1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/moduleparam.h> 30 #include <linux/mm.h> 31 #include <linux/init.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdb.h> 35 #include <linux/notifier.h> 36 #include <linux/interrupt.h> 37 #include <linux/delay.h> 38 #include <linux/nmi.h> 39 #include <linux/time.h> 40 #include <linux/ptrace.h> 41 #include <linux/sysctl.h> 42 #include <linux/cpu.h> 43 #include <linux/kdebug.h> 44 #include <linux/proc_fs.h> 45 #include <linux/uaccess.h> 46 #include <linux/slab.h> 47 #include <linux/security.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 unsigned int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_cmds_head describes the available commands. */ 88 static LIST_HEAD(kdb_cmds_head); 89 90 typedef struct _kdbmsg { 91 int km_diag; /* kdb diagnostic */ 92 char *km_msg; /* Corresponding message text */ 93 } kdbmsg_t; 94 95 #define KDBMSG(msgnum, text) \ 96 { KDB_##msgnum, text } 97 98 static kdbmsg_t kdbmsgs[] = { 99 KDBMSG(NOTFOUND, "Command Not Found"), 100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 102 "8 is only allowed on 64 bit systems"), 103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 104 KDBMSG(NOTENV, "Cannot find environment variable"), 105 KDBMSG(NOENVVALUE, "Environment variable should have value"), 106 KDBMSG(NOTIMP, "Command not implemented"), 107 KDBMSG(ENVFULL, "Environment full"), 108 KDBMSG(ENVBUFFULL, "Environment buffer full"), 109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 110 #ifdef CONFIG_CPU_XSCALE 111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 112 #else 113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 114 #endif 115 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 117 KDBMSG(BADMODE, "Invalid IDMODE"), 118 KDBMSG(BADINT, "Illegal numeric value"), 119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 120 KDBMSG(BADREG, "Invalid register name"), 121 KDBMSG(BADCPUNUM, "Invalid cpu number"), 122 KDBMSG(BADLENGTH, "Invalid length field"), 123 KDBMSG(NOBP, "No Breakpoint exists"), 124 KDBMSG(BADADDR, "Invalid address"), 125 KDBMSG(NOPERM, "Permission denied"), 126 }; 127 #undef KDBMSG 128 129 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 130 131 132 /* 133 * Initial environment. This is all kept static and local to 134 * this file. We don't want to rely on the memory allocation 135 * mechanisms in the kernel, so we use a very limited allocate-only 136 * heap for new and altered environment variables. The entire 137 * environment is limited to a fixed number of entries (add more 138 * to __env[] if required) and a fixed amount of heap (add more to 139 * KDB_ENVBUFSIZE if required). 140 */ 141 142 static char *__env[31] = { 143 #if defined(CONFIG_SMP) 144 "PROMPT=[%d]kdb> ", 145 #else 146 "PROMPT=kdb> ", 147 #endif 148 "MOREPROMPT=more> ", 149 "RADIX=16", 150 "MDCOUNT=8", /* lines of md output */ 151 KDB_PLATFORM_ENV, 152 "DTABCOUNT=30", 153 "NOSECT=1", 154 }; 155 156 static const int __nenv = ARRAY_SIZE(__env); 157 158 /* 159 * Update the permissions flags (kdb_cmd_enabled) to match the 160 * current lockdown state. 161 * 162 * Within this function the calls to security_locked_down() are "lazy". We 163 * avoid calling them if the current value of kdb_cmd_enabled already excludes 164 * flags that might be subject to lockdown. Additionally we deliberately check 165 * the lockdown flags independently (even though read lockdown implies write 166 * lockdown) since that results in both simpler code and clearer messages to 167 * the user on first-time debugger entry. 168 * 169 * The permission masks during a read+write lockdown permits the following 170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE). 171 * 172 * The INSPECT commands are not blocked during lockdown because they are 173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes 174 * forcing them to have no arguments) and lsmod. These commands do expose 175 * some kernel state but do not allow the developer seated at the console to 176 * choose what state is reported. SIGNAL and REBOOT should not be controversial, 177 * given these are allowed for root during lockdown already. 178 */ 179 static void kdb_check_for_lockdown(void) 180 { 181 const int write_flags = KDB_ENABLE_MEM_WRITE | 182 KDB_ENABLE_REG_WRITE | 183 KDB_ENABLE_FLOW_CTRL; 184 const int read_flags = KDB_ENABLE_MEM_READ | 185 KDB_ENABLE_REG_READ; 186 187 bool need_to_lockdown_write = false; 188 bool need_to_lockdown_read = false; 189 190 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags)) 191 need_to_lockdown_write = 192 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL); 193 194 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags)) 195 need_to_lockdown_read = 196 security_locked_down(LOCKDOWN_DBG_READ_KERNEL); 197 198 /* De-compose KDB_ENABLE_ALL if required */ 199 if (need_to_lockdown_write || need_to_lockdown_read) 200 if (kdb_cmd_enabled & KDB_ENABLE_ALL) 201 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL; 202 203 if (need_to_lockdown_write) 204 kdb_cmd_enabled &= ~write_flags; 205 206 if (need_to_lockdown_read) 207 kdb_cmd_enabled &= ~read_flags; 208 } 209 210 /* 211 * Check whether the flags of the current command, the permissions of the kdb 212 * console and the lockdown state allow a command to be run. 213 */ 214 static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 215 bool no_args) 216 { 217 /* permissions comes from userspace so needs massaging slightly */ 218 permissions &= KDB_ENABLE_MASK; 219 permissions |= KDB_ENABLE_ALWAYS_SAFE; 220 221 /* some commands change group when launched with no arguments */ 222 if (no_args) 223 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 224 225 flags |= KDB_ENABLE_ALL; 226 227 return permissions & flags; 228 } 229 230 /* 231 * kdbgetenv - This function will return the character string value of 232 * an environment variable. 233 * Parameters: 234 * match A character string representing an environment variable. 235 * Returns: 236 * NULL No environment variable matches 'match' 237 * char* Pointer to string value of environment variable. 238 */ 239 char *kdbgetenv(const char *match) 240 { 241 char **ep = __env; 242 int matchlen = strlen(match); 243 int i; 244 245 for (i = 0; i < __nenv; i++) { 246 char *e = *ep++; 247 248 if (!e) 249 continue; 250 251 if ((strncmp(match, e, matchlen) == 0) 252 && ((e[matchlen] == '\0') 253 || (e[matchlen] == '='))) { 254 char *cp = strchr(e, '='); 255 return cp ? ++cp : ""; 256 } 257 } 258 return NULL; 259 } 260 261 /* 262 * kdballocenv - This function is used to allocate bytes for 263 * environment entries. 264 * Parameters: 265 * bytes The number of bytes to allocate in the static buffer. 266 * Returns: 267 * A pointer to the allocated space in the buffer on success. 268 * NULL if bytes > size available in the envbuffer. 269 * Remarks: 270 * We use a static environment buffer (envbuffer) to hold the values 271 * of dynamically generated environment variables (see kdb_set). Buffer 272 * space once allocated is never free'd, so over time, the amount of space 273 * (currently 512 bytes) will be exhausted if env variables are changed 274 * frequently. 275 */ 276 static char *kdballocenv(size_t bytes) 277 { 278 #define KDB_ENVBUFSIZE 512 279 static char envbuffer[KDB_ENVBUFSIZE]; 280 static int envbufsize; 281 char *ep = NULL; 282 283 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 284 ep = &envbuffer[envbufsize]; 285 envbufsize += bytes; 286 } 287 return ep; 288 } 289 290 /* 291 * kdbgetulenv - This function will return the value of an unsigned 292 * long-valued environment variable. 293 * Parameters: 294 * match A character string representing a numeric value 295 * Outputs: 296 * *value the unsigned long representation of the env variable 'match' 297 * Returns: 298 * Zero on success, a kdb diagnostic on failure. 299 */ 300 static int kdbgetulenv(const char *match, unsigned long *value) 301 { 302 char *ep; 303 304 ep = kdbgetenv(match); 305 if (!ep) 306 return KDB_NOTENV; 307 if (strlen(ep) == 0) 308 return KDB_NOENVVALUE; 309 if (kstrtoul(ep, 0, value)) 310 return KDB_BADINT; 311 312 return 0; 313 } 314 315 /* 316 * kdbgetintenv - This function will return the value of an 317 * integer-valued environment variable. 318 * Parameters: 319 * match A character string representing an integer-valued env variable 320 * Outputs: 321 * *value the integer representation of the environment variable 'match' 322 * Returns: 323 * Zero on success, a kdb diagnostic on failure. 324 */ 325 int kdbgetintenv(const char *match, int *value) 326 { 327 unsigned long val; 328 int diag; 329 330 diag = kdbgetulenv(match, &val); 331 if (!diag) 332 *value = (int) val; 333 return diag; 334 } 335 336 /* 337 * kdb_setenv() - Alter an existing environment variable or create a new one. 338 * @var: Name of the variable 339 * @val: Value of the variable 340 * 341 * Return: Zero on success, a kdb diagnostic on failure. 342 */ 343 static int kdb_setenv(const char *var, const char *val) 344 { 345 int i; 346 char *ep; 347 size_t varlen, vallen; 348 349 varlen = strlen(var); 350 vallen = strlen(val); 351 ep = kdballocenv(varlen + vallen + 2); 352 if (ep == (char *)0) 353 return KDB_ENVBUFFULL; 354 355 sprintf(ep, "%s=%s", var, val); 356 357 for (i = 0; i < __nenv; i++) { 358 if (__env[i] 359 && ((strncmp(__env[i], var, varlen) == 0) 360 && ((__env[i][varlen] == '\0') 361 || (__env[i][varlen] == '=')))) { 362 __env[i] = ep; 363 return 0; 364 } 365 } 366 367 /* 368 * Wasn't existing variable. Fit into slot. 369 */ 370 for (i = 0; i < __nenv-1; i++) { 371 if (__env[i] == (char *)0) { 372 __env[i] = ep; 373 return 0; 374 } 375 } 376 377 return KDB_ENVFULL; 378 } 379 380 /* 381 * kdb_printenv() - Display the current environment variables. 