1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/moduleparam.h> 30 #include <linux/mm.h> 31 #include <linux/init.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdb.h> 35 #include <linux/notifier.h> 36 #include <linux/interrupt.h> 37 #include <linux/delay.h> 38 #include <linux/nmi.h> 39 #include <linux/time.h> 40 #include <linux/ptrace.h> 41 #include <linux/sysctl.h> 42 #include <linux/cpu.h> 43 #include <linux/kdebug.h> 44 #include <linux/proc_fs.h> 45 #include <linux/uaccess.h> 46 #include <linux/slab.h> 47 #include <linux/security.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 unsigned int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_cmds_head describes the available commands. */ 88 static LIST_HEAD(kdb_cmds_head); 89 90 typedef struct _kdbmsg { 91 int km_diag; /* kdb diagnostic */ 92 char *km_msg; /* Corresponding message text */ 93 } kdbmsg_t; 94 95 #define KDBMSG(msgnum, text) \ 96 { KDB_##msgnum, text } 97 98 static kdbmsg_t kdbmsgs[] = { 99 KDBMSG(NOTFOUND, "Command Not Found"), 100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 102 "8 is only allowed on 64 bit systems"), 103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 104 KDBMSG(NOTENV, "Cannot find environment variable"), 105 KDBMSG(NOENVVALUE, "Environment variable should have value"), 106 KDBMSG(NOTIMP, "Command not implemented"), 107 KDBMSG(ENVFULL, "Environment full"), 108 KDBMSG(ENVBUFFULL, "Environment buffer full"), 109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 110 #ifdef CONFIG_CPU_XSCALE 111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 112 #else 113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 114 #endif 115 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 117 KDBMSG(BADMODE, "Invalid IDMODE"), 118 KDBMSG(BADINT, "Illegal numeric value"), 119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 120 KDBMSG(BADREG, "Invalid register name"), 121 KDBMSG(BADCPUNUM, "Invalid cpu number"), 122 KDBMSG(BADLENGTH, "Invalid length field"), 123 KDBMSG(NOBP, "No Breakpoint exists"), 124 KDBMSG(BADADDR, "Invalid address"), 125 KDBMSG(NOPERM, "Permission denied"), 126 }; 127 #undef KDBMSG 128 129 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 130 131 132 /* 133 * Initial environment. This is all kept static and local to 134 * this file. We don't want to rely on the memory allocation 135 * mechanisms in the kernel, so we use a very limited allocate-only 136 * heap for new and altered environment variables. The entire 137 * environment is limited to a fixed number of entries (add more 138 * to __env[] if required) and a fixed amount of heap (add more to 139 * KDB_ENVBUFSIZE if required). 140 */ 141 142 static char *__env[31] = { 143 #if defined(CONFIG_SMP) 144 "PROMPT=[%d]kdb> ", 145 #else 146 "PROMPT=kdb> ", 147 #endif 148 "MOREPROMPT=more> ", 149 "RADIX=16", 150 "MDCOUNT=8", /* lines of md output */ 151 KDB_PLATFORM_ENV, 152 "DTABCOUNT=30", 153 "NOSECT=1", 154 }; 155 156 static const int __nenv = ARRAY_SIZE(__env); 157 158 struct task_struct *kdb_curr_task(int cpu) 159 { 160 struct task_struct *p = curr_task(cpu); 161 #ifdef _TIF_MCA_INIT 162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 163 p = krp->p; 164 #endif 165 return p; 166 } 167 168 /* 169 * Update the permissions flags (kdb_cmd_enabled) to match the 170 * current lockdown state. 171 * 172 * Within this function the calls to security_locked_down() are "lazy". We 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes 174 * flags that might be subject to lockdown. Additionally we deliberately check 175 * the lockdown flags independently (even though read lockdown implies write 176 * lockdown) since that results in both simpler code and clearer messages to 177 * the user on first-time debugger entry. 178 * 179 * The permission masks during a read+write lockdown permits the following 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE). 181 * 182 * The INSPECT commands are not blocked during lockdown because they are 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes 184 * forcing them to have no arguments) and lsmod. These commands do expose 185 * some kernel state but do not allow the developer seated at the console to 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial, 187 * given these are allowed for root during lockdown already. 188 */ 189 static void kdb_check_for_lockdown(void) 190 { 191 const int write_flags = KDB_ENABLE_MEM_WRITE | 192 KDB_ENABLE_REG_WRITE | 193 KDB_ENABLE_FLOW_CTRL; 194 const int read_flags = KDB_ENABLE_MEM_READ | 195 KDB_ENABLE_REG_READ; 196 197 bool need_to_lockdown_write = false; 198 bool need_to_lockdown_read = false; 199 200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags)) 201 need_to_lockdown_write = 202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL); 203 204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags)) 205 need_to_lockdown_read = 206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL); 207 208 /* De-compose KDB_ENABLE_ALL if required */ 209 if (need_to_lockdown_write || need_to_lockdown_read) 210 if (kdb_cmd_enabled & KDB_ENABLE_ALL) 211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL; 212 213 if (need_to_lockdown_write) 214 kdb_cmd_enabled &= ~write_flags; 215 216 if (need_to_lockdown_read) 217 kdb_cmd_enabled &= ~read_flags; 218 } 219 220 /* 221 * Check whether the flags of the current command, the permissions of the kdb 222 * console and the lockdown state allow a command to be run. 223 */ 224 static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 225 bool no_args) 226 { 227 /* permissions comes from userspace so needs massaging slightly */ 228 permissions &= KDB_ENABLE_MASK; 229 permissions |= KDB_ENABLE_ALWAYS_SAFE; 230 231 /* some commands change group when launched with no arguments */ 232 if (no_args) 233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 234 235 flags |= KDB_ENABLE_ALL; 236 237 return permissions & flags; 238 } 239 240 /* 241 * kdbgetenv - This function will return the character string value of 242 * an environment variable. 243 * Parameters: 244 * match A character string representing an environment variable. 245 * Returns: 246 * NULL No environment variable matches 'match' 247 * char* Pointer to string value of environment variable. 248 */ 249 char *kdbgetenv(const char *match) 250 { 251 char **ep = __env; 252 int matchlen = strlen(match); 253 int i; 254 255 for (i = 0; i < __nenv; i++) { 256 char *e = *ep++; 257 258 if (!e) 259 continue; 260 261 if ((strncmp(match, e, matchlen) == 0) 262 && ((e[matchlen] == '\0') 263 || (e[matchlen] == '='))) { 264 char *cp = strchr(e, '='); 265 return cp ? ++cp : ""; 266 } 267 } 268 return NULL; 269 } 270 271 /* 272 * kdballocenv - This function is used to allocate bytes for 273 * environment entries. 274 * Parameters: 275 * bytes The number of bytes to allocate in the static buffer. 276 * Returns: 277 * A pointer to the allocated space in the buffer on success. 278 * NULL if bytes > size available in the envbuffer. 279 * Remarks: 280 * We use a static environment buffer (envbuffer) to hold the values 281 * of dynamically generated environment variables (see kdb_set). Buffer 282 * space once allocated is never free'd, so over time, the amount of space 283 * (currently 512 bytes) will be exhausted if env variables are changed 284 * frequently. 285 */ 286 static char *kdballocenv(size_t bytes) 287 { 288 #define KDB_ENVBUFSIZE 512 289 static char envbuffer[KDB_ENVBUFSIZE]; 290 static int envbufsize; 291 char *ep = NULL; 292 293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 294 ep = &envbuffer[envbufsize]; 295 envbufsize += bytes; 296 } 297 return ep; 298 } 299 300 /* 301 * kdbgetulenv - This function will return the value of an unsigned 302 * long-valued environment variable. 303 * Parameters: 304 * match A character string representing a numeric value 305 * Outputs: 306 * *value the unsigned long representation of the env variable 'match' 307 * Returns: 308 * Zero on success, a kdb diagnostic on failure. 309 */ 310 static int kdbgetulenv(const char *match, unsigned long *value) 311 { 312 char *ep; 313 314 ep = kdbgetenv(match); 315 if (!ep) 316 return KDB_NOTENV; 317 if (strlen(ep) == 0) 318 return KDB_NOENVVALUE; 319 320 *value = simple_strtoul(ep, NULL, 0); 321 322 return 0; 323 } 324 325 /* 326 * kdbgetintenv - This function will return the value of an 327 * integer-valued environment variable. 328 * Parameters: 329 * match A character string representing an integer-valued env variable 330 * Outputs: 331 * *value the integer representation of the environment variable 'match' 332 * Returns: 333 * Zero on success, a kdb diagnostic on failure. 334 */ 335 int kdbgetintenv(const char *match, int *value) 336 { 337 unsigned long val; 338 int diag; 339 340 diag = kdbgetulenv(match, &val); 341 if (!diag) 342 *value = (int) val; 343 return diag; 344 } 345 346 /* 347 * kdb_setenv() - Alter an existing environment variable or create a new one. 348 * @var: Name of the variable 349 * @val: Value of the variable 350 * 351 * Return: Zero on success, a kdb diagnostic on failure. 352 */ 353 static int kdb_setenv(const char *var, const char *val) 354 { 355 int i; 356 char *ep; 357 size_t varlen, vallen; 358 359 varlen = strlen(var); 360 vallen = strlen(val); 361 ep = kdballocenv(varlen + vallen + 2); 362 if (ep == (char *)0) 363 return KDB_ENVBUFFULL; 364 365 sprintf(ep, "%s=%s", var, val); 366 367 for (i = 0; i < __nenv; i++) { 368 if (__env[i] 369 && ((strncmp(__env[i], var, varlen) == 0) 370 && ((__env[i][varlen] == '\0') 371 || (__env[i][varlen] == '=')))) { 372 __env[i] = ep; 373 return 0; 374 } 375 } 376 377 /* 378 * Wasn't existing variable. Fit into slot. 379 */ 380 for (i = 0; i < __nenv-1; i++) { 381 if (__env[i] == (char *)0) { 382 __env[i] = ep; 383 return 0; 384 } 385 } 386 387 return KDB_ENVFULL; 388 } 389 390 /* 391 * kdb_printenv() - Display the current environment variables. 