1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mm.h> 32 #include <linux/init.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdb.h> 36 #include <linux/notifier.h> 37 #include <linux/interrupt.h> 38 #include <linux/delay.h> 39 #include <linux/nmi.h> 40 #include <linux/time.h> 41 #include <linux/ptrace.h> 42 #include <linux/sysctl.h> 43 #include <linux/cpu.h> 44 #include <linux/kdebug.h> 45 #include <linux/proc_fs.h> 46 #include <linux/uaccess.h> 47 #include <linux/slab.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_commands describes the available commands. */ 88 static kdbtab_t *kdb_commands; 89 #define KDB_BASE_CMD_MAX 50 90 static int kdb_max_commands = KDB_BASE_CMD_MAX; 91 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 92 #define for_each_kdbcmd(cmd, num) \ 93 for ((cmd) = kdb_base_commands, (num) = 0; \ 94 num < kdb_max_commands; \ 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 96 97 typedef struct _kdbmsg { 98 int km_diag; /* kdb diagnostic */ 99 char *km_msg; /* Corresponding message text */ 100 } kdbmsg_t; 101 102 #define KDBMSG(msgnum, text) \ 103 { KDB_##msgnum, text } 104 105 static kdbmsg_t kdbmsgs[] = { 106 KDBMSG(NOTFOUND, "Command Not Found"), 107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 109 "8 is only allowed on 64 bit systems"), 110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 111 KDBMSG(NOTENV, "Cannot find environment variable"), 112 KDBMSG(NOENVVALUE, "Environment variable should have value"), 113 KDBMSG(NOTIMP, "Command not implemented"), 114 KDBMSG(ENVFULL, "Environment full"), 115 KDBMSG(ENVBUFFULL, "Environment buffer full"), 116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 117 #ifdef CONFIG_CPU_XSCALE 118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 119 #else 120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 121 #endif 122 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 124 KDBMSG(BADMODE, "Invalid IDMODE"), 125 KDBMSG(BADINT, "Illegal numeric value"), 126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 127 KDBMSG(BADREG, "Invalid register name"), 128 KDBMSG(BADCPUNUM, "Invalid cpu number"), 129 KDBMSG(BADLENGTH, "Invalid length field"), 130 KDBMSG(NOBP, "No Breakpoint exists"), 131 KDBMSG(BADADDR, "Invalid address"), 132 KDBMSG(NOPERM, "Permission denied"), 133 }; 134 #undef KDBMSG 135 136 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 137 138 139 /* 140 * Initial environment. This is all kept static and local to 141 * this file. We don't want to rely on the memory allocation 142 * mechanisms in the kernel, so we use a very limited allocate-only 143 * heap for new and altered environment variables. The entire 144 * environment is limited to a fixed number of entries (add more 145 * to __env[] if required) and a fixed amount of heap (add more to 146 * KDB_ENVBUFSIZE if required). 147 */ 148 149 static char *__env[] = { 150 #if defined(CONFIG_SMP) 151 "PROMPT=[%d]kdb> ", 152 #else 153 "PROMPT=kdb> ", 154 #endif 155 "MOREPROMPT=more> ", 156 "RADIX=16", 157 "MDCOUNT=8", /* lines of md output */ 158 KDB_PLATFORM_ENV, 159 "DTABCOUNT=30", 160 "NOSECT=1", 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 (char *)0, 184 (char *)0, 185 }; 186 187 static const int __nenv = ARRAY_SIZE(__env); 188 189 struct task_struct *kdb_curr_task(int cpu) 190 { 191 struct task_struct *p = curr_task(cpu); 192 #ifdef _TIF_MCA_INIT 193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 194 p = krp->p; 195 #endif 196 return p; 197 } 198 199 /* 200 * Check whether the flags of the current command and the permissions 201 * of the kdb console has allow a command to be run. 202 */ 203 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 204 bool no_args) 205 { 206 /* permissions comes from userspace so needs massaging slightly */ 207 permissions &= KDB_ENABLE_MASK; 208 permissions |= KDB_ENABLE_ALWAYS_SAFE; 209 210 /* some commands change group when launched with no arguments */ 211 if (no_args) 212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 213 214 flags |= KDB_ENABLE_ALL; 215 216 return permissions & flags; 217 } 218 219 /* 220 * kdbgetenv - This function will return the character string value of 221 * an environment variable. 222 * Parameters: 223 * match A character string representing an environment variable. 224 * Returns: 225 * NULL No environment variable matches 'match' 226 * char* Pointer to string value of environment variable. 227 */ 228 char *kdbgetenv(const char *match) 229 { 230 char **ep = __env; 231 int matchlen = strlen(match); 232 int i; 233 234 for (i = 0; i < __nenv; i++) { 235 char *e = *ep++; 236 237 if (!e) 238 continue; 239 240 if ((strncmp(match, e, matchlen) == 0) 241 && ((e[matchlen] == '\0') 242 || (e[matchlen] == '='))) { 243 char *cp = strchr(e, '='); 244 return cp ? ++cp : ""; 245 } 246 } 247 return NULL; 248 } 249 250 /* 251 * kdballocenv - This function is used to allocate bytes for 252 * environment entries. 253 * Parameters: 254 * match A character string representing a numeric value 255 * Outputs: 256 * *value the unsigned long representation of the env variable 'match' 257 * Returns: 258 * Zero on success, a kdb diagnostic on failure. 259 * Remarks: 260 * We use a static environment buffer (envbuffer) to hold the values 261 * of dynamically generated environment variables (see kdb_set). Buffer 262 * space once allocated is never free'd, so over time, the amount of space 263 * (currently 512 bytes) will be exhausted if env variables are changed 264 * frequently. 265 */ 266 static char *kdballocenv(size_t bytes) 267 { 268 #define KDB_ENVBUFSIZE 512 269 static char envbuffer[KDB_ENVBUFSIZE]; 270 static int envbufsize; 271 char *ep = NULL; 272 273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 274 ep = &envbuffer[envbufsize]; 275 envbufsize += bytes; 276 } 277 return ep; 278 } 279 280 /* 281 * kdbgetulenv - This function will return the value of an unsigned 282 * long-valued environment variable. 283 * Parameters: 284 * match A character string representing a numeric value 285 * Outputs: 286 * *value the unsigned long represntation of the env variable 'match' 287 * Returns: 288 * Zero on success, a kdb diagnostic on failure. 289 */ 290 static int kdbgetulenv(const char *match, unsigned long *value) 291 { 292 char *ep; 293 294 ep = kdbgetenv(match); 295 if (!ep) 296 return KDB_NOTENV; 297 if (strlen(ep) == 0) 298 return KDB_NOENVVALUE; 299 300 *value = simple_strtoul(ep, NULL, 0); 301 302 return 0; 303 } 304 305 /* 306 * kdbgetintenv - This function will return the value of an 307 * integer-valued environment variable. 308 * Parameters: 309 * match A character string representing an integer-valued env variable 310 * Outputs: 311 * *value the integer representation of the environment variable 'match' 312 * Returns: 313 * Zero on success, a kdb diagnostic on failure. 314 */ 315 int kdbgetintenv(const char *match, int *value) 316 { 317 unsigned long val; 318 int diag; 319 320 diag = kdbgetulenv(match, &val); 321 if (!diag) 322 *value = (int) val; 323 return diag; 324 } 325 326 /* 327 * kdbgetularg - This function will convert a numeric string into an 328 * unsigned long value. 329 * Parameters: 330 * arg A character string representing a numeric value 331 * Outputs: 332 * *value the unsigned long represntation of arg. 333 * Returns: 334 * Zero on success, a kdb diagnostic on failure. 335 */ 336 int kdbgetularg(const char *arg, unsigned long *value) 337 { 338 char *endp; 339 unsigned long val; 340 341 val = simple_strtoul(arg, &endp, 0); 342 343 if (endp == arg) { 344 /* 345 * Also try base 16, for us folks too lazy to type the 346 * leading 0x... 347 */ 348 val = simple_strtoul(arg, &endp, 16); 349 if (endp == arg) 350 return KDB_BADINT; 351 } 352 353 *value = val; 354 355 return 0; 356 } 357 358 int kdbgetu64arg(const char *arg, u64 *value) 359 { 360 char *endp; 361 u64 val; 362 363 val = simple_strtoull(arg, &endp, 0); 364 365 if (endp == arg) { 366 367 val = simple_strtoull(arg, &endp, 16); 368 if (endp == arg) 369 return KDB_BADINT; 370 } 371 372 *value = val; 373 374 return 0; 375 } 376 377 /* 378 * kdb_set - This function implements the 'set' command. Alter an 379 * existing environment variable or create a new one. 380 */ 381 int kdb_set(int argc, const char **argv) 382 { 383 int i; 384 char *ep; 385 size_t varlen, vallen; 386 387 /* 388 * we can be invoked two ways: 389 * set var=value argv[1]="var", argv[2]="value" 390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 391 * - if the latter, shift 'em down. 392 */ 393 if (argc == 3) { 394 argv[2] = argv[3]; 395 argc--; 396 } 397 398 if (argc != 2) 399 return KDB_ARGCOUNT; 400 401 /* 402 * Check for internal variables 403 */ 404 if (strcmp(argv[1], "KDBDEBUG") == 0) { 405 unsigned int debugflags; 406 char *cp; 407 408 debugflags = simple_strtoul(argv[2], &cp, 0); 409 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 410 kdb_printf("kdb: illegal debug flags '%s'\n", 411 argv[2]); 412 return 0; 413 } 414 kdb_flags = (kdb_flags & 415 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 416 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 417 418 return 0; 419 } 420 421 /* 422 * Tokenizer squashed the '=' sign. argv[1] is variable 423 * name, argv[2] = value. 