1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/moduleparam.h> 30 #include <linux/mm.h> 31 #include <linux/init.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdb.h> 35 #include <linux/notifier.h> 36 #include <linux/interrupt.h> 37 #include <linux/delay.h> 38 #include <linux/nmi.h> 39 #include <linux/time.h> 40 #include <linux/ptrace.h> 41 #include <linux/sysctl.h> 42 #include <linux/cpu.h> 43 #include <linux/kdebug.h> 44 #include <linux/proc_fs.h> 45 #include <linux/uaccess.h> 46 #include <linux/slab.h> 47 #include <linux/security.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 unsigned int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_cmds_head describes the available commands. */ 88 static LIST_HEAD(kdb_cmds_head); 89 90 typedef struct _kdbmsg { 91 int km_diag; /* kdb diagnostic */ 92 char *km_msg; /* Corresponding message text */ 93 } kdbmsg_t; 94 95 #define KDBMSG(msgnum, text) \ 96 { KDB_##msgnum, text } 97 98 static kdbmsg_t kdbmsgs[] = { 99 KDBMSG(NOTFOUND, "Command Not Found"), 100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 102 "8 is only allowed on 64 bit systems"), 103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 104 KDBMSG(NOTENV, "Cannot find environment variable"), 105 KDBMSG(NOENVVALUE, "Environment variable should have value"), 106 KDBMSG(NOTIMP, "Command not implemented"), 107 KDBMSG(ENVFULL, "Environment full"), 108 KDBMSG(ENVBUFFULL, "Environment buffer full"), 109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 110 #ifdef CONFIG_CPU_XSCALE 111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 112 #else 113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 114 #endif 115 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 117 KDBMSG(BADMODE, "Invalid IDMODE"), 118 KDBMSG(BADINT, "Illegal numeric value"), 119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 120 KDBMSG(BADREG, "Invalid register name"), 121 KDBMSG(BADCPUNUM, "Invalid cpu number"), 122 KDBMSG(BADLENGTH, "Invalid length field"), 123 KDBMSG(NOBP, "No Breakpoint exists"), 124 KDBMSG(BADADDR, "Invalid address"), 125 KDBMSG(NOPERM, "Permission denied"), 126 }; 127 #undef KDBMSG 128 129 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 130 131 132 /* 133 * Initial environment. This is all kept static and local to 134 * this file. We don't want to rely on the memory allocation 135 * mechanisms in the kernel, so we use a very limited allocate-only 136 * heap for new and altered environment variables. The entire 137 * environment is limited to a fixed number of entries (add more 138 * to __env[] if required) and a fixed amount of heap (add more to 139 * KDB_ENVBUFSIZE if required). 140 */ 141 142 static char *__env[31] = { 143 #if defined(CONFIG_SMP) 144 "PROMPT=[%d]kdb> ", 145 #else 146 "PROMPT=kdb> ", 147 #endif 148 "MOREPROMPT=more> ", 149 "RADIX=16", 150 "MDCOUNT=8", /* lines of md output */ 151 KDB_PLATFORM_ENV, 152 "DTABCOUNT=30", 153 "NOSECT=1", 154 }; 155 156 static const int __nenv = ARRAY_SIZE(__env); 157 158 struct task_struct *kdb_curr_task(int cpu) 159 { 160 struct task_struct *p = curr_task(cpu); 161 #ifdef _TIF_MCA_INIT 162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 163 p = krp->p; 164 #endif 165 return p; 166 } 167 168 /* 169 * Update the permissions flags (kdb_cmd_enabled) to match the 170 * current lockdown state. 171 * 172 * Within this function the calls to security_locked_down() are "lazy". We 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes 174 * flags that might be subject to lockdown. Additionally we deliberately check 175 * the lockdown flags independently (even though read lockdown implies write 176 * lockdown) since that results in both simpler code and clearer messages to 177 * the user on first-time debugger entry. 178 * 179 * The permission masks during a read+write lockdown permits the following 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE). 181 * 182 * The INSPECT commands are not blocked during lockdown because they are 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes 184 * forcing them to have no arguments) and lsmod. These commands do expose 185 * some kernel state but do not allow the developer seated at the console to 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial, 187 * given these are allowed for root during lockdown already. 188 */ 189 static void kdb_check_for_lockdown(void) 190 { 191 const int write_flags = KDB_ENABLE_MEM_WRITE | 192 KDB_ENABLE_REG_WRITE | 193 KDB_ENABLE_FLOW_CTRL; 194 const int read_flags = KDB_ENABLE_MEM_READ | 195 KDB_ENABLE_REG_READ; 196 197 bool need_to_lockdown_write = false; 198 bool need_to_lockdown_read = false; 199 200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags)) 201 need_to_lockdown_write = 202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL); 203 204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags)) 205 need_to_lockdown_read = 206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL); 207 208 /* De-compose KDB_ENABLE_ALL if required */ 209 if (need_to_lockdown_write || need_to_lockdown_read) 210 if (kdb_cmd_enabled & KDB_ENABLE_ALL) 211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL; 212 213 if (need_to_lockdown_write) 214 kdb_cmd_enabled &= ~write_flags; 215 216 if (need_to_lockdown_read) 217 kdb_cmd_enabled &= ~read_flags; 218 } 219 220 /* 221 * Check whether the flags of the current command, the permissions of the kdb 222 * console and the lockdown state allow a command to be run. 223 */ 224 static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 225 bool no_args) 226 { 227 /* permissions comes from userspace so needs massaging slightly */ 228 permissions &= KDB_ENABLE_MASK; 229 permissions |= KDB_ENABLE_ALWAYS_SAFE; 230 231 /* some commands change group when launched with no arguments */ 232 if (no_args) 233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 234 235 flags |= KDB_ENABLE_ALL; 236 237 return permissions & flags; 238 } 239 240 /* 241 * kdbgetenv - This function will return the character string value of 242 * an environment variable. 243 * Parameters: 244 * match A character string representing an environment variable. 245 * Returns: 246 * NULL No environment variable matches 'match' 247 * char* Pointer to string value of environment variable. 248 */ 249 char *kdbgetenv(const char *match) 250 { 251 char **ep = __env; 252 int matchlen = strlen(match); 253 int i; 254 255 for (i = 0; i < __nenv; i++) { 256 char *e = *ep++; 257 258 if (!e) 259 continue; 260 261 if ((strncmp(match, e, matchlen) == 0) 262 && ((e[matchlen] == '\0') 263 || (e[matchlen] == '='))) { 264 char *cp = strchr(e, '='); 265 return cp ? ++cp : ""; 266 } 267 } 268 return NULL; 269 } 270 271 /* 272 * kdballocenv - This function is used to allocate bytes for 273 * environment entries. 274 * Parameters: 275 * bytes The number of bytes to allocate in the static buffer. 276 * Returns: 277 * A pointer to the allocated space in the buffer on success. 278 * NULL if bytes > size available in the envbuffer. 279 * Remarks: 280 * We use a static environment buffer (envbuffer) to hold the values 281 * of dynamically generated environment variables (see kdb_set). Buffer 282 * space once allocated is never free'd, so over time, the amount of space 283 * (currently 512 bytes) will be exhausted if env variables are changed 284 * frequently. 285 */ 286 static char *kdballocenv(size_t bytes) 287 { 288 #define KDB_ENVBUFSIZE 512 289 static char envbuffer[KDB_ENVBUFSIZE]; 290 static int envbufsize; 291 char *ep = NULL; 292 293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 294 ep = &envbuffer[envbufsize]; 295 envbufsize += bytes; 296 } 297 return ep; 298 } 299 300 /* 301 * kdbgetulenv - This function will return the value of an unsigned 302 * long-valued environment variable. 303 * Parameters: 304 * match A character string representing a numeric value 305 * Outputs: 306 * *value the unsigned long representation of the env variable 'match' 307 * Returns: 308 * Zero on success, a kdb diagnostic on failure. 309 */ 310 static int kdbgetulenv(const char *match, unsigned long *value) 311 { 312 char *ep; 313 314 ep = kdbgetenv(match); 315 if (!ep) 316 return KDB_NOTENV; 317 if (strlen(ep) == 0) 318 return KDB_NOENVVALUE; 319 320 *value = simple_strtoul(ep, NULL, 0); 321 322 return 0; 323 } 324 325 /* 326 * kdbgetintenv - This function will return the value of an 327 * integer-valued environment variable. 328 * Parameters: 329 * match A character string representing an integer-valued env variable 330 * Outputs: 331 * *value the integer representation of the environment variable 'match' 332 * Returns: 333 * Zero on success, a kdb diagnostic on failure. 334 */ 335 int kdbgetintenv(const char *match, int *value) 336 { 337 unsigned long val; 338 int diag; 339 340 diag = kdbgetulenv(match, &val); 341 if (!diag) 342 *value = (int) val; 343 return diag; 344 } 345 346 /* 347 * kdb_setenv() - Alter an existing environment variable or create a new one. 348 * @var: Name of the variable 349 * @val: Value of the variable 350 * 351 * Return: Zero on success, a kdb diagnostic on failure. 352 */ 353 static int kdb_setenv(const char *var, const char *val) 354 { 355 int i; 356 char *ep; 357 size_t varlen, vallen; 358 359 varlen = strlen(var); 360 vallen = strlen(val); 361 ep = kdballocenv(varlen + vallen + 2); 362 if (ep == (char *)0) 363 return KDB_ENVBUFFULL; 364 365 sprintf(ep, "%s=%s", var, val); 366 367 for (i = 0; i < __nenv; i++) { 368 if (__env[i] 369 && ((strncmp(__env[i], var, varlen) == 0) 370 && ((__env[i][varlen] == '\0') 371 || (__env[i][varlen] == '=')))) { 372 __env[i] = ep; 373 return 0; 374 } 375 } 376 377 /* 378 * Wasn't existing variable. Fit into slot. 379 */ 380 for (i = 0; i < __nenv-1; i++) { 381 if (__env[i] == (char *)0) { 382 __env[i] = ep; 383 return 0; 384 } 385 } 386 387 return KDB_ENVFULL; 388 } 389 390 /* 391 * kdb_printenv() - Display the current environment variables. 