392 */ 393 static void kdb_printenv(void) 394 { 395 int i; 396 397 for (i = 0; i < __nenv; i++) { 398 if (__env[i]) 399 kdb_printf("%s\n", __env[i]); 400 } 401 } 402 403 /* 404 * kdbgetularg - This function will convert a numeric string into an 405 * unsigned long value. 406 * Parameters: 407 * arg A character string representing a numeric value 408 * Outputs: 409 * *value the unsigned long representation of arg. 410 * Returns: 411 * Zero on success, a kdb diagnostic on failure. 412 */ 413 int kdbgetularg(const char *arg, unsigned long *value) 414 { 415 char *endp; 416 unsigned long val; 417 418 val = simple_strtoul(arg, &endp, 0); 419 420 if (endp == arg) { 421 /* 422 * Also try base 16, for us folks too lazy to type the 423 * leading 0x... 424 */ 425 val = simple_strtoul(arg, &endp, 16); 426 if (endp == arg) 427 return KDB_BADINT; 428 } 429 430 *value = val; 431 432 return 0; 433 } 434 435 int kdbgetu64arg(const char *arg, u64 *value) 436 { 437 char *endp; 438 u64 val; 439 440 val = simple_strtoull(arg, &endp, 0); 441 442 if (endp == arg) { 443 444 val = simple_strtoull(arg, &endp, 16); 445 if (endp == arg) 446 return KDB_BADINT; 447 } 448 449 *value = val; 450 451 return 0; 452 } 453 454 /* 455 * kdb_set - This function implements the 'set' command. Alter an 456 * existing environment variable or create a new one. 457 */ 458 int kdb_set(int argc, const char **argv) 459 { 460 /* 461 * we can be invoked two ways: 462 * set var=value argv[1]="var", argv[2]="value" 463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 464 * - if the latter, shift 'em down. 465 */ 466 if (argc == 3) { 467 argv[2] = argv[3]; 468 argc--; 469 } 470 471 if (argc != 2) 472 return KDB_ARGCOUNT; 473 474 /* 475 * Censor sensitive variables 476 */ 477 if (strcmp(argv[1], "PROMPT") == 0 && 478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 479 return KDB_NOPERM; 480 481 /* 482 * Check for internal variables 483 */ 484 if (strcmp(argv[1], "KDBDEBUG") == 0) { 485 unsigned int debugflags; 486 char *cp; 487 488 debugflags = simple_strtoul(argv[2], &cp, 0); 489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 490 kdb_printf("kdb: illegal debug flags '%s'\n", 491 argv[2]); 492 return 0; 493 } 494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK)) 495 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 496 497 return 0; 498 } 499 500 /* 501 * Tokenizer squashed the '=' sign. argv[1] is variable 502 * name, argv[2] = value. 503 */ 504 return kdb_setenv(argv[1], argv[2]); 505 } 506 507 static int kdb_check_regs(void) 508 { 509 if (!kdb_current_regs) { 510 kdb_printf("No current kdb registers." 511 " You may need to select another task\n"); 512 return KDB_BADREG; 513 } 514 return 0; 515 } 516 517 /* 518 * kdbgetaddrarg - This function is responsible for parsing an 519 * address-expression and returning the value of the expression, 520 * symbol name, and offset to the caller. 521 * 522 * The argument may consist of a numeric value (decimal or 523 * hexadecimal), a symbol name, a register name (preceded by the 524 * percent sign), an environment variable with a numeric value 525 * (preceded by a dollar sign) or a simple arithmetic expression 526 * consisting of a symbol name, +/-, and a numeric constant value 527 * (offset). 528 * Parameters: 529 * argc - count of arguments in argv 530 * argv - argument vector 531 * *nextarg - index to next unparsed argument in argv[] 532 * regs - Register state at time of KDB entry 533 * Outputs: 534 * *value - receives the value of the address-expression 535 * *offset - receives the offset specified, if any 536 * *name - receives the symbol name, if any 537 * *nextarg - index to next unparsed argument in argv[] 538 * Returns: 539 * zero is returned on success, a kdb diagnostic code is 540 * returned on error. 541 */ 542 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 543 unsigned long *value, long *offset, 544 char **name) 545 { 546 unsigned long addr; 547 unsigned long off = 0; 548 int positive; 549 int diag; 550 int found = 0; 551 char *symname; 552 char symbol = '\0'; 553 char *cp; 554 kdb_symtab_t symtab; 555 556 /* 557 * If the enable flags prohibit both arbitrary memory access 558 * and flow control then there are no reasonable grounds to 559 * provide symbol lookup. 560 */ 561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 562 kdb_cmd_enabled, false)) 563 return KDB_NOPERM; 564 565 /* 566 * Process arguments which follow the following syntax: 567 * 568 * symbol | numeric-address [+/- numeric-offset] 569 * %register 570 * $environment-variable 571 */ 572 573 if (*nextarg > argc) 574 return KDB_ARGCOUNT; 575 576 symname = (char *)argv[*nextarg]; 577 578 /* 579 * If there is no whitespace between the symbol 580 * or address and the '+' or '-' symbols, we 581 * remember the character and replace it with a 582 * null so the symbol/value can be properly parsed 583 */ 584 cp = strpbrk(symname, "+-"); 585 if (cp != NULL) { 586 symbol = *cp; 587 *cp++ = '\0'; 588 } 589 590 if (symname[0] == '$') { 591 diag = kdbgetulenv(&symname[1], &addr); 592 if (diag) 593 return diag; 594 } else if (symname[0] == '%') { 595 diag = kdb_check_regs(); 596 if (diag) 597 return diag; 598 /* Implement register values with % at a later time as it is 599 * arch optional. 600 */ 601 return KDB_NOTIMP; 602 } else { 603 found = kdbgetsymval(symname, &symtab); 604 if (found) { 605 addr = symtab.sym_start; 606 } else { 607 diag = kdbgetularg(argv[*nextarg], &addr); 608 if (diag) 609 return diag; 610 } 611 } 612 613 if (!found) 614 found = kdbnearsym(addr, &symtab); 615 616 (*nextarg)++; 617 618 if (name) 619 *name = symname; 620 if (value) 621 *value = addr; 622 if (offset && name && *name) 623 *offset = addr - symtab.sym_start; 624 625 if ((*nextarg > argc) 626 && (symbol == '\0')) 627 return 0; 628 629 /* 630 * check for +/- and offset 631 */ 632 633 if (symbol == '\0') { 634 if ((argv[*nextarg][0] != '+') 635 && (argv[*nextarg][0] != '-')) { 636 /* 637 * Not our argument. Return. 638 */ 639 return 0; 640 } else { 641 positive = (argv[*nextarg][0] == '+'); 642 (*nextarg)++; 643 } 644 } else 645 positive = (symbol == '+'); 646 647 /* 648 * Now there must be an offset! 649 */ 650 if ((*nextarg > argc) 651 && (symbol == '\0')) { 652 return KDB_INVADDRFMT; 653 } 654 655 if (!symbol) { 656 cp = (char *)argv[*nextarg]; 657 (*nextarg)++; 658 } 659 660 diag = kdbgetularg(cp, &off); 661 if (diag) 662 return diag; 663 664 if (!positive) 665 off = -off; 666 667 if (offset) 668 *offset += off; 669 670 if (value) 671 *value += off; 672 673 return 0; 674 } 675 676 static void kdb_cmderror(int diag) 677 { 678 int i; 679 680 if (diag >= 0) { 681 kdb_printf("no error detected (diagnostic is %d)\n", diag); 682 return; 683 } 684 685 for (i = 0; i < __nkdb_err; i++) { 686 if (kdbmsgs[i].km_diag == diag) { 687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 688 return; 689 } 690 } 691 692 kdb_printf("Unknown diag %d\n", -diag); 693 } 694 695 /* 696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 697 * command which defines one command as a set of other commands, 698 * terminated by endefcmd. kdb_defcmd processes the initial 699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 700 * the following commands until 'endefcmd'. 701 * Inputs: 702 * argc argument count 703 * argv argument vector 704 * Returns: 705 * zero for success, a kdb diagnostic if error 706 */ 707 struct kdb_macro { 708 kdbtab_t cmd; /* Macro command */ 709 struct list_head statements; /* Associated statement list */ 710 }; 711 712 struct kdb_macro_statement { 713 char *statement; /* Statement text */ 714 struct list_head list_node; /* Statement list node */ 715 }; 716 717 static struct kdb_macro *kdb_macro; 718 static bool defcmd_in_progress; 719 720 /* Forward references */ 721 static int kdb_exec_defcmd(int argc, const char **argv); 722 723 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 724 { 725 struct kdb_macro_statement *kms; 726 727 if (!kdb_macro) 728 return KDB_NOTIMP; 729 730 if (strcmp(argv0, "endefcmd") == 0) { 731 defcmd_in_progress = false; 732 if (!list_empty(&kdb_macro->statements)) 733 kdb_register(&kdb_macro->cmd); 734 return 0; 735 } 736 737 kms = kmalloc(sizeof(*kms), GFP_KDB); 738 if (!kms) { 739 kdb_printf("Could not allocate new kdb macro command: %s\n", 740 cmdstr); 741 return KDB_NOTIMP; 742 } 743 744 kms->statement = kdb_strdup(cmdstr, GFP_KDB); 745 list_add_tail(&kms->list_node, &kdb_macro->statements); 746 747 return 0; 748 } 749 750 static int kdb_defcmd(int argc, const char **argv) 751 { 752 kdbtab_t *mp; 753 754 if (defcmd_in_progress) { 755 kdb_printf("kdb: nested defcmd detected, assuming missing " 756 "endefcmd\n"); 757 kdb_defcmd2("endefcmd", "endefcmd"); 758 } 759 if (argc == 0) { 760 kdbtab_t *kp; 761 struct kdb_macro *kmp; 762 struct kdb_macro_statement *kms; 763 764 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 765 if (kp->func == kdb_exec_defcmd) { 766 kdb_printf("defcmd %s \"%s\" \"%s\"\n", 767 kp->name, kp->usage, kp->help); 768 kmp = container_of(kp, struct kdb_macro, cmd); 769 list_for_each_entry(kms, &kmp->statements, 770 list_node) 771 kdb_printf("%s", kms->statement); 772 kdb_printf("endefcmd\n"); 773 } 774 } 775 return 0; 776 } 777 if (argc != 3) 778 