424 */ 425 varlen = strlen(argv[1]); 426 vallen = strlen(argv[2]); 427 ep = kdballocenv(varlen + vallen + 2); 428 if (ep == (char *)0) 429 return KDB_ENVBUFFULL; 430 431 sprintf(ep, "%s=%s", argv[1], argv[2]); 432 433 ep[varlen+vallen+1] = '\0'; 434 435 for (i = 0; i < __nenv; i++) { 436 if (__env[i] 437 && ((strncmp(__env[i], argv[1], varlen) == 0) 438 && ((__env[i][varlen] == '\0') 439 || (__env[i][varlen] == '=')))) { 440 __env[i] = ep; 441 return 0; 442 } 443 } 444 445 /* 446 * Wasn't existing variable. Fit into slot. 447 */ 448 for (i = 0; i < __nenv-1; i++) { 449 if (__env[i] == (char *)0) { 450 __env[i] = ep; 451 return 0; 452 } 453 } 454 455 return KDB_ENVFULL; 456 } 457 458 static int kdb_check_regs(void) 459 { 460 if (!kdb_current_regs) { 461 kdb_printf("No current kdb registers." 462 " You may need to select another task\n"); 463 return KDB_BADREG; 464 } 465 return 0; 466 } 467 468 /* 469 * kdbgetaddrarg - This function is responsible for parsing an 470 * address-expression and returning the value of the expression, 471 * symbol name, and offset to the caller. 472 * 473 * The argument may consist of a numeric value (decimal or 474 * hexidecimal), a symbol name, a register name (preceded by the 475 * percent sign), an environment variable with a numeric value 476 * (preceded by a dollar sign) or a simple arithmetic expression 477 * consisting of a symbol name, +/-, and a numeric constant value 478 * (offset). 479 * Parameters: 480 * argc - count of arguments in argv 481 * argv - argument vector 482 * *nextarg - index to next unparsed argument in argv[] 483 * regs - Register state at time of KDB entry 484 * Outputs: 485 * *value - receives the value of the address-expression 486 * *offset - receives the offset specified, if any 487 * *name - receives the symbol name, if any 488 * *nextarg - index to next unparsed argument in argv[] 489 * Returns: 490 * zero is returned on success, a kdb diagnostic code is 491 * returned on error. 492 */ 493 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 494 unsigned long *value, long *offset, 495 char **name) 496 { 497 unsigned long addr; 498 unsigned long off = 0; 499 int positive; 500 int diag; 501 int found = 0; 502 char *symname; 503 char symbol = '\0'; 504 char *cp; 505 kdb_symtab_t symtab; 506 507 /* 508 * If the enable flags prohibit both arbitrary memory access 509 * and flow control then there are no reasonable grounds to 510 * provide symbol lookup. 511 */ 512 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 513 kdb_cmd_enabled, false)) 514 return KDB_NOPERM; 515 516 /* 517 * Process arguments which follow the following syntax: 518 * 519 * symbol | numeric-address [+/- numeric-offset] 520 * %register 521 * $environment-variable 522 */ 523 524 if (*nextarg > argc) 525 return KDB_ARGCOUNT; 526 527 symname = (char *)argv[*nextarg]; 528 529 /* 530 * If there is no whitespace between the symbol 531 * or address and the '+' or '-' symbols, we 532 * remember the character and replace it with a 533 * null so the symbol/value can be properly parsed 534 */ 535 cp = strpbrk(symname, "+-"); 536 if (cp != NULL) { 537 symbol = *cp; 538 *cp++ = '\0'; 539 } 540 541 if (symname[0] == '$') { 542 diag = kdbgetulenv(&symname[1], &addr); 543 if (diag) 544 return diag; 545 } else if (symname[0] == '%') { 546 if (kdb_check_regs()) 547 return 0; 548 /* Implement register values with % at a later time as it is 549 * arch optional. 550 */ 551 return KDB_NOTIMP; 552 } else { 553 found = kdbgetsymval(symname, &symtab); 554 if (found) { 555 addr = symtab.sym_start; 556 } else { 557 diag = kdbgetularg(argv[*nextarg], &addr); 558 if (diag) 559 return diag; 560 } 561 } 562 563 if (!found) 564 found = kdbnearsym(addr, &symtab); 565 566 (*nextarg)++; 567 568 if (name) 569 *name = symname; 570 if (value) 571 *value = addr; 572 if (offset && name && *name) 573 *offset = addr - symtab.sym_start; 574 575 if ((*nextarg > argc) 576 && (symbol == '\0')) 577 return 0; 578 579 /* 580 * check for +/- and offset 581 */ 582 583 if (symbol == '\0') { 584 if ((argv[*nextarg][0] != '+') 585 && (argv[*nextarg][0] != '-')) { 586 /* 587 * Not our argument. Return. 588 */ 589 return 0; 590 } else { 591 positive = (argv[*nextarg][0] == '+'); 592 (*nextarg)++; 593 } 594 } else 595 positive = (symbol == '+'); 596 597 /* 598 * Now there must be an offset! 599 */ 600 if ((*nextarg > argc) 601 && (symbol == '\0')) { 602 return KDB_INVADDRFMT; 603 } 604 605 if (!symbol) { 606 cp = (char *)argv[*nextarg]; 607 (*nextarg)++; 608 } 609 610 diag = kdbgetularg(cp, &off); 611 if (diag) 612 return diag; 613 614 if (!positive) 615 off = -off; 616 617 if (offset) 618 *offset += off; 619 620 if (value) 621 *value += off; 622 623 return 0; 624 } 625 626 static void kdb_cmderror(int diag) 627 { 628 int i; 629 630 if (diag >= 0) { 631 kdb_printf("no error detected (diagnostic is %d)\n", diag); 632 return; 633 } 634 635 for (i = 0; i < __nkdb_err; i++) { 636 if (kdbmsgs[i].km_diag == diag) { 637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 638 return; 639 } 640 } 641 642 kdb_printf("Unknown diag %d\n", -diag); 643 } 644 645 /* 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 647 * command which defines one command as a set of other commands, 648 * terminated by endefcmd. kdb_defcmd processes the initial 649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 650 * the following commands until 'endefcmd'. 651 * Inputs: 652 * argc argument count 653 * argv argument vector 654 * Returns: 655 * zero for success, a kdb diagnostic if error 656 */ 657 struct defcmd_set { 658 int count; 659 bool usable; 660 char *name; 661 char *usage; 662 char *help; 663 char **command; 664 }; 665 static struct defcmd_set *defcmd_set; 666 static int defcmd_set_count; 667 static bool defcmd_in_progress; 668 669 /* Forward references */ 670 static int kdb_exec_defcmd(int argc, const char **argv); 671 672 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 673 { 674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 675 char **save_command = s->command; 676 if (strcmp(argv0, "endefcmd") == 0) { 677 defcmd_in_progress = false; 678 if (!s->count) 679 s->usable = false; 680 if (s->usable) 681 /* macros are always safe because when executed each 682 * internal command re-enters kdb_parse() and is 683 * safety checked individually. 684 */ 685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 686 s->help, 0, 687 KDB_ENABLE_ALWAYS_SAFE); 688 return 0; 689 } 690 if (!s->usable) 691 return KDB_NOTIMP; 692 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB); 693 if (!s->command) { 694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 695 cmdstr); 696 s->usable = false; 697 return KDB_NOTIMP; 698 } 699 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 701 kfree(save_command); 702 return 0; 703 } 704 705 static int kdb_defcmd(int argc, const char **argv) 706 { 707 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 708 if (defcmd_in_progress) { 709 kdb_printf("kdb: nested defcmd detected, assuming missing " 710 "endefcmd\n"); 711 kdb_defcmd2("endefcmd", "endefcmd"); 712 } 713 if (argc == 0) { 714 int i; 715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 717 s->usage, s->help); 718 for (i = 0; i < s->count; ++i) 719 kdb_printf("%s", s->command[i]); 720 kdb_printf("endefcmd\n"); 721 } 722 return 0; 723 } 724 if (argc != 3) 725 return KDB_ARGCOUNT; 726 if (in_dbg_master()) { 727 kdb_printf("Command only available during kdb_init()\n"); 728 return KDB_NOTIMP; 729 } 730 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set), 731 GFP_KDB); 732 if (!defcmd_set) 733 goto fail_defcmd; 734 memcpy(defcmd_set, save_defcmd_set, 735 defcmd_set_count * sizeof(*defcmd_set)); 736 s = defcmd_set + defcmd_set_count; 737 memset(s, 0, sizeof(*s)); 738 s->usable = true; 739 s->name = kdb_strdup(argv[1], GFP_KDB); 740 if (!s->name) 741 goto fail_name; 742 s->usage = kdb_strdup(argv[2], GFP_KDB); 743 if (!s->usage) 744 goto fail_usage; 745 s->help = kdb_strdup(argv[3], GFP_KDB); 746 if (!s->help) 747 goto fail_help; 748 if (s->usage[0] == '"') { 749 strcpy(s->usage, argv[2]+1); 750 s->usage[strlen(s->usage)-1] = '\0'; 751 } 752 if (s->help[0] == '"') { 753 strcpy(s->help, argv[3]+1); 754 s->help[strlen(s->help)-1] = '\0'; 755 } 756 ++defcmd_set_count; 757 defcmd_in_progress = true; 758 kfree(save_defcmd_set); 759 return 0; 760 fail_help: 761 kfree(s->usage); 762 fail_usage: 763 kfree(s->name); 764 fail_name: 765 kfree(defcmd_set); 766 fail_defcmd: 767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 768 defcmd_set = save_defcmd_set; 769 return KDB_NOTIMP; 770 } 771 772 /* 773 * kdb_exec_defcmd - Execute the set of commands associated with this 774 * defcmd name. 775 * Inputs: 776 * argc argument count 777 * argv argument vector 778 * Returns: 779 * zero for success, a kdb diagnostic if error 780 */ 781 static int kdb_exec_defcmd(int argc, const char **argv) 782 { 783 int i, ret; 784 struct defcmd_set *s; 785 if (argc != 0) 786 return KDB_ARGCOUNT; 787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 788 if (strcmp(s->name, argv[0]) == 0) 789 break; 790 } 791 if (i == defcmd_set_count) { 792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 793 argv[0]); 794 return KDB_NOTIMP; 795 } 796 for (i = 0; i < s->count; ++i) { 797 /* Recursive use of kdb_parse, do not use argv after 798 * this point */ 799 argv = NULL; 800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 801 ret = kdb_parse(s->command[i]); 802 if (ret) 803 return ret; 804 } 805 return 0; 806 } 807 808 /* Command history */ 809 #define KDB_CMD_HISTORY_COUNT 32 810 #define CMD_BUFLEN 200 /* kdb_printf: max printline 811 * size == 256 */ 812 static unsigned int cmd_head, cmd_tail; 813 static unsigned int cmdptr; 814 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 815 static char cmd_cur[CMD_BUFLEN]; 816 817 /* 818 * The "str" argument