392 */ 393 static void kdb_printenv(void) 394 { 395 int i; 396 397 for (i = 0; i < __nenv; i++) { 398 if (__env[i]) 399 kdb_printf("%s\n", __env[i]); 400 } 401 } 402 403 /* 404 * kdbgetularg - This function will convert a numeric string into an 405 * unsigned long value. 406 * Parameters: 407 * arg A character string representing a numeric value 408 * Outputs: 409 * *value the unsigned long representation of arg. 410 * Returns: 411 * Zero on success, a kdb diagnostic on failure. 412 */ 413 int kdbgetularg(const char *arg, unsigned long *value) 414 { 415 char *endp; 416 unsigned long val; 417 418 val = simple_strtoul(arg, &endp, 0); 419 420 if (endp == arg) { 421 /* 422 * Also try base 16, for us folks too lazy to type the 423 * leading 0x... 424 */ 425 val = simple_strtoul(arg, &endp, 16); 426 if (endp == arg) 427 return KDB_BADINT; 428 } 429 430 *value = val; 431 432 return 0; 433 } 434 435 int kdbgetu64arg(const char *arg, u64 *value) 436 { 437 char *endp; 438 u64 val; 439 440 val = simple_strtoull(arg, &endp, 0); 441 442 if (endp == arg) { 443 444 val = simple_strtoull(arg, &endp, 16); 445 if (endp == arg) 446 return KDB_BADINT; 447 } 448 449 *value = val; 450 451 return 0; 452 } 453 454 /* 455 * kdb_set - This function implements the 'set' command. Alter an 456 * existing environment variable or create a new one. 457 */ 458 int kdb_set(int argc, const char **argv) 459 { 460 /* 461 * we can be invoked two ways: 462 * set var=value argv[1]="var", argv[2]="value" 463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 464 * - if the latter, shift 'em down. 465 */ 466 if (argc == 3) { 467 argv[2] = argv[3]; 468 argc--; 469 } 470 471 if (argc != 2) 472 return KDB_ARGCOUNT; 473 474 /* 475 * Censor sensitive variables 476 */ 477 if (strcmp(argv[1], "PROMPT") == 0 && 478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 479 return KDB_NOPERM; 480 481 /* 482 * Check for internal variables 483 */ 484 if (strcmp(argv[1], "KDBDEBUG") == 0) { 485 unsigned int debugflags; 486 char *cp; 487 488 debugflags = simple_strtoul(argv[2], &cp, 0); 489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 490 kdb_printf("kdb: illegal debug flags '%s'\n", 491 argv[2]); 492 return 0; 493 } 494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK)) 495 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 496 497 return 0; 498 } 499 500 /* 501 * Tokenizer squashed the '=' sign. argv[1] is variable 502 * name, argv[2] = value. 503 */ 504 return kdb_setenv(argv[1], argv[2]); 505 } 506 507 static int kdb_check_regs(void) 508 { 509 if (!kdb_current_regs) { 510 kdb_printf("No current kdb registers." 511 " You may need to select another task\n"); 512 return KDB_BADREG; 513 } 514 return 0; 515 } 516 517 /* 518 * kdbgetaddrarg - This function is responsible for parsing an 519 * address-expression and returning the value of the expression, 520 * symbol name, and offset to the caller. 521 * 522 * The argument may consist of a numeric value (decimal or 523 * hexadecimal), a symbol name, a register name (preceded by the 524 * percent sign), an environment variable with a numeric value 525 * (preceded by a dollar sign) or a simple arithmetic expression 526 * consisting of a symbol name, +/-, and a numeric constant value 527 * (offset). 528 * Parameters: 529 * argc - count of arguments in argv 530 * argv - argument vector 531 * *nextarg - index to next unparsed argument in argv[] 532 * regs - Register state at time of KDB entry 533 * Outputs: 534 * *value - receives the value of the address-expression 535 * *offset - receives the offset specified, if any 536 * *name - receives the symbol name, if any 537 * *nextarg - index to next unparsed argument in argv[] 538 * Returns: 539 * zero is returned on success, a kdb diagnostic code is 540 * returned on error. 541 */ 542 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 543 unsigned long *value, long *offset, 544 char **name) 545 { 546 unsigned long addr; 547 unsigned long off = 0; 548 int positive; 549 int diag; 550 int found = 0; 551 char *symname; 552 char symbol = '\0'; 553 char *cp; 554 kdb_symtab_t symtab; 555 556 /* 557 * If the enable flags prohibit both arbitrary memory access 558 * and flow control then there are no reasonable grounds to 559 * provide symbol lookup. 560 */ 561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 562 kdb_cmd_enabled, false)) 563 return KDB_NOPERM; 564 565 /* 566 * Process arguments which follow the following syntax: 567 * 568 * symbol | numeric-address [+/- numeric-offset] 569 * %register 570 * $environment-variable 571 */ 572 573 if (*nextarg > argc) 574 return KDB_ARGCOUNT; 575 576 symname = (char *)argv[*nextarg]; 577 578 /* 579 * If there is no whitespace between the symbol 580 * or address and the '+' or '-' symbols, we 581 * remember the character and replace it with a 582 * null so the symbol/value can be properly parsed 583 */ 584 cp = strpbrk(symname, "+-"); 585 if (cp != NULL) { 586 symbol = *cp; 587 *cp++ = '\0'; 588 } 589 590 if (symname[0] == '$') { 591 diag = kdbgetulenv(&symname[1], &addr); 592 if (diag) 593 return diag; 594 } else if (symname[0] == '%') { 595 diag = kdb_check_regs(); 596 if (diag) 597 return diag; 598 /* Implement register values with % at a later time as it is 599 * arch optional. 600 */ 601 return KDB_NOTIMP; 602 } else { 603 found = kdbgetsymval(symname, &symtab); 604 if (found) { 605 addr = symtab.sym_start; 606 } else { 607 diag = kdbgetularg(argv[*nextarg], &addr); 608 if (diag) 609 return diag; 610 } 611 } 612 613 if (!found) 614 found = kdbnearsym(addr, &symtab); 615 616 (*nextarg)++; 617 618 if (name) 619 *name = symname; 620 if (value) 621 *value = addr; 622 if (offset && name && *name) 623 *offset = addr - symtab.sym_start; 624 625 if ((*nextarg > argc) 626 && (symbol == '\0')) 627 return 0; 628 629 /* 630 * check for +/- and offset 631 */ 632 633 if (symbol == '\0') { 634 if ((argv[*nextarg][0] != '+') 635 && (argv[*nextarg][0] != '-')) { 636 /* 637 * Not our argument. Return. 638 */ 639 return 0; 640 } else { 641 positive = (argv[*nextarg][0] == '+'); 642 (*nextarg)++; 643 } 644 } else 645 positive = (symbol == '+'); 646 647 /* 648 * Now there must be an offset! 649 */ 650 if ((*nextarg > argc) 651 && (symbol == '\0')) { 652 return KDB_INVADDRFMT; 653 } 654 655 if (!symbol) { 656 cp = (char *)argv[*nextarg]; 657 (*nextarg)++; 658 } 659 660 diag = kdbgetularg(cp, &off); 661 if (diag) 662 return diag; 663 664 if (!positive) 665 off = -off; 666 667 if (offset) 668 *offset += off; 669 670 if (value) 671 *value += off; 672 673 return 0; 674 } 675 676 static void kdb_cmderror(int diag) 677 { 678 int i; 679 680 if (diag >= 0) { 681 kdb_printf("no error detected (diagnostic is %d)\n", diag); 682 return; 683 } 684 685 for (i = 0; i < __nkdb_err; i++) { 686 if (kdbmsgs[i].km_diag == diag) { 687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 688 return; 689 } 690 } 691 692 kdb_printf("Unknown diag %d\n", -diag); 693 } 694 695 /* 696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 697 * command which defines one command as a set of other commands, 698 * terminated by endefcmd. kdb_defcmd processes the initial 699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 700 * the following commands until 'endefcmd'. 701 * Inputs: 702 * argc argument count 703 * argv argument vector 704 * Returns: 705 * zero for success, a kdb diagnostic if error 706 */ 707 struct kdb_macro { 708 kdbtab_t cmd; /* Macro command */ 709 struct list_head statements; /* Associated statement list */ 710 }; 711 712 struct kdb_macro_statement { 713 char *statement; /* Statement text */ 714 struct list_head list_node; /* Statement list node */ 715 }; 716 717 static struct kdb_macro *kdb_macro; 718 static bool defcmd_in_progress; 719 720 /* Forward references */ 721 static int kdb_exec_defcmd(int argc, const char **argv); 722 723 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 724 { 725 struct kdb_macro_statement *kms; 726 727 if (!kdb_macro) 728 return KDB_NOTIMP; 729 730 if (strcmp(argv0, "endefcmd") == 0) { 731 defcmd_in_progress = false; 732 if (!list_empty(&kdb_macro->statements)) 733 kdb_register(&kdb_macro->cmd); 734 return 0; 735 } 736 737 kms = kmalloc(sizeof(*kms), GFP_KDB); 738 if (!kms) { 739 kdb_printf("Could not allocate new kdb macro command: %s\n", 740 cmdstr); 741 return KDB_NOTIMP; 742 } 743 744 kms->statement = kdb_strdup(cmdstr, GFP_KDB); 745 list_add_tail(&kms->list_node, &kdb_macro->statements); 746 747 return 0; 748 } 749 750 static int kdb_defcmd(int argc, const char **argv) 751 { 752 kdbtab_t *mp; 753 754 if (defcmd_in_progress) { 755 kdb_printf("kdb: nested defcmd detected, assuming missing " 756 "endefcmd\n"); 757 kdb_defcmd2("endefcmd", "endefcmd"); 758 } 759 if (argc == 0) { 760 kdbtab_t *kp; 761 struct kdb_macro *kmp; 762 struct kdb_macro_statement *kms; 763 764 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 765 if (kp->func == kdb_exec_defcmd) { 766 kdb_printf("defcmd %s \"%s\" \"%s\"\n", 767 kp->name, kp->usage, kp->help); 768 kmp = container_of(kp, struct kdb_macro, cmd); 769 list_for_each_entry(kms, &kmp->statements, 770 list_node) 771 kdb_printf("%s", kms->statement); 772 kdb_printf("endefcmd\n"); 773 } 774 } 775 return 0; 776 } 777 if (argc != 3) 778 return KDB_ARGCOUNT; 779 if (in_dbg_master()) { 780 kdb_printf("Command only available during kdb_init()\n"); 781 return KDB_NOTIMP; 782 } 783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB); 784 if (!kdb_macro) 785 goto fail_defcmd; 786 787 mp = &kdb_macro->cmd; 788 mp->func = kdb_exec_defcmd; 789 mp->minlen = 0; 790 mp->flags = KDB_ENABLE_ALWAYS_SAFE; 791 mp->name = kdb_strdup(argv[1], GFP_KDB); 792 if (!mp->name) 793 goto fail_name; 794 mp->usage = kdb_strdup(argv[2], GFP_KDB); 795 if (!mp->usage) 796 goto fail_usage; 797 mp->help = kdb_strdup(argv[3], GFP_KDB); 798 if (!mp->help) 799 goto fail_help; 800 if (mp->usage[0] == '"') { 801 strcpy(mp->usage, argv[2]+1); 802 mp->usage[strlen(mp->usage)-1] = '\0'; 803 } 804 if (mp->help[0] == '"') { 805 strcpy(mp->help, argv[3]+1); 806 mp->help[strlen(mp->help)-1] = '\0'; 807 } 808 809 INIT_LIST_HEAD(&kdb_macro->statements); 810 defcmd_in_progress = true; 811 return 0; 812 fail_help: 813 kfree(mp->usage); 814 fail_usage: 815 kfree(mp->name); 816 fail_name: 817 kfree(kdb_macro); 818 fail_defcmd: 819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]); 820 return KDB_NOTIMP; 821 } 822 823 /* 824 * kdb_exec_defcmd - Execute the set of commands associated with this 825 * defcmd name. 826 * Inputs: 827 * argc argument count 828 * argv argument vector 829 * Returns: 830 * zero for success, a kdb diagnostic if error 831 */ 832 static int kdb_exec_defcmd(int argc, const char **argv) 833 { 834 int ret; 835 kdbtab_t *kp; 836 struct kdb_macro *kmp; 837 struct kdb_macro_statement *kms; 838 839 if (argc != 0) 840 return KDB_ARGCOUNT; 841 842 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 843 if (strcmp(kp->name, argv[0]) == 0) 844 break; 845 } 846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) { 847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 848 argv[0]); 849 return KDB_NOTIMP; 850 } 851 kmp = container_of(kp, struct kdb_macro, cmd); 852 list_for_each_entry(kms, &kmp->statements, list_node) { 853 /* 854 * Recursive use of kdb_parse, do not use argv after this point. 855 */ 856 argv = NULL; 857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement); 858 ret = kdb_parse(kms->statement); 859 if (ret) 860 return ret; 861 } 862 return 0; 863 } 864 865 /* Command history */ 866 #define KDB_CMD_HISTORY_COUNT 32 867 #define CMD_BUFLEN 200 /* kdb_printf: max printline 868 * size == 256 */ 869 static unsigned int cmd_head, cmd_tail; 870 static unsigned int cmdptr; 871 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 872 static char cmd_cur[CMD_BUFLEN]; 873 874 /* 875 * The "str" argument may point to something like | grep xyz 876 */ 877 static void parse_grep(const char *str) 878 { 879 int len; 880 char *cp = (char *)str, *cp2; 881 882 /* sanity check: we should have been called with the \ first */ 883 if (*cp != '|') 884 return; 885 cp++; 886 while (isspace(*cp)) 887 cp++; 888 if (!str_has_prefix(cp, "grep ")) { 889 kdb_printf("invalid 'pipe', see grephelp\n"); 890 return; 891 } 892 cp += 5; 893 while (isspace(*cp)) 894 cp++; 895 cp2 = strchr(cp, '\n'); 896 if (cp2) 897 *cp2 = '\0'; /* remove the trailing newline */ 898 len = strlen(cp); 899 if (len == 0) { 900 kdb_printf("invalid 'pipe', see grephelp\n"); 901 return; 902 } 903 /* now cp points to a nonzero length search string */ 904 if (*cp == '"') { 905 /* allow it be "x y z" by removing the "'s - there must 906 be two of them */ 907 cp++; 908 cp2 = strchr(cp, '"'); 909 if (!cp2) { 910 kdb_printf("invalid quoted string, see grephelp\n"); 911 return; 912 } 913 *cp2 = '\0'; /* end the string where the 2nd " was */ 914 } 915 kdb_grep_leading = 0; 916 if (*cp == '^') { 917 kdb_grep_leading = 1; 918 cp++; 919 } 920 len = strlen(cp); 921 kdb_grep_trailing = 0; 922 if (*(cp+len-1) == '$') { 923 kdb_grep_trailing = 1; 924 *(cp+len-1) = '\0'; 925 } 926 len = strlen(cp); 927 if (!len) 928 return; 929 if (len >= KDB_GREP_STRLEN) { 930 kdb_printf("search string too long\n"); 931 return; 932 } 933 strcpy(kdb_grep_string, cp); 934 kdb_grepping_flag++; 935 return; 936 } 937 938 /* 939 * kdb_parse - Parse the command line, search the command table for a 940 * matching command and invoke the command function. This 941 * function may be called recursively, if it is, the second call 942 * will overwrite argv and cbuf. It is the caller's 943 * responsibility to save their argv if they recursively call 944 * kdb_parse(). 945 * Parameters: 946 * cmdstr The input command line to be parsed. 947 * regs The registers at the time kdb was entered. 948 * Returns: 949 * Zero for success, a kdb diagnostic if failure. 950 * Remarks: 951 * Limited to 20 tokens. 952 * 953 * Real rudimentary tokenization. Basically only whitespace 954 * is considered a token delimiter (but special consideration 955 * is taken of the '=' sign as used by the 'set' command). 956 * 957 * The algorithm used to tokenize the input string relies on 958 * there being at least one whitespace (or otherwise useless) 959 * character between tokens as the character immediately following 960 * the token is altered in-place to a null-byte to terminate the 961 * token string. 962 */ 963 964 #define MAXARGC 20 965 966 int kdb_parse(const char *cmdstr) 967 { 968 static char *argv[MAXARGC]; 969 static int argc; 970 static char cbuf[CMD_BUFLEN+2]; 971 char *cp; 972 char *cpp, quoted; 973 kdbtab_t *tp; 974 int escaped, ignore_errors = 0, check_grep = 0; 975 976 /* 977 * First tokenize the command string. 978 */ 979 cp = (char *)cmdstr; 980 981 if (KDB_FLAG(CMD_INTERRUPT)) { 982 /* Previous command was interrupted, newline must not 983 * repeat the command */ 984 KDB_FLAG_CLEAR(CMD_INTERRUPT); 985 KDB_STATE_SET(PAGER); 986 argc = 0; /* no repeat */ 987 } 988 989 if (*cp != '\n' && *cp != '\0') { 990 argc = 0; 991 cpp = cbuf; 992 while (*cp) { 993 /* skip whitespace */ 994 while (isspace(*cp)) 995 cp++; 996 if ((*cp == '\0') || (*cp == '\n') || 997 (*cp == '#' && !defcmd_in_progress)) 998 break; 999 /* special case: check for | grep pattern */ 1000 if (*cp == '|') { 1001 check_grep++; 1002 break; 1003 } 1004 if (cpp >= cbuf + CMD_BUFLEN) { 1005 kdb_printf("kdb_parse: command buffer " 1006 "overflow, command ignored\n%s\n", 1007 cmdstr); 1008 return KDB_NOTFOUND; 1009 } 1010 if (argc >= MAXARGC - 1) { 1011 kdb_printf("kdb_parse: too many arguments, " 1012 "command ignored\n%s\n", cmdstr); 1013 return KDB_NOTFOUND; 1014 } 1015 argv[argc++] = cpp; 1016 escaped = 0; 1017 quoted = '\0'; 1018 /* Copy to next unquoted and unescaped 1019 * whitespace or '=' */ 1020 while (*cp && *cp != '\n' && 1021 (escaped || quoted || !isspace(*cp))) { 1022 if (cpp >= cbuf + CMD_BUFLEN) 1023 break; 1024 if (escaped) { 1025 escaped = 0; 1026 *cpp++ = *cp++; 1027 continue; 1028 } 1029 if (*cp == '\\') { 1030 escaped = 1; 1031 ++cp; 1032 continue; 1033 } 1034 if (*cp == quoted) 1035 quoted = '\0'; 1036 else if (*cp == '\'' || *cp == '"') 1037 quoted = *cp; 1038 *cpp = *cp++; 1039 if (*cpp == '=' && !quoted) 1040 break; 1041 ++cpp; 1042 } 1043 *cpp++ = '\0'; /* Squash a ws or '=' character */ 1044 } 1045 } 1046 if (!argc) 1047 return 0; 1048 if (check_grep) 1049 parse_grep(cp); 1050 if (defcmd_in_progress) { 1051 int result = kdb_defcmd2(cmdstr, argv[0]); 1052 if (!defcmd_in_progress) { 1053 argc = 0; /* avoid repeat on endefcmd */ 1054 *(argv[0]) = '\0'; 1055 } 1056 return result; 1057 } 1058 if (argv[0][0] == '-' && argv[0][1] && 1059 (argv[0][1] < '0' || argv[0][1] > '9')) { 1060 ignore_errors = 1; 1061 ++argv[0]; 1062 } 1063 1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1065 /* 1066 * If this command is allowed to be abbreviated, 1067 * check to see if this is it. 1068 */ 1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) && 1070 (strncmp(argv[0], tp->name, tp->minlen) == 0)) 1071 break; 1072 1073 if (strcmp(argv[0], tp->name) == 0) 1074 break; 1075 } 1076 1077 /* 1078 * If we don't find a command by this name, see if the first 1079 * few characters of this match any of the known commands. 1080 * e.g., md1c20 should match md. 1081 */ 1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0) 1085 break; 1086 } 1087 } 1088 1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1090 int result; 1091 1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1)) 1093 return KDB_NOPERM; 1094 1095 KDB_STATE_SET(CMD); 1096 result = (*tp->func)(argc-1, (const char **)argv); 1097 if (result && ignore_errors && result > KDB_CMD_GO) 1098 result = 0; 1099 KDB_STATE_CLEAR(CMD); 1100 1101 if (tp->flags & KDB_REPEAT_WITH_ARGS) 1102 return result; 1103 1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1105 if (argv[argc]) 1106 *(argv[argc]) = '\0'; 1107 return result; 1108 } 1109 1110 /* 1111 * If the input with which we were presented does not 1112 * map to an existing command, attempt to parse it as an 1113 * address argument and display the result. Useful for 1114 * obtaining the address of a variable, or the nearest symbol 1115 * to an address contained in a register. 1116 */ 1117 { 1118 unsigned long value; 1119 char *name = NULL; 1120 long offset; 1121 int nextarg = 0; 1122 1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1124 &value, &offset, &name)) { 1125 return KDB_NOTFOUND; 1126 } 1127 1128 kdb_printf("%s = ", argv[0]); 1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1130 kdb_printf("\n"); 1131 return 0; 1132 } 1133 } 1134 1135 1136 static int handle_ctrl_cmd(char *cmd) 1137 { 1138 #define CTRL_P 16 1139 #define CTRL_N 14 1140 1141 /* initial situation */ 1142 if (cmd_head == cmd_tail) 1143 return 0; 1144 switch (*cmd) { 1145 case CTRL_P: 1146 if (cmdptr != cmd_tail) 1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) % 1148 KDB_CMD_HISTORY_COUNT; 1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1150 return 1; 1151 case CTRL_N: 1152 if (cmdptr != cmd_head) 1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1155 return 1; 1156 } 1157 return 0; 1158 } 1159 1160 /* 1161 * kdb_reboot - This function implements the 'reboot' command. Reboot 1162 * the system immediately, or loop for ever on failure. 