return KDB_ARGCOUNT; 779 if (in_dbg_master()) { 780 kdb_printf("Command only available during kdb_init()\n"); 781 return KDB_NOTIMP; 782 } 783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB); 784 if (!kdb_macro) 785 goto fail_defcmd; 786 787 mp = &kdb_macro->cmd; 788 mp->func = kdb_exec_defcmd; 789 mp->minlen = 0; 790 mp->flags = KDB_ENABLE_ALWAYS_SAFE; 791 mp->name = kdb_strdup(argv[1], GFP_KDB); 792 if (!mp->name) 793 goto fail_name; 794 mp->usage = kdb_strdup(argv[2], GFP_KDB); 795 if (!mp->usage) 796 goto fail_usage; 797 mp->help = kdb_strdup(argv[3], GFP_KDB); 798 if (!mp->help) 799 goto fail_help; 800 if (mp->usage[0] == '"') { 801 strcpy(mp->usage, argv[2]+1); 802 mp->usage[strlen(mp->usage)-1] = '\0'; 803 } 804 if (mp->help[0] == '"') { 805 strcpy(mp->help, argv[3]+1); 806 mp->help[strlen(mp->help)-1] = '\0'; 807 } 808 809 INIT_LIST_HEAD(&kdb_macro->statements); 810 defcmd_in_progress = true; 811 return 0; 812 fail_help: 813 kfree(mp->usage); 814 fail_usage: 815 kfree(mp->name); 816 fail_name: 817 kfree(kdb_macro); 818 fail_defcmd: 819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]); 820 return KDB_NOTIMP; 821 } 822 823 /* 824 * kdb_exec_defcmd - Execute the set of commands associated with this 825 * defcmd name. 826 * Inputs: 827 * argc argument count 828 * argv argument vector 829 * Returns: 830 * zero for success, a kdb diagnostic if error 831 */ 832 static int kdb_exec_defcmd(int argc, const char **argv) 833 { 834 int ret; 835 kdbtab_t *kp; 836 struct kdb_macro *kmp; 837 struct kdb_macro_statement *kms; 838 839 if (argc != 0) 840 return KDB_ARGCOUNT; 841 842 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 843 if (strcmp(kp->name, argv[0]) == 0) 844 break; 845 } 846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) { 847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 848 argv[0]); 849 return KDB_NOTIMP; 850 } 851 kmp = container_of(kp, struct kdb_macro, cmd); 852 list_for_each_entry(kms, &kmp->statements, list_node) { 853 /* 854 * Recursive use of kdb_parse, do not use argv after this point. 855 */ 856 argv = NULL; 857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement); 858 ret = kdb_parse(kms->statement); 859 if (ret) 860 return ret; 861 } 862 return 0; 863 } 864 865 /* Command history */ 866 #define KDB_CMD_HISTORY_COUNT 32 867 #define CMD_BUFLEN 200 /* kdb_printf: max printline 868 * size == 256 */ 869 static unsigned int cmd_head, cmd_tail; 870 static unsigned int cmdptr; 871 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 872 static char cmd_cur[CMD_BUFLEN]; 873 874 /* 875 * The "str" argument may point to something like | grep xyz 876 */ 877 static void parse_grep(const char *str) 878 { 879 int len; 880 char *cp = (char *)str, *cp2; 881 882 /* sanity check: we should have been called with the \ first */ 883 if (*cp != '|') 884 return; 885 cp++; 886 while (isspace(*cp)) 887 cp++; 888 if (!str_has_prefix(cp, "grep ")) { 889 kdb_printf("invalid 'pipe', see grephelp\n"); 890 return; 891 } 892 cp += 5; 893 while (isspace(*cp)) 894 cp++; 895 cp2 = strchr(cp, '\n'); 896 if (cp2) 897 *cp2 = '\0'; /* remove the trailing newline */ 898 len = strlen(cp); 899 if (len == 0) { 900 kdb_printf("invalid 'pipe', see grephelp\n"); 901 return; 902 } 903 /* now cp points to a nonzero length search string */ 904 if (*cp == '"') { 905 /* allow it be "x y z" by removing the "'s - there must 906 be two of them */ 907 cp++; 908 cp2 = strchr(cp, '"'); 909 if (!cp2) { 910 kdb_printf("invalid quoted string, see grephelp\n"); 911 return; 912 } 913 *cp2 = '\0'; /* end the string where the 2nd " was */ 914 } 915 kdb_grep_leading = 0; 916 if (*cp == '^') { 917 kdb_grep_leading = 1; 918 cp++; 919 } 920 len = strlen(cp); 921 kdb_grep_trailing = 0; 922 if (*(cp+len-1) == '$') { 923 kdb_grep_trailing = 1; 924 *(cp+len-1) = '\0'; 925 } 926 len = strlen(cp); 927 if (!len) 928 return; 929 if (len >= KDB_GREP_STRLEN) { 930 kdb_printf("search string too long\n"); 931 return; 932 } 933 strcpy(kdb_grep_string, cp); 934 kdb_grepping_flag++; 935 return; 936 } 937 938 /* 939 * kdb_parse - Parse the command line, search the command table for a 940 * matching command and invoke the command function. This 941 * function may be called recursively, if it is, the second call 942 * will overwrite argv and cbuf. It is the caller's 943 * responsibility to save their argv if they recursively call 944 * kdb_parse(). 945 * Parameters: 946 * cmdstr The input command line to be parsed. 947 * regs The registers at the time kdb was entered. 948 * Returns: 949 * Zero for success, a kdb diagnostic if failure. 950 * Remarks: 951 * Limited to 20 tokens. 952 * 953 * Real rudimentary tokenization. Basically only whitespace 954 * is considered a token delimiter (but special consideration 955 * is taken of the '=' sign as used by the 'set' command). 956 * 957 * The algorithm used to tokenize the input string relies on 958 * there being at least one whitespace (or otherwise useless) 959 * character between tokens as the character immediately following 960 * the token is altered in-place to a null-byte to terminate the 961 * token string. 962 */ 963 964 #define MAXARGC 20 965 966 int kdb_parse(const char *cmdstr) 967 { 968 static char *argv[MAXARGC]; 969 static int argc; 970 static char cbuf[CMD_BUFLEN+2]; 971 char *cp; 972 char *cpp, quoted; 973 kdbtab_t *tp; 974 int escaped, ignore_errors = 0, check_grep = 0; 975 976 /* 977 * First tokenize the command string. 978 */ 979 cp = (char *)cmdstr; 980 981 if (KDB_FLAG(CMD_INTERRUPT)) { 982 /* Previous command was interrupted, newline must not 983 * repeat the command */ 984 KDB_FLAG_CLEAR(CMD_INTERRUPT); 985 KDB_STATE_SET(PAGER); 986 argc = 0; /* no repeat */ 987 } 988 989 if (*cp != '\n' && *cp != '\0') { 990 argc = 0; 991 cpp = cbuf; 992 while (*cp) { 993 /* skip whitespace */ 994 while (isspace(*cp)) 995 cp++; 996 if ((*cp == '\0') || (*cp == '\n') || 997 (*cp == '#' && !defcmd_in_progress)) 998 break; 999 /* special case: check for | grep pattern */ 1000 if (*cp == '|') { 1001 check_grep++; 1002 break; 1003 } 1004 if (cpp >= cbuf + CMD_BUFLEN) { 1005 kdb_printf("kdb_parse: command buffer " 1006 "overflow, command ignored\n%s\n", 1007 cmdstr); 1008 return KDB_NOTFOUND; 1009 } 1010 if (argc >= MAXARGC - 1) { 1011 kdb_printf("kdb_parse: too many arguments, " 1012 "command ignored\n%s\n", cmdstr); 1013 return KDB_NOTFOUND; 1014 } 1015 argv[argc++] = cpp; 1016 escaped = 0; 1017 quoted = '\0'; 1018 /* Copy to next unquoted and unescaped 1019 * whitespace or '=' */ 1020 while (*cp && *cp != '\n' && 1021 (escaped || quoted || !isspace(*cp))) { 1022 if (cpp >= cbuf + CMD_BUFLEN) 1023 break; 1024 if (escaped) { 1025 escaped = 0; 1026 *cpp++ = *cp++; 1027 continue; 1028 } 1029 if (*cp == '\\') { 1030 escaped = 1; 1031 ++cp; 1032 continue; 1033 } 1034 if (*cp == quoted) 1035 quoted = '\0'; 1036 else if (*cp == '\'' || *cp == '"') 1037 quoted = *cp; 1038 *cpp = *cp++; 1039 if (*cpp == '=' && !quoted) 1040 break; 1041 ++cpp; 1042 } 1043 *cpp++ = '\0'; /* Squash a ws or '=' character */ 1044 } 1045 } 1046 if (!argc) 1047 return 0; 1048 if (check_grep) 1049 parse_grep(cp); 1050 if (defcmd_in_progress) { 1051 int result = kdb_defcmd2(cmdstr, argv[0]); 1052 if (!defcmd_in_progress) { 1053 argc = 0; /* avoid repeat on endefcmd */ 1054 *(argv[0]) = '\0'; 1055 } 1056 return result; 1057 } 1058 if (argv[0][0] == '-' && argv[0][1] && 1059 (argv[0][1] < '0' || argv[0][1] > '9')) { 1060 ignore_errors = 1; 1061 ++argv[0]; 1062 } 1063 1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1065 /* 1066 * If this command is allowed to be abbreviated, 1067 * check to see if this is it. 1068 */ 1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) && 1070 (strncmp(argv[0], tp->name, tp->minlen) == 0)) 1071 break; 1072 1073 if (strcmp(argv[0], tp->name) == 0) 1074 break; 1075 } 1076 1077 /* 1078 * If we don't find a command by this name, see if the first 1079 * few characters of this match any of the known commands. 1080 * e.g., md1c20 should match md. 1081 */ 1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0) 1085 break; 1086 } 1087 } 1088 1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1090 int result; 1091 1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1)) 1093 return KDB_NOPERM; 1094 1095 KDB_STATE_SET(CMD); 1096 result = (*tp->func)(argc-1, (const char **)argv); 1097 if (result && ignore_errors && result > KDB_CMD_GO) 1098 result = 0; 1099 KDB_STATE_CLEAR(CMD); 1100 1101 if (tp->flags & KDB_REPEAT_WITH_ARGS) 1102 return result; 1103 1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1105 if (argv[argc]) 1106 *(argv[argc]) = '\0'; 1107 return result; 1108 } 1109 1110 /* 1111 * If the input with which we were presented does not 1112 * map to an existing command, attempt to parse it as an 1113 * address argument and display the result. Useful for 1114 * obtaining the address of a variable, or the nearest symbol 1115 * to an address contained in a register. 1116 */ 1117 { 1118 unsigned long value; 1119 char *name = NULL; 1120 long offset; 1121 int nextarg = 0; 1122 1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1124 &value, &offset, &name)) { 1125 return KDB_NOTFOUND; 1126 } 1127 1128 kdb_printf("%s = ", argv[0]); 1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1130 kdb_printf("\n"); 1131 return 0; 1132 } 1133 } 1134 1135 1136 static int handle_ctrl_cmd(char *cmd) 1137 { 1138 #define CTRL_P 16 1139 #define CTRL_N 14 1140 1141 /* initial situation */ 1142 if (cmd_head == cmd_tail) 1143 return 0; 1144 switch (*cmd) { 1145 case CTRL_P: 1146 if (cmdptr != cmd_tail) 1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) % 1148 KDB_CMD_HISTORY_COUNT; 1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1150 return 1; 1151 case CTRL_N: 1152 if (cmdptr != cmd_head) 1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1155 return 1; 1156 } 1157 return 0; 1158 } 1159 1160 /* 1161 * kdb_reboot - This function implements the 'reboot' command. Reboot 1162 * the system immediately, or loop for ever on failure. 