1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/kernel.h> 17 #include <linux/kmsg_dump.h> 18 #include <linux/reboot.h> 19 #include <linux/sched.h> 20 #include <linux/sysrq.h> 21 #include <linux/smp.h> 22 #include <linux/utsname.h> 23 #include <linux/vmalloc.h> 24 #include <linux/atomic.h> 25 #include <linux/module.h> 26 #include <linux/mm.h> 27 #include <linux/init.h> 28 #include <linux/kallsyms.h> 29 #include <linux/kgdb.h> 30 #include <linux/kdb.h> 31 #include <linux/notifier.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/nmi.h> 35 #include <linux/time.h> 36 #include <linux/ptrace.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/kdebug.h> 40 #include <linux/proc_fs.h> 41 #include <linux/uaccess.h> 42 #include <linux/slab.h> 43 #include "kdb_private.h" 44 45 #define GREP_LEN 256 46 char kdb_grep_string[GREP_LEN]; 47 int kdb_grepping_flag; 48 EXPORT_SYMBOL(kdb_grepping_flag); 49 int kdb_grep_leading; 50 int kdb_grep_trailing; 51 52 /* 53 * Kernel debugger state flags 54 */ 55 int kdb_flags; 56 atomic_t kdb_event; 57 58 /* 59 * kdb_lock protects updates to kdb_initial_cpu. Used to 60 * single thread processors through the kernel debugger. 61 */ 62 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 63 int kdb_nextline = 1; 64 int kdb_state; /* General KDB state */ 65 66 struct task_struct *kdb_current_task; 67 EXPORT_SYMBOL(kdb_current_task); 68 struct pt_regs *kdb_current_regs; 69 70 const char *kdb_diemsg; 71 static int kdb_go_count; 72 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 73 static unsigned int kdb_continue_catastrophic = 74 CONFIG_KDB_CONTINUE_CATASTROPHIC; 75 #else 76 static unsigned int kdb_continue_catastrophic; 77 #endif 78 79 /* kdb_commands describes the available commands. */ 80 static kdbtab_t *kdb_commands; 81 #define KDB_BASE_CMD_MAX 50 82 static int kdb_max_commands = KDB_BASE_CMD_MAX; 83 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 84 #define for_each_kdbcmd(cmd, num) \ 85 for ((cmd) = kdb_base_commands, (num) = 0; \ 86 num < kdb_max_commands; \ 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 88 89 typedef struct _kdbmsg { 90 int km_diag; /* kdb diagnostic */ 91 char *km_msg; /* Corresponding message text */ 92 } kdbmsg_t; 93 94 #define KDBMSG(msgnum, text) \ 95 { KDB_##msgnum, text } 96 97 static kdbmsg_t kdbmsgs[] = { 98 KDBMSG(NOTFOUND, "Command Not Found"), 99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 101 "8 is only allowed on 64 bit systems"), 102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 103 KDBMSG(NOTENV, "Cannot find environment variable"), 104 KDBMSG(NOENVVALUE, "Environment variable should have value"), 105 KDBMSG(NOTIMP, "Command not implemented"), 106 KDBMSG(ENVFULL, "Environment full"), 107 KDBMSG(ENVBUFFULL, "Environment buffer full"), 108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 109 #ifdef CONFIG_CPU_XSCALE 110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 111 #else 112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 113 #endif 114 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 116 KDBMSG(BADMODE, "Invalid IDMODE"), 117 KDBMSG(BADINT, "Illegal numeric value"), 118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 119 KDBMSG(BADREG, "Invalid register name"), 120 KDBMSG(BADCPUNUM, "Invalid cpu number"), 121 KDBMSG(BADLENGTH, "Invalid length field"), 122 KDBMSG(NOBP, "No Breakpoint exists"), 123 KDBMSG(BADADDR, "Invalid address"), 124 }; 125 #undef KDBMSG 126 127 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); 128 129 130 /* 131 * Initial environment. This is all kept static and local to 132 * this file. We don't want to rely on the memory allocation 133 * mechanisms in the kernel, so we use a very limited allocate-only 134 * heap for new and altered environment variables. The entire 135 * environment is limited to a fixed number of entries (add more 136 * to __env[] if required) and a fixed amount of heap (add more to 137 * KDB_ENVBUFSIZE if required). 138 */ 139 140 static char *__env[] = { 141 #if defined(CONFIG_SMP) 142 "PROMPT=[%d]kdb> ", 143 #else 144 "PROMPT=kdb> ", 145 #endif 146 "MOREPROMPT=more> ", 147 "RADIX=16", 148 "MDCOUNT=8", /* lines of md output */ 149 KDB_PLATFORM_ENV, 150 "DTABCOUNT=30", 151 "NOSECT=1", 152 (char *)0, 153 (char *)0, 154 (char *)0, 155 (char *)0, 156 (char *)0, 157 (char *)0, 158 (char *)0, 159 (char *)0, 160 (char *)0, 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 }; 177 178 static const int __nenv = (sizeof(__env) / sizeof(char *)); 179 180 struct task_struct *kdb_curr_task(int cpu) 181 { 182 struct task_struct *p = curr_task(cpu); 183 #ifdef _TIF_MCA_INIT 184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 185 p = krp->p; 186 #endif 187 return p; 188 } 189 190 /* 191 * kdbgetenv - This function will return the character string value of 192 * an environment variable. 