1163 */ 1164 static int kdb_reboot(int argc, const char **argv) 1165 { 1166 emergency_restart(); 1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1168 while (1) 1169 cpu_relax(); 1170 /* NOTREACHED */ 1171 return 0; 1172 } 1173 1174 static void kdb_dumpregs(struct pt_regs *regs) 1175 { 1176 int old_lvl = console_loglevel; 1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1178 kdb_trap_printk++; 1179 show_regs(regs); 1180 kdb_trap_printk--; 1181 kdb_printf("\n"); 1182 console_loglevel = old_lvl; 1183 } 1184 1185 static void kdb_set_current_task(struct task_struct *p) 1186 { 1187 kdb_current_task = p; 1188 1189 if (kdb_task_has_cpu(p)) { 1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1191 return; 1192 } 1193 kdb_current_regs = NULL; 1194 } 1195 1196 static void drop_newline(char *buf) 1197 { 1198 size_t len = strlen(buf); 1199 1200 if (len == 0) 1201 return; 1202 if (*(buf + len - 1) == '\n') 1203 *(buf + len - 1) = '\0'; 1204 } 1205 1206 /* 1207 * kdb_local - The main code for kdb. This routine is invoked on a 1208 * specific processor, it is not global. The main kdb() routine 1209 * ensures that only one processor at a time is in this routine. 1210 * This code is called with the real reason code on the first 1211 * entry to a kdb session, thereafter it is called with reason 1212 * SWITCH, even if the user goes back to the original cpu. 1213 * Inputs: 1214 * reason The reason KDB was invoked 1215 * error The hardware-defined error code 1216 * regs The exception frame at time of fault/breakpoint. 1217 * db_result Result code from the break or debug point. 1218 * Returns: 1219 * 0 KDB was invoked for an event which it wasn't responsible 1220 * 1 KDB handled the event for which it was invoked. 1221 * KDB_CMD_GO User typed 'go'. 1222 * KDB_CMD_CPU User switched to another cpu. 1223 * KDB_CMD_SS Single step. 1224 */ 1225 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1226 kdb_dbtrap_t db_result) 1227 { 1228 char *cmdbuf; 1229 int diag; 1230 struct task_struct *kdb_current = 1231 kdb_curr_task(raw_smp_processor_id()); 1232 1233 KDB_DEBUG_STATE("kdb_local 1", reason); 1234 1235 kdb_check_for_lockdown(); 1236 1237 kdb_go_count = 0; 1238 if (reason == KDB_REASON_DEBUG) { 1239 /* special case below */ 1240 } else { 1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1242 kdb_current, kdb_current ? kdb_current->pid : 0); 1243 #if defined(CONFIG_SMP) 1244 kdb_printf("on processor %d ", raw_smp_processor_id()); 1245 #endif 1246 } 1247 1248 switch (reason) { 1249 case KDB_REASON_DEBUG: 1250 { 1251 /* 1252 * If re-entering kdb after a single step 1253 * command, don't print the message. 1254 */ 1255 switch (db_result) { 1256 case KDB_DB_BPT: 1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1258 kdb_current, kdb_current->pid); 1259 #if defined(CONFIG_SMP) 1260 kdb_printf("on processor %d ", raw_smp_processor_id()); 1261 #endif 1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1263 instruction_pointer(regs)); 1264 break; 1265 case KDB_DB_SS: 1266 break; 1267 case KDB_DB_SSBPT: 1268 KDB_DEBUG_STATE("kdb_local 4", reason); 1269 return 1; /* kdba_db_trap did the work */ 1270 default: 1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1272 db_result); 1273 break; 1274 } 1275 1276 } 1277 break; 1278 case KDB_REASON_ENTER: 1279 if (KDB_STATE(KEYBOARD)) 1280 kdb_printf("due to Keyboard Entry\n"); 1281 else 1282 kdb_printf("due to KDB_ENTER()\n"); 1283 break; 1284 case KDB_REASON_KEYBOARD: 1285 KDB_STATE_SET(KEYBOARD); 1286 kdb_printf("due to Keyboard Entry\n"); 1287 break; 1288 case KDB_REASON_ENTER_SLAVE: 1289 /* drop through, slaves only get released via cpu switch */ 1290 case KDB_REASON_SWITCH: 1291 kdb_printf("due to cpu switch\n"); 1292 break; 1293 case KDB_REASON_OOPS: 1294 kdb_printf("Oops: %s\n", kdb_diemsg); 1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1296 instruction_pointer(regs)); 1297 kdb_dumpregs(regs); 1298 break; 1299 case KDB_REASON_SYSTEM_NMI: 1300 kdb_printf("due to System NonMaskable Interrupt\n"); 1301 break; 1302 case KDB_REASON_NMI: 1303 kdb_printf("due to NonMaskable Interrupt @ " 1304 kdb_machreg_fmt "\n", 1305 instruction_pointer(regs)); 1306 break; 1307 case KDB_REASON_SSTEP: 1308 case KDB_REASON_BREAK: 1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1310 reason == KDB_REASON_BREAK ? 1311 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1312 /* 1313 * Determine if this breakpoint is one that we 1314 * are interested in. 1315 */ 1316 if (db_result != KDB_DB_BPT) { 1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1318 db_result); 1319 KDB_DEBUG_STATE("kdb_local 6", reason); 1320 return 0; /* Not for us, dismiss it */ 1321 } 1322 break; 1323 case KDB_REASON_RECURSE: 1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1325 instruction_pointer(regs)); 1326 break; 1327 default: 1328 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1329 KDB_DEBUG_STATE("kdb_local 8", reason); 1330 return 0; /* Not for us, dismiss it */ 1331 } 1332 1333 while (1) { 1334 /* 1335 * Initialize pager context. 1336 */ 1337 kdb_nextline = 1; 1338 KDB_STATE_CLEAR(SUPPRESS); 1339 kdb_grepping_flag = 0; 1340 /* ensure the old search does not leak into '/' commands */ 1341 kdb_grep_string[0] = '\0'; 1342 1343 cmdbuf = cmd_cur; 1344 *cmdbuf = '\0'; 1345 *(cmd_hist[cmd_head]) = '\0'; 1346 1347 do_full_getstr: 1348 /* PROMPT can only be set if we have MEM_READ permission. */ 1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1350 raw_smp_processor_id()); 1351 if (defcmd_in_progress) 1352 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1353 1354 /* 1355 * Fetch command from keyboard 1356 */ 1357 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1358 if (*cmdbuf != '\n') { 1359 if (*cmdbuf < 32) { 1360 if (cmdptr == cmd_head) { 1361 strscpy(cmd_hist[cmd_head], cmd_cur, 1362 CMD_BUFLEN); 1363 *(cmd_hist[cmd_head] + 1364 strlen(cmd_hist[cmd_head])-1) = '\0'; 1365 } 1366 if (!handle_ctrl_cmd(cmdbuf)) 1367 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1368 cmdbuf = cmd_cur; 1369 goto do_full_getstr; 1370 } else { 1371 strscpy(cmd_hist[cmd_head], cmd_cur, 1372 CMD_BUFLEN); 1373 } 1374 1375 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1376 if (cmd_head == cmd_tail) 1377 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1378 } 1379 1380 cmdptr = cmd_head; 1381 diag = kdb_parse(cmdbuf); 1382 if (diag == KDB_NOTFOUND) { 1383 drop_newline(cmdbuf); 1384 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1385 diag = 0; 1386 } 1387 if (diag == KDB_CMD_GO 1388 || diag == KDB_CMD_CPU 1389 || diag == KDB_CMD_SS 1390 || diag == KDB_CMD_KGDB) 1391 break; 1392 1393 if (diag) 1394 kdb_cmderror(diag); 1395 } 1396 KDB_DEBUG_STATE("kdb_local 9", diag); 1397 return diag; 1398 } 1399 1400 1401 /* 1402 * kdb_print_state - Print the state data for the current processor 1403 * for debugging. 1404 * Inputs: 1405 * text Identifies the debug point 1406 * value Any integer value to be printed, e.g. reason code. 1407 */ 1408 void kdb_print_state(const char *text, int value) 1409 { 1410 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1411 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1412 kdb_state); 1413 } 1414 1415 /* 1416 * kdb_main_loop - After initial setup and assignment of the 1417 * controlling cpu, all cpus are in this loop. One cpu is in 1418 * control and will issue the kdb prompt, the others will spin 1419 * until 'go' or cpu switch. 1420 * 1421 * To get a consistent view of the kernel stacks for all 1422 * processes, this routine is invoked from the main kdb code via 1423 * an architecture specific routine. kdba_main_loop is 1424 * responsible for making the kernel stacks consistent for all 1425 * processes, there should be no difference between a blocked 1426 * process and a running process as far as kdb is concerned. 1427 * Inputs: 1428 * reason The reason KDB was invoked 1429 * error The hardware-defined error code 1430 * reason2 kdb's current reason code. 1431 * Initially error but can change 1432 * according to kdb state. 1433 * db_result Result code from break or debug point. 1434 * regs The exception frame at time of fault/breakpoint. 1435 * should always be valid. 1436 * Returns: 1437 * 0 KDB was invoked for an event which it wasn't responsible 1438 * 1 KDB handled the event for which it was invoked. 1439 */ 1440 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1441 kdb_dbtrap_t db_result, struct pt_regs *regs) 1442 { 1443 int result = 1; 1444 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1445 while (1) { 1446 /* 1447 * All processors except the one that is in control 1448 * will spin here. 1449 */ 1450 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1451 while (KDB_STATE(HOLD_CPU)) { 1452 /* state KDB is turned off by kdb_cpu to see if the 1453 * other cpus are still live, each cpu in this loop 1454 * turns it back on. 1455 */ 1456 if (!KDB_STATE(KDB)) 1457 KDB_STATE_SET(KDB); 1458 } 1459 1460 KDB_STATE_CLEAR(SUPPRESS); 1461 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1462 if (KDB_STATE(LEAVING)) 1463 break; /* Another cpu said 'go' */ 1464 /* Still using kdb, this processor is in control */ 1465 result = kdb_local(reason2, error, regs, db_result); 1466 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1467 1468 if (result == KDB_CMD_CPU) 1469 break; 1470 1471 if (result == KDB_CMD_SS) { 1472 KDB_STATE_SET(DOING_SS); 1473 break; 1474 } 1475 1476 if (result == KDB_CMD_KGDB) { 1477 if (!KDB_STATE(DOING_KGDB)) 1478 kdb_printf("Entering please attach debugger " 1479 "or use $D#44+ or $3#33\n"); 1480 break; 1481 } 1482 if (result && result != 1 && result != KDB_CMD_GO) 1483 kdb_printf("\nUnexpected kdb_local return code %d\n", 1484 result); 1485 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1486 break; 1487 } 1488 if (KDB_STATE(DOING_SS)) 1489 KDB_STATE_CLEAR(SSBPT); 1490 1491 /* Clean up any keyboard devices before leaving */ 1492 kdb_kbd_cleanup_state(); 1493 1494 return result; 1495 } 1496 1497 /* 1498 * kdb_mdr - This function implements the guts of the 'mdr', memory 1499 * read command. 