1163 */ 1164 static int kdb_reboot(int argc, const char **argv) 1165 { 1166 emergency_restart(); 1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1168 while (1) 1169 cpu_relax(); 1170 /* NOTREACHED */ 1171 return 0; 1172 } 1173 1174 static void kdb_dumpregs(struct pt_regs *regs) 1175 { 1176 int old_lvl = console_loglevel; 1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1178 kdb_trap_printk++; 1179 show_regs(regs); 1180 kdb_trap_printk--; 1181 kdb_printf("\n"); 1182 console_loglevel = old_lvl; 1183 } 1184 1185 static void kdb_set_current_task(struct task_struct *p) 1186 { 1187 kdb_current_task = p; 1188 1189 if (kdb_task_has_cpu(p)) { 1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1191 return; 1192 } 1193 kdb_current_regs = NULL; 1194 } 1195 1196 static void drop_newline(char *buf) 1197 { 1198 size_t len = strlen(buf); 1199 1200 if (len == 0) 1201 return; 1202 if (*(buf + len - 1) == '\n') 1203 *(buf + len - 1) = '\0'; 1204 } 1205 1206 /* 1207 * kdb_local - The main code for kdb. This routine is invoked on a 1208 * specific processor, it is not global. The main kdb() routine 1209 * ensures that only one processor at a time is in this routine. 1210 * This code is called with the real reason code on the first 1211 * entry to a kdb session, thereafter it is called with reason 1212 * SWITCH, even if the user goes back to the original cpu. 1213 * Inputs: 1214 * reason The reason KDB was invoked 1215 * error The hardware-defined error code 1216 * regs The exception frame at time of fault/breakpoint. 1217 * db_result Result code from the break or debug point. 1218 * Returns: 1219 * 0 KDB was invoked for an event which it wasn't responsible 1220 * 1 KDB handled the event for which it was invoked. 1221 * KDB_CMD_GO User typed 'go'. 1222 * KDB_CMD_CPU User switched to another cpu. 1223 * KDB_CMD_SS Single step. 1224 */ 1225 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1226 kdb_dbtrap_t db_result) 1227 { 1228 char *cmdbuf; 1229 int diag; 1230 struct task_struct *kdb_current = 1231 kdb_curr_task(raw_smp_processor_id()); 1232 1233 KDB_DEBUG_STATE("kdb_local 1", reason); 1234 1235 kdb_check_for_lockdown(); 1236 1237 kdb_go_count = 0; 1238 if (reason == KDB_REASON_DEBUG) { 1239 /* special case below */ 1240 } else { 1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1242 kdb_current, kdb_current ? kdb_current->pid : 0); 1243 #if defined(CONFIG_SMP) 1244 kdb_printf("on processor %d ", raw_smp_processor_id()); 1245 #endif 1246 } 1247 1248 switch (reason) { 1249 case KDB_REASON_DEBUG: 1250 { 1251 /* 1252 * If re-entering kdb after a single step 1253 * command, don't print the message. 1254 */ 1255 switch (db_result) { 1256 case KDB_DB_BPT: 1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1258 kdb_current, kdb_current->pid); 1259 #if defined(CONFIG_SMP) 1260 kdb_printf("on processor %d ", raw_smp_processor_id()); 1261 #endif 1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1263 instruction_pointer(regs)); 1264 break; 1265 case KDB_DB_SS: 1266 break; 1267 case KDB_DB_SSBPT: 1268 KDB_DEBUG_STATE("kdb_local 4", reason); 1269 return 1; /* kdba_db_trap did the work */ 1270 default: 1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1272 db_result); 1273 break; 1274 } 1275 1276 } 1277 break; 1278 case KDB_REASON_ENTER: 1279 if (KDB_STATE(KEYBOARD)) 1280 kdb_printf("due to Keyboard Entry\n"); 1281 else 1282 kdb_printf("due to KDB_ENTER()\n"); 1283 break; 1284 case KDB_REASON_KEYBOARD: 1285 KDB_STATE_SET(KEYBOARD); 1286 kdb_printf("due to Keyboard Entry\n"); 1287 break; 1288 case KDB_REASON_ENTER_SLAVE: 1289 /* drop through, slaves only get released via cpu switch */ 1290 case KDB_REASON_SWITCH: 1291 kdb_printf("due to cpu switch\n"); 1292 break; 1293 case KDB_REASON_OOPS: 1294 kdb_printf("Oops: %s\n", kdb_diemsg); 1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1296 instruction_pointer(regs)); 1297 kdb_dumpregs(regs); 1298 break; 1299 case KDB_REASON_SYSTEM_NMI: 1300 kdb_printf("due to System NonMaskable Interrupt\n"); 1301 break; 1302 case KDB_REASON_NMI: 1303 kdb_printf("due to NonMaskable Interrupt @ " 1304 kdb_machreg_fmt "\n", 1305 instruction_pointer(regs)); 1306 break; 1307 case KDB_REASON_SSTEP: 1308 case KDB_REASON_BREAK: 1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1310 reason == KDB_REASON_BREAK ? 1311 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1312 /* 1313 * Determine if this breakpoint is one that we 1314 * are interested in. 1315 */ 1316 if (db_result != KDB_DB_BPT) { 1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1318 db_result); 1319 KDB_DEBUG_STATE("kdb_local 6", reason); 1320 return 0; /* Not for us, dismiss it */ 1321 } 1322 break; 1323 case KDB_REASON_RECURSE: 1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1325 instruction_pointer(regs)); 1326 break; 1327 default: 1328 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1329 KDB_DEBUG_STATE("kdb_local 8", reason); 1330 return 0; /* Not for us, dismiss it */ 1331 } 1332 1333 while (1) { 1334 /* 1335 * Initialize pager context. 1336 */ 1337 kdb_nextline = 1; 1338 KDB_STATE_CLEAR(SUPPRESS); 1339 kdb_grepping_flag = 0; 1340 /* ensure the old search does not leak into '/' commands */ 1341 kdb_grep_string[0] = '\0'; 1342 1343 cmdbuf = cmd_cur; 1344 *cmdbuf = '\0'; 1345 *(cmd_hist[cmd_head]) = '\0'; 1346 1347 do_full_getstr: 1348 /* PROMPT can only be set if we have MEM_READ permission. */ 1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1350 raw_smp_processor_id()); 1351 1352 /* 1353 * Fetch command from keyboard 1354 */ 1355 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1356 if (*cmdbuf != '\n') { 1357 if (*cmdbuf < 32) { 1358 if (cmdptr == cmd_head) { 1359 strscpy(cmd_hist[cmd_head], cmd_cur, 1360 CMD_BUFLEN); 1361 *(cmd_hist[cmd_head] + 1362 strlen(cmd_hist[cmd_head])-1) = '\0'; 1363 } 1364 if (!handle_ctrl_cmd(cmdbuf)) 1365 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1366 cmdbuf = cmd_cur; 1367 goto do_full_getstr; 1368 } else { 1369 strscpy(cmd_hist[cmd_head], cmd_cur, 1370 CMD_BUFLEN); 1371 } 1372 1373 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1374 if (cmd_head == cmd_tail) 1375 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1376 } 1377 1378 cmdptr = cmd_head; 1379 diag = kdb_parse(cmdbuf); 1380 if (diag == KDB_NOTFOUND) { 1381 drop_newline(cmdbuf); 1382 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1383 diag = 0; 1384 } 1385 if (diag == KDB_CMD_GO 1386 || diag == KDB_CMD_CPU 1387 || diag == KDB_CMD_SS 1388 || diag == KDB_CMD_KGDB) 1389 break; 1390 1391 if (diag) 1392 kdb_cmderror(diag); 1393 } 1394 KDB_DEBUG_STATE("kdb_local 9", diag); 1395 return diag; 1396 } 1397 1398 1399 /* 1400 * kdb_print_state - Print the state data for the current processor 1401 * for debugging. 1402 * Inputs: 1403 * text Identifies the debug point 1404 * value Any integer value to be printed, e.g. reason code. 1405 */ 1406 void kdb_print_state(const char *text, int value) 1407 { 1408 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1409 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1410 kdb_state); 1411 } 1412 1413 /* 1414 * kdb_main_loop - After initial setup and assignment of the 1415 * controlling cpu, all cpus are in this loop. One cpu is in 1416 * control and will issue the kdb prompt, the others will spin 1417 * until 'go' or cpu switch. 1418 * 1419 * To get a consistent view of the kernel stacks for all 1420 * processes, this routine is invoked from the main kdb code via 1421 * an architecture specific routine. kdba_main_loop is 1422 * responsible for making the kernel stacks consistent for all 1423 * processes, there should be no difference between a blocked 1424 * process and a running process as far as kdb is concerned. 1425 * Inputs: 1426 * reason The reason KDB was invoked 1427 * error The hardware-defined error code 1428 * reason2 kdb's current reason code. 1429 * Initially error but can change 1430 * according to kdb state. 1431 * db_result Result code from break or debug point. 1432 * regs The exception frame at time of fault/breakpoint. 1433 * should always be valid. 1434 * Returns: 1435 * 0 KDB was invoked for an event which it wasn't responsible 1436 * 1 KDB handled the event for which it was invoked. 1437 */ 1438 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1439 kdb_dbtrap_t db_result, struct pt_regs *regs) 1440 { 1441 int result = 1; 1442 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1443 while (1) { 1444 /* 1445 * All processors except the one that is in control 1446 * will spin here. 1447 */ 1448 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1449 while (KDB_STATE(HOLD_CPU)) { 1450 /* state KDB is turned off by kdb_cpu to see if the 1451 * other cpus are still live, each cpu in this loop 1452 * turns it back on. 1453 */ 1454 if (!KDB_STATE(KDB)) 1455 KDB_STATE_SET(KDB); 1456 } 1457 1458 KDB_STATE_CLEAR(SUPPRESS); 1459 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1460 if (KDB_STATE(LEAVING)) 1461 break; /* Another cpu said 'go' */ 1462 /* Still using kdb, this processor is in control */ 1463 result = kdb_local(reason2, error, regs, db_result); 1464 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1465 1466 if (result == KDB_CMD_CPU) 1467 break; 1468 1469 if (result == KDB_CMD_SS) { 1470 KDB_STATE_SET(DOING_SS); 1471 break; 1472 } 1473 1474 if (result == KDB_CMD_KGDB) { 1475 if (!KDB_STATE(DOING_KGDB)) 1476 kdb_printf("Entering please attach debugger " 1477 "or use $D#44+ or $3#33\n"); 1478 break; 1479 } 1480 if (result && result != 1 && result != KDB_CMD_GO) 1481 kdb_printf("\nUnexpected kdb_local return code %d\n", 1482 result); 1483 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1484 break; 1485 } 1486 if (KDB_STATE(DOING_SS)) 1487 KDB_STATE_CLEAR(SSBPT); 1488 1489 /* Clean up any keyboard devices before leaving */ 1490 kdb_kbd_cleanup_state(); 1491 1492 return result; 1493 } 1494 1495 /* 1496 * kdb_mdr - This function implements the guts of the 'mdr', memory 1497 * read command. 