may point to something like | grep xyz 819 */ 820 static void parse_grep(const char *str) 821 { 822 int len; 823 char *cp = (char *)str, *cp2; 824 825 /* sanity check: we should have been called with the \ first */ 826 if (*cp != '|') 827 return; 828 cp++; 829 while (isspace(*cp)) 830 cp++; 831 if (!str_has_prefix(cp, "grep ")) { 832 kdb_printf("invalid 'pipe', see grephelp\n"); 833 return; 834 } 835 cp += 5; 836 while (isspace(*cp)) 837 cp++; 838 cp2 = strchr(cp, '\n'); 839 if (cp2) 840 *cp2 = '\0'; /* remove the trailing newline */ 841 len = strlen(cp); 842 if (len == 0) { 843 kdb_printf("invalid 'pipe', see grephelp\n"); 844 return; 845 } 846 /* now cp points to a nonzero length search string */ 847 if (*cp == '"') { 848 /* allow it be "x y z" by removing the "'s - there must 849 be two of them */ 850 cp++; 851 cp2 = strchr(cp, '"'); 852 if (!cp2) { 853 kdb_printf("invalid quoted string, see grephelp\n"); 854 return; 855 } 856 *cp2 = '\0'; /* end the string where the 2nd " was */ 857 } 858 kdb_grep_leading = 0; 859 if (*cp == '^') { 860 kdb_grep_leading = 1; 861 cp++; 862 } 863 len = strlen(cp); 864 kdb_grep_trailing = 0; 865 if (*(cp+len-1) == '$') { 866 kdb_grep_trailing = 1; 867 *(cp+len-1) = '\0'; 868 } 869 len = strlen(cp); 870 if (!len) 871 return; 872 if (len >= KDB_GREP_STRLEN) { 873 kdb_printf("search string too long\n"); 874 return; 875 } 876 strcpy(kdb_grep_string, cp); 877 kdb_grepping_flag++; 878 return; 879 } 880 881 /* 882 * kdb_parse - Parse the command line, search the command table for a 883 * matching command and invoke the command function. This 884 * function may be called recursively, if it is, the second call 885 * will overwrite argv and cbuf. It is the caller's 886 * responsibility to save their argv if they recursively call 887 * kdb_parse(). 888 * Parameters: 889 * cmdstr The input command line to be parsed. 890 * regs The registers at the time kdb was entered. 891 * Returns: 892 * Zero for success, a kdb diagnostic if failure. 893 * Remarks: 894 * Limited to 20 tokens. 895 * 896 * Real rudimentary tokenization. Basically only whitespace 897 * is considered a token delimeter (but special consideration 898 * is taken of the '=' sign as used by the 'set' command). 899 * 900 * The algorithm used to tokenize the input string relies on 901 * there being at least one whitespace (or otherwise useless) 902 * character between tokens as the character immediately following 903 * the token is altered in-place to a null-byte to terminate the 904 * token string. 905 */ 906 907 #define MAXARGC 20 908 909 int kdb_parse(const char *cmdstr) 910 { 911 static char *argv[MAXARGC]; 912 static int argc; 913 static char cbuf[CMD_BUFLEN+2]; 914 char *cp; 915 char *cpp, quoted; 916 kdbtab_t *tp; 917 int i, escaped, ignore_errors = 0, check_grep = 0; 918 919 /* 920 * First tokenize the command string. 921 */ 922 cp = (char *)cmdstr; 923 924 if (KDB_FLAG(CMD_INTERRUPT)) { 925 /* Previous command was interrupted, newline must not 926 * repeat the command */ 927 KDB_FLAG_CLEAR(CMD_INTERRUPT); 928 KDB_STATE_SET(PAGER); 929 argc = 0; /* no repeat */ 930 } 931 932 if (*cp != '\n' && *cp != '\0') { 933 argc = 0; 934 cpp = cbuf; 935 while (*cp) { 936 /* skip whitespace */ 937 while (isspace(*cp)) 938 cp++; 939 if ((*cp == '\0') || (*cp == '\n') || 940 (*cp == '#' && !defcmd_in_progress)) 941 break; 942 /* special case: check for | grep pattern */ 943 if (*cp == '|') { 944 check_grep++; 945 break; 946 } 947 if (cpp >= cbuf + CMD_BUFLEN) { 948 kdb_printf("kdb_parse: command buffer " 949 "overflow, command ignored\n%s\n", 950 cmdstr); 951 return KDB_NOTFOUND; 952 } 953 if (argc >= MAXARGC - 1) { 954 kdb_printf("kdb_parse: too many arguments, " 955 "command ignored\n%s\n", cmdstr); 956 return KDB_NOTFOUND; 957 } 958 argv[argc++] = cpp; 959 escaped = 0; 960 quoted = '\0'; 961 /* Copy to next unquoted and unescaped 962 * whitespace or '=' */ 963 while (*cp && *cp != '\n' && 964 (escaped || quoted || !isspace(*cp))) { 965 if (cpp >= cbuf + CMD_BUFLEN) 966 break; 967 if (escaped) { 968 escaped = 0; 969 *cpp++ = *cp++; 970 continue; 971 } 972 if (*cp == '\\') { 973 escaped = 1; 974 ++cp; 975 continue; 976 } 977 if (*cp == quoted) 978 quoted = '\0'; 979 else if (*cp == '\'' || *cp == '"') 980 quoted = *cp; 981 *cpp = *cp++; 982 if (*cpp == '=' && !quoted) 983 break; 984 ++cpp; 985 } 986 *cpp++ = '\0'; /* Squash a ws or '=' character */ 987 } 988 } 989 if (!argc) 990 return 0; 991 if (check_grep) 992 parse_grep(cp); 993 if (defcmd_in_progress) { 994 int result = kdb_defcmd2(cmdstr, argv[0]); 995 if (!defcmd_in_progress) { 996 argc = 0; /* avoid repeat on endefcmd */ 997 *(argv[0]) = '\0'; 998 } 999 return result; 1000 } 1001 if (argv[0][0] == '-' && argv[0][1] && 1002 (argv[0][1] < '0' || argv[0][1] > '9')) { 1003 ignore_errors = 1; 1004 ++argv[0]; 1005 } 1006 1007 for_each_kdbcmd(tp, i) { 1008 if (tp->cmd_name) { 1009 /* 1010 * If this command is allowed to be abbreviated, 1011 * check to see if this is it. 1012 */ 1013 1014 if (tp->cmd_minlen 1015 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1016 if (strncmp(argv[0], 1017 tp->cmd_name, 1018 tp->cmd_minlen) == 0) { 1019 break; 1020 } 1021 } 1022 1023 if (strcmp(argv[0], tp->cmd_name) == 0) 1024 break; 1025 } 1026 } 1027 1028 /* 1029 * If we don't find a command by this name, see if the first 1030 * few characters of this match any of the known commands. 1031 * e.g., md1c20 should match md. 1032 */ 1033 if (i == kdb_max_commands) { 1034 for_each_kdbcmd(tp, i) { 1035 if (tp->cmd_name) { 1036 if (strncmp(argv[0], 1037 tp->cmd_name, 1038 strlen(tp->cmd_name)) == 0) { 1039 break; 1040 } 1041 } 1042 } 1043 } 1044 1045 if (i < kdb_max_commands) { 1046 int result; 1047 1048 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1049 return KDB_NOPERM; 1050 1051 KDB_STATE_SET(CMD); 1052 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1053 if (result && ignore_errors && result > KDB_CMD_GO) 1054 result = 0; 1055 KDB_STATE_CLEAR(CMD); 1056 1057 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1058 return result; 1059 1060 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1061 if (argv[argc]) 1062 *(argv[argc]) = '\0'; 1063 return result; 1064 } 1065 1066 /* 1067 * If the input with which we were presented does not 1068 * map to an existing command, attempt to parse it as an 1069 * address argument and display the result. Useful for 1070 * obtaining the address of a variable, or the nearest symbol 1071 * to an address contained in a register. 1072 */ 1073 { 1074 unsigned long value; 1075 char *name = NULL; 1076 long offset; 1077 int nextarg = 0; 1078 1079 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1080 &value, &offset, &name)) { 1081 return KDB_NOTFOUND; 1082 } 1083 1084 kdb_printf("%s = ", argv[0]); 1085 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1086 kdb_printf("\n"); 1087 return 0; 1088 } 1089 } 1090 1091 1092 static int handle_ctrl_cmd(char *cmd) 1093 { 1094 #define CTRL_P 16 1095 #define CTRL_N 14 1096 1097 /* initial situation */ 1098 if (cmd_head == cmd_tail) 1099 return 0; 1100 switch (*cmd) { 1101 case CTRL_P: 1102 if (cmdptr != cmd_tail) 1103 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1104 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1105 return 1; 1106 case CTRL_N: 1107 if (cmdptr != cmd_head) 1108 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1109 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1110 return 1; 1111 } 1112 return 0; 1113 } 1114 1115 /* 1116 * kdb_reboot - This function implements the 'reboot' command. Reboot 1117 * the system immediately, or loop for ever on failure. 1118 */ 1119 static int kdb_reboot(int argc, const char **argv) 1120 { 1121 emergency_restart(); 1122 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1123 while (1) 1124 cpu_relax(); 1125 /* NOTREACHED */ 1126 return 0; 1127 } 1128 1129 static void kdb_dumpregs(struct pt_regs *regs) 1130 { 1131 int old_lvl = console_loglevel; 1132 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1133 kdb_trap_printk++; 1134 show_regs(regs); 1135 kdb_trap_printk--; 1136 kdb_printf("\n"); 1137 console_loglevel = old_lvl; 1138 } 1139 1140 static void kdb_set_current_task(struct task_struct *p) 1141 { 1142 kdb_current_task = p; 1143 1144 if (kdb_task_has_cpu(p)) { 1145 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1146 return; 1147 } 1148 kdb_current_regs = NULL; 1149 } 1150 1151 static void drop_newline(char *buf) 1152 { 1153 size_t len = strlen(buf); 1154 1155 if (len == 0) 1156 return; 1157 if (*(buf + len - 1) == '\n') 1158 *(buf + len - 1) = '\0'; 1159 } 1160 1161 /* 1162 * kdb_local - The main code for kdb. This routine is invoked on a 1163 * specific processor, it is not global. The main kdb() routine 1164 * ensures that only one processor at a time is in this routine. 1165 * This code is called with the real reason code on the first 1166 * entry to a kdb session, thereafter it is called with reason 1167 * SWITCH, even if the user goes back to the original cpu. 1168 * Inputs: 1169 * reason The reason KDB was invoked 1170 * error The hardware-defined error code 1171 * regs The exception frame at time of fault/breakpoint. 1172 * db_result Result code from the break or debug point. 1173 * Returns: 1174 * 0 KDB was invoked for an event which it wasn't responsible 1175 * 1 KDB handled the event for which it was invoked. 1176 * KDB_CMD_GO User typed 'go'. 