1500 * mdr <addr arg>,<byte count> 1501 * Inputs: 1502 * addr Start address 1503 * count Number of bytes 1504 * Returns: 1505 * Always 0. Any errors are detected and printed by kdb_getarea. 1506 */ 1507 static int kdb_mdr(unsigned long addr, unsigned int count) 1508 { 1509 unsigned char c; 1510 while (count--) { 1511 if (kdb_getarea(c, addr)) 1512 return 0; 1513 kdb_printf("%02x", c); 1514 addr++; 1515 } 1516 kdb_printf("\n"); 1517 return 0; 1518 } 1519 1520 /* 1521 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1522 * 'md8' 'mdr' and 'mds' commands. 1523 * 1524 * md|mds [<addr arg> [<line count> [<radix>]]] 1525 * mdWcN [<addr arg> [<line count> [<radix>]]] 1526 * where W = is the width (1, 2, 4 or 8) and N is the count. 1527 * for eg., md1c20 reads 20 bytes, 1 at a time. 1528 * mdr <addr arg>,<byte count> 1529 */ 1530 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1531 int symbolic, int nosect, int bytesperword, 1532 int num, int repeat, int phys) 1533 { 1534 /* print just one line of data */ 1535 kdb_symtab_t symtab; 1536 char cbuf[32]; 1537 char *c = cbuf; 1538 int i; 1539 int j; 1540 unsigned long word; 1541 1542 memset(cbuf, '\0', sizeof(cbuf)); 1543 if (phys) 1544 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1545 else 1546 kdb_printf(kdb_machreg_fmt0 " ", addr); 1547 1548 for (i = 0; i < num && repeat--; i++) { 1549 if (phys) { 1550 if (kdb_getphysword(&word, addr, bytesperword)) 1551 break; 1552 } else if (kdb_getword(&word, addr, bytesperword)) 1553 break; 1554 kdb_printf(fmtstr, word); 1555 if (symbolic) 1556 kdbnearsym(word, &symtab); 1557 else 1558 memset(&symtab, 0, sizeof(symtab)); 1559 if (symtab.sym_name) { 1560 kdb_symbol_print(word, &symtab, 0); 1561 if (!nosect) { 1562 kdb_printf("\n"); 1563 kdb_printf(" %s %s " 1564 kdb_machreg_fmt " " 1565 kdb_machreg_fmt " " 1566 kdb_machreg_fmt, symtab.mod_name, 1567 symtab.sec_name, symtab.sec_start, 1568 symtab.sym_start, symtab.sym_end); 1569 } 1570 addr += bytesperword; 1571 } else { 1572 union { 1573 u64 word; 1574 unsigned char c[8]; 1575 } wc; 1576 unsigned char *cp; 1577 #ifdef __BIG_ENDIAN 1578 cp = wc.c + 8 - bytesperword; 1579 #else 1580 cp = wc.c; 1581 #endif 1582 wc.word = word; 1583 #define printable_char(c) \ 1584 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1585 for (j = 0; j < bytesperword; j++) 1586 *c++ = printable_char(*cp++); 1587 addr += bytesperword; 1588 #undef printable_char 1589 } 1590 } 1591 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1592 " ", cbuf); 1593 } 1594 1595 static int kdb_md(int argc, const char **argv) 1596 { 1597 static unsigned long last_addr; 1598 static int last_radix, last_bytesperword, last_repeat; 1599 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1600 int nosect = 0; 1601 char fmtchar, fmtstr[64]; 1602 unsigned long addr; 1603 unsigned long word; 1604 long offset = 0; 1605 int symbolic = 0; 1606 int valid = 0; 1607 int phys = 0; 1608 int raw = 0; 1609 1610 kdbgetintenv("MDCOUNT", &mdcount); 1611 kdbgetintenv("RADIX", &radix); 1612 kdbgetintenv("BYTESPERWORD", &bytesperword); 1613 1614 /* Assume 'md <addr>' and start with environment values */ 1615 repeat = mdcount * 16 / bytesperword; 1616 1617 if (strcmp(argv[0], "mdr") == 0) { 1618 if (argc == 2 || (argc == 0 && last_addr != 0)) 1619 valid = raw = 1; 1620 else 1621 return KDB_ARGCOUNT; 1622 } else if (isdigit(argv[0][2])) { 1623 bytesperword = (int)(argv[0][2] - '0'); 1624 if (bytesperword == 0) { 1625 bytesperword = last_bytesperword; 1626 if (bytesperword == 0) 1627 bytesperword = 4; 1628 } 1629 last_bytesperword = bytesperword; 1630 repeat = mdcount * 16 / bytesperword; 1631 if (!argv[0][3]) 1632 valid = 1; 1633 else if (argv[0][3] == 'c' && argv[0][4]) { 1634 char *p; 1635 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1636 mdcount = ((repeat * bytesperword) + 15) / 16; 1637 valid = !*p; 1638 } 1639 last_repeat = repeat; 1640 } else if (strcmp(argv[0], "md") == 0) 1641 valid = 1; 1642 else if (strcmp(argv[0], "mds") == 0) 1643 valid = 1; 1644 else if (strcmp(argv[0], "mdp") == 0) { 1645 phys = valid = 1; 1646 } 1647 if (!valid) 1648 return KDB_NOTFOUND; 1649 1650 if (argc == 0) { 1651 if (last_addr == 0) 1652 return KDB_ARGCOUNT; 1653 addr = last_addr; 1654 radix = last_radix; 1655 bytesperword = last_bytesperword; 1656 repeat = last_repeat; 1657 if (raw) 1658 mdcount = repeat; 1659 else 1660 mdcount = ((repeat * bytesperword) + 15) / 16; 1661 } 1662 1663 if (argc) { 1664 unsigned long val; 1665 int diag, nextarg = 1; 1666 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1667 &offset, NULL); 1668 if (diag) 1669 return diag; 1670 if (argc > nextarg+2) 1671 return KDB_ARGCOUNT; 1672 1673 if (argc >= nextarg) { 1674 diag = kdbgetularg(argv[nextarg], &val); 1675 if (!diag) { 1676 mdcount = (int) val; 1677 if (raw) 1678 repeat = mdcount; 1679 else 1680 repeat = mdcount * 16 / bytesperword; 1681 } 1682 } 1683 if (argc >= nextarg+1) { 1684 diag = kdbgetularg(argv[nextarg+1], &val); 1685 if (!diag) 1686 radix = (int) val; 1687 } 1688 } 1689 1690 if (strcmp(argv[0], "mdr") == 0) { 1691 int ret; 1692 last_addr = addr; 1693 ret = kdb_mdr(addr, mdcount); 1694 last_addr += mdcount; 1695 last_repeat = mdcount; 1696 last_bytesperword = bytesperword; // to make REPEAT happy 1697 return ret; 1698 } 1699 1700 switch (radix) { 1701 case 10: 1702 fmtchar = 'd'; 1703 break; 1704 case 16: 1705 fmtchar = 'x'; 1706 break; 1707 case 8: 1708 fmtchar = 'o'; 1709 break; 1710 default: 1711 return KDB_BADRADIX; 1712 } 1713 1714 last_radix = radix; 1715 1716 if (bytesperword > KDB_WORD_SIZE) 1717 return KDB_BADWIDTH; 1718 1719 switch (bytesperword) { 1720 case 8: 1721 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1722 break; 1723 case 4: 1724 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1725 break; 1726 case 2: 1727 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1728 break; 1729 case 1: 1730 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1731 break; 1732 default: 1733 return KDB_BADWIDTH; 1734 } 1735 1736 last_repeat = repeat; 1737 last_bytesperword = bytesperword; 1738 1739 if (strcmp(argv[0], "mds") == 0) { 1740 symbolic = 1; 1741 /* Do not save these changes as last_*, they are temporary mds 1742 * overrides. 1743 */ 1744 bytesperword = KDB_WORD_SIZE; 1745 repeat = mdcount; 1746 kdbgetintenv("NOSECT", &nosect); 1747 } 1748 1749 /* Round address down modulo BYTESPERWORD */ 1750 1751 addr &= ~(bytesperword-1); 1752 1753 while (repeat > 0) { 1754 unsigned long a; 1755 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1756 1757 if (KDB_FLAG(CMD_INTERRUPT)) 1758 return 0; 1759 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1760 if (phys) { 1761 if (kdb_getphysword(&word, a, bytesperword) 1762 || word) 1763 break; 1764 } else if (kdb_getword(&word, a, bytesperword) || word) 1765 break; 1766 } 1767 n = min(num, repeat); 1768 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1769 num, repeat, phys); 1770 addr += bytesperword * n; 1771 repeat -= n; 1772 z = (z + num - 1) / num; 1773 if (z > 2) { 1774 int s = num * (z-2); 1775 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1776 " zero suppressed\n", 1777 addr, addr + bytesperword * s - 1); 1778 addr += bytesperword * s; 1779 repeat -= s; 1780 } 1781 } 1782 last_addr = addr; 1783 1784 return 0; 1785 } 1786 1787 /* 1788 * kdb_mm - This function implements the 'mm' command. 1789 * mm address-expression new-value 1790 * Remarks: 1791 * mm works on machine words, mmW works on bytes. 1792 */ 1793 static int kdb_mm(int argc, const char **argv) 1794 { 1795 int diag; 1796 unsigned long addr; 1797 long offset = 0; 1798 unsigned long contents; 1799 int nextarg; 1800 int width; 1801 1802 if (argv[0][2] && !isdigit(argv[0][2])) 1803 return KDB_NOTFOUND; 1804 1805 if (argc < 2) 1806 return KDB_ARGCOUNT; 1807 1808 nextarg = 1; 1809 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1810 if (diag) 1811 return diag; 1812 1813 if (nextarg > argc) 1814 return KDB_ARGCOUNT; 1815 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1816 if (diag) 1817 return diag; 1818 1819 if (nextarg != argc + 1) 1820 return KDB_ARGCOUNT; 1821 1822 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1823 diag = kdb_putword(addr, contents, width); 1824 if (diag) 1825 return diag; 1826 1827 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1828 1829 return 0; 1830 } 1831 1832 /* 1833 * kdb_go - This function implements the 'go' command. 