193 * Parameters: 194 * match A character string representing an environment variable. 195 * Returns: 196 * NULL No environment variable matches 'match' 197 * char* Pointer to string value of environment variable. 198 */ 199 char *kdbgetenv(const char *match) 200 { 201 char **ep = __env; 202 int matchlen = strlen(match); 203 int i; 204 205 for (i = 0; i < __nenv; i++) { 206 char *e = *ep++; 207 208 if (!e) 209 continue; 210 211 if ((strncmp(match, e, matchlen) == 0) 212 && ((e[matchlen] == '\0') 213 || (e[matchlen] == '='))) { 214 char *cp = strchr(e, '='); 215 return cp ? ++cp : ""; 216 } 217 } 218 return NULL; 219 } 220 221 /* 222 * kdballocenv - This function is used to allocate bytes for 223 * environment entries. 224 * Parameters: 225 * match A character string representing a numeric value 226 * Outputs: 227 * *value the unsigned long representation of the env variable 'match' 228 * Returns: 229 * Zero on success, a kdb diagnostic on failure. 230 * Remarks: 231 * We use a static environment buffer (envbuffer) to hold the values 232 * of dynamically generated environment variables (see kdb_set). Buffer 233 * space once allocated is never free'd, so over time, the amount of space 234 * (currently 512 bytes) will be exhausted if env variables are changed 235 * frequently. 236 */ 237 static char *kdballocenv(size_t bytes) 238 { 239 #define KDB_ENVBUFSIZE 512 240 static char envbuffer[KDB_ENVBUFSIZE]; 241 static int envbufsize; 242 char *ep = NULL; 243 244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 245 ep = &envbuffer[envbufsize]; 246 envbufsize += bytes; 247 } 248 return ep; 249 } 250 251 /* 252 * kdbgetulenv - This function will return the value of an unsigned 253 * long-valued environment variable. 254 * Parameters: 255 * match A character string representing a numeric value 256 * Outputs: 257 * *value the unsigned long represntation of the env variable 'match' 258 * Returns: 259 * Zero on success, a kdb diagnostic on failure. 260 */ 261 static int kdbgetulenv(const char *match, unsigned long *value) 262 { 263 char *ep; 264 265 ep = kdbgetenv(match); 266 if (!ep) 267 return KDB_NOTENV; 268 if (strlen(ep) == 0) 269 return KDB_NOENVVALUE; 270 271 *value = simple_strtoul(ep, NULL, 0); 272 273 return 0; 274 } 275 276 /* 277 * kdbgetintenv - This function will return the value of an 278 * integer-valued environment variable. 279 * Parameters: 280 * match A character string representing an integer-valued env variable 281 * Outputs: 282 * *value the integer representation of the environment variable 'match' 283 * Returns: 284 * Zero on success, a kdb diagnostic on failure. 285 */ 286 int kdbgetintenv(const char *match, int *value) 287 { 288 unsigned long val; 289 int diag; 290 291 diag = kdbgetulenv(match, &val); 292 if (!diag) 293 *value = (int) val; 294 return diag; 295 } 296 297 /* 298 * kdbgetularg - This function will convert a numeric string into an 299 * unsigned long value. 300 * Parameters: 301 * arg A character string representing a numeric value 302 * Outputs: 303 * *value the unsigned long represntation of arg. 304 * Returns: 305 * Zero on success, a kdb diagnostic on failure. 306 */ 307 int kdbgetularg(const char *arg, unsigned long *value) 308 { 309 char *endp; 310 unsigned long val; 311 312 val = simple_strtoul(arg, &endp, 0); 313 314 if (endp == arg) { 315 /* 316 * Also try base 16, for us folks too lazy to type the 317 * leading 0x... 318 */ 319 val = simple_strtoul(arg, &endp, 16); 320 if (endp == arg) 321 return KDB_BADINT; 322 } 323 324 *value = val; 325 326 return 0; 327 } 328 329 int kdbgetu64arg(const char *arg, u64 *value) 330 { 331 char *endp; 332 u64 val; 333 334 val = simple_strtoull(arg, &endp, 0); 335 336 if (endp == arg) { 337 338 val = simple_strtoull(arg, &endp, 16); 339 if (endp == arg) 340 return KDB_BADINT; 341 } 342 343 *value = val; 344 345 return 0; 346 } 347 348 /* 349 * kdb_set - This function implements the 'set' command. Alter an 350 * existing environment variable or create a new one. 351 */ 352 int kdb_set(int argc, const char **argv) 353 { 354 int i; 355 char *ep; 356 