1177 * KDB_CMD_CPU User switched to another cpu. 1178 * KDB_CMD_SS Single step. 1179 */ 1180 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1181 kdb_dbtrap_t db_result) 1182 { 1183 char *cmdbuf; 1184 int diag; 1185 struct task_struct *kdb_current = 1186 kdb_curr_task(raw_smp_processor_id()); 1187 1188 KDB_DEBUG_STATE("kdb_local 1", reason); 1189 kdb_go_count = 0; 1190 if (reason == KDB_REASON_DEBUG) { 1191 /* special case below */ 1192 } else { 1193 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1194 kdb_current, kdb_current ? kdb_current->pid : 0); 1195 #if defined(CONFIG_SMP) 1196 kdb_printf("on processor %d ", raw_smp_processor_id()); 1197 #endif 1198 } 1199 1200 switch (reason) { 1201 case KDB_REASON_DEBUG: 1202 { 1203 /* 1204 * If re-entering kdb after a single step 1205 * command, don't print the message. 1206 */ 1207 switch (db_result) { 1208 case KDB_DB_BPT: 1209 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1210 kdb_current, kdb_current->pid); 1211 #if defined(CONFIG_SMP) 1212 kdb_printf("on processor %d ", raw_smp_processor_id()); 1213 #endif 1214 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1215 instruction_pointer(regs)); 1216 break; 1217 case KDB_DB_SS: 1218 break; 1219 case KDB_DB_SSBPT: 1220 KDB_DEBUG_STATE("kdb_local 4", reason); 1221 return 1; /* kdba_db_trap did the work */ 1222 default: 1223 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1224 db_result); 1225 break; 1226 } 1227 1228 } 1229 break; 1230 case KDB_REASON_ENTER: 1231 if (KDB_STATE(KEYBOARD)) 1232 kdb_printf("due to Keyboard Entry\n"); 1233 else 1234 kdb_printf("due to KDB_ENTER()\n"); 1235 break; 1236 case KDB_REASON_KEYBOARD: 1237 KDB_STATE_SET(KEYBOARD); 1238 kdb_printf("due to Keyboard Entry\n"); 1239 break; 1240 case KDB_REASON_ENTER_SLAVE: 1241 /* drop through, slaves only get released via cpu switch */ 1242 case KDB_REASON_SWITCH: 1243 kdb_printf("due to cpu switch\n"); 1244 break; 1245 case KDB_REASON_OOPS: 1246 kdb_printf("Oops: %s\n", kdb_diemsg); 1247 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1248 instruction_pointer(regs)); 1249 kdb_dumpregs(regs); 1250 break; 1251 case KDB_REASON_SYSTEM_NMI: 1252 kdb_printf("due to System NonMaskable Interrupt\n"); 1253 break; 1254 case KDB_REASON_NMI: 1255 kdb_printf("due to NonMaskable Interrupt @ " 1256 kdb_machreg_fmt "\n", 1257 instruction_pointer(regs)); 1258 break; 1259 case KDB_REASON_SSTEP: 1260 case KDB_REASON_BREAK: 1261 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1262 reason == KDB_REASON_BREAK ? 1263 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1264 /* 1265 * Determine if this breakpoint is one that we 1266 * are interested in. 1267 */ 1268 if (db_result != KDB_DB_BPT) { 1269 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1270 db_result); 1271 KDB_DEBUG_STATE("kdb_local 6", reason); 1272 return 0; /* Not for us, dismiss it */ 1273 } 1274 break; 1275 case KDB_REASON_RECURSE: 1276 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1277 instruction_pointer(regs)); 1278 break; 1279 default: 1280 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1281 KDB_DEBUG_STATE("kdb_local 8", reason); 1282 return 0; /* Not for us, dismiss it */ 1283 } 1284 1285 while (1) { 1286 /* 1287 * Initialize pager context. 1288 */ 1289 kdb_nextline = 1; 1290 KDB_STATE_CLEAR(SUPPRESS); 1291 kdb_grepping_flag = 0; 1292 /* ensure the old search does not leak into '/' commands */ 1293 kdb_grep_string[0] = '\0'; 1294 1295 cmdbuf = cmd_cur; 1296 *cmdbuf = '\0'; 1297 *(cmd_hist[cmd_head]) = '\0'; 1298 1299 do_full_getstr: 1300 #if defined(CONFIG_SMP) 1301 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1302 raw_smp_processor_id()); 1303 #else 1304 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1305 #endif 1306 if (defcmd_in_progress) 1307 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1308 1309 /* 1310 * Fetch command from keyboard 1311 */ 1312 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1313 if (*cmdbuf != '\n') { 1314 if (*cmdbuf < 32) { 1315 if (cmdptr == cmd_head) { 1316 strncpy(cmd_hist[cmd_head], cmd_cur, 1317 CMD_BUFLEN); 1318 *(cmd_hist[cmd_head] + 1319 strlen(cmd_hist[cmd_head])-1) = '\0'; 1320 } 1321 if (!handle_ctrl_cmd(cmdbuf)) 1322 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1323 cmdbuf = cmd_cur; 1324 goto do_full_getstr; 1325 } else { 1326 strncpy(cmd_hist[cmd_head], cmd_cur, 1327 CMD_BUFLEN); 1328 } 1329 1330 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1331 if (cmd_head == cmd_tail) 1332 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1333 } 1334 1335 cmdptr = cmd_head; 1336 diag = kdb_parse(cmdbuf); 1337 if (diag == KDB_NOTFOUND) { 1338 drop_newline(cmdbuf); 1339 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1340 diag = 0; 1341 } 1342 if (diag == KDB_CMD_GO 1343 || diag == KDB_CMD_CPU 1344 || diag == KDB_CMD_SS 1345 || diag == KDB_CMD_KGDB) 1346 break; 1347 1348 if (diag) 1349 kdb_cmderror(diag); 1350 } 1351 KDB_DEBUG_STATE("kdb_local 9", diag); 1352 return diag; 1353 } 1354 1355 1356 /* 1357 * kdb_print_state - Print the state data for the current processor 1358 * for debugging. 1359 * Inputs: 1360 * text Identifies the debug point 1361 * value Any integer value to be printed, e.g. reason code. 1362 */ 1363 void kdb_print_state(const char *text, int value) 1364 { 1365 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1366 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1367 kdb_state); 1368 } 1369 1370 /* 1371 * kdb_main_loop - After initial setup and assignment of the 1372 * controlling cpu, all cpus are in this loop. One cpu is in 1373 * control and will issue the kdb prompt, the others will spin 1374 * until 'go' or cpu switch. 1375 * 1376 * To get a consistent view of the kernel stacks for all 1377 * processes, this routine is invoked from the main kdb code via 1378 * an architecture specific routine. kdba_main_loop is 1379 * responsible for making the kernel stacks consistent for all 1380 * processes, there should be no difference between a blocked 1381 * process and a running process as far as kdb is concerned. 1382 * Inputs: 1383 * reason The reason KDB was invoked 1384 * error The hardware-defined error code 1385 * reason2 kdb's current reason code. 1386 * Initially error but can change 1387 * according to kdb state. 1388 * db_result Result code from break or debug point. 1389 * regs The exception frame at time of fault/breakpoint. 1390 * should always be valid. 1391 * Returns: 1392 * 0 KDB was invoked for an event which it wasn't responsible 1393 * 1 KDB handled the event for which it was invoked. 1394 */ 1395 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1396 kdb_dbtrap_t db_result, struct pt_regs *regs) 1397 { 1398 int result = 1; 1399 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1400 while (1) { 1401 /* 1402 * All processors except the one that is in control 1403 * will spin here. 1404 */ 1405 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1406 while (KDB_STATE(HOLD_CPU)) { 1407 /* state KDB is turned off by kdb_cpu to see if the 1408 * other cpus are still live, each cpu in this loop 1409 * turns it back on. 1410 */ 1411 if (!KDB_STATE(KDB)) 1412 KDB_STATE_SET(KDB); 1413 } 1414 1415 KDB_STATE_CLEAR(SUPPRESS); 1416 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1417 if (KDB_STATE(LEAVING)) 1418 break; /* Another cpu said 'go' */ 1419 /* Still using kdb, this processor is in control */ 1420 result = kdb_local(reason2, error, regs, db_result); 1421 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1422 1423 if (result == KDB_CMD_CPU) 1424 break; 1425 1426 if (result == KDB_CMD_SS) { 1427 KDB_STATE_SET(DOING_SS); 1428 break; 1429 } 1430 1431 if (result == KDB_CMD_KGDB) { 1432 if (!KDB_STATE(DOING_KGDB)) 1433 kdb_printf("Entering please attach debugger " 1434 "or use $D#44+ or $3#33\n"); 1435 break; 1436 } 1437 if (result && result != 1 && result != KDB_CMD_GO) 1438 kdb_printf("\nUnexpected kdb_local return code %d\n", 1439 result); 1440 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1441 break; 1442 } 1443 if (KDB_STATE(DOING_SS)) 1444 KDB_STATE_CLEAR(SSBPT); 1445 1446 /* Clean up any keyboard devices before leaving */ 1447 kdb_kbd_cleanup_state(); 1448 1449 return result; 1450 } 1451 1452 /* 1453 * kdb_mdr - This function implements the guts of the 'mdr', memory 1454 * read command. 1455 * mdr <addr arg>,<byte count> 1456 * Inputs: 1457 * addr Start address 1458 * count Number of bytes 1459 * Returns: 1460 * Always 0. Any errors are detected and printed by kdb_getarea. 1461 */ 1462 static int kdb_mdr(unsigned long addr, unsigned int count) 1463 { 1464 unsigned char c; 1465 while (count--) { 1466 if (kdb_getarea(c, addr)) 1467 return 0; 1468 kdb_printf("%02x", c); 1469 addr++; 1470 } 1471 kdb_printf("\n"); 1472 return 0; 1473 } 1474 1475 /* 1476 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1477 * 'md8' 'mdr' and 'mds' commands. 1478 * 1479 * md|mds [<addr arg> [<line count> [<radix>]]] 1480 * mdWcN [<addr arg> [<line count> [<radix>]]] 1481 * where W = is the width (1, 2, 4 or 8) and N is the count. 