1498 * mdr <addr arg>,<byte count> 1499 * Inputs: 1500 * addr Start address 1501 * count Number of bytes 1502 * Returns: 1503 * Always 0. Any errors are detected and printed by kdb_getarea. 1504 */ 1505 static int kdb_mdr(unsigned long addr, unsigned int count) 1506 { 1507 unsigned char c; 1508 while (count--) { 1509 if (kdb_getarea(c, addr)) 1510 return 0; 1511 kdb_printf("%02x", c); 1512 addr++; 1513 } 1514 kdb_printf("\n"); 1515 return 0; 1516 } 1517 1518 /* 1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1520 * 'md8' 'mdr' and 'mds' commands. 1521 * 1522 * md|mds [<addr arg> [<line count> [<radix>]]] 1523 * mdWcN [<addr arg> [<line count> [<radix>]]] 1524 * where W = is the width (1, 2, 4 or 8) and N is the count. 1525 * for eg., md1c20 reads 20 bytes, 1 at a time. 1526 * mdr <addr arg>,<byte count> 1527 */ 1528 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1529 int symbolic, int nosect, int bytesperword, 1530 int num, int repeat, int phys) 1531 { 1532 /* print just one line of data */ 1533 kdb_symtab_t symtab; 1534 char cbuf[32]; 1535 char *c = cbuf; 1536 int i; 1537 int j; 1538 unsigned long word; 1539 1540 memset(cbuf, '\0', sizeof(cbuf)); 1541 if (phys) 1542 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1543 else 1544 kdb_printf(kdb_machreg_fmt0 " ", addr); 1545 1546 for (i = 0; i < num && repeat--; i++) { 1547 if (phys) { 1548 if (kdb_getphysword(&word, addr, bytesperword)) 1549 break; 1550 } else if (kdb_getword(&word, addr, bytesperword)) 1551 break; 1552 kdb_printf(fmtstr, word); 1553 if (symbolic) 1554 kdbnearsym(word, &symtab); 1555 else 1556 memset(&symtab, 0, sizeof(symtab)); 1557 if (symtab.sym_name) { 1558 kdb_symbol_print(word, &symtab, 0); 1559 if (!nosect) { 1560 kdb_printf("\n"); 1561 kdb_printf(" %s %s " 1562 kdb_machreg_fmt " " 1563 kdb_machreg_fmt " " 1564 kdb_machreg_fmt, symtab.mod_name, 1565 symtab.sec_name, symtab.sec_start, 1566 symtab.sym_start, symtab.sym_end); 1567 } 1568 addr += bytesperword; 1569 } else { 1570 union { 1571 u64 word; 1572 unsigned char c[8]; 1573 } wc; 1574 unsigned char *cp; 1575 #ifdef __BIG_ENDIAN 1576 cp = wc.c + 8 - bytesperword; 1577 #else 1578 cp = wc.c; 1579 #endif 1580 wc.word = word; 1581 #define printable_char(c) \ 1582 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1583 for (j = 0; j < bytesperword; j++) 1584 *c++ = printable_char(*cp++); 1585 addr += bytesperword; 1586 #undef printable_char 1587 } 1588 } 1589 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1590 " ", cbuf); 1591 } 1592 1593 static int kdb_md(int argc, const char **argv) 1594 { 1595 static unsigned long last_addr; 1596 static int last_radix, last_bytesperword, last_repeat; 1597 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1598 int nosect = 0; 1599 char fmtchar, fmtstr[64]; 1600 unsigned long addr; 1601 unsigned long word; 1602 long offset = 0; 1603 int symbolic = 0; 1604 int valid = 0; 1605 int phys = 0; 1606 int raw = 0; 1607 1608 kdbgetintenv("MDCOUNT", &mdcount); 1609 kdbgetintenv("RADIX", &radix); 1610 kdbgetintenv("BYTESPERWORD", &bytesperword); 1611 1612 /* Assume 'md <addr>' and start with environment values */ 1613 repeat = mdcount * 16 / bytesperword; 1614 1615 if (strcmp(argv[0], "mdr") == 0) { 1616 if (argc == 2 || (argc == 0 && last_addr != 0)) 1617 valid = raw = 1; 1618 else 1619 return KDB_ARGCOUNT; 1620 } else if (isdigit(argv[0][2])) { 1621 bytesperword = (int)(argv[0][2] - '0'); 1622 if (bytesperword == 0) { 1623 bytesperword = last_bytesperword; 1624 if (bytesperword == 0) 1625 bytesperword = 4; 1626 } 1627 last_bytesperword = bytesperword; 1628 repeat = mdcount * 16 / bytesperword; 1629 if (!argv[0][3]) 1630 valid = 1; 1631 else if (argv[0][3] == 'c' && argv[0][4]) { 1632 char *p; 1633 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1634 mdcount = ((repeat * bytesperword) + 15) / 16; 1635 valid = !*p; 1636 } 1637 last_repeat = repeat; 1638 } else if (strcmp(argv[0], "md") == 0) 1639 valid = 1; 1640 else if (strcmp(argv[0], "mds") == 0) 1641 valid = 1; 1642 else if (strcmp(argv[0], "mdp") == 0) { 1643 phys = valid = 1; 1644 } 1645 if (!valid) 1646 return KDB_NOTFOUND; 1647 1648 if (argc == 0) { 1649 if (last_addr == 0) 1650 return KDB_ARGCOUNT; 1651 addr = last_addr; 1652 radix = last_radix; 1653 bytesperword = last_bytesperword; 1654 repeat = last_repeat; 1655 if (raw) 1656 mdcount = repeat; 1657 else 1658 mdcount = ((repeat * bytesperword) + 15) / 16; 1659 } 1660 1661 if (argc) { 1662 unsigned long val; 1663 int diag, nextarg = 1; 1664 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1665 &offset, NULL); 1666 if (diag) 1667 return diag; 1668 if (argc > nextarg+2) 1669 return KDB_ARGCOUNT; 1670 1671 if (argc >= nextarg) { 1672 diag = kdbgetularg(argv[nextarg], &val); 1673 if (!diag) { 1674 mdcount = (int) val; 1675 if (raw) 1676 repeat = mdcount; 1677 else 1678 repeat = mdcount * 16 / bytesperword; 1679 } 1680 } 1681 if (argc >= nextarg+1) { 1682 diag = kdbgetularg(argv[nextarg+1], &val); 1683 if (!diag) 1684 radix = (int) val; 1685 } 1686 } 1687 1688 if (strcmp(argv[0], "mdr") == 0) { 1689 int ret; 1690 last_addr = addr; 1691 ret = kdb_mdr(addr, mdcount); 1692 last_addr += mdcount; 1693 last_repeat = mdcount; 1694 last_bytesperword = bytesperword; // to make REPEAT happy 1695 return ret; 1696 } 1697 1698 switch (radix) { 1699 case 10: 1700 fmtchar = 'd'; 1701 break; 1702 case 16: 1703 fmtchar = 'x'; 1704 break; 1705 case 8: 1706 fmtchar = 'o'; 1707 break; 1708 default: 1709 return KDB_BADRADIX; 1710 } 1711 1712 last_radix = radix; 1713 1714 if (bytesperword > KDB_WORD_SIZE) 1715 return KDB_BADWIDTH; 1716 1717 switch (bytesperword) { 1718 case 8: 1719 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1720 break; 1721 case 4: 1722 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1723 break; 1724 case 2: 1725 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1726 break; 1727 case 1: 1728 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1729 break; 1730 default: 1731 return KDB_BADWIDTH; 1732 } 1733 1734 last_repeat = repeat; 1735 last_bytesperword = bytesperword; 1736 1737 if (strcmp(argv[0], "mds") == 0) { 1738 symbolic = 1; 1739 /* Do not save these changes as last_*, they are temporary mds 1740 * overrides. 1741 */ 1742 bytesperword = KDB_WORD_SIZE; 1743 repeat = mdcount; 1744 kdbgetintenv("NOSECT", &nosect); 1745 } 1746 1747 /* Round address down modulo BYTESPERWORD */ 1748 1749 addr &= ~(bytesperword-1); 1750 1751 while (repeat > 0) { 1752 unsigned long a; 1753 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1754 1755 if (KDB_FLAG(CMD_INTERRUPT)) 1756 return 0; 1757 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1758 if (phys) { 1759 if (kdb_getphysword(&word, a, bytesperword) 1760 || word) 1761 break; 1762 } else if (kdb_getword(&word, a, bytesperword) || word) 1763 break; 1764 } 1765 n = min(num, repeat); 1766 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1767 num, repeat, phys); 1768 addr += bytesperword * n; 1769 repeat -= n; 1770 z = (z + num - 1) / num; 1771 if (z > 2) { 1772 int s = num * (z-2); 1773 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1774 " zero suppressed\n", 1775 addr, addr + bytesperword * s - 1); 1776 addr += bytesperword * s; 1777 repeat -= s; 1778 } 1779 } 1780 last_addr = addr; 1781 1782 return 0; 1783 } 1784 1785 /* 1786 * kdb_mm - This function implements the 'mm' command. 1787 * mm address-expression new-value 1788 * Remarks: 1789 * mm works on machine words, mmW works on bytes. 1790 */ 1791 static int kdb_mm(int argc, const char **argv) 1792 { 1793 int diag; 1794 unsigned long addr; 1795 long offset = 0; 1796 unsigned long contents; 1797 int nextarg; 1798 int width; 1799 1800 if (argv[0][2] && !isdigit(argv[0][2])) 1801 return KDB_NOTFOUND; 1802 1803 if (argc < 2) 1804 return KDB_ARGCOUNT; 1805 1806 nextarg = 1; 1807 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1808 if (diag) 1809 return diag; 1810 1811 if (nextarg > argc) 1812 return KDB_ARGCOUNT; 1813 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1814 if (diag) 1815 return diag; 1816 1817 if (nextarg != argc + 1) 1818 return KDB_ARGCOUNT; 1819 1820 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1821 diag = kdb_putword(addr, contents, width); 1822 if (diag) 1823 return diag; 1824 1825 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1826 1827 return 0; 1828 } 1829 1830 /* 1831 * kdb_go - This function implements the 'go' command. 