1834 * go [address-expression] 1835 */ 1836 static int kdb_go(int argc, const char **argv) 1837 { 1838 unsigned long addr; 1839 int diag; 1840 int nextarg; 1841 long offset; 1842 1843 if (raw_smp_processor_id() != kdb_initial_cpu) { 1844 kdb_printf("go must execute on the entry cpu, " 1845 "please use \"cpu %d\" and then execute go\n", 1846 kdb_initial_cpu); 1847 return KDB_BADCPUNUM; 1848 } 1849 if (argc == 1) { 1850 nextarg = 1; 1851 diag = kdbgetaddrarg(argc, argv, &nextarg, 1852 &addr, &offset, NULL); 1853 if (diag) 1854 return diag; 1855 } else if (argc) { 1856 return KDB_ARGCOUNT; 1857 } 1858 1859 diag = KDB_CMD_GO; 1860 if (KDB_FLAG(CATASTROPHIC)) { 1861 kdb_printf("Catastrophic error detected\n"); 1862 kdb_printf("kdb_continue_catastrophic=%d, ", 1863 kdb_continue_catastrophic); 1864 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1865 kdb_printf("type go a second time if you really want " 1866 "to continue\n"); 1867 return 0; 1868 } 1869 if (kdb_continue_catastrophic == 2) { 1870 kdb_printf("forcing reboot\n"); 1871 kdb_reboot(0, NULL); 1872 } 1873 kdb_printf("attempting to continue\n"); 1874 } 1875 return diag; 1876 } 1877 1878 /* 1879 * kdb_rd - This function implements the 'rd' command. 1880 */ 1881 static int kdb_rd(int argc, const char **argv) 1882 { 1883 int len = kdb_check_regs(); 1884 #if DBG_MAX_REG_NUM > 0 1885 int i; 1886 char *rname; 1887 int rsize; 1888 u64 reg64; 1889 u32 reg32; 1890 u16 reg16; 1891 u8 reg8; 1892 1893 if (len) 1894 return len; 1895 1896 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1897 rsize = dbg_reg_def[i].size * 2; 1898 if (rsize > 16) 1899 rsize = 2; 1900 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1901 len = 0; 1902 kdb_printf("\n"); 1903 } 1904 if (len) 1905 len += kdb_printf(" "); 1906 switch(dbg_reg_def[i].size * 8) { 1907 case 8: 1908 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1909 if (!rname) 1910 break; 1911 len += kdb_printf("%s: %02x", rname, reg8); 1912 break; 1913 case 16: 1914 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1915 if (!rname) 1916 break; 1917 len += kdb_printf("%s: %04x", rname, reg16); 1918 break; 1919 case 32: 1920 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1921 if (!rname) 1922 break; 1923 len += kdb_printf("%s: %08x", rname, reg32); 1924 break; 1925 case 64: 1926 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1927 if (!rname) 1928 break; 1929 len += kdb_printf("%s: %016llx", rname, reg64); 1930 break; 1931 default: 1932 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1933 } 1934 } 1935 kdb_printf("\n"); 1936 #else 1937 if (len) 1938 return len; 1939 1940 kdb_dumpregs(kdb_current_regs); 1941 #endif 1942 return 0; 1943 } 1944 1945 /* 1946 * kdb_rm - This function implements the 'rm' (register modify) command. 1947 * rm register-name new-contents 1948 * Remarks: 1949 * Allows register modification with the same restrictions as gdb 1950 */ 1951 static int kdb_rm(int argc, const char **argv) 1952 { 1953 #if DBG_MAX_REG_NUM > 0 1954 int diag; 1955 const char *rname; 1956 int i; 1957 u64 reg64; 1958 u32 reg32; 1959 u16 reg16; 1960 u8 reg8; 1961 1962 if (argc != 2) 1963 return KDB_ARGCOUNT; 1964 /* 1965 * Allow presence or absence of leading '%' symbol. 1966 */ 1967 rname = argv[1]; 1968 if (*rname == '%') 1969 rname++; 1970 1971 diag = kdbgetu64arg(argv[2], ®64); 1972 if (diag) 1973 return diag; 1974 1975 diag = kdb_check_regs(); 1976 if (diag) 1977 return diag; 1978 1979 diag = KDB_BADREG; 1980 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1981 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1982 diag = 0; 1983 break; 1984 } 1985 } 1986 if (!diag) { 1987 switch(dbg_reg_def[i].size * 8) { 1988 case 8: 1989 reg8 = reg64; 1990 dbg_set_reg(i, ®8, kdb_current_regs); 1991 break; 1992 case 16: 1993 reg16 = reg64; 1994 dbg_set_reg(i, ®16, kdb_current_regs); 1995 break; 1996 case 32: 1997 reg32 = reg64; 1998 dbg_set_reg(i, ®32, kdb_current_regs); 1999 break; 2000 case 64: 2001 dbg_set_reg(i, ®64, kdb_current_regs); 2002 break; 2003 } 2004 } 2005 return diag; 2006 #else 2007 kdb_printf("ERROR: Register set currently not implemented\n"); 2008 return 0; 2009 #endif 2010 } 2011 2012 #if defined(CONFIG_MAGIC_SYSRQ) 2013 /* 2014 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 2015 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 2016 * sr <magic-sysrq-code> 2017 */ 2018 static int kdb_sr(int argc, const char **argv) 2019 { 2020 bool check_mask = 2021 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 2022 2023 if (argc != 1) 2024 return KDB_ARGCOUNT; 2025 2026 kdb_trap_printk++; 2027 __handle_sysrq(*argv[1], check_mask); 2028 kdb_trap_printk--; 2029 2030 return 0; 2031 } 2032 #endif /* CONFIG_MAGIC_SYSRQ */ 2033 2034 /* 2035 * kdb_ef - This function implements the 'regs' (display exception 2036 * frame) command. This command takes an address and expects to 2037 * find an exception frame at that address, formats and prints 2038 * it. 2039 * regs address-expression 2040 * Remarks: 2041 * Not done yet. 2042 */ 2043 static int kdb_ef(int argc, const char **argv) 2044 { 2045 int diag; 2046 unsigned long addr; 2047 long offset; 2048 int nextarg; 2049 2050 if (argc != 1) 2051 return KDB_ARGCOUNT; 2052 2053 nextarg = 1; 2054 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2055 if (diag) 2056 return diag; 2057 show_regs((struct pt_regs *)addr); 2058 return 0; 2059 } 2060 2061 /* 2062 * kdb_env - This function implements the 'env' command. Display the 2063 * current environment variables. 2064 */ 2065 2066 static int kdb_env(int argc, const char **argv) 2067 { 2068 kdb_printenv(); 2069 2070 if (KDB_DEBUG(MASK)) 2071 kdb_printf("KDBDEBUG=0x%x\n", 2072 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT); 2073 2074 return 0; 2075 } 2076 2077 #ifdef CONFIG_PRINTK 2078 /* 2079 * kdb_dmesg - This function implements the 'dmesg' command to display 2080 * the contents of the syslog buffer. 2081 * dmesg [lines] [adjust] 2082 */ 2083 static int kdb_dmesg(int argc, const char **argv) 2084 { 2085 int diag; 2086 int logging; 2087 int lines = 0; 2088 int adjust = 0; 2089 int n = 0; 2090 int skip = 0; 2091 struct kmsg_dump_iter iter; 2092 size_t len; 2093 char buf[201]; 2094 2095 if (argc > 2) 2096 return KDB_ARGCOUNT; 2097 if (argc) { 2098 char *cp; 2099 lines = simple_strtol(argv[1], &cp, 0); 2100 if (*cp) 2101 lines = 0; 2102 if (argc > 1) { 2103 adjust = simple_strtoul(argv[2], &cp, 0); 2104 if (*cp || adjust < 0) 2105 adjust = 0; 2106 } 2107 } 2108 2109 /* disable LOGGING if set */ 2110 diag = kdbgetintenv("LOGGING", &logging); 2111 if (!diag && logging) { 2112 const char *setargs[] = { "set", "LOGGING", "0" }; 2113 kdb_set(2, setargs); 2114 } 2115 2116 kmsg_dump_rewind(&iter); 2117 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL)) 2118 n++; 2119 2120 if (lines < 0) { 2121 if (adjust >= n) 2122 kdb_printf("buffer only contains %d lines, nothing " 2123 "printed\n", n); 2124 else if (adjust - lines >= n) 2125 kdb_printf("buffer only contains %d lines, last %d " 2126 "lines printed\n", n, n - adjust); 2127 skip = adjust; 2128 lines = abs(lines); 2129 } else if (lines > 0) { 2130 skip = n - lines - adjust; 2131 lines = abs(lines); 2132 if (adjust >= n) { 2133 kdb_printf("buffer only contains %d lines, " 2134 "nothing printed\n", n); 2135 skip = n; 2136 } else if (skip < 0) { 2137 lines += skip; 2138 skip = 0; 2139 kdb_printf("buffer only contains %d lines, first " 2140 "%d lines printed\n", n, lines); 2141 } 2142 } else { 2143 lines = n; 2144 } 2145 2146 if (skip >= n || skip < 0) 2147 return 0; 2148 2149 kmsg_dump_rewind(&iter); 2150 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) { 2151 if (skip) { 2152 skip--; 2153 continue; 2154 } 2155 if (!lines--) 2156 break; 2157 if (KDB_FLAG(CMD_INTERRUPT)) 2158 return 0; 2159 2160 kdb_printf("%.*s\n", (int)len - 1, buf); 2161 } 2162 2163 return 0; 2164 } 2165 #endif /* CONFIG_PRINTK */ 2166 2167 /* Make sure we balance enable/disable calls, must disable first. */ 2168 static atomic_t kdb_nmi_disabled; 2169 2170 static int kdb_disable_nmi(int argc, const char *argv[]) 2171 { 2172 if (atomic_read(&kdb_nmi_disabled)) 2173 return 0; 2174 atomic_set(&kdb_nmi_disabled, 1); 2175 arch_kgdb_ops.enable_nmi(0); 2176 return 0; 2177 } 2178 2179 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2180 { 2181 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2182 return -EINVAL; 2183 arch_kgdb_ops.enable_nmi(1); 2184 return 0; 2185 } 2186 2187 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2188 .set = kdb_param_enable_nmi, 2189 }; 2190 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2191 2192 /* 2193 * kdb_cpu - This function implements the 'cpu' command. 2194 * cpu [<cpunum>] 2195 * Returns: 2196 * KDB_CMD_CPU for success, a kdb diagnostic if error 2197 */ 2198 static void kdb_cpu_status(void) 2199 { 2200 int i, start_cpu, first_print = 1; 2201 char state, prev_state = '?'; 2202 2203 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2204 kdb_printf("Available cpus: "); 2205 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2206 if (!cpu_online(i)) { 2207 state = 'F'; /* cpu is offline */ 2208 } else if (!kgdb_info[i].enter_kgdb) { 2209 state = 'D'; /* cpu is online but unresponsive */ 2210 } else { 2211 state = ' '; /* cpu is responding to kdb */ 2212 if (kdb_task_state_char(KDB_TSK(i)) == '-') 2213 state = '-'; /* idle task */ 2214 } 2215 if (state != prev_state) { 2216 if (prev_state != '?') { 2217 if (!first_print) 2218 kdb_printf(", "); 2219 first_print = 0; 2220 kdb_printf("%d", start_cpu); 2221 if (start_cpu < i-1) 2222 kdb_printf("-%d", i-1); 2223 if (prev_state != ' ') 2224 kdb_printf("(%c)", prev_state); 2225 } 2226 prev_state = state; 2227 start_cpu = i; 2228 } 2229 } 2230 /* print the trailing cpus, ignoring them if they are all offline */ 2231 if (prev_state != 'F') { 2232 if (!first_print) 2233 kdb_printf(", "); 2234 kdb_printf("%d", start_cpu); 2235 if (start_cpu < i-1) 2236 kdb_printf("-%d", i-1); 2237 if (prev_state != ' ') 2238 kdb_printf("(%c)", prev_state); 2239 } 2240 kdb_printf("\n"); 2241 } 2242 2243 static int kdb_cpu(int argc, const char **argv) 2244 { 2245 unsigned long cpunum; 2246 int diag; 2247 2248 if (argc == 0) { 2249 kdb_cpu_status(); 2250 return 0; 2251 } 2252 2253 if (argc != 1) 2254 return KDB_ARGCOUNT; 2255 2256 diag = kdbgetularg(argv[1], &cpunum); 2257 if (diag) 2258 return diag; 2259 2260 /* 2261 * Validate cpunum 2262 */ 2263 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2264 return KDB_BADCPUNUM; 2265 2266 dbg_switch_cpu = cpunum; 2267 2268 /* 2269 * Switch to other cpu 2270 */ 2271 return KDB_CMD_CPU; 2272 } 2273 2274 /* The user may not realize that ps/bta with no parameters does not print idle 2275 * or sleeping system daemon processes, so tell them how many were suppressed. 