1482 * for eg., md1c20 reads 20 bytes, 1 at a time. 1483 * mdr <addr arg>,<byte count> 1484 */ 1485 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1486 int symbolic, int nosect, int bytesperword, 1487 int num, int repeat, int phys) 1488 { 1489 /* print just one line of data */ 1490 kdb_symtab_t symtab; 1491 char cbuf[32]; 1492 char *c = cbuf; 1493 int i; 1494 int j; 1495 unsigned long word; 1496 1497 memset(cbuf, '\0', sizeof(cbuf)); 1498 if (phys) 1499 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1500 else 1501 kdb_printf(kdb_machreg_fmt0 " ", addr); 1502 1503 for (i = 0; i < num && repeat--; i++) { 1504 if (phys) { 1505 if (kdb_getphysword(&word, addr, bytesperword)) 1506 break; 1507 } else if (kdb_getword(&word, addr, bytesperword)) 1508 break; 1509 kdb_printf(fmtstr, word); 1510 if (symbolic) 1511 kdbnearsym(word, &symtab); 1512 else 1513 memset(&symtab, 0, sizeof(symtab)); 1514 if (symtab.sym_name) { 1515 kdb_symbol_print(word, &symtab, 0); 1516 if (!nosect) { 1517 kdb_printf("\n"); 1518 kdb_printf(" %s %s " 1519 kdb_machreg_fmt " " 1520 kdb_machreg_fmt " " 1521 kdb_machreg_fmt, symtab.mod_name, 1522 symtab.sec_name, symtab.sec_start, 1523 symtab.sym_start, symtab.sym_end); 1524 } 1525 addr += bytesperword; 1526 } else { 1527 union { 1528 u64 word; 1529 unsigned char c[8]; 1530 } wc; 1531 unsigned char *cp; 1532 #ifdef __BIG_ENDIAN 1533 cp = wc.c + 8 - bytesperword; 1534 #else 1535 cp = wc.c; 1536 #endif 1537 wc.word = word; 1538 #define printable_char(c) \ 1539 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1540 for (j = 0; j < bytesperword; j++) 1541 *c++ = printable_char(*cp++); 1542 addr += bytesperword; 1543 #undef printable_char 1544 } 1545 } 1546 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1547 " ", cbuf); 1548 } 1549 1550 static int kdb_md(int argc, const char **argv) 1551 { 1552 static unsigned long last_addr; 1553 static int last_radix, last_bytesperword, last_repeat; 1554 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1555 int nosect = 0; 1556 char fmtchar, fmtstr[64]; 1557 unsigned long addr; 1558 unsigned long word; 1559 long offset = 0; 1560 int symbolic = 0; 1561 int valid = 0; 1562 int phys = 0; 1563 int raw = 0; 1564 1565 kdbgetintenv("MDCOUNT", &mdcount); 1566 kdbgetintenv("RADIX", &radix); 1567 kdbgetintenv("BYTESPERWORD", &bytesperword); 1568 1569 /* Assume 'md <addr>' and start with environment values */ 1570 repeat = mdcount * 16 / bytesperword; 1571 1572 if (strcmp(argv[0], "mdr") == 0) { 1573 if (argc == 2 || (argc == 0 && last_addr != 0)) 1574 valid = raw = 1; 1575 else 1576 return KDB_ARGCOUNT; 1577 } else if (isdigit(argv[0][2])) { 1578 bytesperword = (int)(argv[0][2] - '0'); 1579 if (bytesperword == 0) { 1580 bytesperword = last_bytesperword; 1581 if (bytesperword == 0) 1582 bytesperword = 4; 1583 } 1584 last_bytesperword = bytesperword; 1585 repeat = mdcount * 16 / bytesperword; 1586 if (!argv[0][3]) 1587 valid = 1; 1588 else if (argv[0][3] == 'c' && argv[0][4]) { 1589 char *p; 1590 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1591 mdcount = ((repeat * bytesperword) + 15) / 16; 1592 valid = !*p; 1593 } 1594 last_repeat = repeat; 1595 } else if (strcmp(argv[0], "md") == 0) 1596 valid = 1; 1597 else if (strcmp(argv[0], "mds") == 0) 1598 valid = 1; 1599 else if (strcmp(argv[0], "mdp") == 0) { 1600 phys = valid = 1; 1601 } 1602 if (!valid) 1603 return KDB_NOTFOUND; 1604 1605 if (argc == 0) { 1606 if (last_addr == 0) 1607 return KDB_ARGCOUNT; 1608 addr = last_addr; 1609 radix = last_radix; 1610 bytesperword = last_bytesperword; 1611 repeat = last_repeat; 1612 if (raw) 1613 mdcount = repeat; 1614 else 1615 mdcount = ((repeat * bytesperword) + 15) / 16; 1616 } 1617 1618 if (argc) { 1619 unsigned long val; 1620 int diag, nextarg = 1; 1621 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1622 &offset, NULL); 1623 if (diag) 1624 return diag; 1625 if (argc > nextarg+2) 1626 return KDB_ARGCOUNT; 1627 1628 if (argc >= nextarg) { 1629 diag = kdbgetularg(argv[nextarg], &val); 1630 if (!diag) { 1631 mdcount = (int) val; 1632 if (raw) 1633 repeat = mdcount; 1634 else 1635 repeat = mdcount * 16 / bytesperword; 1636 } 1637 } 1638 if (argc >= nextarg+1) { 1639 diag = kdbgetularg(argv[nextarg+1], &val); 1640 if (!diag) 1641 radix = (int) val; 1642 } 1643 } 1644 1645 if (strcmp(argv[0], "mdr") == 0) { 1646 int ret; 1647 last_addr = addr; 1648 ret = kdb_mdr(addr, mdcount); 1649 last_addr += mdcount; 1650 last_repeat = mdcount; 1651 last_bytesperword = bytesperword; // to make REPEAT happy 1652 return ret; 1653 } 1654 1655 switch (radix) { 1656 case 10: 1657 fmtchar = 'd'; 1658 break; 1659 case 16: 1660 fmtchar = 'x'; 1661 break; 1662 case 8: 1663 fmtchar = 'o'; 1664 break; 1665 default: 1666 return KDB_BADRADIX; 1667 } 1668 1669 last_radix = radix; 1670 1671 if (bytesperword > KDB_WORD_SIZE) 1672 return KDB_BADWIDTH; 1673 1674 switch (bytesperword) { 1675 case 8: 1676 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1677 break; 1678 case 4: 1679 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1680 break; 1681 case 2: 1682 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1683 break; 1684 case 1: 1685 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1686 break; 1687 default: 1688 return KDB_BADWIDTH; 1689 } 1690 1691 last_repeat = repeat; 1692 last_bytesperword = bytesperword; 1693 1694 if (strcmp(argv[0], "mds") == 0) { 1695 symbolic = 1; 1696 /* Do not save these changes as last_*, they are temporary mds 1697 * overrides. 1698 */ 1699 bytesperword = KDB_WORD_SIZE; 1700 repeat = mdcount; 1701 kdbgetintenv("NOSECT", &nosect); 1702 } 1703 1704 /* Round address down modulo BYTESPERWORD */ 1705 1706 addr &= ~(bytesperword-1); 1707 1708 while (repeat > 0) { 1709 unsigned long a; 1710 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1711 1712 if (KDB_FLAG(CMD_INTERRUPT)) 1713 return 0; 1714 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1715 if (phys) { 1716 if (kdb_getphysword(&word, a, bytesperword) 1717 || word) 1718 break; 1719 } else if (kdb_getword(&word, a, bytesperword) || word) 1720 break; 1721 } 1722 n = min(num, repeat); 1723 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1724 num, repeat, phys); 1725 addr += bytesperword * n; 1726 repeat -= n; 1727 z = (z + num - 1) / num; 1728 if (z > 2) { 1729 int s = num * (z-2); 1730 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1731 " zero suppressed\n", 1732 addr, addr + bytesperword * s - 1); 1733 addr += bytesperword * s; 1734 repeat -= s; 1735 } 1736 } 1737 last_addr = addr; 1738 1739 return 0; 1740 } 1741 1742 /* 1743 * kdb_mm - This function implements the 'mm' command. 1744 * mm address-expression new-value 1745 * Remarks: 1746 * mm works on machine words, mmW works on bytes. 1747 */ 1748 static int kdb_mm(int argc, const char **argv) 1749 { 1750 int diag; 1751 unsigned long addr; 1752 long offset = 0; 1753 unsigned long contents; 1754 int nextarg; 1755 int width; 1756 1757 if (argv[0][2] && !isdigit(argv[0][2])) 1758 return KDB_NOTFOUND; 1759 1760 if (argc < 2) 1761 return KDB_ARGCOUNT; 1762 1763 nextarg = 1; 1764 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1765 if (diag) 1766 return diag; 1767 1768 if (nextarg > argc) 1769 return KDB_ARGCOUNT; 1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1771 if (diag) 1772 return diag; 1773 1774 if (nextarg != argc + 1) 1775 return KDB_ARGCOUNT; 1776 1777 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1778 diag = kdb_putword(addr, contents, width); 1779 if (diag) 1780 return diag; 1781 1782 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1783 1784 return 0; 1785 } 1786 1787 /* 1788 * kdb_go - This function implements the 'go' command. 1789 * go [address-expression] 1790 */ 1791 static int kdb_go(int argc, const char **argv) 1792 { 1793 unsigned long addr; 1794 int diag; 1795 int nextarg; 1796 long offset; 1797 1798 if (raw_smp_processor_id() != kdb_initial_cpu) { 1799 kdb_printf("go must execute on the entry cpu, " 1800 "please use \"cpu %d\" and then execute go\n", 1801 kdb_initial_cpu); 1802 return KDB_BADCPUNUM; 1803 } 1804 if (argc == 1) { 1805 nextarg = 1; 1806 diag = kdbgetaddrarg(argc, argv, &nextarg, 1807 &addr, &offset, NULL); 1808 if (diag) 1809 return diag; 1810 } else if (argc) { 1811 return KDB_ARGCOUNT; 1812 } 1813 1814 diag = KDB_CMD_GO; 1815 if (KDB_FLAG(CATASTROPHIC)) { 1816 kdb_printf("Catastrophic error detected\n"); 1817 kdb_printf("kdb_continue_catastrophic=%d, ", 1818 kdb_continue_catastrophic); 1819 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1820 kdb_printf("type go a second time if you really want " 1821 "to continue\n"); 1822 return 0; 1823 } 1824 if (kdb_continue_catastrophic == 2) { 1825 kdb_printf("forcing reboot\n"); 1826 kdb_reboot(0, NULL); 1827 } 1828 kdb_printf("attempting to continue\n"); 1829 } 1830 return diag; 1831 } 1832 1833 /* 1834 * kdb_rd - This function implements the 'rd' command. 1835 */ 1836 static int kdb_rd(int argc, const char **argv) 1837 { 1838 int len = 0; 1839 int i; 1840 char *rname; 1841 int rsize; 1842 u64 reg64; 1843 u32 reg32; 1844 u16 reg16; 1845 u8 reg8; 1846 1847 if (kdb_check_regs()) 1848 return 0; 1849 1850 /* Fallback to Linux showregs() if we don't have DBG_MAX_REG_NUM */ 1851 if (DBG_MAX_REG_NUM <= 0) { 1852 kdb_dumpregs(kdb_current_regs); 1853 return 0; 1854 } 1855 1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1857 rsize = dbg_reg_def[i].size * 2; 1858 if (rsize > 16) 1859 rsize = 2; 1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1861 len = 0; 1862 kdb_printf("\n"); 1863 } 1864 if (len) 1865 len += kdb_printf(" "); 1866 switch(dbg_reg_def[i].size * 8) { 1867 case 8: 1868 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1869 if (!rname) 1870 break; 1871 len += kdb_printf("%s: %02x", rname, reg8); 1872 break; 1873 case 16: 1874 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1875 if (!rname) 1876 break; 1877 len += kdb_printf("%s: %04x", rname, reg16); 1878 break; 1879 case 32: 1880 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1881 if (!rname) 1882 break; 1883 len += kdb_printf("%s: %08x", rname, reg32); 1884 break; 1885 case 64: 1886 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1887 if (!rname) 1888 break; 1889 len += kdb_printf("%s: %016llx", rname, reg64); 1890 break; 1891 default: 1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1893 } 1894 } 1895 kdb_printf("\n"); 1896 1897 return 0; 1898 } 1899 1900 /* 1901 * kdb_rm - This function implements the 'rm' (register modify) command. 