382 */ 383 static void kdb_printenv(void) 384 { 385 int i; 386 387 for (i = 0; i < __nenv; i++) { 388 if (__env[i]) 389 kdb_printf("%s\n", __env[i]); 390 } 391 } 392 393 /* 394 * kdbgetularg - This function will convert a numeric string into an 395 * unsigned long value. 396 * Parameters: 397 * arg A character string representing a numeric value 398 * Outputs: 399 * *value the unsigned long representation of arg. 400 * Returns: 401 * Zero on success, a kdb diagnostic on failure. 402 */ 403 int kdbgetularg(const char *arg, unsigned long *value) 404 { 405 if (kstrtoul(arg, 0, value)) 406 return KDB_BADINT; 407 return 0; 408 } 409 410 int kdbgetu64arg(const char *arg, u64 *value) 411 { 412 if (kstrtou64(arg, 0, value)) 413 return KDB_BADINT; 414 return 0; 415 } 416 417 /* 418 * kdb_set - This function implements the 'set' command. Alter an 419 * existing environment variable or create a new one. 420 */ 421 int kdb_set(int argc, const char **argv) 422 { 423 /* 424 * we can be invoked two ways: 425 * set var=value argv[1]="var", argv[2]="value" 426 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 427 * - if the latter, shift 'em down. 428 */ 429 if (argc == 3) { 430 argv[2] = argv[3]; 431 argc--; 432 } 433 434 if (argc != 2) 435 return KDB_ARGCOUNT; 436 437 /* 438 * Censor sensitive variables 439 */ 440 if (strcmp(argv[1], "PROMPT") == 0 && 441 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 442 return KDB_NOPERM; 443 444 /* 445 * Check for internal variables 446 */ 447 if (strcmp(argv[1], "KDBDEBUG") == 0) { 448 unsigned int debugflags; 449 int ret; 450 451 ret = kstrtouint(argv[2], 0, &debugflags); 452 if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) { 453 kdb_printf("kdb: illegal debug flags '%s'\n", 454 argv[2]); 455 return 0; 456 } 457 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK)) 458 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 459 460 return 0; 461 } 462 463 /* 464 * Tokenizer squashed the '=' sign. argv[1] is variable 465 * name, argv[2] = value. 466 */ 467 return kdb_setenv(argv[1], argv[2]); 468 } 469 470 static int kdb_check_regs(void) 471 { 472 if (!kdb_current_regs) { 473 kdb_printf("No current kdb registers." 474 " You may need to select another task\n"); 475 return KDB_BADREG; 476 } 477 return 0; 478 } 479 480 /* 481 * kdbgetaddrarg - This function is responsible for parsing an 482 * address-expression and returning the value of the expression, 483 * symbol name, and offset to the caller. 484 * 485 * The argument may consist of a numeric value (decimal or 486 * hexadecimal), a symbol name, a register name (preceded by the 487 * percent sign), an environment variable with a numeric value 488 * (preceded by a dollar sign) or a simple arithmetic expression 489 * consisting of a symbol name, +/-, and a numeric constant value 490 * (offset). 491 * Parameters: 492 * argc - count of arguments in argv 493 * argv - argument vector 494 * *nextarg - index to next unparsed argument in argv[] 495 * regs - Register state at time of KDB entry 496 * Outputs: 497 * *value - receives the value of the address-expression 498 * *offset - receives the offset specified, if any 499 * *name - receives the symbol name, if any 500 * *nextarg - index to next unparsed argument in argv[] 501 * Returns: 502 * zero is returned on success, a kdb diagnostic code is 503 * returned on error. 504 */ 505 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 506 unsigned long *value, long *offset, 507 char **name) 508 { 509 unsigned long addr; 510 unsigned long off = 0; 511 int positive; 512 int diag; 513 int found = 0; 514 char *symname; 515 char symbol = '\0'; 516 char *cp; 517 kdb_symtab_t symtab; 518 519 /* 520 * If the enable flags prohibit both arbitrary memory access 521 * and flow control then there are no reasonable grounds to 522 * provide symbol lookup. 523 */ 524 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 525 kdb_cmd_enabled, false)) 526 return KDB_NOPERM; 527 528 /* 529 * Process arguments which follow the following syntax: 530 * 531 * symbol | numeric-address [+/- numeric-offset] 532 * %register 533 * $environment-variable 534 */ 535 536 if (*nextarg > argc) 537 return KDB_ARGCOUNT; 538 539 symname = (char *)argv[*nextarg]; 540 541 /* 542 * If there is no whitespace between the symbol 543 * or address and the '+' or '-' symbols, we 544 * remember the character and replace it with a 545 * null so the symbol/value can be properly parsed 546 */ 547 cp = strpbrk(symname, "+-"); 548 if (cp != NULL) { 549 symbol = *cp; 550 *cp++ = '\0'; 551 } 552 553 if (symname[0] == '$') { 554 diag = kdbgetulenv(&symname[1], &addr); 555 if (diag) 556 return diag; 557 } else if (symname[0] == '%') { 558 diag = kdb_check_regs(); 559 if (diag) 560 return diag; 561 /* Implement register values with % at a later time as it is 562 * arch optional. 563 */ 564 return KDB_NOTIMP; 565 } else { 566 found = kdbgetsymval(symname, &symtab); 567 if (found) { 568 addr = symtab.sym_start; 569 } else { 570 diag = kdbgetularg(argv[*nextarg], &addr); 571 if (diag) 572 return diag; 573 } 574 } 575 576 if (!found) 577 found = kdbnearsym(addr, &symtab); 578 579 (*nextarg)++; 580 581 if (name) 582 *name = symname; 583 if (value) 584 *value = addr; 585 if (offset && name && *name) 586 *offset = addr - symtab.sym_start; 587 588 if ((*nextarg > argc) 589 && (symbol == '\0')) 590 return 0; 591 592 /* 593 * check for +/- and offset 594 */ 595 596 if (symbol == '\0') { 597 if ((argv[*nextarg][0] != '+') 598 && (argv[*nextarg][0] != '-')) { 599 /* 600 * Not our argument. Return. 601 */ 602 return 0; 603 } else { 604 positive = (argv[*nextarg][0] == '+'); 605 (*nextarg)++; 606 } 607 } else 608 positive = (symbol == '+'); 609 610 /* 611 * Now there must be an offset! 612 */ 613 if ((*nextarg > argc) 614 && (symbol == '\0')) { 615 return KDB_INVADDRFMT; 616 } 617 618 if (!symbol) { 619 cp = (char *)argv[*nextarg]; 620 (*nextarg)++; 621 } 622 623 diag = kdbgetularg(cp, &off); 624 if (diag) 625 return diag; 626 627 if (!positive) 628 off = -off; 629 630 if (offset) 631 *offset += off; 632 633 if (value) 634 *value += off; 635 636 return 0; 637 } 638 639 static void kdb_cmderror(int diag) 640 { 641 int i; 642 643 if (diag >= 0) { 644 kdb_printf("no error detected (diagnostic is %d)\n", diag); 645 return; 646 } 647 648 for (i = 0; i < __nkdb_err; i++) { 649 if (kdbmsgs[i].km_diag == diag) { 650 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 651 return; 652 } 653 } 654 655 kdb_printf("Unknown diag %d\n", -diag); 656 } 657 658 /* 659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 660 * command which defines one command as a set of other commands, 661 * terminated by endefcmd. kdb_defcmd processes the initial 662 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 663 * the following commands until 'endefcmd'. 664 * Inputs: 665 * argc argument count 666 * argv argument vector 667 * Returns: 668 * zero for success, a kdb diagnostic if error 669 */ 670 struct kdb_macro { 671 kdbtab_t cmd; /* Macro command */ 672 struct list_head statements; /* Associated statement list */ 673 }; 674 675 struct kdb_macro_statement { 676 char *statement; /* Statement text */ 677 struct list_head list_node; /* Statement list node */ 678 }; 679 680 static struct kdb_macro *kdb_macro; 681 static bool defcmd_in_progress; 682 683 /* Forward references */ 684 static int kdb_exec_defcmd(int argc, const char **argv); 685 686 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 687 { 688 struct kdb_macro_statement *kms; 689 690 if (!kdb_macro) 691 return KDB_NOTIMP; 692 693 if (strcmp(argv0, "endefcmd") == 0) { 694 defcmd_in_progress = false; 695 if (!list_empty(&kdb_macro->statements)) 696 kdb_register(&kdb_macro->cmd); 697 return 0; 698 } 699 700 kms = kmalloc(sizeof(*kms), GFP_KDB); 701 if (!kms) { 702 kdb_printf("Could not allocate new kdb macro command: %s\n", 703 cmdstr); 704 return KDB_NOTIMP; 705 } 706 707 kms->statement = kdb_strdup(cmdstr, GFP_KDB); 708 list_add_tail(&kms->list_node, &kdb_macro->statements); 709 710 return 0; 711 } 712 713 static int kdb_defcmd(int argc, const char **argv) 714 { 715 kdbtab_t *mp; 716 717 if (defcmd_in_progress) { 718 kdb_printf("kdb: nested defcmd detected, assuming missing " 719 "endefcmd\n"); 720 kdb_defcmd2("endefcmd", "endefcmd"); 721 } 722 if (argc == 0) { 723 kdbtab_t *kp; 724 struct kdb_macro *kmp; 725 struct kdb_macro_statement *kms; 726 727 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 728 if (kp->func == kdb_exec_defcmd) { 729 kdb_printf("defcmd %s \"%s\" \"%s\"\n", 730 kp->name, kp->usage, kp->help); 731 kmp = container_of(kp, struct kdb_macro, cmd); 732 list_for_each_entry(kms, &kmp->statements, 733 list_node) 734 kdb_printf("%s", kms->statement); 735 kdb_printf("endefcmd\n"); 736 } 737 } 738 return 0; 739 } 740 if (argc != 3) 741 return KDB_ARGCOUNT; 742 if (in_dbg_master()) { 743 kdb_printf("Command only available during kdb_init()\n"); 744 return KDB_NOTIMP; 745 } 746 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB); 747 if (!kdb_macro) 748 goto fail_defcmd; 749 750 mp = &kdb_macro->cmd; 751 mp->func = kdb_exec_defcmd; 752 mp->minlen = 0; 753 mp->flags = KDB_ENABLE_ALWAYS_SAFE; 754 mp->name = kdb_strdup(argv[1], GFP_KDB); 