size_t varlen, vallen; 357 358 /* 359 * we can be invoked two ways: 360 * set var=value argv[1]="var", argv[2]="value" 361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 362 * - if the latter, shift 'em down. 363 */ 364 if (argc == 3) { 365 argv[2] = argv[3]; 366 argc--; 367 } 368 369 if (argc != 2) 370 return KDB_ARGCOUNT; 371 372 /* 373 * Check for internal variables 374 */ 375 if (strcmp(argv[1], "KDBDEBUG") == 0) { 376 unsigned int debugflags; 377 char *cp; 378 379 debugflags = simple_strtoul(argv[2], &cp, 0); 380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 381 kdb_printf("kdb: illegal debug flags '%s'\n", 382 argv[2]); 383 return 0; 384 } 385 kdb_flags = (kdb_flags & 386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 387 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 388 389 return 0; 390 } 391 392 /* 393 * Tokenizer squashed the '=' sign. argv[1] is variable 394 * name, argv[2] = value. 395 */ 396 varlen = strlen(argv[1]); 397 vallen = strlen(argv[2]); 398 ep = kdballocenv(varlen + vallen + 2); 399 if (ep == (char *)0) 400 return KDB_ENVBUFFULL; 401 402 sprintf(ep, "%s=%s", argv[1], argv[2]); 403 404 ep[varlen+vallen+1] = '\0'; 405 406 for (i = 0; i < __nenv; i++) { 407 if (__env[i] 408 && ((strncmp(__env[i], argv[1], varlen) == 0) 409 && ((__env[i][varlen] == '\0') 410 || (__env[i][varlen] == '=')))) { 411 __env[i] = ep; 412 return 0; 413 } 414 } 415 416 /* 417 * Wasn't existing variable. Fit into slot. 418 */ 419 for (i = 0; i < __nenv-1; i++) { 420 if (__env[i] == (char *)0) { 421 __env[i] = ep; 422 return 0; 423 } 424 } 425 426 return KDB_ENVFULL; 427 } 428 429 static int kdb_check_regs(void) 430 { 431 if (!kdb_current_regs) { 432 kdb_printf("No current kdb registers." 433 " You may need to select another task\n"); 434 return KDB_BADREG; 435 } 436 return 0; 437 } 438 439 /* 440 * kdbgetaddrarg - This function is responsible for parsing an 441 * address-expression and returning the value of the expression, 442 * symbol name, and offset to the caller. 443 * 444 * The argument may consist of a numeric value (decimal or 445 * hexidecimal), a symbol name, a register name (preceded by the 446 * percent sign), an environment variable with a numeric value 447 * (preceded by a dollar sign) or a simple arithmetic expression 448 * consisting of a symbol name, +/-, and a numeric constant value 449 * (offset). 450 * Parameters: 451 * argc - count of arguments in argv 452 * argv - argument vector 453 * *nextarg - index to next unparsed argument in argv[] 454 * regs - Register state at time of KDB entry 455 * Outputs: 456 * *value - receives the value of the address-expression 457 * *offset - receives the offset specified, if any 458 * *name - receives the symbol name, if any 459 * *nextarg - index to next unparsed argument in argv[] 460 * Returns: 461 * zero is returned on success, a kdb diagnostic code is 462 * returned on error. 463 */ 464 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 465 unsigned long *value, long *offset, 466 char **name) 467 { 468 unsigned long addr; 469 unsigned long off = 0; 470 int positive; 471 int diag; 472 int found = 0; 473 char *symname; 474 char symbol = '\0'; 475 char *cp; 476 kdb_symtab_t symtab; 477 478 /* 479 * Process arguments which follow the following syntax: 480 * 481 * symbol | numeric-address [+/- numeric-offset] 482 * %register 483 * $environment-variable 484 */ 485 486 if (*nextarg > argc) 487 return KDB_ARGCOUNT; 488 489 symname = (char *)argv[*nextarg]; 490 491 /* 492 * If there is no whitespace between the symbol 493 * or address and the '+' or '-' symbols, we 494 * remember the character and replace it with a 495 * null so the symbol/value can be properly parsed 496 */ 497 cp = strpbrk(symname, "+-"); 498 if (cp != NULL) { 499 symbol = *cp; 500 *cp++ = '\0'; 501 } 502 503 if (symname[0] == '$') { 504 diag = kdbgetulenv(&symname[1], &addr); 505 if (diag) 506 return diag; 507 } else if (symname[0] == '%') { 508 diag = kdb_check_regs(); 509 if (diag) 510 return diag; 511 /* Implement register values with % at a later time as it is 512 * arch optional. 513 */ 514 return KDB_NOTIMP; 515 } else { 516 found = kdbgetsymval(symname, &symtab); 517 if (found) { 518 addr = symtab.sym_start; 519 } else { 520 diag = kdbgetularg(argv[*nextarg], &addr); 521 if (diag) 522 return diag; 523 } 524 } 525 526 if (!found) 527 found = kdbnearsym(addr, &symtab); 528 529 (*nextarg)++; 530 531 if (name) 532 *name = symname; 533 if (value) 534 *value = addr; 535 if (offset && name && *name) 536 *offset = addr - symtab.sym_start; 537 538 if ((*nextarg > argc) 539 && (symbol == '\0')) 540 return 0; 541 542 /* 543 * check for +/- and offset 544 */ 545 546 if (symbol == '\0') { 547 if ((argv[*nextarg][0] != '+') 548 && (argv[*nextarg][0] != '-')) { 549 /* 550 * Not our argument. Return. 