1902 * rm register-name new-contents 1903 * Remarks: 1904 * Allows register modification with the same restrictions as gdb 1905 */ 1906 static int kdb_rm(int argc, const char **argv) 1907 { 1908 #if DBG_MAX_REG_NUM > 0 1909 int diag; 1910 const char *rname; 1911 int i; 1912 u64 reg64; 1913 u32 reg32; 1914 u16 reg16; 1915 u8 reg8; 1916 1917 if (argc != 2) 1918 return KDB_ARGCOUNT; 1919 /* 1920 * Allow presence or absence of leading '%' symbol. 1921 */ 1922 rname = argv[1]; 1923 if (*rname == '%') 1924 rname++; 1925 1926 diag = kdbgetu64arg(argv[2], ®64); 1927 if (diag) 1928 return diag; 1929 1930 if (kdb_check_regs()) 1931 return 0; 1932 1933 diag = KDB_BADREG; 1934 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1935 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1936 diag = 0; 1937 break; 1938 } 1939 } 1940 if (!diag) { 1941 switch(dbg_reg_def[i].size * 8) { 1942 case 8: 1943 reg8 = reg64; 1944 dbg_set_reg(i, ®8, kdb_current_regs); 1945 break; 1946 case 16: 1947 reg16 = reg64; 1948 dbg_set_reg(i, ®16, kdb_current_regs); 1949 break; 1950 case 32: 1951 reg32 = reg64; 1952 dbg_set_reg(i, ®32, kdb_current_regs); 1953 break; 1954 case 64: 1955 dbg_set_reg(i, ®64, kdb_current_regs); 1956 break; 1957 } 1958 } 1959 return diag; 1960 #else 1961 kdb_printf("ERROR: Register set currently not implemented\n"); 1962 return 0; 1963 #endif 1964 } 1965 1966 #if defined(CONFIG_MAGIC_SYSRQ) 1967 /* 1968 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1969 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1970 * sr <magic-sysrq-code> 1971 */ 1972 static int kdb_sr(int argc, const char **argv) 1973 { 1974 bool check_mask = 1975 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1976 1977 if (argc != 1) 1978 return KDB_ARGCOUNT; 1979 1980 kdb_trap_printk++; 1981 __handle_sysrq(*argv[1], check_mask); 1982 kdb_trap_printk--; 1983 1984 return 0; 1985 } 1986 #endif /* CONFIG_MAGIC_SYSRQ */ 1987 1988 /* 1989 * kdb_ef - This function implements the 'regs' (display exception 1990 * frame) command. This command takes an address and expects to 1991 * find an exception frame at that address, formats and prints 1992 * it. 1993 * regs address-expression 1994 * Remarks: 1995 * Not done yet. 1996 */ 1997 static int kdb_ef(int argc, const char **argv) 1998 { 1999 int diag; 2000 unsigned long addr; 2001 long offset; 2002 int nextarg; 2003 2004 if (argc != 1) 2005 return KDB_ARGCOUNT; 2006 2007 nextarg = 1; 2008 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2009 if (diag) 2010 return diag; 2011 show_regs((struct pt_regs *)addr); 2012 return 0; 2013 } 2014 2015 #if defined(CONFIG_MODULES) 2016 /* 2017 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2018 * currently loaded kernel modules. 2019 * Mostly taken from userland lsmod. 2020 */ 2021 static int kdb_lsmod(int argc, const char **argv) 2022 { 2023 struct module *mod; 2024 2025 if (argc != 0) 2026 return KDB_ARGCOUNT; 2027 2028 kdb_printf("Module Size modstruct Used by\n"); 2029 list_for_each_entry(mod, kdb_modules, list) { 2030 if (mod->state == MODULE_STATE_UNFORMED) 2031 continue; 2032 2033 kdb_printf("%-20s%8u 0x%px ", mod->name, 2034 mod->core_layout.size, (void *)mod); 2035 #ifdef CONFIG_MODULE_UNLOAD 2036 kdb_printf("%4d ", module_refcount(mod)); 2037 #endif 2038 if (mod->state == MODULE_STATE_GOING) 2039 kdb_printf(" (Unloading)"); 2040 else if (mod->state == MODULE_STATE_COMING) 2041 kdb_printf(" (Loading)"); 2042 else 2043 kdb_printf(" (Live)"); 2044 kdb_printf(" 0x%px", mod->core_layout.base); 2045 2046 #ifdef CONFIG_MODULE_UNLOAD 2047 { 2048 struct module_use *use; 2049 kdb_printf(" [ "); 2050 list_for_each_entry(use, &mod->source_list, 2051 source_list) 2052 kdb_printf("%s ", use->target->name); 2053 kdb_printf("]\n"); 2054 } 2055 #endif 2056 } 2057 2058 return 0; 2059 } 2060 2061 #endif /* CONFIG_MODULES */ 2062 2063 /* 2064 * kdb_env - This function implements the 'env' command. Display the 2065 * current environment variables. 2066 */ 2067 2068 static int kdb_env(int argc, const char **argv) 2069 { 2070 int i; 2071 2072 for (i = 0; i < __nenv; i++) { 2073 if (__env[i]) 2074 kdb_printf("%s\n", __env[i]); 2075 } 2076 2077 if (KDB_DEBUG(MASK)) 2078 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2079 2080 return 0; 2081 } 2082 2083 #ifdef CONFIG_PRINTK 2084 /* 2085 * kdb_dmesg - This function implements the 'dmesg' command to display 2086 * the contents of the syslog buffer. 2087 * dmesg [lines] [adjust] 2088 */ 2089 static int kdb_dmesg(int argc, const char **argv) 2090 { 2091 int diag; 2092 int logging; 2093 int lines = 0; 2094 int adjust = 0; 2095 int n = 0; 2096 int skip = 0; 2097 struct kmsg_dumper dumper = { .active = 1 }; 2098 size_t len; 2099 char buf[201]; 2100 2101 if (argc > 2) 2102 return KDB_ARGCOUNT; 2103 if (argc) { 2104 char *cp; 2105 lines = simple_strtol(argv[1], &cp, 0); 2106 if (*cp) 2107 lines = 0; 2108 if (argc > 1) { 2109 adjust = simple_strtoul(argv[2], &cp, 0); 2110 if (*cp || adjust < 0) 2111 adjust = 0; 2112 } 2113 } 2114 2115 /* disable LOGGING if set */ 2116 diag = kdbgetintenv("LOGGING", &logging); 2117 if (!diag && logging) { 2118 const char *setargs[] = { "set", "LOGGING", "0" }; 2119 kdb_set(2, setargs); 2120 } 2121 2122 kmsg_dump_rewind_nolock(&dumper); 2123 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2124 n++; 2125 2126 if (lines < 0) { 2127 if (adjust >= n) 2128 kdb_printf("buffer only contains %d lines, nothing " 2129 "printed\n", n); 2130 else if (adjust - lines >= n) 2131 kdb_printf("buffer only contains %d lines, last %d " 2132 "lines printed\n", n, n - adjust); 2133 skip = adjust; 2134 lines = abs(lines); 2135 } else if (lines > 0) { 2136 skip = n - lines - adjust; 2137 lines = abs(lines); 2138 if (adjust >= n) { 2139 kdb_printf("buffer only contains %d lines, " 2140 "nothing printed\n", n); 2141 skip = n; 2142 } else if (skip < 0) { 2143 lines += skip; 2144 skip = 0; 2145 kdb_printf("buffer only contains %d lines, first " 2146 "%d lines printed\n", n, lines); 2147 } 2148 } else { 2149 lines = n; 2150 } 2151 2152 if (skip >= n || skip < 0) 2153 return 0; 2154 2155 kmsg_dump_rewind_nolock(&dumper); 2156 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2157 if (skip) { 2158 skip--; 2159 continue; 2160 } 2161 if (!lines--) 2162 break; 2163 if (KDB_FLAG(CMD_INTERRUPT)) 2164 return 0; 2165 2166 kdb_printf("%.*s\n", (int)len - 1, buf); 2167 } 2168 2169 return 0; 2170 } 2171 #endif /* CONFIG_PRINTK */ 2172 2173 /* Make sure we balance enable/disable calls, must disable first. */ 2174 static atomic_t kdb_nmi_disabled; 2175 2176 static int kdb_disable_nmi(int argc, const char *argv[]) 2177 { 2178 if (atomic_read(&kdb_nmi_disabled)) 2179 return 0; 2180 atomic_set(&kdb_nmi_disabled, 1); 2181 arch_kgdb_ops.enable_nmi(0); 2182 return 0; 2183 } 2184 2185 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2186 { 2187 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2188 return -EINVAL; 2189 arch_kgdb_ops.enable_nmi(1); 2190 return 0; 2191 } 2192 2193 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2194 .set = kdb_param_enable_nmi, 2195 }; 2196 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2197 2198 /* 2199 * kdb_cpu - This function implements the 'cpu' command. 2200 * cpu [<cpunum>] 2201 * Returns: 2202 * KDB_CMD_CPU for success, a kdb diagnostic if error 2203 */ 2204 static void kdb_cpu_status(void) 2205 { 2206 int i, start_cpu, first_print = 1; 2207 char state, prev_state = '?'; 2208 2209 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2210 kdb_printf("Available cpus: "); 2211 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2212 if (!cpu_online(i)) { 2213 state = 'F'; /* cpu is offline */ 2214 } else if (!kgdb_info[i].enter_kgdb) { 2215 state = 'D'; /* cpu is online but unresponsive */ 2216 } else { 2217 state = ' '; /* cpu is responding to kdb */ 2218 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2219 state = 'I'; /* idle task */ 2220 } 2221 if (state != prev_state) { 2222 if (prev_state != '?') { 2223 if (!first_print) 2224 kdb_printf(", "); 2225 first_print = 0; 2226 kdb_printf("%d", start_cpu); 2227 if (start_cpu < i-1) 2228 kdb_printf("-%d", i-1); 2229 if (prev_state != ' ') 2230 kdb_printf("(%c)", prev_state); 2231 } 2232 prev_state = state; 2233 start_cpu = i; 2234 } 2235 } 2236 /* print the trailing cpus, ignoring them if they are all offline */ 2237 if (prev_state != 'F') { 2238 if (!first_print) 2239 kdb_printf(", "); 2240 kdb_printf("%d", start_cpu); 2241 if (start_cpu < i-1) 2242 kdb_printf("-%d", i-1); 2243 if (prev_state != ' ') 2244 kdb_printf("(%c)", prev_state); 2245 } 2246 kdb_printf("\n"); 2247 } 2248 2249 static int kdb_cpu(int argc, const char **argv) 2250 { 2251 unsigned long cpunum; 2252 int diag; 2253 2254 if (argc == 0) { 2255 kdb_cpu_status(); 2256 return 0; 2257 } 2258 2259 if (argc != 1) 2260 return KDB_ARGCOUNT; 2261 2262 diag = kdbgetularg(argv[1], &cpunum); 2263 if (diag) 2264 return diag; 2265 2266 /* 2267 * Validate cpunum 2268 */ 2269 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2270 return KDB_BADCPUNUM; 2271 2272 dbg_switch_cpu = cpunum; 2273 2274 /* 2275 * Switch to other cpu 2276 */ 2277 return KDB_CMD_CPU; 2278 } 2279 2280 /* The user may not realize that ps/bta with no parameters does not print idle 2281 * or sleeping system daemon processes, so tell them how many were suppressed. 