755 if (!mp->name) 756 goto fail_name; 757 mp->usage = kdb_strdup(argv[2], GFP_KDB); 758 if (!mp->usage) 759 goto fail_usage; 760 mp->help = kdb_strdup(argv[3], GFP_KDB); 761 if (!mp->help) 762 goto fail_help; 763 if (mp->usage[0] == '"') { 764 strcpy(mp->usage, argv[2]+1); 765 mp->usage[strlen(mp->usage)-1] = '\0'; 766 } 767 if (mp->help[0] == '"') { 768 strcpy(mp->help, argv[3]+1); 769 mp->help[strlen(mp->help)-1] = '\0'; 770 } 771 772 INIT_LIST_HEAD(&kdb_macro->statements); 773 defcmd_in_progress = true; 774 return 0; 775 fail_help: 776 kfree(mp->usage); 777 fail_usage: 778 kfree(mp->name); 779 fail_name: 780 kfree(kdb_macro); 781 fail_defcmd: 782 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]); 783 return KDB_NOTIMP; 784 } 785 786 /* 787 * kdb_exec_defcmd - Execute the set of commands associated with this 788 * defcmd name. 789 * Inputs: 790 * argc argument count 791 * argv argument vector 792 * Returns: 793 * zero for success, a kdb diagnostic if error 794 */ 795 static int kdb_exec_defcmd(int argc, const char **argv) 796 { 797 int ret; 798 kdbtab_t *kp; 799 struct kdb_macro *kmp; 800 struct kdb_macro_statement *kms; 801 802 if (argc != 0) 803 return KDB_ARGCOUNT; 804 805 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 806 if (strcmp(kp->name, argv[0]) == 0) 807 break; 808 } 809 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) { 810 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 811 argv[0]); 812 return KDB_NOTIMP; 813 } 814 kmp = container_of(kp, struct kdb_macro, cmd); 815 list_for_each_entry(kms, &kmp->statements, list_node) { 816 /* 817 * Recursive use of kdb_parse, do not use argv after this point. 818 */ 819 argv = NULL; 820 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement); 821 ret = kdb_parse(kms->statement); 822 if (ret) 823 return ret; 824 } 825 return 0; 826 } 827 828 /* Command history */ 829 #define KDB_CMD_HISTORY_COUNT 32 830 #define CMD_BUFLEN 200 /* kdb_printf: max printline 831 * size == 256 */ 832 static unsigned int cmd_head, cmd_tail; 833 static unsigned int cmdptr; 834 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 835 static char cmd_cur[CMD_BUFLEN]; 836 837 /* 838 * The "str" argument may point to something like | grep xyz 839 */ 840 static void parse_grep(const char *str) 841 { 842 int len; 843 char *cp = (char *)str, *cp2; 844 845 /* sanity check: we should have been called with the \ first */ 846 if (*cp != '|') 847 return; 848 cp++; 849 while (isspace(*cp)) 850 cp++; 851 if (!str_has_prefix(cp, "grep ")) { 852 kdb_printf("invalid 'pipe', see grephelp\n"); 853 return; 854 } 855 cp += 5; 856 while (isspace(*cp)) 857 cp++; 858 cp2 = strchr(cp, '\n'); 859 if (cp2) 860 *cp2 = '\0'; /* remove the trailing newline */ 861 len = strlen(cp); 862 if (len == 0) { 863 kdb_printf("invalid 'pipe', see grephelp\n"); 864 return; 865 } 866 /* now cp points to a nonzero length search string */ 867 if (*cp == '"') { 868 /* allow it be "x y z" by removing the "'s - there must 869 be two of them */ 870 cp++; 871 cp2 = strchr(cp, '"'); 872 if (!cp2) { 873 kdb_printf("invalid quoted string, see grephelp\n"); 874 return; 875 } 876 *cp2 = '\0'; /* end the string where the 2nd " was */ 877 } 878 kdb_grep_leading = 0; 879 if (*cp == '^') { 880 kdb_grep_leading = 1; 881 cp++; 882 } 883 len = strlen(cp); 884 kdb_grep_trailing = 0; 885 if (*(cp+len-1) == '$') { 886 kdb_grep_trailing = 1; 887 *(cp+len-1) = '\0'; 888 } 889 len = strlen(cp); 890 if (!len) 891 return; 892 if (len >= KDB_GREP_STRLEN) { 893 kdb_printf("search string too long\n"); 894 return; 895 } 896 strcpy(kdb_grep_string, cp); 897 kdb_grepping_flag++; 898 return; 899 } 900 901 /* 902 * kdb_parse - Parse the command line, search the command table for a 903 * matching command and invoke the command function. This 904 * function may be called recursively, if it is, the second call 905 * will overwrite argv and cbuf. It is the caller's 906 * responsibility to save their argv if they recursively call 907 * kdb_parse(). 908 * Parameters: 909 * cmdstr The input command line to be parsed. 910 * regs The registers at the time kdb was entered. 911 * Returns: 912 * Zero for success, a kdb diagnostic if failure. 913 * Remarks: 914 * Limited to 20 tokens. 915 * 916 * Real rudimentary tokenization. Basically only whitespace 917 * is considered a token delimiter (but special consideration 918 * is taken of the '=' sign as used by the 'set' command). 919 * 920 * The algorithm used to tokenize the input string relies on 921 * there being at least one whitespace (or otherwise useless) 922 * character between tokens as the character immediately following 923 * the token is altered in-place to a null-byte to terminate the 924 * token string. 925 */ 926 927 #define MAXARGC 20 928 929 int kdb_parse(const char *cmdstr) 930 { 931 static char *argv[MAXARGC]; 932 static int argc; 933 static char cbuf[CMD_BUFLEN+2]; 934 char *cp; 935 char *cpp, quoted; 936 kdbtab_t *tp; 937 int escaped, ignore_errors = 0, check_grep = 0; 938 939 /* 940 * First tokenize the command string. 941 */ 942 cp = (char *)cmdstr; 943 944 if (KDB_FLAG(CMD_INTERRUPT)) { 945 /* Previous command was interrupted, newline must not 946 * repeat the command */ 947 KDB_FLAG_CLEAR(CMD_INTERRUPT); 948 KDB_STATE_SET(PAGER); 949 argc = 0; /* no repeat */ 950 } 951 952 if (*cp != '\n' && *cp != '\0') { 953 argc = 0; 954 cpp = cbuf; 955 while (*cp) { 956 /* skip whitespace */ 957 while (isspace(*cp)) 958 cp++; 959 if ((*cp == '\0') || (*cp == '\n') || 960 (*cp == '#' && !defcmd_in_progress)) 961 break; 962 /* special case: check for | grep pattern */ 963 if (*cp == '|') { 964 check_grep++; 965 break; 966 } 967 if (cpp >= cbuf + CMD_BUFLEN) { 968 kdb_printf("kdb_parse: command buffer " 969 "overflow, command ignored\n%s\n", 970 cmdstr); 971 return KDB_NOTFOUND; 972 } 973 if (argc >= MAXARGC - 1) { 974 kdb_printf("kdb_parse: too many arguments, " 975 "command ignored\n%s\n", cmdstr); 976 return KDB_NOTFOUND; 977 } 978 argv[argc++] = cpp; 979 escaped = 0; 980 quoted = '\0'; 981 /* Copy to next unquoted and unescaped 982 * whitespace or '=' */ 983 while (*cp && *cp != '\n' && 984 (escaped || quoted || !isspace(*cp))) { 985 if (cpp >= cbuf + CMD_BUFLEN) 986 break; 987 if (escaped) { 988 escaped = 0; 989 *cpp++ = *cp++; 990 continue; 991 } 992 if (*cp == '\\') { 993 escaped = 1; 994 ++cp; 995 continue; 996 } 997 if (*cp == quoted) 998 quoted = '\0'; 999 else if (*cp == '\'' || *cp == '"') 1000 quoted = *cp; 1001 *cpp = *cp++; 1002 if (*cpp == '=' && !quoted) 1003 break; 1004 ++cpp; 1005 } 1006 *cpp++ = '\0'; /* Squash a ws or '=' character */ 1007 } 1008 } 1009 if (!argc) 1010 return 0; 1011 if (check_grep) 1012 parse_grep(cp); 1013 if (defcmd_in_progress) { 1014 int result = kdb_defcmd2(cmdstr, argv[0]); 1015 if (!defcmd_in_progress) { 1016 argc = 0; /* avoid repeat on endefcmd */ 1017 *(argv[0]) = '\0'; 1018 } 1019 return result; 1020 } 1021 if (argv[0][0] == '-' && argv[0][1] && 1022 (argv[0][1] < '0' || argv[0][1] > '9')) { 1023 ignore_errors = 1; 1024 ++argv[0]; 1025 } 1026 1027 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1028 /* 1029 * If this command is allowed to be abbreviated, 1030 * check to see if this is it. 1031 */ 1032 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) && 1033 (strncmp(argv[0], tp->name, tp->minlen) == 0)) 1034 break; 1035 1036 if (strcmp(argv[0], tp->name) == 0) 1037 break; 1038 } 1039 1040 /* 1041 * If we don't find a command by this name, see if the first 1042 * few characters of this match any of the known commands. 1043 * e.g., md1c20 should match md. 1044 */ 1045 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1046 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1047 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0) 1048 break; 1049 } 1050 } 1051 1052 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1053 int result; 1054 1055 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1)) 1056 return KDB_NOPERM; 1057 1058 KDB_STATE_SET(CMD); 1059 result = (*tp->func)(argc-1, (const char **)argv); 1060 if (result && ignore_errors && result > KDB_CMD_GO) 1061 result = 0; 1062 KDB_STATE_CLEAR(CMD); 1063 1064 if (tp->flags & KDB_REPEAT_WITH_ARGS) 1065 return result; 1066 1067 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1068 if (argv[argc]) 1069 *(argv[argc]) = '\0'; 1070 return result; 1071 } 1072 1073 /* 1074 * If the input with which we were presented does not 1075 * map to an existing command, attempt to parse it as an 1076 * address argument and display the result. Useful for 1077 * obtaining the address of a variable, or the nearest symbol 1078 * to an address contained in a register. 1079 */ 1080 { 1081 unsigned long value; 1082 char *name = NULL; 1083 long offset; 1084 int nextarg = 0; 1085 1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1087 &value, &offset, &name)) { 1088 return KDB_NOTFOUND; 1089 } 1090 1091 kdb_printf("%s = ", argv[0]); 1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1093 kdb_printf("\n"); 1094 return 0; 1095 } 1096 } 1097 1098 1099 static int handle_ctrl_cmd(char *cmd) 1100 { 1101 #define CTRL_P 16 1102 #define CTRL_N 14 1103 1104 /* initial situation */ 1105 if (cmd_head == cmd_tail) 1106 return 0; 1107 switch (*cmd) { 1108 case CTRL_P: 1109 if (cmdptr != cmd_tail) 1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) % 1111 KDB_CMD_HISTORY_COUNT; 1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1113 return 1; 1114 case CTRL_N: 1115 if (cmdptr != cmd_head) 1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1118 return 1; 1119 } 1120 return 0; 1121 } 1122 1123 /* 1124 * kdb_reboot - This function implements the 'reboot' command. Reboot 1125 * the system immediately, or loop for ever on failure. 