551 */ 552 return 0; 553 } else { 554 positive = (argv[*nextarg][0] == '+'); 555 (*nextarg)++; 556 } 557 } else 558 positive = (symbol == '+'); 559 560 /* 561 * Now there must be an offset! 562 */ 563 if ((*nextarg > argc) 564 && (symbol == '\0')) { 565 return KDB_INVADDRFMT; 566 } 567 568 if (!symbol) { 569 cp = (char *)argv[*nextarg]; 570 (*nextarg)++; 571 } 572 573 diag = kdbgetularg(cp, &off); 574 if (diag) 575 return diag; 576 577 if (!positive) 578 off = -off; 579 580 if (offset) 581 *offset += off; 582 583 if (value) 584 *value += off; 585 586 return 0; 587 } 588 589 static void kdb_cmderror(int diag) 590 { 591 int i; 592 593 if (diag >= 0) { 594 kdb_printf("no error detected (diagnostic is %d)\n", diag); 595 return; 596 } 597 598 for (i = 0; i < __nkdb_err; i++) { 599 if (kdbmsgs[i].km_diag == diag) { 600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 601 return; 602 } 603 } 604 605 kdb_printf("Unknown diag %d\n", -diag); 606 } 607 608 /* 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 610 * command which defines one command as a set of other commands, 611 * terminated by endefcmd. kdb_defcmd processes the initial 612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 613 * the following commands until 'endefcmd'. 614 * Inputs: 615 * argc argument count 616 * argv argument vector 617 * Returns: 618 * zero for success, a kdb diagnostic if error 619 */ 620 struct defcmd_set { 621 int count; 622 int usable; 623 char *name; 624 char *usage; 625 char *help; 626 char **command; 627 }; 628 static struct defcmd_set *defcmd_set; 629 static int defcmd_set_count; 630 static int defcmd_in_progress; 631 632 /* Forward references */ 633 static int kdb_exec_defcmd(int argc, const char **argv); 634 635 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 636 { 637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 638 char **save_command = s->command; 639 if (strcmp(argv0, "endefcmd") == 0) { 640 defcmd_in_progress = 0; 641 if (!s->count) 642 s->usable = 0; 643 if (s->usable) 644 kdb_register(s->name, kdb_exec_defcmd, 645 s->usage, s->help, 0); 646 return 0; 647 } 648 if (!s->usable) 649 return KDB_NOTIMP; 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 651 if (!s->command) { 652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 653 cmdstr); 654 s->usable = 0; 655 return KDB_NOTIMP; 656 } 657 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 659 kfree(save_command); 660 return 0; 661 } 662 663 static int kdb_defcmd(int argc, const char **argv) 664 { 665 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 666 if (defcmd_in_progress) { 667 kdb_printf("kdb: nested defcmd detected, assuming missing " 668 "endefcmd\n"); 669 kdb_defcmd2("endefcmd", "endefcmd"); 670 } 671 if (argc == 0) { 672 int i; 673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 675 s->usage, s->help); 676 for (i = 0; i < s->count; ++i) 677 kdb_printf("%s", s->command[i]); 678 kdb_printf("endefcmd\n"); 679 } 680 return 0; 681 } 682 if (argc != 3) 683 return KDB_ARGCOUNT; 684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 685 GFP_KDB); 686 if (!defcmd_set) { 687 kdb_printf("Could not allocate new defcmd_set entry for %s\n", 688 argv[1]); 689 defcmd_set = save_defcmd_set; 690 return KDB_NOTIMP; 691 } 692 memcpy(defcmd_set, save_defcmd_set, 693 defcmd_set_count * sizeof(*defcmd_set)); 694 kfree(save_defcmd_set); 695 s = defcmd_set + defcmd_set_count; 696 memset(s, 0, sizeof(*s)); 697 s->usable = 1; 698 s->name = kdb_strdup(argv[1], GFP_KDB); 699 s->usage = kdb_strdup(argv[2], GFP_KDB); 700 s->help = kdb_strdup(argv[3], GFP_KDB); 701 if (s->usage[0] == '"') { 702 strcpy(s->usage, s->usage+1); 703 s->usage[strlen(s->usage)-1] = '\0'; 704 } 705 if (s->help[0] == '"') { 706 strcpy(s->help, s->help+1); 707 s->help[strlen(s->help)-1] = '\0'; 708 } 709 ++defcmd_set_count; 710 defcmd_in_progress = 1; 711 return 0; 712 } 713 714 /* 715 * kdb_exec_defcmd - Execute the set of commands associated with this 716 * defcmd name. 717 * Inputs: 718 * argc argument count 719 * argv argument vector 720 * Returns: 721 * zero for success, a kdb diagnostic if error 722 */ 723 static int kdb_exec_defcmd(int argc, const char **argv) 724 { 725 int i, ret; 726 struct defcmd_set *s; 727 if (argc != 0) 728 return KDB_ARGCOUNT; 729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 730 if (strcmp(s->name, argv[0]) == 0) 731 break; 732 } 733 if (i == defcmd_set_count) { 734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 735 argv[0]); 736 return KDB_NOTIMP; 737 } 738 for (i = 0; i < s->count; ++i) { 739 /* Recursive use of kdb_parse, do not use argv after 740 * this point */ 741 argv = NULL; 742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 743 ret = kdb_parse(s->command[i]); 744 if (ret) 745 return ret; 746 } 747 return 0; 748 } 749 750 /* Command history */ 751 #define KDB_CMD_HISTORY_COUNT 32 752 #define CMD_BUFLEN 200 /* kdb_printf: max printline 753 * size == 256 */ 754 static unsigned int cmd_head, cmd_tail; 755 static unsigned int cmdptr; 756 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 757 static char cmd_cur[CMD_BUFLEN]; 758 759 /* 760 * The "str" argument may point to something like | grep xyz 761 */ 762 static void parse_grep(const char *str) 763 { 764 int len; 765 char *cp = (char *)str, *cp2; 766 767 /* sanity check: we should have been called with the \ first */ 768 if (*cp != '|') 769 return; 770 cp++; 771 while (isspace(*cp)) 772 cp++; 773 if (strncmp(cp, "grep ", 5)) { 774 kdb_printf("invalid 'pipe', see grephelp\n"); 775 return; 776 } 777 cp += 5; 778 while (isspace(*cp)) 779 cp++; 780 cp2 = strchr(cp, '\n'); 781 if (cp2) 782 *cp2 = '\0'; /* remove the trailing newline */ 783 len = strlen(cp); 784 if (len == 0) { 785 kdb_printf("invalid 'pipe', see grephelp\n"); 786 return; 787 } 788 /* now cp points to a nonzero length search string */ 789 if (*cp == '"') { 790 /* allow it be "x y z" by removing the "'s - there must 791 be two of them */ 792 cp++; 793 cp2 = strchr(cp, '"'); 794 if (!cp2) { 795 kdb_printf("invalid quoted string, see grephelp\n"); 796 return; 797 } 798 *cp2 = '\0'; /* end the string where the 2nd " was */ 799 } 800 kdb_grep_leading = 0; 801 if (*cp == '^') { 802 kdb_grep_leading = 1; 803 cp++; 804 } 805 len = strlen(cp); 806 kdb_grep_trailing = 0; 807 if (*(cp+len-1) == '$') { 808 kdb_grep_trailing = 1; 809 *(cp+len-1) = '\0'; 810 } 811 len = strlen(cp); 812 if (!len) 813 return; 814 if (len >= GREP_LEN) { 815 kdb_printf("search string too long\n"); 816 return; 817 } 818 strcpy(kdb_grep_string, cp); 819 kdb_grepping_flag++; 820 return; 821 } 822 823 /* 824 * kdb_parse - Parse the command line, search the command table for a 825 * matching command and invoke the command function. This 826 * function may be called recursively, if it is, the second call 827 * will overwrite argv and cbuf. It is the caller's 828 * responsibility to save their argv if they recursively call 829 * kdb_parse(). 830 * Parameters: 831 * cmdstr The input command line to be parsed. 832 * regs The registers at the time kdb was entered. 833 * Returns: 834 * Zero for success, a kdb diagnostic if failure. 835 * Remarks: 836 * Limited to 20 tokens. 837 * 838 * Real rudimentary tokenization. Basically only whitespace 839 * is considered a token delimeter (but special consideration 840 * is taken of the '=' sign as used by the 'set' command). 841 * 842 * The algorithm used to tokenize the input string relies on 843 * there being at least one whitespace (or otherwise useless) 844 * character between tokens as the character immediately following 845 * the token is altered in-place to a null-byte to terminate the 846 * token string. 847 */ 848 849 #define MAXARGC 20 850 851 int kdb_parse(const char *cmdstr) 852 { 853 static char *argv[MAXARGC]; 854 static int argc; 855 static char cbuf[CMD_BUFLEN+2]; 856 char *cp; 857 char *cpp, quoted; 858 kdbtab_t *tp; 859 int i, escaped, ignore_errors = 0, check_grep; 860 861 /* 862 * First tokenize the command string. 