return 1;
199 }
200 
201 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
202 				     dma_addr_t *dma_handle)
203 {
204 	if (!dma_coherent_default_memory)
205 		return NULL;
206 
207 	return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
208 					 dma_handle);
209 }
210 
211 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
212 				       int order, void *vaddr)
213 {
214 	if (mem && vaddr >= mem->virt_base && vaddr <
215 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
216 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
217 		unsigned long flags;
218 
219 		spin_lock_irqsave(&mem->spinlock, flags);
220 		bitmap_release_region(mem->bitmap, page, order);
221 		spin_unlock_irqrestore(&mem->spinlock, flags);
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 /**
228  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
229  * @dev:	device from which the memory was allocated
230  * @order:	the order of pages allocated
231  * @vaddr:	virtual address of allocated pages
232  *
233  * This checks whether the memory was allocated from the per-device
234  * coherent memory pool and if so, releases that memory.
235  *
236  * Returns 1 if we correctly released the memory, or 0 if the caller should
237  * proceed with releasing memory from generic pools.
238  */
239 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
240 {
241 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
242 
243 	return __dma_release_from_coherent(mem, order, vaddr);
244 }
245 
246 int dma_release_from_global_coherent(int order, void *vaddr)
247 {
248 	if (!dma_coherent_default_memory)
249 		return 0;
250 
251 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
252 			vaddr);
253 }
254 
255 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
256 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
257 {
258 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
259 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
260 		unsigned long off = vma->vm_pgoff;
261 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
262 		unsigned long user_count = vma_pages(vma);
263 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
264 
265 		*ret = -ENXIO;
266 		if (off < count && user_count <= count - off) {
267 			unsigned long pfn = mem->pfn_base + start + off;
268 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
269 					       user_count << PAGE_SHIFT,
270 					       vma->vm_page_prot);
271 		}
272 		return 1;
273 	}
274 	return 0;
275 }
276 
277 /**
278  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
279  * @dev:	device from which the memory was allocated
280  * @vma:	vm_area for the userspace memory
281  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
282  * @size:	size of the memory buffer allocated
283  * @ret:	result from remap_pfn_range()
284  *
285  * This checks whether the memory was allocated from the per-device
286  * coherent memory pool and if so, maps that memory to the provided vma.
287  *
288  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
289  * should return @ret, or 0 if they should proceed with mapping memory from
290  * generic areas.
291  */
292 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
293 			   void *vaddr, size_t size, int *ret)
294 {
295 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
296 
297 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
298 }
299 
300 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
301 				   size_t size, int *ret)
302 {
303 	if (!dma_coherent_default_memory)
304 		return 0;
305 
306 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
307 					vaddr, size, ret);
308 }
309 
310 /*
311  * Support for reserved memory regions defined in device tree
312  */
313 #ifdef CONFIG_OF_RESERVED_MEM
314 #include <linux/of.h>
315 #include <linux/of_fdt.h>
316 #include <linux/of_reserved_mem.h>
317 
318 static struct reserved_mem *dma_reserved_default_memory __initdata;
319 
320 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
321 {
322 	struct dma_coherent_mem *mem = rmem->priv;
323 	int ret;
324 
325 	if (!mem) {
326 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
327 					       rmem->size, &mem);
328 		if (ret) {
329 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
330 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
331 			return ret;
332 		}
333 	}
334 	mem->use_dev_dma_pfn_offset = true;
335 	rmem->priv = mem;
336 	dma_assign_coherent_memory(dev, mem);
337 	return 0;
338 }
339 
340 static void rmem_dma_device_release(struct reserved_mem *rmem,
341 				    struct device *dev)
342 {
343 	if (dev)
344 		dev->dma_mem = NULL;
345 }
346 
347 static const struct reserved_mem_ops rmem_dma_ops = {
348 	.device_init	= rmem_dma_device_init,
349 	.device_release	= rmem_dma_device_release,
350 };
351 
352 static int __init rmem_dma_setup(struct reserved_mem *rmem)
353 {
354 	unsigned long node = rmem->fdt_node;
355 
356 	if (of_get_flat_dt_prop(node, "reusable", NULL))
357 		return -EINVAL;
358 
359 #ifdef CONFIG_ARM
360 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
361 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
362 		return -EINVAL;
363 	}
364 
365 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
366 		WARN(dma_reserved_default_memory,
367 		     "Reserved memory: region for default DMA coherent area is redefined\n");
368 		dma_reserved_default_memory = rmem;
369 	}
370 #endif
371 
372 	rmem->ops = &rmem_dma_ops;
373 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
374 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
375 	return 0;
376 }
377 
378 static int __init dma_init_reserved_memory(void)
379 {
380 	const struct reserved_mem_ops *ops;
381 	int ret;
382 
383 	if (!dma_reserved_default_memory)
384 		return -ENOMEM;
385 
386 	ops = dma_reserved_default_memory->ops;
387 
388 	/*
389 	 * We rely on rmem_dma_device_init() does not propagate error of
390 	 * dma_assign_coherent_memory() for "NULL" device.
391 	 */
392 	ret = ops->device_init(dma_reserved_default_memory, NULL);
393 
394 	if (!ret) {
395 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
396 		pr_info("DMA: default coherent area is set\n");
397 	}
398 
399 	return ret;
400 }
401 
402 core_initcall(dma_init_reserved_memory);
403 
404 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
405 #endif
406