2276 */ 2277 void kdb_ps_suppressed(void) 2278 { 2279 int idle = 0, daemon = 0; 2280 unsigned long cpu; 2281 const struct task_struct *p, *g; 2282 for_each_online_cpu(cpu) { 2283 p = kdb_curr_task(cpu); 2284 if (kdb_task_state(p, "-")) 2285 ++idle; 2286 } 2287 for_each_process_thread(g, p) { 2288 if (kdb_task_state(p, "ims")) 2289 ++daemon; 2290 } 2291 if (idle || daemon) { 2292 if (idle) 2293 kdb_printf("%d idle process%s (state -)%s\n", 2294 idle, idle == 1 ? "" : "es", 2295 daemon ? " and " : ""); 2296 if (daemon) 2297 kdb_printf("%d sleeping system daemon (state [ims]) " 2298 "process%s", daemon, 2299 daemon == 1 ? "" : "es"); 2300 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2301 } 2302 } 2303 2304 void kdb_ps1(const struct task_struct *p) 2305 { 2306 int cpu; 2307 unsigned long tmp; 2308 2309 if (!p || 2310 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) 2311 return; 2312 2313 cpu = kdb_process_cpu(p); 2314 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2315 (void *)p, p->pid, p->parent->pid, 2316 kdb_task_has_cpu(p), kdb_process_cpu(p), 2317 kdb_task_state_char(p), 2318 (void *)(&p->thread), 2319 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2320 p->comm); 2321 if (kdb_task_has_cpu(p)) { 2322 if (!KDB_TSK(cpu)) { 2323 kdb_printf(" Error: no saved data for this cpu\n"); 2324 } else { 2325 if (KDB_TSK(cpu) != p) 2326 kdb_printf(" Error: does not match running " 2327 "process table (0x%px)\n", KDB_TSK(cpu)); 2328 } 2329 } 2330 } 2331 2332 /* 2333 * kdb_ps - This function implements the 'ps' command which shows a 2334 * list of the active processes. 2335 * 2336 * ps [<state_chars>] Show processes, optionally selecting only those whose 2337 * state character is found in <state_chars>. 2338 */ 2339 static int kdb_ps(int argc, const char **argv) 2340 { 2341 struct task_struct *g, *p; 2342 const char *mask; 2343 unsigned long cpu; 2344 2345 if (argc == 0) 2346 kdb_ps_suppressed(); 2347 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2348 (int)(2*sizeof(void *))+2, "Task Addr", 2349 (int)(2*sizeof(void *))+2, "Thread"); 2350 mask = argc ? argv[1] : kdbgetenv("PS"); 2351 /* Run the active tasks first */ 2352 for_each_online_cpu(cpu) { 2353 if (KDB_FLAG(CMD_INTERRUPT)) 2354 return 0; 2355 p = kdb_curr_task(cpu); 2356 if (kdb_task_state(p, mask)) 2357 kdb_ps1(p); 2358 } 2359 kdb_printf("\n"); 2360 /* Now the real tasks */ 2361 for_each_process_thread(g, p) { 2362 if (KDB_FLAG(CMD_INTERRUPT)) 2363 return 0; 2364 if (kdb_task_state(p, mask)) 2365 kdb_ps1(p); 2366 } 2367 2368 return 0; 2369 } 2370 2371 /* 2372 * kdb_pid - This function implements the 'pid' command which switches 2373 * the currently active process. 2374 * pid [<pid> | R] 2375 */ 2376 static int kdb_pid(int argc, const char **argv) 2377 { 2378 struct task_struct *p; 2379 unsigned long val; 2380 int diag; 2381 2382 if (argc > 1) 2383 return KDB_ARGCOUNT; 2384 2385 if (argc) { 2386 if (strcmp(argv[1], "R") == 0) { 2387 p = KDB_TSK(kdb_initial_cpu); 2388 } else { 2389 diag = kdbgetularg(argv[1], &val); 2390 if (diag) 2391 return KDB_BADINT; 2392 2393 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2394 if (!p) { 2395 kdb_printf("No task with pid=%d\n", (pid_t)val); 2396 return 0; 2397 } 2398 } 2399 kdb_set_current_task(p); 2400 } 2401 kdb_printf("KDB current process is %s(pid=%d)\n", 2402 kdb_current_task->comm, 2403 kdb_current_task->pid); 2404 2405 return 0; 2406 } 2407 2408 static int kdb_kgdb(int argc, const char **argv) 2409 { 2410 return KDB_CMD_KGDB; 2411 } 2412 2413 /* 2414 * kdb_help - This function implements the 'help' and '?' commands. 2415 */ 2416 static int kdb_help(int argc, const char **argv) 2417 { 2418 kdbtab_t *kt; 2419 2420 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2421 kdb_printf("-----------------------------" 2422 "-----------------------------\n"); 2423 list_for_each_entry(kt, &kdb_cmds_head, list_node) { 2424 char *space = ""; 2425 if (KDB_FLAG(CMD_INTERRUPT)) 2426 return 0; 2427 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true)) 2428 continue; 2429 if (strlen(kt->usage) > 20) 2430 space = "\n "; 2431 kdb_printf("%-15.15s %-20s%s%s\n", kt->name, 2432 kt->usage, space, kt->help); 2433 } 2434 return 0; 2435 } 2436 2437 /* 2438 * kdb_kill - This function implements the 'kill' commands. 2439 */ 2440 static int kdb_kill(int argc, const char **argv) 2441 { 2442 long sig, pid; 2443 char *endp; 2444 struct task_struct *p; 2445 2446 if (argc != 2) 2447 return KDB_ARGCOUNT; 2448 2449 sig = simple_strtol(argv[1], &endp, 0); 2450 if (*endp) 2451 return KDB_BADINT; 2452 if ((sig >= 0) || !valid_signal(-sig)) { 2453 kdb_printf("Invalid signal parameter.<-signal>\n"); 2454 return 0; 2455 } 2456 sig = -sig; 2457 2458 pid = simple_strtol(argv[2], &endp, 0); 2459 if (*endp) 2460 return KDB_BADINT; 2461 if (pid <= 0) { 2462 kdb_printf("Process ID must be large than 0.\n"); 2463 return 0; 2464 } 2465 2466 /* Find the process. */ 2467 p = find_task_by_pid_ns(pid, &init_pid_ns); 2468 if (!p) { 2469 kdb_printf("The specified process isn't found.\n"); 2470 return 0; 2471 } 2472 p = p->group_leader; 2473 kdb_send_sig(p, sig); 2474 return 0; 2475 } 2476 2477 /* 2478 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2479 * I cannot call that code directly from kdb, it has an unconditional 2480 * cli()/sti() and calls routines that take locks which can stop the debugger. 2481 */ 2482 static void kdb_sysinfo(struct sysinfo *val) 2483 { 2484 u64 uptime = ktime_get_mono_fast_ns(); 2485 2486 memset(val, 0, sizeof(*val)); 2487 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2488 val->loads[0] = avenrun[0]; 2489 val->loads[1] = avenrun[1]; 2490 val->loads[2] = avenrun[2]; 2491 val->procs = nr_threads-1; 2492 si_meminfo(val); 2493 2494 return; 2495 } 2496 2497 /* 2498 * kdb_summary - This function implements the 'summary' command. 2499 */ 2500 static int kdb_summary(int argc, const char **argv) 2501 { 2502 time64_t now; 2503 struct sysinfo val; 2504 2505 if (argc) 2506 return KDB_ARGCOUNT; 2507 2508 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2509 kdb_printf("release %s\n", init_uts_ns.name.release); 2510 kdb_printf("version %s\n", init_uts_ns.name.version); 2511 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2512 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2513 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2514 2515 now = __ktime_get_real_seconds(); 2516 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest); 2517 kdb_sysinfo(&val); 2518 kdb_printf("uptime "); 2519 if (val.uptime > (24*60*60)) { 2520 int days = val.uptime / (24*60*60); 2521 val.uptime %= (24*60*60); 2522 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2523 } 2524 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2525 2526 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2527 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2528 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2529 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2530 2531 /* Display in kilobytes */ 2532 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2533 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2534 "Buffers: %8lu kB\n", 2535 K(val.totalram), K(val.freeram), K(val.bufferram)); 2536 return 0; 2537 } 2538 2539 /* 2540 * kdb_per_cpu - This function implements the 'per_cpu' command. 2541 */ 2542 static int kdb_per_cpu(int argc, const char **argv) 2543 { 2544 char fmtstr[64]; 2545 int cpu, diag, nextarg = 1; 2546 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2547 2548 if (argc < 1 || argc > 3) 2549 return KDB_ARGCOUNT; 2550 2551 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2552 if (diag) 2553 return diag; 2554 2555 if (argc >= 2) { 2556 diag = kdbgetularg(argv[2], &bytesperword); 2557 if (diag) 2558 return diag; 2559 } 2560 if (!bytesperword) 2561 bytesperword = KDB_WORD_SIZE; 2562 else if (bytesperword > KDB_WORD_SIZE) 2563 return KDB_BADWIDTH; 2564 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2565 if (argc >= 3) { 2566 diag = kdbgetularg(argv[3], &whichcpu); 2567 if (diag) 2568 return diag; 2569 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2570 kdb_printf("cpu %ld is not online\n", whichcpu); 2571 return KDB_BADCPUNUM; 2572 } 2573 } 2574 2575 /* Most architectures use __per_cpu_offset[cpu], some use 2576 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2577 */ 2578 #ifdef __per_cpu_offset 2579 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2580 #else 2581 #ifdef CONFIG_SMP 2582 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2583 #else 2584 #define KDB_PCU(cpu) 0 2585 #endif 2586 #endif 2587 for_each_online_cpu(cpu) { 2588 if (KDB_FLAG(CMD_INTERRUPT)) 2589 return 0; 2590 2591 if (whichcpu != ~0UL && whichcpu != cpu) 2592 continue; 2593 addr = symaddr + KDB_PCU(cpu); 2594 diag = kdb_getword(&val, addr, bytesperword); 2595 if (diag) { 2596 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2597 "read, diag=%d\n", cpu, addr, diag); 2598 continue; 2599 } 2600 kdb_printf("%5d ", cpu); 2601 kdb_md_line(fmtstr, addr, 2602 bytesperword == KDB_WORD_SIZE, 2603 1, bytesperword, 1, 1, 0); 2604 } 2605 #undef KDB_PCU 2606 return 0; 2607 } 2608 2609 /* 2610 * display help for the use of cmd | grep pattern 2611 */ 2612 static int kdb_grep_help(int argc, const char **argv) 2613 { 2614 kdb_printf("Usage of cmd args | grep pattern:\n"); 2615 kdb_printf(" Any command's output may be filtered through an "); 2616 kdb_printf("emulated 'pipe'.