863 */ 864 cp = (char *)cmdstr; 865 kdb_grepping_flag = check_grep = 0; 866 867 if (KDB_FLAG(CMD_INTERRUPT)) { 868 /* Previous command was interrupted, newline must not 869 * repeat the command */ 870 KDB_FLAG_CLEAR(CMD_INTERRUPT); 871 KDB_STATE_SET(PAGER); 872 argc = 0; /* no repeat */ 873 } 874 875 if (*cp != '\n' && *cp != '\0') { 876 argc = 0; 877 cpp = cbuf; 878 while (*cp) { 879 /* skip whitespace */ 880 while (isspace(*cp)) 881 cp++; 882 if ((*cp == '\0') || (*cp == '\n') || 883 (*cp == '#' && !defcmd_in_progress)) 884 break; 885 /* special case: check for | grep pattern */ 886 if (*cp == '|') { 887 check_grep++; 888 break; 889 } 890 if (cpp >= cbuf + CMD_BUFLEN) { 891 kdb_printf("kdb_parse: command buffer " 892 "overflow, command ignored\n%s\n", 893 cmdstr); 894 return KDB_NOTFOUND; 895 } 896 if (argc >= MAXARGC - 1) { 897 kdb_printf("kdb_parse: too many arguments, " 898 "command ignored\n%s\n", cmdstr); 899 return KDB_NOTFOUND; 900 } 901 argv[argc++] = cpp; 902 escaped = 0; 903 quoted = '\0'; 904 /* Copy to next unquoted and unescaped 905 * whitespace or '=' */ 906 while (*cp && *cp != '\n' && 907 (escaped || quoted || !isspace(*cp))) { 908 if (cpp >= cbuf + CMD_BUFLEN) 909 break; 910 if (escaped) { 911 escaped = 0; 912 *cpp++ = *cp++; 913 continue; 914 } 915 if (*cp == '\\') { 916 escaped = 1; 917 ++cp; 918 continue; 919 } 920 if (*cp == quoted) 921 quoted = '\0'; 922 else if (*cp == '\'' || *cp == '"') 923 quoted = *cp; 924 *cpp = *cp++; 925 if (*cpp == '=' && !quoted) 926 break; 927 ++cpp; 928 } 929 *cpp++ = '\0'; /* Squash a ws or '=' character */ 930 } 931 } 932 if (!argc) 933 return 0; 934 if (check_grep) 935 parse_grep(cp); 936 if (defcmd_in_progress) { 937 int result = kdb_defcmd2(cmdstr, argv[0]); 938 if (!defcmd_in_progress) { 939 argc = 0; /* avoid repeat on endefcmd */ 940 *(argv[0]) = '\0'; 941 } 942 return result; 943 } 944 if (argv[0][0] == '-' && argv[0][1] && 945 (argv[0][1] < '0' || argv[0][1] > '9')) { 946 ignore_errors = 1; 947 ++argv[0]; 948 } 949 950 for_each_kdbcmd(tp, i) { 951 if (tp->cmd_name) { 952 /* 953 * If this command is allowed to be abbreviated, 954 * check to see if this is it. 955 */ 956 957 if (tp->cmd_minlen 958 && (strlen(argv[0]) <= tp->cmd_minlen)) { 959 if (strncmp(argv[0], 960 tp->cmd_name, 961 tp->cmd_minlen) == 0) { 962 break; 963 } 964 } 965 966 if (strcmp(argv[0], tp->cmd_name) == 0) 967 break; 968 } 969 } 970 971 /* 972 * If we don't find a command by this name, see if the first 973 * few characters of this match any of the known commands. 974 * e.g., md1c20 should match md. 975 */ 976 if (i == kdb_max_commands) { 977 for_each_kdbcmd(tp, i) { 978 if (tp->cmd_name) { 979 if (strncmp(argv[0], 980 tp->cmd_name, 981 strlen(tp->cmd_name)) == 0) { 982 break; 983 } 984 } 985 } 986 } 987 988 if (i < kdb_max_commands) { 989 int result; 990 KDB_STATE_SET(CMD); 991 result = (*tp->cmd_func)(argc-1, (const char **)argv); 992 if (result && ignore_errors && result > KDB_CMD_GO) 993 result = 0; 994 KDB_STATE_CLEAR(CMD); 995 switch (tp->cmd_repeat) { 996 case KDB_REPEAT_NONE: 997 argc = 0; 998 if (argv[0]) 999 *(argv[0]) = '\0'; 1000 break; 1001 case KDB_REPEAT_NO_ARGS: 1002 argc = 1; 1003 if (argv[1]) 1004 *(argv[1]) = '\0'; 1005 break; 1006 case KDB_REPEAT_WITH_ARGS: 1007 break; 1008 } 1009 return result; 1010 } 1011 1012 /* 1013 * If the input with which we were presented does not 1014 * map to an existing command, attempt to parse it as an 1015 * address argument and display the result. Useful for 1016 * obtaining the address of a variable, or the nearest symbol 1017 * to an address contained in a register. 1018 */ 1019 { 1020 unsigned long value; 1021 char *name = NULL; 1022 long offset; 1023 int nextarg = 0; 1024 1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1026 &value, &offset, &name)) { 1027 return KDB_NOTFOUND; 1028 } 1029 1030 kdb_printf("%s = ", argv[0]); 1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1032 kdb_printf("\n"); 1033 return 0; 1034 } 1035 } 1036 1037 1038 static int handle_ctrl_cmd(char *cmd) 1039 { 1040 #define CTRL_P 16 1041 #define CTRL_N 14 1042 1043 /* initial situation */ 1044 if (cmd_head == cmd_tail) 1045 return 0; 1046 switch (*cmd) { 1047 case CTRL_P: 1048 if (cmdptr != cmd_tail) 1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1051 return 1; 1052 case CTRL_N: 1053 if (cmdptr != cmd_head) 1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1056 return 1; 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * kdb_reboot - This function implements the 'reboot' command. Reboot 1063 * the system immediately, or loop for ever on failure. 