1126 */ 1127 static int kdb_reboot(int argc, const char **argv) 1128 { 1129 emergency_restart(); 1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1131 while (1) 1132 cpu_relax(); 1133 /* NOTREACHED */ 1134 return 0; 1135 } 1136 1137 static void kdb_dumpregs(struct pt_regs *regs) 1138 { 1139 int old_lvl = console_loglevel; 1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1141 kdb_trap_printk++; 1142 show_regs(regs); 1143 kdb_trap_printk--; 1144 kdb_printf("\n"); 1145 console_loglevel = old_lvl; 1146 } 1147 1148 static void kdb_set_current_task(struct task_struct *p) 1149 { 1150 kdb_current_task = p; 1151 1152 if (kdb_task_has_cpu(p)) { 1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1154 return; 1155 } 1156 kdb_current_regs = NULL; 1157 } 1158 1159 static void drop_newline(char *buf) 1160 { 1161 size_t len = strlen(buf); 1162 1163 if (len == 0) 1164 return; 1165 if (*(buf + len - 1) == '\n') 1166 *(buf + len - 1) = '\0'; 1167 } 1168 1169 /* 1170 * kdb_local - The main code for kdb. This routine is invoked on a 1171 * specific processor, it is not global. The main kdb() routine 1172 * ensures that only one processor at a time is in this routine. 1173 * This code is called with the real reason code on the first 1174 * entry to a kdb session, thereafter it is called with reason 1175 * SWITCH, even if the user goes back to the original cpu. 1176 * Inputs: 1177 * reason The reason KDB was invoked 1178 * error The hardware-defined error code 1179 * regs The exception frame at time of fault/breakpoint. 1180 * db_result Result code from the break or debug point. 1181 * Returns: 1182 * 0 KDB was invoked for an event which it wasn't responsible 1183 * 1 KDB handled the event for which it was invoked. 1184 * KDB_CMD_GO User typed 'go'. 1185 * KDB_CMD_CPU User switched to another cpu. 1186 * KDB_CMD_SS Single step. 1187 */ 1188 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1189 kdb_dbtrap_t db_result) 1190 { 1191 char *cmdbuf; 1192 int diag; 1193 struct task_struct *kdb_current = 1194 curr_task(raw_smp_processor_id()); 1195 1196 KDB_DEBUG_STATE("kdb_local 1", reason); 1197 1198 kdb_check_for_lockdown(); 1199 1200 kdb_go_count = 0; 1201 if (reason == KDB_REASON_DEBUG) { 1202 /* special case below */ 1203 } else { 1204 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1205 kdb_current, kdb_current ? kdb_current->pid : 0); 1206 #if defined(CONFIG_SMP) 1207 kdb_printf("on processor %d ", raw_smp_processor_id()); 1208 #endif 1209 } 1210 1211 switch (reason) { 1212 case KDB_REASON_DEBUG: 1213 { 1214 /* 1215 * If re-entering kdb after a single step 1216 * command, don't print the message. 1217 */ 1218 switch (db_result) { 1219 case KDB_DB_BPT: 1220 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1221 kdb_current, kdb_current->pid); 1222 #if defined(CONFIG_SMP) 1223 kdb_printf("on processor %d ", raw_smp_processor_id()); 1224 #endif 1225 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1226 instruction_pointer(regs)); 1227 break; 1228 case KDB_DB_SS: 1229 break; 1230 case KDB_DB_SSBPT: 1231 KDB_DEBUG_STATE("kdb_local 4", reason); 1232 return 1; /* kdba_db_trap did the work */ 1233 default: 1234 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1235 db_result); 1236 break; 1237 } 1238 1239 } 1240 break; 1241 case KDB_REASON_ENTER: 1242 if (KDB_STATE(KEYBOARD)) 1243 kdb_printf("due to Keyboard Entry\n"); 1244 else 1245 kdb_printf("due to KDB_ENTER()\n"); 1246 break; 1247 case KDB_REASON_KEYBOARD: 1248 KDB_STATE_SET(KEYBOARD); 1249 kdb_printf("due to Keyboard Entry\n"); 1250 break; 1251 case KDB_REASON_ENTER_SLAVE: 1252 /* drop through, slaves only get released via cpu switch */ 1253 case KDB_REASON_SWITCH: 1254 kdb_printf("due to cpu switch\n"); 1255 break; 1256 case KDB_REASON_OOPS: 1257 kdb_printf("Oops: %s\n", kdb_diemsg); 1258 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1259 instruction_pointer(regs)); 1260 kdb_dumpregs(regs); 1261 break; 1262 case KDB_REASON_SYSTEM_NMI: 1263 kdb_printf("due to System NonMaskable Interrupt\n"); 1264 break; 1265 case KDB_REASON_NMI: 1266 kdb_printf("due to NonMaskable Interrupt @ " 1267 kdb_machreg_fmt "\n", 1268 instruction_pointer(regs)); 1269 break; 1270 case KDB_REASON_SSTEP: 1271 case KDB_REASON_BREAK: 1272 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1273 reason == KDB_REASON_BREAK ? 1274 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1275 /* 1276 * Determine if this breakpoint is one that we 1277 * are interested in. 1278 */ 1279 if (db_result != KDB_DB_BPT) { 1280 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1281 db_result); 1282 KDB_DEBUG_STATE("kdb_local 6", reason); 1283 return 0; /* Not for us, dismiss it */ 1284 } 1285 break; 1286 case KDB_REASON_RECURSE: 1287 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1288 instruction_pointer(regs)); 1289 break; 1290 default: 1291 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1292 KDB_DEBUG_STATE("kdb_local 8", reason); 1293 return 0; /* Not for us, dismiss it */ 1294 } 1295 1296 while (1) { 1297 /* 1298 * Initialize pager context. 1299 */ 1300 kdb_nextline = 1; 1301 KDB_STATE_CLEAR(SUPPRESS); 1302 kdb_grepping_flag = 0; 1303 /* ensure the old search does not leak into '/' commands */ 1304 kdb_grep_string[0] = '\0'; 1305 1306 cmdbuf = cmd_cur; 1307 *cmdbuf = '\0'; 1308 *(cmd_hist[cmd_head]) = '\0'; 1309 1310 do_full_getstr: 1311 /* PROMPT can only be set if we have MEM_READ permission. */ 1312 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1313 raw_smp_processor_id()); 1314 1315 /* 1316 * Fetch command from keyboard 1317 */ 1318 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1319 if (*cmdbuf != '\n') { 1320 if (*cmdbuf < 32) { 1321 if (cmdptr == cmd_head) { 1322 strscpy(cmd_hist[cmd_head], cmd_cur, 1323 CMD_BUFLEN); 1324 *(cmd_hist[cmd_head] + 1325 strlen(cmd_hist[cmd_head])-1) = '\0'; 1326 } 1327 if (!handle_ctrl_cmd(cmdbuf)) 1328 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1329 cmdbuf = cmd_cur; 1330 goto do_full_getstr; 1331 } else { 1332 strscpy(cmd_hist[cmd_head], cmd_cur, 1333 CMD_BUFLEN); 1334 } 1335 1336 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1337 if (cmd_head == cmd_tail) 1338 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1339 } 1340 1341 cmdptr = cmd_head; 1342 diag = kdb_parse(cmdbuf); 1343 if (diag == KDB_NOTFOUND) { 1344 drop_newline(cmdbuf); 1345 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1346 diag = 0; 1347 } 1348 if (diag == KDB_CMD_GO 1349 || diag == KDB_CMD_CPU 1350 || diag == KDB_CMD_SS 1351 || diag == KDB_CMD_KGDB) 1352 break; 1353 1354 if (diag) 1355 kdb_cmderror(diag); 1356 } 1357 KDB_DEBUG_STATE("kdb_local 9", diag); 1358 return diag; 1359 } 1360 1361 1362 /* 1363 * kdb_print_state - Print the state data for the current processor 1364 * for debugging. 1365 * Inputs: 1366 * text Identifies the debug point 1367 * value Any integer value to be printed, e.g. reason code. 1368 */ 1369 void kdb_print_state(const char *text, int value) 1370 { 1371 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1372 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1373 kdb_state); 1374 } 1375 1376 /* 1377 * kdb_main_loop - After initial setup and assignment of the 1378 * controlling cpu, all cpus are in this loop. One cpu is in 1379 * control and will issue the kdb prompt, the others will spin 1380 * until 'go' or cpu switch. 1381 * 1382 * To get a consistent view of the kernel stacks for all 1383 * processes, this routine is invoked from the main kdb code via 1384 * an architecture specific routine. kdba_main_loop is 1385 * responsible for making the kernel stacks consistent for all 1386 * processes, there should be no difference between a blocked 1387 * process and a running process as far as kdb is concerned. 1388 * Inputs: 1389 * reason The reason KDB was invoked 1390 * error The hardware-defined error code 1391 * reason2 kdb's current reason code. 1392 * Initially error but can change 1393 * according to kdb state. 1394 * db_result Result code from break or debug point. 1395 * regs The exception frame at time of fault/breakpoint. 1396 * should always be valid. 1397 * Returns: 1398 * 0 KDB was invoked for an event which it wasn't responsible 1399 * 1 KDB handled the event for which it was invoked. 1400 */ 1401 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1402 kdb_dbtrap_t db_result, struct pt_regs *regs) 1403 { 1404 int result = 1; 1405 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1406 while (1) { 1407 /* 1408 * All processors except the one that is in control 1409 * will spin here. 1410 */ 1411 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1412 while (KDB_STATE(HOLD_CPU)) { 1413 /* state KDB is turned off by kdb_cpu to see if the 1414 * other cpus are still live, each cpu in this loop 1415 * turns it back on. 1416 */ 1417 if (!KDB_STATE(KDB)) 1418 KDB_STATE_SET(KDB); 1419 } 1420 1421 KDB_STATE_CLEAR(SUPPRESS); 1422 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1423 if (KDB_STATE(LEAVING)) 1424 break; /* Another cpu said 'go' */ 1425 /* Still using kdb, this processor is in control */ 1426 result = kdb_local(reason2, error, regs, db_result); 1427 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1428 1429 if (result == KDB_CMD_CPU) 1430 break; 1431 1432 if (result == KDB_CMD_SS) { 1433 KDB_STATE_SET(DOING_SS); 1434 break; 1435 } 1436 1437 if (result == KDB_CMD_KGDB) { 1438 if (!KDB_STATE(DOING_KGDB)) 1439 kdb_printf("Entering please attach debugger " 1440 "or use $D#44+ or $3#33\n"); 1441 break; 1442 } 1443 if (result && result != 1 && result != KDB_CMD_GO) 1444 kdb_printf("\nUnexpected kdb_local return code %d\n", 1445 result); 1446 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1447 break; 1448 } 1449 if (KDB_STATE(DOING_SS)) 1450 KDB_STATE_CLEAR(SSBPT); 1451 1452 /* Clean up any keyboard devices before leaving */ 1453 kdb_kbd_cleanup_state(); 1454 1455 return result; 1456 } 1457 1458 /* 1459 * kdb_mdr - This function implements the guts of the 'mdr', memory 1460 * read command. 