1832 * go [address-expression] 1833 */ 1834 static int kdb_go(int argc, const char **argv) 1835 { 1836 unsigned long addr; 1837 int diag; 1838 int nextarg; 1839 long offset; 1840 1841 if (raw_smp_processor_id() != kdb_initial_cpu) { 1842 kdb_printf("go must execute on the entry cpu, " 1843 "please use \"cpu %d\" and then execute go\n", 1844 kdb_initial_cpu); 1845 return KDB_BADCPUNUM; 1846 } 1847 if (argc == 1) { 1848 nextarg = 1; 1849 diag = kdbgetaddrarg(argc, argv, &nextarg, 1850 &addr, &offset, NULL); 1851 if (diag) 1852 return diag; 1853 } else if (argc) { 1854 return KDB_ARGCOUNT; 1855 } 1856 1857 diag = KDB_CMD_GO; 1858 if (KDB_FLAG(CATASTROPHIC)) { 1859 kdb_printf("Catastrophic error detected\n"); 1860 kdb_printf("kdb_continue_catastrophic=%d, ", 1861 kdb_continue_catastrophic); 1862 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1863 kdb_printf("type go a second time if you really want " 1864 "to continue\n"); 1865 return 0; 1866 } 1867 if (kdb_continue_catastrophic == 2) { 1868 kdb_printf("forcing reboot\n"); 1869 kdb_reboot(0, NULL); 1870 } 1871 kdb_printf("attempting to continue\n"); 1872 } 1873 return diag; 1874 } 1875 1876 /* 1877 * kdb_rd - This function implements the 'rd' command. 1878 */ 1879 static int kdb_rd(int argc, const char **argv) 1880 { 1881 int len = kdb_check_regs(); 1882 #if DBG_MAX_REG_NUM > 0 1883 int i; 1884 char *rname; 1885 int rsize; 1886 u64 reg64; 1887 u32 reg32; 1888 u16 reg16; 1889 u8 reg8; 1890 1891 if (len) 1892 return len; 1893 1894 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1895 rsize = dbg_reg_def[i].size * 2; 1896 if (rsize > 16) 1897 rsize = 2; 1898 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1899 len = 0; 1900 kdb_printf("\n"); 1901 } 1902 if (len) 1903 len += kdb_printf(" "); 1904 switch(dbg_reg_def[i].size * 8) { 1905 case 8: 1906 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1907 if (!rname) 1908 break; 1909 len += kdb_printf("%s: %02x", rname, reg8); 1910 break; 1911 case 16: 1912 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1913 if (!rname) 1914 break; 1915 len += kdb_printf("%s: %04x", rname, reg16); 1916 break; 1917 case 32: 1918 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1919 if (!rname) 1920 break; 1921 len += kdb_printf("%s: %08x", rname, reg32); 1922 break; 1923 case 64: 1924 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1925 if (!rname) 1926 break; 1927 len += kdb_printf("%s: %016llx", rname, reg64); 1928 break; 1929 default: 1930 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1931 } 1932 } 1933 kdb_printf("\n"); 1934 #else 1935 if (len) 1936 return len; 1937 1938 kdb_dumpregs(kdb_current_regs); 1939 #endif 1940 return 0; 1941 } 1942 1943 /* 1944 * kdb_rm - This function implements the 'rm' (register modify) command. 1945 * rm register-name new-contents 1946 * Remarks: 1947 * Allows register modification with the same restrictions as gdb 1948 */ 1949 static int kdb_rm(int argc, const char **argv) 1950 { 1951 #if DBG_MAX_REG_NUM > 0 1952 int diag; 1953 const char *rname; 1954 int i; 1955 u64 reg64; 1956 u32 reg32; 1957 u16 reg16; 1958 u8 reg8; 1959 1960 if (argc != 2) 1961 return KDB_ARGCOUNT; 1962 /* 1963 * Allow presence or absence of leading '%' symbol. 1964 */ 1965 rname = argv[1]; 1966 if (*rname == '%') 1967 rname++; 1968 1969 diag = kdbgetu64arg(argv[2], ®64); 1970 if (diag) 1971 return diag; 1972 1973 diag = kdb_check_regs(); 1974 if (diag) 1975 return diag; 1976 1977 diag = KDB_BADREG; 1978 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1979 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1980 diag = 0; 1981 break; 1982 } 1983 } 1984 if (!diag) { 1985 switch(dbg_reg_def[i].size * 8) { 1986 case 8: 1987 reg8 = reg64; 1988 dbg_set_reg(i, ®8, kdb_current_regs); 1989 break; 1990 case 16: 1991 reg16 = reg64; 1992 dbg_set_reg(i, ®16, kdb_current_regs); 1993 break; 1994 case 32: 1995 reg32 = reg64; 1996 dbg_set_reg(i, ®32, kdb_current_regs); 1997 break; 1998 case 64: 1999 dbg_set_reg(i, ®64, kdb_current_regs); 2000 break; 2001 } 2002 } 2003 return diag; 2004 #else 2005 kdb_printf("ERROR: Register set currently not implemented\n"); 2006 return 0; 2007 #endif 2008 } 2009 2010 #if defined(CONFIG_MAGIC_SYSRQ) 2011 /* 2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 2013 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 2014 * sr <magic-sysrq-code> 2015 */ 2016 static int kdb_sr(int argc, const char **argv) 2017 { 2018 bool check_mask = 2019 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 2020 2021 if (argc != 1) 2022 return KDB_ARGCOUNT; 2023 2024 kdb_trap_printk++; 2025 __handle_sysrq(*argv[1], check_mask); 2026 kdb_trap_printk--; 2027 2028 return 0; 2029 } 2030 #endif /* CONFIG_MAGIC_SYSRQ */ 2031 2032 /* 2033 * kdb_ef - This function implements the 'regs' (display exception 2034 * frame) command. This command takes an address and expects to 2035 * find an exception frame at that address, formats and prints 2036 * it. 2037 * regs address-expression 2038 * Remarks: 2039 * Not done yet. 2040 */ 2041 static int kdb_ef(int argc, const char **argv) 2042 { 2043 int diag; 2044 unsigned long addr; 2045 long offset; 2046 int nextarg; 2047 2048 if (argc != 1) 2049 return KDB_ARGCOUNT; 2050 2051 nextarg = 1; 2052 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2053 if (diag) 2054 return diag; 2055 show_regs((struct pt_regs *)addr); 2056 return 0; 2057 } 2058 2059 /* 2060 * kdb_env - This function implements the 'env' command. Display the 2061 * current environment variables. 2062 */ 2063 2064 static int kdb_env(int argc, const char **argv) 2065 { 2066 kdb_printenv(); 2067 2068 if (KDB_DEBUG(MASK)) 2069 kdb_printf("KDBDEBUG=0x%x\n", 2070 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT); 2071 2072 return 0; 2073 } 2074 2075 #ifdef CONFIG_PRINTK 2076 /* 2077 * kdb_dmesg - This function implements the 'dmesg' command to display 2078 * the contents of the syslog buffer. 2079 * dmesg [lines] [adjust] 2080 */ 2081 static int kdb_dmesg(int argc, const char **argv) 2082 { 2083 int diag; 2084 int logging; 2085 int lines = 0; 2086 int adjust = 0; 2087 int n = 0; 2088 int skip = 0; 2089 struct kmsg_dump_iter iter; 2090 size_t len; 2091 char buf[201]; 2092 2093 if (argc > 2) 2094 return KDB_ARGCOUNT; 2095 if (argc) { 2096 char *cp; 2097 lines = simple_strtol(argv[1], &cp, 0); 2098 if (*cp) 2099 lines = 0; 2100 if (argc > 1) { 2101 adjust = simple_strtoul(argv[2], &cp, 0); 2102 if (*cp || adjust < 0) 2103 adjust = 0; 2104 } 2105 } 2106 2107 /* disable LOGGING if set */ 2108 diag = kdbgetintenv("LOGGING", &logging); 2109 if (!diag && logging) { 2110 const char *setargs[] = { "set", "LOGGING", "0" }; 2111 kdb_set(2, setargs); 2112 } 2113 2114 kmsg_dump_rewind(&iter); 2115 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL)) 2116 n++; 2117 2118 if (lines < 0) { 2119 if (adjust >= n) 2120 kdb_printf("buffer only contains %d lines, nothing " 2121 "printed\n", n); 2122 else if (adjust - lines >= n) 2123 kdb_printf("buffer only contains %d lines, last %d " 2124 "lines printed\n", n, n - adjust); 2125 skip = adjust; 2126 lines = abs(lines); 2127 } else if (lines > 0) { 2128 skip = n - lines - adjust; 2129 lines = abs(lines); 2130 if (adjust >= n) { 2131 kdb_printf("buffer only contains %d lines, " 2132 "nothing printed\n", n); 2133 skip = n; 2134 } else if (skip < 0) { 2135 lines += skip; 2136 skip = 0; 2137 kdb_printf("buffer only contains %d lines, first " 2138 "%d lines printed\n", n, lines); 2139 } 2140 } else { 2141 lines = n; 2142 } 2143 2144 if (skip >= n || skip < 0) 2145 return 0; 2146 2147 kmsg_dump_rewind(&iter); 2148 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) { 2149 if (skip) { 2150 skip--; 2151 continue; 2152 } 2153 if (!lines--) 2154 break; 2155 if (KDB_FLAG(CMD_INTERRUPT)) 2156 return 0; 2157 2158 kdb_printf("%.*s\n", (int)len - 1, buf); 2159 } 2160 2161 return 0; 2162 } 2163 #endif /* CONFIG_PRINTK */ 2164 2165 /* Make sure we balance enable/disable calls, must disable first. */ 2166 static atomic_t kdb_nmi_disabled; 2167 2168 static int kdb_disable_nmi(int argc, const char *argv[]) 2169 { 2170 if (atomic_read(&kdb_nmi_disabled)) 2171 return 0; 2172 atomic_set(&kdb_nmi_disabled, 1); 2173 arch_kgdb_ops.enable_nmi(0); 2174 return 0; 2175 } 2176 2177 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2178 { 2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2180 return -EINVAL; 2181 arch_kgdb_ops.enable_nmi(1); 2182 return 0; 2183 } 2184 2185 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2186 .set = kdb_param_enable_nmi, 2187 }; 2188 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2189 2190 /* 2191 * kdb_cpu - This function implements the 'cpu' command. 2192 * cpu [<cpunum>] 2193 * Returns: 2194 * KDB_CMD_CPU for success, a kdb diagnostic if error 2195 */ 2196 static void kdb_cpu_status(void) 2197 { 2198 int i, start_cpu, first_print = 1; 2199 char state, prev_state = '?'; 2200 2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2202 kdb_printf("Available cpus: "); 2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2204 if (!cpu_online(i)) { 2205 state = 'F'; /* cpu is offline */ 2206 } else if (!kgdb_info[i].enter_kgdb) { 2207 state = 'D'; /* cpu is online but unresponsive */ 2208 } else { 2209 state = ' '; /* cpu is responding to kdb */ 2210 if (kdb_task_state_char(KDB_TSK(i)) == '-') 2211 state = '-'; /* idle task */ 2212 } 2213 if (state != prev_state) { 2214 if (prev_state != '?') { 2215 if (!first_print) 2216 kdb_printf(", "); 2217 first_print = 0; 2218 kdb_printf("%d", start_cpu); 2219 if (start_cpu < i-1) 2220 kdb_printf("-%d", i-1); 2221 if (prev_state != ' ') 2222 kdb_printf("(%c)", prev_state); 2223 } 2224 prev_state = state; 2225 start_cpu = i; 2226 } 2227 } 2228 /* print the trailing cpus, ignoring them if they are all offline */ 2229 if (prev_state != 'F') { 2230 if (!first_print) 2231 kdb_printf(", "); 2232 kdb_printf("%d", start_cpu); 2233 if (start_cpu < i-1) 2234 kdb_printf("-%d", i-1); 2235 if (prev_state != ' ') 2236 kdb_printf("(%c)", prev_state); 2237 } 2238 kdb_printf("\n"); 2239 } 2240 2241 static int kdb_cpu(int argc, const char **argv) 2242 { 2243 unsigned long cpunum; 2244 int diag; 2245 2246 if (argc == 0) { 2247 kdb_cpu_status(); 2248 return 0; 2249 } 2250 2251 if (argc != 1) 2252 return KDB_ARGCOUNT; 2253 2254 diag = kdbgetularg(argv[1], &cpunum); 2255 if (diag) 2256 return diag; 2257 2258 /* 2259 * Validate cpunum 2260 */ 2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2262 return KDB_BADCPUNUM; 2263 2264 dbg_switch_cpu = cpunum; 2265 2266 /* 2267 * Switch to other cpu 2268 */ 2269 return KDB_CMD_CPU; 2270 } 2271 2272 /* The user may not realize that ps/bta with no parameters does not print idle 2273 * or sleeping system daemon processes, so tell them how many were suppressed. 