2282 */ 2283 void kdb_ps_suppressed(void) 2284 { 2285 int idle = 0, daemon = 0; 2286 unsigned long mask_I = kdb_task_state_string("I"), 2287 mask_M = kdb_task_state_string("M"); 2288 unsigned long cpu; 2289 const struct task_struct *p, *g; 2290 for_each_online_cpu(cpu) { 2291 p = kdb_curr_task(cpu); 2292 if (kdb_task_state(p, mask_I)) 2293 ++idle; 2294 } 2295 kdb_do_each_thread(g, p) { 2296 if (kdb_task_state(p, mask_M)) 2297 ++daemon; 2298 } kdb_while_each_thread(g, p); 2299 if (idle || daemon) { 2300 if (idle) 2301 kdb_printf("%d idle process%s (state I)%s\n", 2302 idle, idle == 1 ? "" : "es", 2303 daemon ? " and " : ""); 2304 if (daemon) 2305 kdb_printf("%d sleeping system daemon (state M) " 2306 "process%s", daemon, 2307 daemon == 1 ? "" : "es"); 2308 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2309 } 2310 } 2311 2312 /* 2313 * kdb_ps - This function implements the 'ps' command which shows a 2314 * list of the active processes. 2315 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2316 */ 2317 void kdb_ps1(const struct task_struct *p) 2318 { 2319 int cpu; 2320 unsigned long tmp; 2321 2322 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2323 return; 2324 2325 cpu = kdb_process_cpu(p); 2326 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2327 (void *)p, p->pid, p->parent->pid, 2328 kdb_task_has_cpu(p), kdb_process_cpu(p), 2329 kdb_task_state_char(p), 2330 (void *)(&p->thread), 2331 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2332 p->comm); 2333 if (kdb_task_has_cpu(p)) { 2334 if (!KDB_TSK(cpu)) { 2335 kdb_printf(" Error: no saved data for this cpu\n"); 2336 } else { 2337 if (KDB_TSK(cpu) != p) 2338 kdb_printf(" Error: does not match running " 2339 "process table (0x%px)\n", KDB_TSK(cpu)); 2340 } 2341 } 2342 } 2343 2344 static int kdb_ps(int argc, const char **argv) 2345 { 2346 struct task_struct *g, *p; 2347 unsigned long mask, cpu; 2348 2349 if (argc == 0) 2350 kdb_ps_suppressed(); 2351 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2352 (int)(2*sizeof(void *))+2, "Task Addr", 2353 (int)(2*sizeof(void *))+2, "Thread"); 2354 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2355 /* Run the active tasks first */ 2356 for_each_online_cpu(cpu) { 2357 if (KDB_FLAG(CMD_INTERRUPT)) 2358 return 0; 2359 p = kdb_curr_task(cpu); 2360 if (kdb_task_state(p, mask)) 2361 kdb_ps1(p); 2362 } 2363 kdb_printf("\n"); 2364 /* Now the real tasks */ 2365 kdb_do_each_thread(g, p) { 2366 if (KDB_FLAG(CMD_INTERRUPT)) 2367 return 0; 2368 if (kdb_task_state(p, mask)) 2369 kdb_ps1(p); 2370 } kdb_while_each_thread(g, p); 2371 2372 return 0; 2373 } 2374 2375 /* 2376 * kdb_pid - This function implements the 'pid' command which switches 2377 * the currently active process. 2378 * pid [<pid> | R] 2379 */ 2380 static int kdb_pid(int argc, const char **argv) 2381 { 2382 struct task_struct *p; 2383 unsigned long val; 2384 int diag; 2385 2386 if (argc > 1) 2387 return KDB_ARGCOUNT; 2388 2389 if (argc) { 2390 if (strcmp(argv[1], "R") == 0) { 2391 p = KDB_TSK(kdb_initial_cpu); 2392 } else { 2393 diag = kdbgetularg(argv[1], &val); 2394 if (diag) 2395 return KDB_BADINT; 2396 2397 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2398 if (!p) { 2399 kdb_printf("No task with pid=%d\n", (pid_t)val); 2400 return 0; 2401 } 2402 } 2403 kdb_set_current_task(p); 2404 } 2405 kdb_printf("KDB current process is %s(pid=%d)\n", 2406 kdb_current_task->comm, 2407 kdb_current_task->pid); 2408 2409 return 0; 2410 } 2411 2412 static int kdb_kgdb(int argc, const char **argv) 2413 { 2414 return KDB_CMD_KGDB; 2415 } 2416 2417 /* 2418 * kdb_help - This function implements the 'help' and '?' commands. 2419 */ 2420 static int kdb_help(int argc, const char **argv) 2421 { 2422 kdbtab_t *kt; 2423 int i; 2424 2425 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2426 kdb_printf("-----------------------------" 2427 "-----------------------------\n"); 2428 for_each_kdbcmd(kt, i) { 2429 char *space = ""; 2430 if (KDB_FLAG(CMD_INTERRUPT)) 2431 return 0; 2432 if (!kt->cmd_name) 2433 continue; 2434 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2435 continue; 2436 if (strlen(kt->cmd_usage) > 20) 2437 space = "\n "; 2438 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2439 kt->cmd_usage, space, kt->cmd_help); 2440 } 2441 return 0; 2442 } 2443 2444 /* 2445 * kdb_kill - This function implements the 'kill' commands. 2446 */ 2447 static int kdb_kill(int argc, const char **argv) 2448 { 2449 long sig, pid; 2450 char *endp; 2451 struct task_struct *p; 2452 2453 if (argc != 2) 2454 return KDB_ARGCOUNT; 2455 2456 sig = simple_strtol(argv[1], &endp, 0); 2457 if (*endp) 2458 return KDB_BADINT; 2459 if ((sig >= 0) || !valid_signal(-sig)) { 2460 kdb_printf("Invalid signal parameter.<-signal>\n"); 2461 return 0; 2462 } 2463 sig = -sig; 2464 2465 pid = simple_strtol(argv[2], &endp, 0); 2466 if (*endp) 2467 return KDB_BADINT; 2468 if (pid <= 0) { 2469 kdb_printf("Process ID must be large than 0.\n"); 2470 return 0; 2471 } 2472 2473 /* Find the process. */ 2474 p = find_task_by_pid_ns(pid, &init_pid_ns); 2475 if (!p) { 2476 kdb_printf("The specified process isn't found.\n"); 2477 return 0; 2478 } 2479 p = p->group_leader; 2480 kdb_send_sig(p, sig); 2481 return 0; 2482 } 2483 2484 /* 2485 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2486 * I cannot call that code directly from kdb, it has an unconditional 2487 * cli()/sti() and calls routines that take locks which can stop the debugger. 2488 */ 2489 static void kdb_sysinfo(struct sysinfo *val) 2490 { 2491 u64 uptime = ktime_get_mono_fast_ns(); 2492 2493 memset(val, 0, sizeof(*val)); 2494 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2495 val->loads[0] = avenrun[0]; 2496 val->loads[1] = avenrun[1]; 2497 val->loads[2] = avenrun[2]; 2498 val->procs = nr_threads-1; 2499 si_meminfo(val); 2500 2501 return; 2502 } 2503 2504 /* 2505 * kdb_summary - This function implements the 'summary' command. 2506 */ 2507 static int kdb_summary(int argc, const char **argv) 2508 { 2509 time64_t now; 2510 struct tm tm; 2511 struct sysinfo val; 2512 2513 if (argc) 2514 return KDB_ARGCOUNT; 2515 2516 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2517 kdb_printf("release %s\n", init_uts_ns.name.release); 2518 kdb_printf("version %s\n", init_uts_ns.name.version); 2519 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2520 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2521 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2522 2523 now = __ktime_get_real_seconds(); 2524 time64_to_tm(now, 0, &tm); 2525 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d " 2526 "tz_minuteswest %d\n", 2527 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2528 tm.tm_hour, tm.tm_min, tm.tm_sec, 2529 sys_tz.tz_minuteswest); 2530 2531 kdb_sysinfo(&val); 2532 kdb_printf("uptime "); 2533 if (val.uptime > (24*60*60)) { 2534 int days = val.uptime / (24*60*60); 2535 val.uptime %= (24*60*60); 2536 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2537 } 2538 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2539 2540 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2541 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2542 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2543 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2544 2545 /* Display in kilobytes */ 2546 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2547 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2548 "Buffers: %8lu kB\n", 2549 K(val.totalram), K(val.freeram), K(val.bufferram)); 2550 return 0; 2551 } 2552 2553 /* 2554 * kdb_per_cpu - This function implements the 'per_cpu' command. 2555 */ 2556 static int kdb_per_cpu(int argc, const char **argv) 2557 { 2558 char fmtstr[64]; 2559 int cpu, diag, nextarg = 1; 2560 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2561 2562 if (argc < 1 || argc > 3) 2563 return KDB_ARGCOUNT; 2564 2565 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2566 if (diag) 2567 return diag; 2568 2569 if (argc >= 2) { 2570 diag = kdbgetularg(argv[2], &bytesperword); 2571 if (diag) 2572 return diag; 2573 } 2574 if (!bytesperword) 2575 bytesperword = KDB_WORD_SIZE; 2576 else if (bytesperword > KDB_WORD_SIZE) 2577 return KDB_BADWIDTH; 2578 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2579 if (argc >= 3) { 2580 diag = kdbgetularg(argv[3], &whichcpu); 2581 if (diag) 2582 return diag; 2583 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2584 kdb_printf("cpu %ld is not online\n", whichcpu); 2585 return KDB_BADCPUNUM; 2586 } 2587 } 2588 2589 /* Most architectures use __per_cpu_offset[cpu], some use 2590 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2591 */ 2592 #ifdef __per_cpu_offset 2593 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2594 #else 2595 #ifdef CONFIG_SMP 2596 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2597 #else 2598 #define KDB_PCU(cpu) 0 2599 #endif 2600 #endif 2601 for_each_online_cpu(cpu) { 2602 if (KDB_FLAG(CMD_INTERRUPT)) 2603 return 0; 2604 2605 if (whichcpu != ~0UL && whichcpu != cpu) 2606 continue; 2607 addr = symaddr + KDB_PCU(cpu); 2608 diag = kdb_getword(&val, addr, bytesperword); 2609 if (diag) { 2610 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2611 "read, diag=%d\n", cpu, addr, diag); 2612 continue; 2613 } 2614 kdb_printf("%5d ", cpu); 2615 kdb_md_line(fmtstr, addr, 2616 bytesperword == KDB_WORD_SIZE, 2617 1, bytesperword, 1, 1, 0); 2618 } 2619 #undef KDB_PCU 2620 return 0; 2621 } 2622 2623 /* 2624 * display help for the use of cmd | grep pattern 2625 */ 2626 static int kdb_grep_help(int argc, const char **argv) 2627 { 2628 kdb_printf("Usage of cmd args | grep pattern:\n"); 2629 kdb_printf(" Any command's output may be filtered through an "); 2630 kdb_printf("emulated 'pipe'.