1461 * mdr <addr arg>,<byte count> 1462 * Inputs: 1463 * addr Start address 1464 * count Number of bytes 1465 * Returns: 1466 * Always 0. Any errors are detected and printed by kdb_getarea. 1467 */ 1468 static int kdb_mdr(unsigned long addr, unsigned int count) 1469 { 1470 unsigned char c; 1471 while (count--) { 1472 if (kdb_getarea(c, addr)) 1473 return 0; 1474 kdb_printf("%02x", c); 1475 addr++; 1476 } 1477 kdb_printf("\n"); 1478 return 0; 1479 } 1480 1481 /* 1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1483 * 'md8' 'mdr' and 'mds' commands. 1484 * 1485 * md|mds [<addr arg> [<line count> [<radix>]]] 1486 * mdWcN [<addr arg> [<line count> [<radix>]]] 1487 * where W = is the width (1, 2, 4 or 8) and N is the count. 1488 * for eg., md1c20 reads 20 bytes, 1 at a time. 1489 * mdr <addr arg>,<byte count> 1490 */ 1491 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1492 int symbolic, int nosect, int bytesperword, 1493 int num, int repeat, int phys) 1494 { 1495 /* print just one line of data */ 1496 kdb_symtab_t symtab; 1497 char cbuf[32]; 1498 char *c = cbuf; 1499 int i; 1500 int j; 1501 unsigned long word; 1502 1503 memset(cbuf, '\0', sizeof(cbuf)); 1504 if (phys) 1505 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1506 else 1507 kdb_printf(kdb_machreg_fmt0 " ", addr); 1508 1509 for (i = 0; i < num && repeat--; i++) { 1510 if (phys) { 1511 if (kdb_getphysword(&word, addr, bytesperword)) 1512 break; 1513 } else if (kdb_getword(&word, addr, bytesperword)) 1514 break; 1515 kdb_printf(fmtstr, word); 1516 if (symbolic) 1517 kdbnearsym(word, &symtab); 1518 else 1519 memset(&symtab, 0, sizeof(symtab)); 1520 if (symtab.sym_name) { 1521 kdb_symbol_print(word, &symtab, 0); 1522 if (!nosect) { 1523 kdb_printf("\n"); 1524 kdb_printf(" %s %s " 1525 kdb_machreg_fmt " " 1526 kdb_machreg_fmt " " 1527 kdb_machreg_fmt, symtab.mod_name, 1528 symtab.sec_name, symtab.sec_start, 1529 symtab.sym_start, symtab.sym_end); 1530 } 1531 addr += bytesperword; 1532 } else { 1533 union { 1534 u64 word; 1535 unsigned char c[8]; 1536 } wc; 1537 unsigned char *cp; 1538 #ifdef __BIG_ENDIAN 1539 cp = wc.c + 8 - bytesperword; 1540 #else 1541 cp = wc.c; 1542 #endif 1543 wc.word = word; 1544 #define printable_char(c) \ 1545 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1546 for (j = 0; j < bytesperword; j++) 1547 *c++ = printable_char(*cp++); 1548 addr += bytesperword; 1549 #undef printable_char 1550 } 1551 } 1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1553 " ", cbuf); 1554 } 1555 1556 static int kdb_md(int argc, const char **argv) 1557 { 1558 static unsigned long last_addr; 1559 static int last_radix, last_bytesperword, last_repeat; 1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1561 int nosect = 0; 1562 char fmtchar, fmtstr[64]; 1563 unsigned long addr; 1564 unsigned long word; 1565 long offset = 0; 1566 int symbolic = 0; 1567 int valid = 0; 1568 int phys = 0; 1569 int raw = 0; 1570 1571 kdbgetintenv("MDCOUNT", &mdcount); 1572 kdbgetintenv("RADIX", &radix); 1573 kdbgetintenv("BYTESPERWORD", &bytesperword); 1574 1575 /* Assume 'md <addr>' and start with environment values */ 1576 repeat = mdcount * 16 / bytesperword; 1577 1578 if (strcmp(argv[0], "mdr") == 0) { 1579 if (argc == 2 || (argc == 0 && last_addr != 0)) 1580 valid = raw = 1; 1581 else 1582 return KDB_ARGCOUNT; 1583 } else if (isdigit(argv[0][2])) { 1584 bytesperword = (int)(argv[0][2] - '0'); 1585 if (bytesperword == 0) { 1586 bytesperword = last_bytesperword; 1587 if (bytesperword == 0) 1588 bytesperword = 4; 1589 } 1590 last_bytesperword = bytesperword; 1591 repeat = mdcount * 16 / bytesperword; 1592 if (!argv[0][3]) 1593 valid = 1; 1594 else if (argv[0][3] == 'c' && argv[0][4]) { 1595 if (kstrtouint(argv[0] + 4, 10, &repeat)) 1596 return KDB_BADINT; 1597 mdcount = ((repeat * bytesperword) + 15) / 16; 1598 valid = 1; 1599 } 1600 last_repeat = repeat; 1601 } else if (strcmp(argv[0], "md") == 0) 1602 valid = 1; 1603 else if (strcmp(argv[0], "mds") == 0) 1604 valid = 1; 1605 else if (strcmp(argv[0], "mdp") == 0) { 1606 phys = valid = 1; 1607 } 1608 if (!valid) 1609 return KDB_NOTFOUND; 1610 1611 if (argc == 0) { 1612 if (last_addr == 0) 1613 return KDB_ARGCOUNT; 1614 addr = last_addr; 1615 radix = last_radix; 1616 bytesperword = last_bytesperword; 1617 repeat = last_repeat; 1618 if (raw) 1619 mdcount = repeat; 1620 else 1621 mdcount = ((repeat * bytesperword) + 15) / 16; 1622 } 1623 1624 if (argc) { 1625 unsigned long val; 1626 int diag, nextarg = 1; 1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1628 &offset, NULL); 1629 if (diag) 1630 return diag; 1631 if (argc > nextarg+2) 1632 return KDB_ARGCOUNT; 1633 1634 if (argc >= nextarg) { 1635 diag = kdbgetularg(argv[nextarg], &val); 1636 if (!diag) { 1637 mdcount = (int) val; 1638 if (raw) 1639 repeat = mdcount; 1640 else 1641 repeat = mdcount * 16 / bytesperword; 1642 } 1643 } 1644 if (argc >= nextarg+1) { 1645 diag = kdbgetularg(argv[nextarg+1], &val); 1646 if (!diag) 1647 radix = (int) val; 1648 } 1649 } 1650 1651 if (strcmp(argv[0], "mdr") == 0) { 1652 int ret; 1653 last_addr = addr; 1654 ret = kdb_mdr(addr, mdcount); 1655 last_addr += mdcount; 1656 last_repeat = mdcount; 1657 last_bytesperword = bytesperword; // to make REPEAT happy 1658 return ret; 1659 } 1660 1661 switch (radix) { 1662 case 10: 1663 fmtchar = 'd'; 1664 break; 1665 case 16: 1666 fmtchar = 'x'; 1667 break; 1668 case 8: 1669 fmtchar = 'o'; 1670 break; 1671 default: 1672 return KDB_BADRADIX; 1673 } 1674 1675 last_radix = radix; 1676 1677 if (bytesperword > KDB_WORD_SIZE) 1678 return KDB_BADWIDTH; 1679 1680 switch (bytesperword) { 1681 case 8: 1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1683 break; 1684 case 4: 1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1686 break; 1687 case 2: 1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1689 break; 1690 case 1: 1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1692 break; 1693 default: 1694 return KDB_BADWIDTH; 1695 } 1696 1697 last_repeat = repeat; 1698 last_bytesperword = bytesperword; 1699 1700 if (strcmp(argv[0], "mds") == 0) { 1701 symbolic = 1; 1702 /* Do not save these changes as last_*, they are temporary mds 1703 * overrides. 1704 */ 1705 bytesperword = KDB_WORD_SIZE; 1706 repeat = mdcount; 1707 kdbgetintenv("NOSECT", &nosect); 1708 } 1709 1710 /* Round address down modulo BYTESPERWORD */ 1711 1712 addr &= ~(bytesperword-1); 1713 1714 while (repeat > 0) { 1715 unsigned long a; 1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1717 1718 if (KDB_FLAG(CMD_INTERRUPT)) 1719 return 0; 1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1721 if (phys) { 1722 if (kdb_getphysword(&word, a, bytesperword) 1723 || word) 1724 break; 1725 } else if (kdb_getword(&word, a, bytesperword) || word) 1726 break; 1727 } 1728 n = min(num, repeat); 1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1730 num, repeat, phys); 1731 addr += bytesperword * n; 1732 repeat -= n; 1733 z = (z + num - 1) / num; 1734 if (z > 2) { 1735 int s = num * (z-2); 1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1737 " zero suppressed\n", 1738 addr, addr + bytesperword * s - 1); 1739 addr += bytesperword * s; 1740 repeat -= s; 1741 } 1742 } 1743 last_addr = addr; 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * kdb_mm - This function implements the 'mm' command. 1750 * mm address-expression new-value 1751 * Remarks: 1752 * mm works on machine words, mmW works on bytes. 1753 */ 1754 static int kdb_mm(int argc, const char **argv) 1755 { 1756 int diag; 1757 unsigned long addr; 1758 long offset = 0; 1759 unsigned long contents; 1760 int nextarg; 1761 int width; 1762 1763 if (argv[0][2] && !isdigit(argv[0][2])) 1764 return KDB_NOTFOUND; 1765 1766 if (argc < 2) 1767 return KDB_ARGCOUNT; 1768 1769 nextarg = 1; 1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1771 if (diag) 1772 return diag; 1773 1774 if (nextarg > argc) 1775 return KDB_ARGCOUNT; 1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1777 if (diag) 1778 return diag; 1779 1780 if (nextarg != argc + 1) 1781 return KDB_ARGCOUNT; 1782 1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1784 diag = kdb_putword(addr, contents, width); 1785 if (diag) 1786 return diag; 1787 1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1789 1790 return 0; 1791 } 1792 1793 /* 1794 * kdb_go - This function implements the 'go' command. 