\n"); 2617 kdb_printf(" 'grep' is just a key word.\n"); 2618 kdb_printf(" The pattern may include a very limited set of " 2619 "metacharacters:\n"); 2620 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2621 kdb_printf(" And if there are spaces in the pattern, you may " 2622 "quote it:\n"); 2623 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2624 " or \"^pat tern$\"\n"); 2625 return 0; 2626 } 2627 2628 /** 2629 * kdb_register() - This function is used to register a kernel debugger 2630 * command. 2631 * @cmd: pointer to kdb command 2632 * 2633 * Note that it's the job of the caller to keep the memory for the cmd 2634 * allocated until unregister is called. 2635 */ 2636 int kdb_register(kdbtab_t *cmd) 2637 { 2638 kdbtab_t *kp; 2639 2640 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 2641 if (strcmp(kp->name, cmd->name) == 0) { 2642 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n", 2643 cmd->name, cmd->func, cmd->help); 2644 return 1; 2645 } 2646 } 2647 2648 list_add_tail(&cmd->list_node, &kdb_cmds_head); 2649 return 0; 2650 } 2651 EXPORT_SYMBOL_GPL(kdb_register); 2652 2653 /** 2654 * kdb_register_table() - This function is used to register a kdb command 2655 * table. 2656 * @kp: pointer to kdb command table 2657 * @len: length of kdb command table 2658 */ 2659 void kdb_register_table(kdbtab_t *kp, size_t len) 2660 { 2661 while (len--) { 2662 list_add_tail(&kp->list_node, &kdb_cmds_head); 2663 kp++; 2664 } 2665 } 2666 2667 /** 2668 * kdb_unregister() - This function is used to unregister a kernel debugger 2669 * command. It is generally called when a module which 2670 * implements kdb command is unloaded. 2671 * @cmd: pointer to kdb command 2672 */ 2673 void kdb_unregister(kdbtab_t *cmd) 2674 { 2675 list_del(&cmd->list_node); 2676 } 2677 EXPORT_SYMBOL_GPL(kdb_unregister); 2678 2679 static kdbtab_t maintab[] = { 2680 { .name = "md", 2681 .func = kdb_md, 2682 .usage = "<vaddr>", 2683 .help = "Display Memory Contents, also mdWcN, e.g. md8c1", 2684 .minlen = 1, 2685 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2686 }, 2687 { .name = "mdr", 2688 .func = kdb_md, 2689 .usage = "<vaddr> <bytes>", 2690 .help = "Display Raw Memory", 2691 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2692 }, 2693 { .name = "mdp", 2694 .func = kdb_md, 2695 .usage = "<paddr> <bytes>", 2696 .help = "Display Physical Memory", 2697 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2698 }, 2699 { .name = "mds", 2700 .func = kdb_md, 2701 .usage = "<vaddr>", 2702 .help = "Display Memory Symbolically", 2703 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2704 }, 2705 { .name = "mm", 2706 .func = kdb_mm, 2707 .usage = "<vaddr> <contents>", 2708 .help = "Modify Memory Contents", 2709 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS, 2710 }, 2711 { .name = "go", 2712 .func = kdb_go, 2713 .usage = "[<vaddr>]", 2714 .help = "Continue Execution", 2715 .minlen = 1, 2716 .flags = KDB_ENABLE_REG_WRITE | 2717 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2718 }, 2719 { .name = "rd", 2720 .func = kdb_rd, 2721 .usage = "", 2722 .help = "Display Registers", 2723 .flags = KDB_ENABLE_REG_READ, 2724 }, 2725 { .name = "rm", 2726 .func = kdb_rm, 2727 .usage = "<reg> <contents>", 2728 .help = "Modify Registers", 2729 .flags = KDB_ENABLE_REG_WRITE, 2730 }, 2731 { .name = "ef", 2732 .func = kdb_ef, 2733 .usage = "<vaddr>", 2734 .help = "Display exception frame", 2735 .flags = KDB_ENABLE_MEM_READ, 2736 }, 2737 { .name = "bt", 2738 .func = kdb_bt, 2739 .usage = "[<vaddr>]", 2740 .help = "Stack traceback", 2741 .minlen = 1, 2742 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2743 }, 2744 { .name = "btp", 2745 .func = kdb_bt, 2746 .usage = "<pid>", 2747 .help = "Display stack for process <pid>", 2748 .flags = KDB_ENABLE_INSPECT, 2749 }, 2750 { .name = "bta", 2751 .func = kdb_bt, 2752 .usage = "[<state_chars>|A]", 2753 .help = "Backtrace all processes whose state matches", 2754 .flags = KDB_ENABLE_INSPECT, 2755 }, 2756 { .name = "btc", 2757 .func = kdb_bt, 2758 .usage = "", 2759 .help = "Backtrace current process on each cpu", 2760 .flags = KDB_ENABLE_INSPECT, 2761 }, 2762 { .name = "btt", 2763 .func = kdb_bt, 2764 .usage = "<vaddr>", 2765 .help = "Backtrace process given its struct task address", 2766 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2767 }, 2768 { .name = "env", 2769 .func = kdb_env, 2770 .usage = "", 2771 .help = "Show environment variables", 2772 .flags = KDB_ENABLE_ALWAYS_SAFE, 2773 }, 2774 { .name = "set", 2775 .func = kdb_set, 2776 .usage = "", 2777 .help = "Set environment variables", 2778 .flags = KDB_ENABLE_ALWAYS_SAFE, 2779 }, 2780 { .name = "help", 2781 .func = kdb_help, 2782 .usage = "", 2783 .help = "Display Help Message", 2784 .minlen = 1, 2785 .flags = KDB_ENABLE_ALWAYS_SAFE, 2786 }, 2787 { .name = "?", 2788 .func = kdb_help, 2789 .usage = "", 2790 .help = "Display Help Message", 2791 .flags = KDB_ENABLE_ALWAYS_SAFE, 2792 }, 2793 { .name = "cpu", 2794 .func = kdb_cpu, 2795 .usage = "<cpunum>", 2796 .help = "Switch to new cpu", 2797 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2798 }, 2799 { .name = "kgdb", 2800 .func = kdb_kgdb, 2801 .usage = "", 2802 .help = "Enter kgdb mode", 2803 .flags = 0, 2804 }, 2805 { .name = "ps", 2806 .func = kdb_ps, 2807 .usage = "[<state_chars>|A]", 2808 .help = "Display active task list", 2809 .flags = KDB_ENABLE_INSPECT, 2810 }, 2811 { .name = "pid", 2812 .func = kdb_pid, 2813 .usage = "<pidnum>", 2814 .help = "Switch to another task", 2815 .flags = KDB_ENABLE_INSPECT, 2816 }, 2817 { .name = "reboot", 2818 .func = kdb_reboot, 2819 .usage = "", 2820 .help = "Reboot the machine immediately", 2821 .flags = KDB_ENABLE_REBOOT, 2822 }, 2823 #if defined(CONFIG_MODULES) 2824 { .name = "lsmod", 2825 .func = kdb_lsmod, 2826 .usage = "", 2827 .help = "List loaded kernel modules", 2828 .flags = KDB_ENABLE_INSPECT, 2829 }, 2830 #endif 2831 #if defined(CONFIG_MAGIC_SYSRQ) 2832 { .name = "sr", 2833 .func = kdb_sr, 2834 .usage = "<key>", 2835 .help = "Magic SysRq key", 2836 .flags = KDB_ENABLE_ALWAYS_SAFE, 2837 }, 2838 #endif 2839 #if defined(CONFIG_PRINTK) 2840 { .name = "dmesg", 2841 .func = kdb_dmesg, 2842 .usage = "[lines]", 2843 .help = "Display syslog buffer", 2844 .flags = KDB_ENABLE_ALWAYS_SAFE, 2845 }, 2846 #endif 2847 { .name = "defcmd", 2848 .func = kdb_defcmd, 2849 .usage = "name \"usage\" \"help\"", 2850 .help = "Define a set of commands, down to endefcmd", 2851 /* 2852 * Macros are always safe because when executed each 2853 * internal command re-enters kdb_parse() and is safety 2854 * checked individually. 2855 */ 2856 .flags = KDB_ENABLE_ALWAYS_SAFE, 2857 }, 2858 { .name = "kill", 2859 .func = kdb_kill, 2860 .usage = "<-signal> <pid>", 2861 .help = "Send a signal to a process", 2862 .flags = KDB_ENABLE_SIGNAL, 2863 }, 2864 { .name = "summary", 2865 .func = kdb_summary, 2866 .usage = "", 2867 .help = "Summarize the system", 2868 .minlen = 4, 2869 .flags = KDB_ENABLE_ALWAYS_SAFE, 2870 }, 2871 { .name = "per_cpu", 2872 .func = kdb_per_cpu, 2873 .usage = "<sym> [<bytes>] [<cpu>]", 2874 .help = "Display per_cpu variables", 2875 .minlen = 3, 2876 .flags = KDB_ENABLE_MEM_READ, 2877 }, 2878 { .name = "grephelp", 2879 .func = kdb_grep_help, 2880 .usage = "", 2881 .help = "Display help on | grep", 2882 .flags = KDB_ENABLE_ALWAYS_SAFE, 2883 }, 2884 }; 2885 2886 static kdbtab_t nmicmd = { 2887 .name = "disable_nmi", 2888 .func = kdb_disable_nmi, 2889 .usage = "", 2890 .help = "Disable NMI entry to KDB", 2891 .flags = KDB_ENABLE_ALWAYS_SAFE, 2892 }; 2893 2894 /* Initialize the kdb command table. */ 2895 static void __init kdb_inittab(void) 2896 { 2897 kdb_register_table(maintab, ARRAY_SIZE(maintab)); 2898 if (arch_kgdb_ops.enable_nmi) 2899 kdb_register_table(&nmicmd, 1); 2900 } 2901 2902 /* Execute any commands defined in kdb_cmds. */ 2903 static void __init kdb_cmd_init(void) 2904 { 2905 int i, diag; 2906 for (i = 0; kdb_cmds[i]; ++i) { 2907 diag = kdb_parse(kdb_cmds[i]); 2908 if (diag) 2909 kdb_printf("kdb command %s failed, kdb diag %d\n", 2910 kdb_cmds[i], diag); 2911 } 2912 if (defcmd_in_progress) { 2913 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2914 kdb_parse("endefcmd"); 2915 } 2916 } 2917 2918 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2919 void __init kdb_init(int lvl) 2920 { 2921 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2922 int i; 2923 2924 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2925 return; 2926 for (i = kdb_init_lvl; i < lvl; i++) { 2927 switch (i) { 2928 case KDB_NOT_INITIALIZED: 2929 kdb_inittab(); /* Initialize Command Table */ 2930 kdb_initbptab(); /* Initialize Breakpoints */ 2931 break; 2932 case KDB_INIT_EARLY: 2933 kdb_cmd_init(); /* Build kdb_cmds tables */ 2934 break; 2935 } 2936 } 2937 kdb_init_lvl = lvl; 2938 } 2939