2274 */ 2275 void kdb_ps_suppressed(void) 2276 { 2277 int idle = 0, daemon = 0; 2278 unsigned long cpu; 2279 const struct task_struct *p, *g; 2280 for_each_online_cpu(cpu) { 2281 p = kdb_curr_task(cpu); 2282 if (kdb_task_state(p, "-")) 2283 ++idle; 2284 } 2285 for_each_process_thread(g, p) { 2286 if (kdb_task_state(p, "ims")) 2287 ++daemon; 2288 } 2289 if (idle || daemon) { 2290 if (idle) 2291 kdb_printf("%d idle process%s (state -)%s\n", 2292 idle, idle == 1 ? "" : "es", 2293 daemon ? " and " : ""); 2294 if (daemon) 2295 kdb_printf("%d sleeping system daemon (state [ims]) " 2296 "process%s", daemon, 2297 daemon == 1 ? "" : "es"); 2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2299 } 2300 } 2301 2302 void kdb_ps1(const struct task_struct *p) 2303 { 2304 int cpu; 2305 unsigned long tmp; 2306 2307 if (!p || 2308 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) 2309 return; 2310 2311 cpu = kdb_process_cpu(p); 2312 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2313 (void *)p, p->pid, p->parent->pid, 2314 kdb_task_has_cpu(p), kdb_process_cpu(p), 2315 kdb_task_state_char(p), 2316 (void *)(&p->thread), 2317 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2318 p->comm); 2319 if (kdb_task_has_cpu(p)) { 2320 if (!KDB_TSK(cpu)) { 2321 kdb_printf(" Error: no saved data for this cpu\n"); 2322 } else { 2323 if (KDB_TSK(cpu) != p) 2324 kdb_printf(" Error: does not match running " 2325 "process table (0x%px)\n", KDB_TSK(cpu)); 2326 } 2327 } 2328 } 2329 2330 /* 2331 * kdb_ps - This function implements the 'ps' command which shows a 2332 * list of the active processes. 2333 * 2334 * ps [<state_chars>] Show processes, optionally selecting only those whose 2335 * state character is found in <state_chars>. 2336 */ 2337 static int kdb_ps(int argc, const char **argv) 2338 { 2339 struct task_struct *g, *p; 2340 const char *mask; 2341 unsigned long cpu; 2342 2343 if (argc == 0) 2344 kdb_ps_suppressed(); 2345 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2346 (int)(2*sizeof(void *))+2, "Task Addr", 2347 (int)(2*sizeof(void *))+2, "Thread"); 2348 mask = argc ? argv[1] : kdbgetenv("PS"); 2349 /* Run the active tasks first */ 2350 for_each_online_cpu(cpu) { 2351 if (KDB_FLAG(CMD_INTERRUPT)) 2352 return 0; 2353 p = kdb_curr_task(cpu); 2354 if (kdb_task_state(p, mask)) 2355 kdb_ps1(p); 2356 } 2357 kdb_printf("\n"); 2358 /* Now the real tasks */ 2359 for_each_process_thread(g, p) { 2360 if (KDB_FLAG(CMD_INTERRUPT)) 2361 return 0; 2362 if (kdb_task_state(p, mask)) 2363 kdb_ps1(p); 2364 } 2365 2366 return 0; 2367 } 2368 2369 /* 2370 * kdb_pid - This function implements the 'pid' command which switches 2371 * the currently active process. 2372 * pid [<pid> | R] 2373 */ 2374 static int kdb_pid(int argc, const char **argv) 2375 { 2376 struct task_struct *p; 2377 unsigned long val; 2378 int diag; 2379 2380 if (argc > 1) 2381 return KDB_ARGCOUNT; 2382 2383 if (argc) { 2384 if (strcmp(argv[1], "R") == 0) { 2385 p = KDB_TSK(kdb_initial_cpu); 2386 } else { 2387 diag = kdbgetularg(argv[1], &val); 2388 if (diag) 2389 return KDB_BADINT; 2390 2391 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2392 if (!p) { 2393 kdb_printf("No task with pid=%d\n", (pid_t)val); 2394 return 0; 2395 } 2396 } 2397 kdb_set_current_task(p); 2398 } 2399 kdb_printf("KDB current process is %s(pid=%d)\n", 2400 kdb_current_task->comm, 2401 kdb_current_task->pid); 2402 2403 return 0; 2404 } 2405 2406 static int kdb_kgdb(int argc, const char **argv) 2407 { 2408 return KDB_CMD_KGDB; 2409 } 2410 2411 /* 2412 * kdb_help - This function implements the 'help' and '?' commands. 2413 */ 2414 static int kdb_help(int argc, const char **argv) 2415 { 2416 kdbtab_t *kt; 2417 2418 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2419 kdb_printf("-----------------------------" 2420 "-----------------------------\n"); 2421 list_for_each_entry(kt, &kdb_cmds_head, list_node) { 2422 char *space = ""; 2423 if (KDB_FLAG(CMD_INTERRUPT)) 2424 return 0; 2425 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true)) 2426 continue; 2427 if (strlen(kt->usage) > 20) 2428 space = "\n "; 2429 kdb_printf("%-15.15s %-20s%s%s\n", kt->name, 2430 kt->usage, space, kt->help); 2431 } 2432 return 0; 2433 } 2434 2435 /* 2436 * kdb_kill - This function implements the 'kill' commands. 2437 */ 2438 static int kdb_kill(int argc, const char **argv) 2439 { 2440 long sig, pid; 2441 char *endp; 2442 struct task_struct *p; 2443 2444 if (argc != 2) 2445 return KDB_ARGCOUNT; 2446 2447 sig = simple_strtol(argv[1], &endp, 0); 2448 if (*endp) 2449 return KDB_BADINT; 2450 if ((sig >= 0) || !valid_signal(-sig)) { 2451 kdb_printf("Invalid signal parameter.<-signal>\n"); 2452 return 0; 2453 } 2454 sig = -sig; 2455 2456 pid = simple_strtol(argv[2], &endp, 0); 2457 if (*endp) 2458 return KDB_BADINT; 2459 if (pid <= 0) { 2460 kdb_printf("Process ID must be large than 0.\n"); 2461 return 0; 2462 } 2463 2464 /* Find the process. */ 2465 p = find_task_by_pid_ns(pid, &init_pid_ns); 2466 if (!p) { 2467 kdb_printf("The specified process isn't found.\n"); 2468 return 0; 2469 } 2470 p = p->group_leader; 2471 kdb_send_sig(p, sig); 2472 return 0; 2473 } 2474 2475 /* 2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2477 * I cannot call that code directly from kdb, it has an unconditional 2478 * cli()/sti() and calls routines that take locks which can stop the debugger. 2479 */ 2480 static void kdb_sysinfo(struct sysinfo *val) 2481 { 2482 u64 uptime = ktime_get_mono_fast_ns(); 2483 2484 memset(val, 0, sizeof(*val)); 2485 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2486 val->loads[0] = avenrun[0]; 2487 val->loads[1] = avenrun[1]; 2488 val->loads[2] = avenrun[2]; 2489 val->procs = nr_threads-1; 2490 si_meminfo(val); 2491 2492 return; 2493 } 2494 2495 /* 2496 * kdb_summary - This function implements the 'summary' command. 2497 */ 2498 static int kdb_summary(int argc, const char **argv) 2499 { 2500 time64_t now; 2501 struct sysinfo val; 2502 2503 if (argc) 2504 return KDB_ARGCOUNT; 2505 2506 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2507 kdb_printf("release %s\n", init_uts_ns.name.release); 2508 kdb_printf("version %s\n", init_uts_ns.name.version); 2509 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2510 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2511 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2512 2513 now = __ktime_get_real_seconds(); 2514 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest); 2515 kdb_sysinfo(&val); 2516 kdb_printf("uptime "); 2517 if (val.uptime > (24*60*60)) { 2518 int days = val.uptime / (24*60*60); 2519 val.uptime %= (24*60*60); 2520 kdb_printf("%d day%s ", days, str_plural(days)); 2521 } 2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2523 2524 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2525 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2526 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2527 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2528 2529 /* Display in kilobytes */ 2530 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2531 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2532 "Buffers: %8lu kB\n", 2533 K(val.totalram), K(val.freeram), K(val.bufferram)); 2534 return 0; 2535 } 2536 2537 /* 2538 * kdb_per_cpu - This function implements the 'per_cpu' command. 2539 */ 2540 static int kdb_per_cpu(int argc, const char **argv) 2541 { 2542 char fmtstr[64]; 2543 int cpu, diag, nextarg = 1; 2544 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2545 2546 if (argc < 1 || argc > 3) 2547 return KDB_ARGCOUNT; 2548 2549 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2550 if (diag) 2551 return diag; 2552 2553 if (argc >= 2) { 2554 diag = kdbgetularg(argv[2], &bytesperword); 2555 if (diag) 2556 return diag; 2557 } 2558 if (!bytesperword) 2559 bytesperword = KDB_WORD_SIZE; 2560 else if (bytesperword > KDB_WORD_SIZE) 2561 return KDB_BADWIDTH; 2562 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2563 if (argc >= 3) { 2564 diag = kdbgetularg(argv[3], &whichcpu); 2565 if (diag) 2566 return diag; 2567 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2568 kdb_printf("cpu %ld is not online\n", whichcpu); 2569 return KDB_BADCPUNUM; 2570 } 2571 } 2572 2573 /* Most architectures use __per_cpu_offset[cpu], some use 2574 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2575 */ 2576 #ifdef __per_cpu_offset 2577 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2578 #else 2579 #ifdef CONFIG_SMP 2580 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2581 #else 2582 #define KDB_PCU(cpu) 0 2583 #endif 2584 #endif 2585 for_each_online_cpu(cpu) { 2586 if (KDB_FLAG(CMD_INTERRUPT)) 2587 return 0; 2588 2589 if (whichcpu != ~0UL && whichcpu != cpu) 2590 continue; 2591 addr = symaddr + KDB_PCU(cpu); 2592 diag = kdb_getword(&val, addr, bytesperword); 2593 if (diag) { 2594 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2595 "read, diag=%d\n", cpu, addr, diag); 2596 continue; 2597 } 2598 kdb_printf("%5d ", cpu); 2599 kdb_md_line(fmtstr, addr, 2600 bytesperword == KDB_WORD_SIZE, 2601 1, bytesperword, 1, 1, 0); 2602 } 2603 #undef KDB_PCU 2604 return 0; 2605 } 2606 2607 /* 2608 * display help for the use of cmd | grep pattern 2609 */ 2610 static int kdb_grep_help(int argc, const char **argv) 2611 { 2612 kdb_printf("Usage of cmd args | grep pattern:\n"); 2613 kdb_printf(" Any command's output may be filtered through an "); 2614 kdb_printf("emulated 'pipe'.