1795 * go [address-expression] 1796 */ 1797 static int kdb_go(int argc, const char **argv) 1798 { 1799 unsigned long addr; 1800 int diag; 1801 int nextarg; 1802 long offset; 1803 1804 if (raw_smp_processor_id() != kdb_initial_cpu) { 1805 kdb_printf("go must execute on the entry cpu, " 1806 "please use \"cpu %d\" and then execute go\n", 1807 kdb_initial_cpu); 1808 return KDB_BADCPUNUM; 1809 } 1810 if (argc == 1) { 1811 nextarg = 1; 1812 diag = kdbgetaddrarg(argc, argv, &nextarg, 1813 &addr, &offset, NULL); 1814 if (diag) 1815 return diag; 1816 } else if (argc) { 1817 return KDB_ARGCOUNT; 1818 } 1819 1820 diag = KDB_CMD_GO; 1821 if (KDB_FLAG(CATASTROPHIC)) { 1822 kdb_printf("Catastrophic error detected\n"); 1823 kdb_printf("kdb_continue_catastrophic=%d, ", 1824 kdb_continue_catastrophic); 1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1826 kdb_printf("type go a second time if you really want " 1827 "to continue\n"); 1828 return 0; 1829 } 1830 if (kdb_continue_catastrophic == 2) { 1831 kdb_printf("forcing reboot\n"); 1832 kdb_reboot(0, NULL); 1833 } 1834 kdb_printf("attempting to continue\n"); 1835 } 1836 return diag; 1837 } 1838 1839 /* 1840 * kdb_rd - This function implements the 'rd' command. 1841 */ 1842 static int kdb_rd(int argc, const char **argv) 1843 { 1844 int len = kdb_check_regs(); 1845 #if DBG_MAX_REG_NUM > 0 1846 int i; 1847 char *rname; 1848 int rsize; 1849 u64 reg64; 1850 u32 reg32; 1851 u16 reg16; 1852 u8 reg8; 1853 1854 if (len) 1855 return len; 1856 1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1858 rsize = dbg_reg_def[i].size * 2; 1859 if (rsize > 16) 1860 rsize = 2; 1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1862 len = 0; 1863 kdb_printf("\n"); 1864 } 1865 if (len) 1866 len += kdb_printf(" "); 1867 switch(dbg_reg_def[i].size * 8) { 1868 case 8: 1869 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1870 if (!rname) 1871 break; 1872 len += kdb_printf("%s: %02x", rname, reg8); 1873 break; 1874 case 16: 1875 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1876 if (!rname) 1877 break; 1878 len += kdb_printf("%s: %04x", rname, reg16); 1879 break; 1880 case 32: 1881 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1882 if (!rname) 1883 break; 1884 len += kdb_printf("%s: %08x", rname, reg32); 1885 break; 1886 case 64: 1887 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1888 if (!rname) 1889 break; 1890 len += kdb_printf("%s: %016llx", rname, reg64); 1891 break; 1892 default: 1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1894 } 1895 } 1896 kdb_printf("\n"); 1897 #else 1898 if (len) 1899 return len; 1900 1901 kdb_dumpregs(kdb_current_regs); 1902 #endif 1903 return 0; 1904 } 1905 1906 /* 1907 * kdb_rm - This function implements the 'rm' (register modify) command. 1908 * rm register-name new-contents 1909 * Remarks: 1910 * Allows register modification with the same restrictions as gdb 1911 */ 1912 static int kdb_rm(int argc, const char **argv) 1913 { 1914 #if DBG_MAX_REG_NUM > 0 1915 int diag; 1916 const char *rname; 1917 int i; 1918 u64 reg64; 1919 u32 reg32; 1920 u16 reg16; 1921 u8 reg8; 1922 1923 if (argc != 2) 1924 return KDB_ARGCOUNT; 1925 /* 1926 * Allow presence or absence of leading '%' symbol. 1927 */ 1928 rname = argv[1]; 1929 if (*rname == '%') 1930 rname++; 1931 1932 diag = kdbgetu64arg(argv[2], ®64); 1933 if (diag) 1934 return diag; 1935 1936 diag = kdb_check_regs(); 1937 if (diag) 1938 return diag; 1939 1940 diag = KDB_BADREG; 1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1943 diag = 0; 1944 break; 1945 } 1946 } 1947 if (!diag) { 1948 switch(dbg_reg_def[i].size * 8) { 1949 case 8: 1950 reg8 = reg64; 1951 dbg_set_reg(i, ®8, kdb_current_regs); 1952 break; 1953 case 16: 1954 reg16 = reg64; 1955 dbg_set_reg(i, ®16, kdb_current_regs); 1956 break; 1957 case 32: 1958 reg32 = reg64; 1959 dbg_set_reg(i, ®32, kdb_current_regs); 1960 break; 1961 case 64: 1962 dbg_set_reg(i, ®64, kdb_current_regs); 1963 break; 1964 } 1965 } 1966 return diag; 1967 #else 1968 kdb_printf("ERROR: Register set currently not implemented\n"); 1969 return 0; 1970 #endif 1971 } 1972 1973 #if defined(CONFIG_MAGIC_SYSRQ) 1974 /* 1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1977 * sr <magic-sysrq-code> 1978 */ 1979 static int kdb_sr(int argc, const char **argv) 1980 { 1981 bool check_mask = 1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1983 1984 if (argc != 1) 1985 return KDB_ARGCOUNT; 1986 1987 kdb_trap_printk++; 1988 __handle_sysrq(*argv[1], check_mask); 1989 kdb_trap_printk--; 1990 1991 return 0; 1992 } 1993 #endif /* CONFIG_MAGIC_SYSRQ */ 1994 1995 /* 1996 * kdb_ef - This function implements the 'regs' (display exception 1997 * frame) command. This command takes an address and expects to 1998 * find an exception frame at that address, formats and prints 1999 * it. 2000 * regs address-expression 2001 * Remarks: 2002 * Not done yet. 2003 */ 2004 static int kdb_ef(int argc, const char **argv) 2005 { 2006 int diag; 2007 unsigned long addr; 2008 long offset; 2009 int nextarg; 2010 2011 if (argc != 1) 2012 return KDB_ARGCOUNT; 2013 2014 nextarg = 1; 2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2016 if (diag) 2017 return diag; 2018 show_regs((struct pt_regs *)addr); 2019 return 0; 2020 } 2021 2022 /* 2023 * kdb_env - This function implements the 'env' command. Display the 2024 * current environment variables. 2025 */ 2026 2027 static int kdb_env(int argc, const char **argv) 2028 { 2029 kdb_printenv(); 2030 2031 if (KDB_DEBUG(MASK)) 2032 kdb_printf("KDBDEBUG=0x%x\n", 2033 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT); 2034 2035 return 0; 2036 } 2037 2038 #ifdef CONFIG_PRINTK 2039 /* 2040 * kdb_dmesg - This function implements the 'dmesg' command to display 2041 * the contents of the syslog buffer. 2042 * dmesg [lines] [adjust] 2043 */ 2044 static int kdb_dmesg(int argc, const char **argv) 2045 { 2046 int diag; 2047 int logging; 2048 int lines = 0; 2049 int adjust = 0; 2050 int n = 0; 2051 int skip = 0; 2052 struct kmsg_dump_iter iter; 2053 size_t len; 2054 char buf[201]; 2055 2056 if (argc > 2) 2057 return KDB_ARGCOUNT; 2058 if (argc) { 2059 if (kstrtoint(argv[1], 0, &lines)) 2060 lines = 0; 2061 if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0)) 2062 adjust = 0; 2063 } 2064 2065 /* disable LOGGING if set */ 2066 diag = kdbgetintenv("LOGGING", &logging); 2067 if (!diag && logging) { 2068 const char *setargs[] = { "set", "LOGGING", "0" }; 2069 kdb_set(2, setargs); 2070 } 2071 2072 kmsg_dump_rewind(&iter); 2073 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL)) 2074 n++; 2075 2076 if (lines < 0) { 2077 if (adjust >= n) 2078 kdb_printf("buffer only contains %d lines, nothing " 2079 "printed\n", n); 2080 else if (adjust - lines >= n) 2081 kdb_printf("buffer only contains %d lines, last %d " 2082 "lines printed\n", n, n - adjust); 2083 skip = adjust; 2084 lines = abs(lines); 2085 } else if (lines > 0) { 2086 skip = n - lines - adjust; 2087 lines = abs(lines); 2088 if (adjust >= n) { 2089 kdb_printf("buffer only contains %d lines, " 2090 "nothing printed\n", n); 2091 skip = n; 2092 } else if (skip < 0) { 2093 lines += skip; 2094 skip = 0; 2095 kdb_printf("buffer only contains %d lines, first " 2096 "%d lines printed\n", n, lines); 2097 } 2098 } else { 2099 lines = n; 2100 } 2101 2102 if (skip >= n || skip < 0) 2103 return 0; 2104 2105 kmsg_dump_rewind(&iter); 2106 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) { 2107 if (skip) { 2108 skip--; 2109 continue; 2110 } 2111 if (!lines--) 2112 break; 2113 if (KDB_FLAG(CMD_INTERRUPT)) 2114 return 0; 2115 2116 kdb_printf("%.*s\n", (int)len - 1, buf); 2117 } 2118 2119 return 0; 2120 } 2121 #endif /* CONFIG_PRINTK */ 2122 2123 /* Make sure we balance enable/disable calls, must disable first. */ 2124 static atomic_t kdb_nmi_disabled; 2125 2126 static int kdb_disable_nmi(int argc, const char *argv[]) 2127 { 2128 if (atomic_read(&kdb_nmi_disabled)) 2129 return 0; 2130 atomic_set(&kdb_nmi_disabled, 1); 2131 arch_kgdb_ops.enable_nmi(0); 2132 return 0; 2133 } 2134 2135 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2136 { 2137 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2138 return -EINVAL; 2139 arch_kgdb_ops.enable_nmi(1); 2140 return 0; 2141 } 2142 2143 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2144 .set = kdb_param_enable_nmi, 2145 }; 2146 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2147 2148 /* 2149 * kdb_cpu - This function implements the 'cpu' command. 2150 * cpu [<cpunum>] 2151 * Returns: 2152 * KDB_CMD_CPU for success, a kdb diagnostic if error 2153 */ 2154 static void kdb_cpu_status(void) 2155 { 2156 int i, start_cpu, first_print = 1; 2157 char state, prev_state = '?'; 2158 2159 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2160 kdb_printf("Available cpus: "); 2161 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2162 if (!cpu_online(i)) { 2163 state = 'F'; /* cpu is offline */ 2164 } else if (!kgdb_info[i].enter_kgdb) { 2165 state = 'D'; /* cpu is online but unresponsive */ 2166 } else { 2167 state = ' '; /* cpu is responding to kdb */ 2168 if (kdb_task_state_char(KDB_TSK(i)) == '-') 2169 state = '-'; /* idle task */ 2170 } 2171 if (state != prev_state) { 2172 if (prev_state != '?') { 2173 if (!first_print) 2174 kdb_printf(", "); 2175 first_print = 0; 2176 kdb_printf("%d", start_cpu); 2177 if (start_cpu < i-1) 2178 kdb_printf("-%d", i-1); 2179 if (prev_state != ' ') 2180 kdb_printf("(%c)", prev_state); 2181 } 2182 prev_state = state; 2183 start_cpu = i; 2184 } 2185 } 2186 /* print the trailing cpus, ignoring them if they are all offline */ 2187 if (prev_state != 'F') { 2188 if (!first_print) 2189 kdb_printf(", "); 2190 kdb_printf("%d", start_cpu); 2191 if (start_cpu < i-1) 2192 kdb_printf("-%d", i-1); 2193 if (prev_state != ' ') 2194 kdb_printf("(%c)", prev_state); 2195 } 2196 kdb_printf("\n"); 2197 } 2198 2199 static int kdb_cpu(int argc, const char **argv) 2200 { 2201 unsigned long cpunum; 2202 int diag; 2203 2204 if (argc == 0) { 2205 kdb_cpu_status(); 2206 return 0; 2207 } 2208 2209 if (argc != 1) 2210 return KDB_ARGCOUNT; 2211 2212 diag = kdbgetularg(argv[1], &cpunum); 2213 if (diag) 2214 return diag; 2215 2216 /* 2217 * Validate cpunum 2218 */ 2219 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2220 return KDB_BADCPUNUM; 2221 2222 dbg_switch_cpu = cpunum; 2223 2224 /* 2225 * Switch to other cpu 2226 */ 2227 return KDB_CMD_CPU; 2228 } 2229 2230 /* The user may not realize that ps/bta with no parameters does not print idle 2231 * or sleeping system daemon processes, so tell them how many were suppressed. 