1064 */ 1065 static int kdb_reboot(int argc, const char **argv) 1066 { 1067 emergency_restart(); 1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1069 while (1) 1070 cpu_relax(); 1071 /* NOTREACHED */ 1072 return 0; 1073 } 1074 1075 static void kdb_dumpregs(struct pt_regs *regs) 1076 { 1077 int old_lvl = console_loglevel; 1078 console_loglevel = 15; 1079 kdb_trap_printk++; 1080 show_regs(regs); 1081 kdb_trap_printk--; 1082 kdb_printf("\n"); 1083 console_loglevel = old_lvl; 1084 } 1085 1086 void kdb_set_current_task(struct task_struct *p) 1087 { 1088 kdb_current_task = p; 1089 1090 if (kdb_task_has_cpu(p)) { 1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1092 return; 1093 } 1094 kdb_current_regs = NULL; 1095 } 1096 1097 /* 1098 * kdb_local - The main code for kdb. This routine is invoked on a 1099 * specific processor, it is not global. The main kdb() routine 1100 * ensures that only one processor at a time is in this routine. 1101 * This code is called with the real reason code on the first 1102 * entry to a kdb session, thereafter it is called with reason 1103 * SWITCH, even if the user goes back to the original cpu. 1104 * Inputs: 1105 * reason The reason KDB was invoked 1106 * error The hardware-defined error code 1107 * regs The exception frame at time of fault/breakpoint. 1108 * db_result Result code from the break or debug point. 1109 * Returns: 1110 * 0 KDB was invoked for an event which it wasn't responsible 1111 * 1 KDB handled the event for which it was invoked. 1112 * KDB_CMD_GO User typed 'go'. 1113 * KDB_CMD_CPU User switched to another cpu. 1114 * KDB_CMD_SS Single step. 1115 * KDB_CMD_SSB Single step until branch. 1116 */ 1117 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1118 kdb_dbtrap_t db_result) 1119 { 1120 char *cmdbuf; 1121 int diag; 1122 struct task_struct *kdb_current = 1123 kdb_curr_task(raw_smp_processor_id()); 1124 1125 KDB_DEBUG_STATE("kdb_local 1", reason); 1126 kdb_go_count = 0; 1127 if (reason == KDB_REASON_DEBUG) { 1128 /* special case below */ 1129 } else { 1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1131 kdb_current, kdb_current ? kdb_current->pid : 0); 1132 #if defined(CONFIG_SMP) 1133 kdb_printf("on processor %d ", raw_smp_processor_id()); 1134 #endif 1135 } 1136 1137 switch (reason) { 1138 case KDB_REASON_DEBUG: 1139 { 1140 /* 1141 * If re-entering kdb after a single step 1142 * command, don't print the message. 1143 */ 1144 switch (db_result) { 1145 case KDB_DB_BPT: 1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1147 kdb_current, kdb_current->pid); 1148 #if defined(CONFIG_SMP) 1149 kdb_printf("on processor %d ", raw_smp_processor_id()); 1150 #endif 1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1152 instruction_pointer(regs)); 1153 break; 1154 case KDB_DB_SSB: 1155 /* 1156 * In the midst of ssb command. Just return. 1157 */ 1158 KDB_DEBUG_STATE("kdb_local 3", reason); 1159 return KDB_CMD_SSB; /* Continue with SSB command */ 1160 1161 break; 1162 case KDB_DB_SS: 1163 break; 1164 case KDB_DB_SSBPT: 1165 KDB_DEBUG_STATE("kdb_local 4", reason); 1166 return 1; /* kdba_db_trap did the work */ 1167 default: 1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1169 db_result); 1170 break; 1171 } 1172 1173 } 1174 break; 1175 case KDB_REASON_ENTER: 1176 if (KDB_STATE(KEYBOARD)) 1177 kdb_printf("due to Keyboard Entry\n"); 1178 else 1179 kdb_printf("due to KDB_ENTER()\n"); 1180 break; 1181 case KDB_REASON_KEYBOARD: 1182 KDB_STATE_SET(KEYBOARD); 1183 kdb_printf("due to Keyboard Entry\n"); 1184 break; 1185 case KDB_REASON_ENTER_SLAVE: 1186 /* drop through, slaves only get released via cpu switch */ 1187 case KDB_REASON_SWITCH: 1188 kdb_printf("due to cpu switch\n"); 1189 break; 1190 case KDB_REASON_OOPS: 1191 kdb_printf("Oops: %s\n", kdb_diemsg); 1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1193 instruction_pointer(regs)); 1194 kdb_dumpregs(regs); 1195 break; 1196 case KDB_REASON_NMI: 1197 kdb_printf("due to NonMaskable Interrupt @ " 1198 kdb_machreg_fmt "\n", 1199 instruction_pointer(regs)); 1200 kdb_dumpregs(regs); 1201 break; 1202 case KDB_REASON_SSTEP: 1203 case KDB_REASON_BREAK: 1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1205 reason == KDB_REASON_BREAK ? 1206 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1207 /* 1208 * Determine if this breakpoint is one that we 1209 * are interested in. 1210 */ 1211 if (db_result != KDB_DB_BPT) { 1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1213 db_result); 1214 KDB_DEBUG_STATE("kdb_local 6", reason); 1215 return 0; /* Not for us, dismiss it */ 1216 } 1217 break; 1218 case KDB_REASON_RECURSE: 1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1220 instruction_pointer(regs)); 1221 break; 1222 default: 1223 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1224 KDB_DEBUG_STATE("kdb_local 8", reason); 1225 return 0; /* Not for us, dismiss it */ 1226 } 1227 1228 while (1) { 1229 /* 1230 * Initialize pager context. 