\n"); 2615 kdb_printf(" 'grep' is just a key word.\n"); 2616 kdb_printf(" The pattern may include a very limited set of " 2617 "metacharacters:\n"); 2618 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2619 kdb_printf(" And if there are spaces in the pattern, you may " 2620 "quote it:\n"); 2621 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2622 " or \"^pat tern$\"\n"); 2623 return 0; 2624 } 2625 2626 /** 2627 * kdb_register() - This function is used to register a kernel debugger 2628 * command. 2629 * @cmd: pointer to kdb command 2630 * 2631 * Note that it's the job of the caller to keep the memory for the cmd 2632 * allocated until unregister is called. 2633 */ 2634 int kdb_register(kdbtab_t *cmd) 2635 { 2636 kdbtab_t *kp; 2637 2638 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 2639 if (strcmp(kp->name, cmd->name) == 0) { 2640 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n", 2641 cmd->name, cmd->func, cmd->help); 2642 return 1; 2643 } 2644 } 2645 2646 list_add_tail(&cmd->list_node, &kdb_cmds_head); 2647 return 0; 2648 } 2649 EXPORT_SYMBOL_GPL(kdb_register); 2650 2651 /** 2652 * kdb_register_table() - This function is used to register a kdb command 2653 * table. 2654 * @kp: pointer to kdb command table 2655 * @len: length of kdb command table 2656 */ 2657 void kdb_register_table(kdbtab_t *kp, size_t len) 2658 { 2659 while (len--) { 2660 list_add_tail(&kp->list_node, &kdb_cmds_head); 2661 kp++; 2662 } 2663 } 2664 2665 /** 2666 * kdb_unregister() - This function is used to unregister a kernel debugger 2667 * command. It is generally called when a module which 2668 * implements kdb command is unloaded. 2669 * @cmd: pointer to kdb command 2670 */ 2671 void kdb_unregister(kdbtab_t *cmd) 2672 { 2673 list_del(&cmd->list_node); 2674 } 2675 EXPORT_SYMBOL_GPL(kdb_unregister); 2676 2677 static kdbtab_t maintab[] = { 2678 { .name = "md", 2679 .func = kdb_md, 2680 .usage = "<vaddr>", 2681 .help = "Display Memory Contents, also mdWcN, e.g. md8c1", 2682 .minlen = 1, 2683 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2684 }, 2685 { .name = "mdr", 2686 .func = kdb_md, 2687 .usage = "<vaddr> <bytes>", 2688 .help = "Display Raw Memory", 2689 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2690 }, 2691 { .name = "mdp", 2692 .func = kdb_md, 2693 .usage = "<paddr> <bytes>", 2694 .help = "Display Physical Memory", 2695 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2696 }, 2697 { .name = "mds", 2698 .func = kdb_md, 2699 .usage = "<vaddr>", 2700 .help = "Display Memory Symbolically", 2701 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2702 }, 2703 { .name = "mm", 2704 .func = kdb_mm, 2705 .usage = "<vaddr> <contents>", 2706 .help = "Modify Memory Contents", 2707 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS, 2708 }, 2709 { .name = "go", 2710 .func = kdb_go, 2711 .usage = "[<vaddr>]", 2712 .help = "Continue Execution", 2713 .minlen = 1, 2714 .flags = KDB_ENABLE_REG_WRITE | 2715 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2716 }, 2717 { .name = "rd", 2718 .func = kdb_rd, 2719 .usage = "", 2720 .help = "Display Registers", 2721 .flags = KDB_ENABLE_REG_READ, 2722 }, 2723 { .name = "rm", 2724 .func = kdb_rm, 2725 .usage = "<reg> <contents>", 2726 .help = "Modify Registers", 2727 .flags = KDB_ENABLE_REG_WRITE, 2728 }, 2729 { .name = "ef", 2730 .func = kdb_ef, 2731 .usage = "<vaddr>", 2732 .help = "Display exception frame", 2733 .flags = KDB_ENABLE_MEM_READ, 2734 }, 2735 { .name = "bt", 2736 .func = kdb_bt, 2737 .usage = "[<vaddr>]", 2738 .help = "Stack traceback", 2739 .minlen = 1, 2740 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2741 }, 2742 { .name = "btp", 2743 .func = kdb_bt, 2744 .usage = "<pid>", 2745 .help = "Display stack for process <pid>", 2746 .flags = KDB_ENABLE_INSPECT, 2747 }, 2748 { .name = "bta", 2749 .func = kdb_bt, 2750 .usage = "[<state_chars>|A]", 2751 .help = "Backtrace all processes whose state matches", 2752 .flags = KDB_ENABLE_INSPECT, 2753 }, 2754 { .name = "btc", 2755 .func = kdb_bt, 2756 .usage = "", 2757 .help = "Backtrace current process on each cpu", 2758 .flags = KDB_ENABLE_INSPECT, 2759 }, 2760 { .name = "btt", 2761 .func = kdb_bt, 2762 .usage = "<vaddr>", 2763 .help = "Backtrace process given its struct task address", 2764 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2765 }, 2766 { .name = "env", 2767 .func = kdb_env, 2768 .usage = "", 2769 .help = "Show environment variables", 2770 .flags = KDB_ENABLE_ALWAYS_SAFE, 2771 }, 2772 { .name = "set", 2773 .func = kdb_set, 2774 .usage = "", 2775 .help = "Set environment variables", 2776 .flags = KDB_ENABLE_ALWAYS_SAFE, 2777 }, 2778 { .name = "help", 2779 .func = kdb_help, 2780 .usage = "", 2781 .help = "Display Help Message", 2782 .minlen = 1, 2783 .flags = KDB_ENABLE_ALWAYS_SAFE, 2784 }, 2785 { .name = "?", 2786 .func = kdb_help, 2787 .usage = "", 2788 .help = "Display Help Message", 2789 .flags = KDB_ENABLE_ALWAYS_SAFE, 2790 }, 2791 { .name = "cpu", 2792 .func = kdb_cpu, 2793 .usage = "<cpunum>", 2794 .help = "Switch to new cpu", 2795 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2796 }, 2797 { .name = "kgdb", 2798 .func = kdb_kgdb, 2799 .usage = "", 2800 .help = "Enter kgdb mode", 2801 .flags = 0, 2802 }, 2803 { .name = "ps", 2804 .func = kdb_ps, 2805 .usage = "[<state_chars>|A]", 2806 .help = "Display active task list", 2807 .flags = KDB_ENABLE_INSPECT, 2808 }, 2809 { .name = "pid", 2810 .func = kdb_pid, 2811 .usage = "<pidnum>", 2812 .help = "Switch to another task", 2813 .flags = KDB_ENABLE_INSPECT, 2814 }, 2815 { .name = "reboot", 2816 .func = kdb_reboot, 2817 .usage = "", 2818 .help = "Reboot the machine immediately", 2819 .flags = KDB_ENABLE_REBOOT, 2820 }, 2821 #if defined(CONFIG_MODULES) 2822 { .name = "lsmod", 2823 .func = kdb_lsmod, 2824 .usage = "", 2825 .help = "List loaded kernel modules", 2826 .flags = KDB_ENABLE_INSPECT, 2827 }, 2828 #endif 2829 #if defined(CONFIG_MAGIC_SYSRQ) 2830 { .name = "sr", 2831 .func = kdb_sr, 2832 .usage = "<key>", 2833 .help = "Magic SysRq key", 2834 .flags = KDB_ENABLE_ALWAYS_SAFE, 2835 }, 2836 #endif 2837 #if defined(CONFIG_PRINTK) 2838 { .name = "dmesg", 2839 .func = kdb_dmesg, 2840 .usage = "[lines]", 2841 .help = "Display syslog buffer", 2842 .flags = KDB_ENABLE_ALWAYS_SAFE, 2843 }, 2844 #endif 2845 { .name = "defcmd", 2846 .func = kdb_defcmd, 2847 .usage = "name \"usage\" \"help\"", 2848 .help = "Define a set of commands, down to endefcmd", 2849 /* 2850 * Macros are always safe because when executed each 2851 * internal command re-enters kdb_parse() and is safety 2852 * checked individually. 2853 */ 2854 .flags = KDB_ENABLE_ALWAYS_SAFE, 2855 }, 2856 { .name = "kill", 2857 .func = kdb_kill, 2858 .usage = "<-signal> <pid>", 2859 .help = "Send a signal to a process", 2860 .flags = KDB_ENABLE_SIGNAL, 2861 }, 2862 { .name = "summary", 2863 .func = kdb_summary, 2864 .usage = "", 2865 .help = "Summarize the system", 2866 .minlen = 4, 2867 .flags = KDB_ENABLE_ALWAYS_SAFE, 2868 }, 2869 { .name = "per_cpu", 2870 .func = kdb_per_cpu, 2871 .usage = "<sym> [<bytes>] [<cpu>]", 2872 .help = "Display per_cpu variables", 2873 .minlen = 3, 2874 .flags = KDB_ENABLE_MEM_READ, 2875 }, 2876 { .name = "grephelp", 2877 .func = kdb_grep_help, 2878 .usage = "", 2879 .help = "Display help on | grep", 2880 .flags = KDB_ENABLE_ALWAYS_SAFE, 2881 }, 2882 }; 2883 2884 static kdbtab_t nmicmd = { 2885 .name = "disable_nmi", 2886 .func = kdb_disable_nmi, 2887 .usage = "", 2888 .help = "Disable NMI entry to KDB", 2889 .flags = KDB_ENABLE_ALWAYS_SAFE, 2890 }; 2891 2892 /* Initialize the kdb command table. */ 2893 static void __init kdb_inittab(void) 2894 { 2895 kdb_register_table(maintab, ARRAY_SIZE(maintab)); 2896 if (arch_kgdb_ops.enable_nmi) 2897 kdb_register_table(&nmicmd, 1); 2898 } 2899 2900 /* Execute any commands defined in kdb_cmds. */ 2901 static void __init kdb_cmd_init(void) 2902 { 2903 int i, diag; 2904 for (i = 0; kdb_cmds[i]; ++i) { 2905 diag = kdb_parse(kdb_cmds[i]); 2906 if (diag) 2907 kdb_printf("kdb command %s failed, kdb diag %d\n", 2908 kdb_cmds[i], diag); 2909 } 2910 if (defcmd_in_progress) { 2911 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2912 kdb_parse("endefcmd"); 2913 } 2914 } 2915 2916 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2917 void __init kdb_init(int lvl) 2918 { 2919 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2920 int i; 2921 2922 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2923 return; 2924 for (i = kdb_init_lvl; i < lvl; i++) { 2925 switch (i) { 2926 case KDB_NOT_INITIALIZED: 2927 kdb_inittab(); /* Initialize Command Table */ 2928 kdb_initbptab(); /* Initialize Breakpoints */ 2929 break; 2930 case KDB_INIT_EARLY: 2931 kdb_cmd_init(); /* Build kdb_cmds tables */ 2932 break; 2933 } 2934 } 2935 kdb_init_lvl = lvl; 2936 } 2937