2232 */ 2233 void kdb_ps_suppressed(void) 2234 { 2235 int idle = 0, daemon = 0; 2236 unsigned long cpu; 2237 const struct task_struct *p, *g; 2238 for_each_online_cpu(cpu) { 2239 p = curr_task(cpu); 2240 if (kdb_task_state(p, "-")) 2241 ++idle; 2242 } 2243 for_each_process_thread(g, p) { 2244 if (kdb_task_state(p, "ims")) 2245 ++daemon; 2246 } 2247 if (idle || daemon) { 2248 if (idle) 2249 kdb_printf("%d idle process%s (state -)%s\n", 2250 idle, idle == 1 ? "" : "es", 2251 daemon ? " and " : ""); 2252 if (daemon) 2253 kdb_printf("%d sleeping system daemon (state [ims]) " 2254 "process%s", daemon, 2255 daemon == 1 ? "" : "es"); 2256 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2257 } 2258 } 2259 2260 void kdb_ps1(const struct task_struct *p) 2261 { 2262 int cpu; 2263 unsigned long tmp; 2264 2265 if (!p || 2266 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) 2267 return; 2268 2269 cpu = kdb_process_cpu(p); 2270 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2271 (void *)p, p->pid, p->parent->pid, 2272 kdb_task_has_cpu(p), kdb_process_cpu(p), 2273 kdb_task_state_char(p), 2274 (void *)(&p->thread), 2275 p == curr_task(raw_smp_processor_id()) ? '*' : ' ', 2276 p->comm); 2277 if (kdb_task_has_cpu(p)) { 2278 if (!KDB_TSK(cpu)) { 2279 kdb_printf(" Error: no saved data for this cpu\n"); 2280 } else { 2281 if (KDB_TSK(cpu) != p) 2282 kdb_printf(" Error: does not match running " 2283 "process table (0x%px)\n", KDB_TSK(cpu)); 2284 } 2285 } 2286 } 2287 2288 /* 2289 * kdb_ps - This function implements the 'ps' command which shows a 2290 * list of the active processes. 2291 * 2292 * ps [<state_chars>] Show processes, optionally selecting only those whose 2293 * state character is found in <state_chars>. 2294 */ 2295 static int kdb_ps(int argc, const char **argv) 2296 { 2297 struct task_struct *g, *p; 2298 const char *mask; 2299 unsigned long cpu; 2300 2301 if (argc == 0) 2302 kdb_ps_suppressed(); 2303 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2304 (int)(2*sizeof(void *))+2, "Task Addr", 2305 (int)(2*sizeof(void *))+2, "Thread"); 2306 mask = argc ? argv[1] : kdbgetenv("PS"); 2307 /* Run the active tasks first */ 2308 for_each_online_cpu(cpu) { 2309 if (KDB_FLAG(CMD_INTERRUPT)) 2310 return 0; 2311 p = curr_task(cpu); 2312 if (kdb_task_state(p, mask)) 2313 kdb_ps1(p); 2314 } 2315 kdb_printf("\n"); 2316 /* Now the real tasks */ 2317 for_each_process_thread(g, p) { 2318 if (KDB_FLAG(CMD_INTERRUPT)) 2319 return 0; 2320 if (kdb_task_state(p, mask)) 2321 kdb_ps1(p); 2322 } 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * kdb_pid - This function implements the 'pid' command which switches 2329 * the currently active process. 2330 * pid [<pid> | R] 2331 */ 2332 static int kdb_pid(int argc, const char **argv) 2333 { 2334 struct task_struct *p; 2335 unsigned long val; 2336 int diag; 2337 2338 if (argc > 1) 2339 return KDB_ARGCOUNT; 2340 2341 if (argc) { 2342 if (strcmp(argv[1], "R") == 0) { 2343 p = KDB_TSK(kdb_initial_cpu); 2344 } else { 2345 diag = kdbgetularg(argv[1], &val); 2346 if (diag) 2347 return KDB_BADINT; 2348 2349 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2350 if (!p) { 2351 kdb_printf("No task with pid=%d\n", (pid_t)val); 2352 return 0; 2353 } 2354 } 2355 kdb_set_current_task(p); 2356 } 2357 kdb_printf("KDB current process is %s(pid=%d)\n", 2358 kdb_current_task->comm, 2359 kdb_current_task->pid); 2360 2361 return 0; 2362 } 2363 2364 static int kdb_kgdb(int argc, const char **argv) 2365 { 2366 return KDB_CMD_KGDB; 2367 } 2368 2369 /* 2370 * kdb_help - This function implements the 'help' and '?' commands. 2371 */ 2372 static int kdb_help(int argc, const char **argv) 2373 { 2374 kdbtab_t *kt; 2375 2376 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2377 kdb_printf("-----------------------------" 2378 "-----------------------------\n"); 2379 list_for_each_entry(kt, &kdb_cmds_head, list_node) { 2380 char *space = ""; 2381 if (KDB_FLAG(CMD_INTERRUPT)) 2382 return 0; 2383 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true)) 2384 continue; 2385 if (strlen(kt->usage) > 20) 2386 space = "\n "; 2387 kdb_printf("%-15.15s %-20s%s%s\n", kt->name, 2388 kt->usage, space, kt->help); 2389 } 2390 return 0; 2391 } 2392 2393 /* 2394 * kdb_kill - This function implements the 'kill' commands. 2395 */ 2396 static int kdb_kill(int argc, const char **argv) 2397 { 2398 long sig, pid; 2399 struct task_struct *p; 2400 2401 if (argc != 2) 2402 return KDB_ARGCOUNT; 2403 2404 if (kstrtol(argv[1], 0, &sig)) 2405 return KDB_BADINT; 2406 if ((sig >= 0) || !valid_signal(-sig)) { 2407 kdb_printf("Invalid signal parameter.<-signal>\n"); 2408 return 0; 2409 } 2410 sig = -sig; 2411 2412 if (kstrtol(argv[2], 0, &pid)) 2413 return KDB_BADINT; 2414 if (pid <= 0) { 2415 kdb_printf("Process ID must be large than 0.\n"); 2416 return 0; 2417 } 2418 2419 /* Find the process. */ 2420 p = find_task_by_pid_ns(pid, &init_pid_ns); 2421 if (!p) { 2422 kdb_printf("The specified process isn't found.\n"); 2423 return 0; 2424 } 2425 p = p->group_leader; 2426 kdb_send_sig(p, sig); 2427 return 0; 2428 } 2429 2430 /* 2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2432 * I cannot call that code directly from kdb, it has an unconditional 2433 * cli()/sti() and calls routines that take locks which can stop the debugger. 2434 */ 2435 static void kdb_sysinfo(struct sysinfo *val) 2436 { 2437 u64 uptime = ktime_get_mono_fast_ns(); 2438 2439 memset(val, 0, sizeof(*val)); 2440 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2441 val->loads[0] = avenrun[0]; 2442 val->loads[1] = avenrun[1]; 2443 val->loads[2] = avenrun[2]; 2444 val->procs = nr_threads-1; 2445 si_meminfo(val); 2446 2447 return; 2448 } 2449 2450 /* 2451 * kdb_summary - This function implements the 'summary' command. 2452 */ 2453 static int kdb_summary(int argc, const char **argv) 2454 { 2455 time64_t now; 2456 struct sysinfo val; 2457 2458 if (argc) 2459 return KDB_ARGCOUNT; 2460 2461 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2462 kdb_printf("release %s\n", init_uts_ns.name.release); 2463 kdb_printf("version %s\n", init_uts_ns.name.version); 2464 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2465 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2466 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2467 2468 now = __ktime_get_real_seconds(); 2469 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest); 2470 kdb_sysinfo(&val); 2471 kdb_printf("uptime "); 2472 if (val.uptime > (24*60*60)) { 2473 int days = val.uptime / (24*60*60); 2474 val.uptime %= (24*60*60); 2475 kdb_printf("%d day%s ", days, str_plural(days)); 2476 } 2477 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2478 2479 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2480 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2481 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2482 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2483 2484 /* Display in kilobytes */ 2485 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2486 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2487 "Buffers: %8lu kB\n", 2488 K(val.totalram), K(val.freeram), K(val.bufferram)); 2489 return 0; 2490 } 2491 2492 /* 2493 * kdb_per_cpu - This function implements the 'per_cpu' command. 2494 */ 2495 static int kdb_per_cpu(int argc, const char **argv) 2496 { 2497 char fmtstr[64]; 2498 int cpu, diag, nextarg = 1; 2499 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2500 2501 if (argc < 1 || argc > 3) 2502 return KDB_ARGCOUNT; 2503 2504 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2505 if (diag) 2506 return diag; 2507 2508 if (argc >= 2) { 2509 diag = kdbgetularg(argv[2], &bytesperword); 2510 if (diag) 2511 return diag; 2512 } 2513 if (!bytesperword) 2514 bytesperword = KDB_WORD_SIZE; 2515 else if (bytesperword > KDB_WORD_SIZE) 2516 return KDB_BADWIDTH; 2517 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2518 if (argc >= 3) { 2519 diag = kdbgetularg(argv[3], &whichcpu); 2520 if (diag) 2521 return diag; 2522 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2523 kdb_printf("cpu %ld is not online\n", whichcpu); 2524 return KDB_BADCPUNUM; 2525 } 2526 } 2527 2528 /* Most architectures use __per_cpu_offset[cpu], some use 2529 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2530 */ 2531 #ifdef __per_cpu_offset 2532 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2533 #else 2534 #ifdef CONFIG_SMP 2535 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2536 #else 2537 #define KDB_PCU(cpu) 0 2538 #endif 2539 #endif 2540 for_each_online_cpu(cpu) { 2541 if (KDB_FLAG(CMD_INTERRUPT)) 2542 return 0; 2543 2544 if (whichcpu != ~0UL && whichcpu != cpu) 2545 continue; 2546 addr = symaddr + KDB_PCU(cpu); 2547 diag = kdb_getword(&val, addr, bytesperword); 2548 if (diag) { 2549 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2550 "read, diag=%d\n", cpu, addr, diag); 2551 continue; 2552 } 2553 kdb_printf("%5d ", cpu); 2554 kdb_md_line(fmtstr, addr, 2555 bytesperword == KDB_WORD_SIZE, 2556 1, bytesperword, 1, 1, 0); 2557 } 2558 #undef KDB_PCU 2559 return 0; 2560 } 2561 2562 /* 2563 * display help for the use of cmd | grep pattern 2564 */ 2565 static int kdb_grep_help(int argc, const char **argv) 2566 { 2567 kdb_printf("Usage of cmd args | grep pattern:\n"); 2568 kdb_printf(" Any command's output may be filtered through an "); 2569 kdb_printf("emulated 'pipe'.