\n"); 2631 kdb_printf(" 'grep' is just a key word.\n"); 2632 kdb_printf(" The pattern may include a very limited set of " 2633 "metacharacters:\n"); 2634 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2635 kdb_printf(" And if there are spaces in the pattern, you may " 2636 "quote it:\n"); 2637 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2638 " or \"^pat tern$\"\n"); 2639 return 0; 2640 } 2641 2642 /* 2643 * kdb_register_flags - This function is used to register a kernel 2644 * debugger command. 2645 * Inputs: 2646 * cmd Command name 2647 * func Function to execute the command 2648 * usage A simple usage string showing arguments 2649 * help A simple help string describing command 2650 * repeat Does the command auto repeat on enter? 2651 * Returns: 2652 * zero for success, one if a duplicate command. 2653 */ 2654 #define kdb_command_extend 50 /* arbitrary */ 2655 int kdb_register_flags(char *cmd, 2656 kdb_func_t func, 2657 char *usage, 2658 char *help, 2659 short minlen, 2660 kdb_cmdflags_t flags) 2661 { 2662 int i; 2663 kdbtab_t *kp; 2664 2665 /* 2666 * Brute force method to determine duplicates 2667 */ 2668 for_each_kdbcmd(kp, i) { 2669 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2670 kdb_printf("Duplicate kdb command registered: " 2671 "%s, func %px help %s\n", cmd, func, help); 2672 return 1; 2673 } 2674 } 2675 2676 /* 2677 * Insert command into first available location in table 2678 */ 2679 for_each_kdbcmd(kp, i) { 2680 if (kp->cmd_name == NULL) 2681 break; 2682 } 2683 2684 if (i >= kdb_max_commands) { 2685 kdbtab_t *new = kmalloc_array(kdb_max_commands - 2686 KDB_BASE_CMD_MAX + 2687 kdb_command_extend, 2688 sizeof(*new), 2689 GFP_KDB); 2690 if (!new) { 2691 kdb_printf("Could not allocate new kdb_command " 2692 "table\n"); 2693 return 1; 2694 } 2695 if (kdb_commands) { 2696 memcpy(new, kdb_commands, 2697 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2698 kfree(kdb_commands); 2699 } 2700 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2701 kdb_command_extend * sizeof(*new)); 2702 kdb_commands = new; 2703 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2704 kdb_max_commands += kdb_command_extend; 2705 } 2706 2707 kp->cmd_name = cmd; 2708 kp->cmd_func = func; 2709 kp->cmd_usage = usage; 2710 kp->cmd_help = help; 2711 kp->cmd_minlen = minlen; 2712 kp->cmd_flags = flags; 2713 2714 return 0; 2715 } 2716 EXPORT_SYMBOL_GPL(kdb_register_flags); 2717 2718 2719 /* 2720 * kdb_register - Compatibility register function for commands that do 2721 * not need to specify a repeat state. Equivalent to 2722 * kdb_register_flags with flags set to 0. 2723 * Inputs: 2724 * cmd Command name 2725 * func Function to execute the command 2726 * usage A simple usage string showing arguments 2727 * help A simple help string describing command 2728 * Returns: 2729 * zero for success, one if a duplicate command. 2730 */ 2731 int kdb_register(char *cmd, 2732 kdb_func_t func, 2733 char *usage, 2734 char *help, 2735 short minlen) 2736 { 2737 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2738 } 2739 EXPORT_SYMBOL_GPL(kdb_register); 2740 2741 /* 2742 * kdb_unregister - This function is used to unregister a kernel 2743 * debugger command. It is generally called when a module which 2744 * implements kdb commands is unloaded. 2745 * Inputs: 2746 * cmd Command name 2747 * Returns: 2748 * zero for success, one command not registered. 2749 */ 2750 int kdb_unregister(char *cmd) 2751 { 2752 int i; 2753 kdbtab_t *kp; 2754 2755 /* 2756 * find the command. 2757 */ 2758 for_each_kdbcmd(kp, i) { 2759 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2760 kp->cmd_name = NULL; 2761 return 0; 2762 } 2763 } 2764 2765 /* Couldn't find it. */ 2766 return 1; 2767 } 2768 EXPORT_SYMBOL_GPL(kdb_unregister); 2769 2770 /* Initialize the kdb command table. */ 2771 static void __init kdb_inittab(void) 2772 { 2773 int i; 2774 kdbtab_t *kp; 2775 2776 for_each_kdbcmd(kp, i) 2777 kp->cmd_name = NULL; 2778 2779 kdb_register_flags("md", kdb_md, "<vaddr>", 2780 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2781 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2782 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2783 "Display Raw Memory", 0, 2784 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2785 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2786 "Display Physical Memory", 0, 2787 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2788 kdb_register_flags("mds", kdb_md, "<vaddr>", 2789 "Display Memory Symbolically", 0, 2790 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2791 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2792 "Modify Memory Contents", 0, 2793 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2794 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2795 "Continue Execution", 1, 2796 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2797 kdb_register_flags("rd", kdb_rd, "", 2798 "Display Registers", 0, 2799 KDB_ENABLE_REG_READ); 2800 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2801 "Modify Registers", 0, 2802 KDB_ENABLE_REG_WRITE); 2803 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2804 "Display exception frame", 0, 2805 KDB_ENABLE_MEM_READ); 2806 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2807 "Stack traceback", 1, 2808 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2809 kdb_register_flags("btp", kdb_bt, "<pid>", 2810 "Display stack for process <pid>", 0, 2811 KDB_ENABLE_INSPECT); 2812 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2813 "Backtrace all processes matching state flag", 0, 2814 KDB_ENABLE_INSPECT); 2815 kdb_register_flags("btc", kdb_bt, "", 2816 "Backtrace current process on each cpu", 0, 2817 KDB_ENABLE_INSPECT); 2818 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2819 "Backtrace process given its struct task address", 0, 2820 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2821 kdb_register_flags("env", kdb_env, "", 2822 "Show environment variables", 0, 2823 KDB_ENABLE_ALWAYS_SAFE); 2824 kdb_register_flags("set", kdb_set, "", 2825 "Set environment variables", 0, 2826 KDB_ENABLE_ALWAYS_SAFE); 2827 kdb_register_flags("help", kdb_help, "", 2828 "Display Help Message", 1, 2829 KDB_ENABLE_ALWAYS_SAFE); 2830 kdb_register_flags("?", kdb_help, "", 2831 "Display Help Message", 0, 2832 KDB_ENABLE_ALWAYS_SAFE); 2833 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2834 "Switch to new cpu", 0, 2835 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2836 kdb_register_flags("kgdb", kdb_kgdb, "", 2837 "Enter kgdb mode", 0, 0); 2838 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2839 "Display active task list", 0, 2840 KDB_ENABLE_INSPECT); 2841 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2842 "Switch to another task", 0, 2843 KDB_ENABLE_INSPECT); 2844 kdb_register_flags("reboot", kdb_reboot, "", 2845 "Reboot the machine immediately", 0, 2846 KDB_ENABLE_REBOOT); 2847 #if defined(CONFIG_MODULES) 2848 kdb_register_flags("lsmod", kdb_lsmod, "", 2849 "List loaded kernel modules", 0, 2850 KDB_ENABLE_INSPECT); 2851 #endif 2852 #if defined(CONFIG_MAGIC_SYSRQ) 2853 kdb_register_flags("sr", kdb_sr, "<key>", 2854 "Magic SysRq key", 0, 2855 KDB_ENABLE_ALWAYS_SAFE); 2856 #endif 2857 #if defined(CONFIG_PRINTK) 2858 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2859 "Display syslog buffer", 0, 2860 KDB_ENABLE_ALWAYS_SAFE); 2861 #endif 2862 if (arch_kgdb_ops.enable_nmi) { 2863 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2864 "Disable NMI entry to KDB", 0, 2865 KDB_ENABLE_ALWAYS_SAFE); 2866 } 2867 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2868 "Define a set of commands, down to endefcmd", 0, 2869 KDB_ENABLE_ALWAYS_SAFE); 2870 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2871 "Send a signal to a process", 0, 2872 KDB_ENABLE_SIGNAL); 2873 kdb_register_flags("summary", kdb_summary, "", 2874 "Summarize the system", 4, 2875 KDB_ENABLE_ALWAYS_SAFE); 2876 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2877 "Display per_cpu variables", 3, 2878 KDB_ENABLE_MEM_READ); 2879 kdb_register_flags("grephelp", kdb_grep_help, "", 2880 "Display help on | grep", 0, 2881 KDB_ENABLE_ALWAYS_SAFE); 2882 } 2883 2884 /* Execute any commands defined in kdb_cmds. */ 2885 static void __init kdb_cmd_init(void) 2886 { 2887 int i, diag; 2888 for (i = 0; kdb_cmds[i]; ++i) { 2889 diag = kdb_parse(kdb_cmds[i]); 2890 if (diag) 2891 kdb_printf("kdb command %s failed, kdb diag %d\n", 2892 kdb_cmds[i], diag); 2893 } 2894 if (defcmd_in_progress) { 2895 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2896 kdb_parse("endefcmd"); 2897 } 2898 } 2899 2900 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2901 void __init kdb_init(int lvl) 2902 { 2903 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2904 int i; 2905 2906 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2907 return; 2908 for (i = kdb_init_lvl; i < lvl; i++) { 2909 switch (i) { 2910 case KDB_NOT_INITIALIZED: 2911 kdb_inittab(); /* Initialize Command Table */ 2912 kdb_initbptab(); /* Initialize Breakpoints */ 2913 break; 2914 case KDB_INIT_EARLY: 2915 kdb_cmd_init(); /* Build kdb_cmds tables */ 2916 break; 2917 } 2918 } 2919 kdb_init_lvl = lvl; 2920 } 2921