\n"); 2570 kdb_printf(" 'grep' is just a key word.\n"); 2571 kdb_printf(" The pattern may include a very limited set of " 2572 "metacharacters:\n"); 2573 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2574 kdb_printf(" And if there are spaces in the pattern, you may " 2575 "quote it:\n"); 2576 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2577 " or \"^pat tern$\"\n"); 2578 return 0; 2579 } 2580 2581 /** 2582 * kdb_register() - This function is used to register a kernel debugger 2583 * command. 2584 * @cmd: pointer to kdb command 2585 * 2586 * Note that it's the job of the caller to keep the memory for the cmd 2587 * allocated until unregister is called. 2588 */ 2589 int kdb_register(kdbtab_t *cmd) 2590 { 2591 kdbtab_t *kp; 2592 2593 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 2594 if (strcmp(kp->name, cmd->name) == 0) { 2595 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n", 2596 cmd->name, cmd->func, cmd->help); 2597 return 1; 2598 } 2599 } 2600 2601 list_add_tail(&cmd->list_node, &kdb_cmds_head); 2602 return 0; 2603 } 2604 EXPORT_SYMBOL_GPL(kdb_register); 2605 2606 /** 2607 * kdb_register_table() - This function is used to register a kdb command 2608 * table. 2609 * @kp: pointer to kdb command table 2610 * @len: length of kdb command table 2611 */ 2612 void kdb_register_table(kdbtab_t *kp, size_t len) 2613 { 2614 while (len--) { 2615 list_add_tail(&kp->list_node, &kdb_cmds_head); 2616 kp++; 2617 } 2618 } 2619 2620 /** 2621 * kdb_unregister() - This function is used to unregister a kernel debugger 2622 * command. It is generally called when a module which 2623 * implements kdb command is unloaded. 2624 * @cmd: pointer to kdb command 2625 */ 2626 void kdb_unregister(kdbtab_t *cmd) 2627 { 2628 list_del(&cmd->list_node); 2629 } 2630 EXPORT_SYMBOL_GPL(kdb_unregister); 2631 2632 static kdbtab_t maintab[] = { 2633 { .name = "md", 2634 .func = kdb_md, 2635 .usage = "<vaddr>", 2636 .help = "Display Memory Contents, also mdWcN, e.g. md8c1", 2637 .minlen = 1, 2638 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2639 }, 2640 { .name = "mdr", 2641 .func = kdb_md, 2642 .usage = "<vaddr> <bytes>", 2643 .help = "Display Raw Memory", 2644 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2645 }, 2646 { .name = "mdp", 2647 .func = kdb_md, 2648 .usage = "<paddr> <bytes>", 2649 .help = "Display Physical Memory", 2650 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2651 }, 2652 { .name = "mds", 2653 .func = kdb_md, 2654 .usage = "<vaddr>", 2655 .help = "Display Memory Symbolically", 2656 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2657 }, 2658 { .name = "mm", 2659 .func = kdb_mm, 2660 .usage = "<vaddr> <contents>", 2661 .help = "Modify Memory Contents", 2662 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS, 2663 }, 2664 { .name = "go", 2665 .func = kdb_go, 2666 .usage = "[<vaddr>]", 2667 .help = "Continue Execution", 2668 .minlen = 1, 2669 .flags = KDB_ENABLE_REG_WRITE | 2670 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2671 }, 2672 { .name = "rd", 2673 .func = kdb_rd, 2674 .usage = "", 2675 .help = "Display Registers", 2676 .flags = KDB_ENABLE_REG_READ, 2677 }, 2678 { .name = "rm", 2679 .func = kdb_rm, 2680 .usage = "<reg> <contents>", 2681 .help = "Modify Registers", 2682 .flags = KDB_ENABLE_REG_WRITE, 2683 }, 2684 { .name = "ef", 2685 .func = kdb_ef, 2686 .usage = "<vaddr>", 2687 .help = "Display exception frame", 2688 .flags = KDB_ENABLE_MEM_READ, 2689 }, 2690 { .name = "bt", 2691 .func = kdb_bt, 2692 .usage = "[<vaddr>]", 2693 .help = "Stack traceback", 2694 .minlen = 1, 2695 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2696 }, 2697 { .name = "btp", 2698 .func = kdb_bt, 2699 .usage = "<pid>", 2700 .help = "Display stack for process <pid>", 2701 .flags = KDB_ENABLE_INSPECT, 2702 }, 2703 { .name = "bta", 2704 .func = kdb_bt, 2705 .usage = "[<state_chars>|A]", 2706 .help = "Backtrace all processes whose state matches", 2707 .flags = KDB_ENABLE_INSPECT, 2708 }, 2709 { .name = "btc", 2710 .func = kdb_bt, 2711 .usage = "", 2712 .help = "Backtrace current process on each cpu", 2713 .flags = KDB_ENABLE_INSPECT, 2714 }, 2715 { .name = "btt", 2716 .func = kdb_bt, 2717 .usage = "<vaddr>", 2718 .help = "Backtrace process given its struct task address", 2719 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2720 }, 2721 { .name = "env", 2722 .func = kdb_env, 2723 .usage = "", 2724 .help = "Show environment variables", 2725 .flags = KDB_ENABLE_ALWAYS_SAFE, 2726 }, 2727 { .name = "set", 2728 .func = kdb_set, 2729 .usage = "", 2730 .help = "Set environment variables", 2731 .flags = KDB_ENABLE_ALWAYS_SAFE, 2732 }, 2733 { .name = "help", 2734 .func = kdb_help, 2735 .usage = "", 2736 .help = "Display Help Message", 2737 .minlen = 1, 2738 .flags = KDB_ENABLE_ALWAYS_SAFE, 2739 }, 2740 { .name = "?", 2741 .func = kdb_help, 2742 .usage = "", 2743 .help = "Display Help Message", 2744 .flags = KDB_ENABLE_ALWAYS_SAFE, 2745 }, 2746 { .name = "cpu", 2747 .func = kdb_cpu, 2748 .usage = "<cpunum>", 2749 .help = "Switch to new cpu", 2750 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2751 }, 2752 { .name = "kgdb", 2753 .func = kdb_kgdb, 2754 .usage = "", 2755 .help = "Enter kgdb mode", 2756 .flags = 0, 2757 }, 2758 { .name = "ps", 2759 .func = kdb_ps, 2760 .usage = "[<state_chars>|A]", 2761 .help = "Display active task list", 2762 .flags = KDB_ENABLE_INSPECT, 2763 }, 2764 { .name = "pid", 2765 .func = kdb_pid, 2766 .usage = "<pidnum>", 2767 .help = "Switch to another task", 2768 .flags = KDB_ENABLE_INSPECT, 2769 }, 2770 { .name = "reboot", 2771 .func = kdb_reboot, 2772 .usage = "", 2773 .help = "Reboot the machine immediately", 2774 .flags = KDB_ENABLE_REBOOT, 2775 }, 2776 #if defined(CONFIG_MODULES) 2777 { .name = "lsmod", 2778 .func = kdb_lsmod, 2779 .usage = "", 2780 .help = "List loaded kernel modules", 2781 .flags = KDB_ENABLE_INSPECT, 2782 }, 2783 #endif 2784 #if defined(CONFIG_MAGIC_SYSRQ) 2785 { .name = "sr", 2786 .func = kdb_sr, 2787 .usage = "<key>", 2788 .help = "Magic SysRq key", 2789 .flags = KDB_ENABLE_ALWAYS_SAFE, 2790 }, 2791 #endif 2792 #if defined(CONFIG_PRINTK) 2793 { .name = "dmesg", 2794 .func = kdb_dmesg, 2795 .usage = "[lines]", 2796 .help = "Display syslog buffer", 2797 .flags = KDB_ENABLE_ALWAYS_SAFE, 2798 }, 2799 #endif 2800 { .name = "defcmd", 2801 .func = kdb_defcmd, 2802 .usage = "name \"usage\" \"help\"", 2803 .help = "Define a set of commands, down to endefcmd", 2804 /* 2805 * Macros are always safe because when executed each 2806 * internal command re-enters kdb_parse() and is safety 2807 * checked individually. 2808 */ 2809 .flags = KDB_ENABLE_ALWAYS_SAFE, 2810 }, 2811 { .name = "kill", 2812 .func = kdb_kill, 2813 .usage = "<-signal> <pid>", 2814 .help = "Send a signal to a process", 2815 .flags = KDB_ENABLE_SIGNAL, 2816 }, 2817 { .name = "summary", 2818 .func = kdb_summary, 2819 .usage = "", 2820 .help = "Summarize the system", 2821 .minlen = 4, 2822 .flags = KDB_ENABLE_ALWAYS_SAFE, 2823 }, 2824 { .name = "per_cpu", 2825 .func = kdb_per_cpu, 2826 .usage = "<sym> [<bytes>] [<cpu>]", 2827 .help = "Display per_cpu variables", 2828 .minlen = 3, 2829 .flags = KDB_ENABLE_MEM_READ, 2830 }, 2831 { .name = "grephelp", 2832 .func = kdb_grep_help, 2833 .usage = "", 2834 .help = "Display help on | grep", 2835 .flags = KDB_ENABLE_ALWAYS_SAFE, 2836 }, 2837 }; 2838 2839 static kdbtab_t nmicmd = { 2840 .name = "disable_nmi", 2841 .func = kdb_disable_nmi, 2842 .usage = "", 2843 .help = "Disable NMI entry to KDB", 2844 .flags = KDB_ENABLE_ALWAYS_SAFE, 2845 }; 2846 2847 /* Initialize the kdb command table. */ 2848 static void __init kdb_inittab(void) 2849 { 2850 kdb_register_table(maintab, ARRAY_SIZE(maintab)); 2851 if (arch_kgdb_ops.enable_nmi) 2852 kdb_register_table(&nmicmd, 1); 2853 } 2854 2855 /* Execute any commands defined in kdb_cmds. */ 2856 static void __init kdb_cmd_init(void) 2857 { 2858 int i, diag; 2859 for (i = 0; kdb_cmds[i]; ++i) { 2860 diag = kdb_parse(kdb_cmds[i]); 2861 if (diag) 2862 kdb_printf("kdb command %s failed, kdb diag %d\n", 2863 kdb_cmds[i], diag); 2864 } 2865 if (defcmd_in_progress) { 2866 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2867 kdb_parse("endefcmd"); 2868 } 2869 } 2870 2871 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2872 void __init kdb_init(int lvl) 2873 { 2874 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2875 int i; 2876 2877 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2878 return; 2879 for (i = kdb_init_lvl; i < lvl; i++) { 2880 switch (i) { 2881 case KDB_NOT_INITIALIZED: 2882 kdb_inittab(); /* Initialize Command Table */ 2883 kdb_initbptab(); /* Initialize Breakpoints */ 2884 break; 2885 case KDB_INIT_EARLY: 2886 kdb_cmd_init(); /* Build kdb_cmds tables */ 2887 break; 2888 } 2889 } 2890 kdb_init_lvl = lvl; 2891 } 2892