1231 */ 1232 kdb_nextline = 1; 1233 KDB_STATE_CLEAR(SUPPRESS); 1234 1235 cmdbuf = cmd_cur; 1236 *cmdbuf = '\0'; 1237 *(cmd_hist[cmd_head]) = '\0'; 1238 1239 do_full_getstr: 1240 #if defined(CONFIG_SMP) 1241 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1242 raw_smp_processor_id()); 1243 #else 1244 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1245 #endif 1246 if (defcmd_in_progress) 1247 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1248 1249 /* 1250 * Fetch command from keyboard 1251 */ 1252 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1253 if (*cmdbuf != '\n') { 1254 if (*cmdbuf < 32) { 1255 if (cmdptr == cmd_head) { 1256 strncpy(cmd_hist[cmd_head], cmd_cur, 1257 CMD_BUFLEN); 1258 *(cmd_hist[cmd_head] + 1259 strlen(cmd_hist[cmd_head])-1) = '\0'; 1260 } 1261 if (!handle_ctrl_cmd(cmdbuf)) 1262 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1263 cmdbuf = cmd_cur; 1264 goto do_full_getstr; 1265 } else { 1266 strncpy(cmd_hist[cmd_head], cmd_cur, 1267 CMD_BUFLEN); 1268 } 1269 1270 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1271 if (cmd_head == cmd_tail) 1272 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1273 } 1274 1275 cmdptr = cmd_head; 1276 diag = kdb_parse(cmdbuf); 1277 if (diag == KDB_NOTFOUND) { 1278 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1279 diag = 0; 1280 } 1281 if (diag == KDB_CMD_GO 1282 || diag == KDB_CMD_CPU 1283 || diag == KDB_CMD_SS 1284 || diag == KDB_CMD_SSB 1285 || diag == KDB_CMD_KGDB) 1286 break; 1287 1288 if (diag) 1289 kdb_cmderror(diag); 1290 } 1291 KDB_DEBUG_STATE("kdb_local 9", diag); 1292 return diag; 1293 } 1294 1295 1296 /* 1297 * kdb_print_state - Print the state data for the current processor 1298 * for debugging. 1299 * Inputs: 1300 * text Identifies the debug point 1301 * value Any integer value to be printed, e.g. reason code. 1302 */ 1303 void kdb_print_state(const char *text, int value) 1304 { 1305 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1306 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1307 kdb_state); 1308 } 1309 1310 /* 1311 * kdb_main_loop - After initial setup and assignment of the 1312 * controlling cpu, all cpus are in this loop. One cpu is in 1313 * control and will issue the kdb prompt, the others will spin 1314 * until 'go' or cpu switch. 1315 * 1316 * To get a consistent view of the kernel stacks for all 1317 * processes, this routine is invoked from the main kdb code via 1318 * an architecture specific routine. kdba_main_loop is 1319 * responsible for making the kernel stacks consistent for all 1320 * processes, there should be no difference between a blocked 1321 * process and a running process as far as kdb is concerned. 1322 * Inputs: 1323 * reason The reason KDB was invoked 1324 * error The hardware-defined error code 1325 * reason2 kdb's current reason code. 1326 * Initially error but can change 1327 * according to kdb state. 1328 * db_result Result code from break or debug point. 1329 * regs The exception frame at time of fault/breakpoint. 1330 * should always be valid. 1331 * Returns: 1332 * 0 KDB was invoked for an event which it wasn't responsible 1333 * 1 KDB handled the event for which it was invoked. 1334 */ 1335 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1336 kdb_dbtrap_t db_result, struct pt_regs *regs) 1337 { 1338 int result = 1; 1339 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1340 while (1) { 1341 /* 1342 * All processors except the one that is in control 1343 * will spin here. 1344 */ 1345 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1346 while (KDB_STATE(HOLD_CPU)) { 1347 /* state KDB is turned off by kdb_cpu to see if the 1348 * other cpus are still live, each cpu in this loop 1349 * turns it back on. 1350 */ 1351 if (!KDB_STATE(KDB)) 1352 KDB_STATE_SET(KDB); 1353 } 1354 1355 KDB_STATE_CLEAR(SUPPRESS); 1356 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1357 if (KDB_STATE(LEAVING)) 1358 break; /* Another cpu said 'go' */ 1359 /* Still using kdb, this processor is in control */ 1360 result = kdb_local(reason2, error, regs, db_result); 1361 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1362 1363 if (result == KDB_CMD_CPU) 1364 break; 1365 1366 if (result == KDB_CMD_SS) { 1367 KDB_STATE_SET(DOING_SS); 1368 break; 1369 } 1370 1371 if (result == KDB_CMD_SSB) { 1372 KDB_STATE_SET(DOING_SS); 1373 KDB_STATE_SET(DOING_SSB); 1374 break; 1375 } 1376 1377 if (result == KDB_CMD_KGDB) { 1378 if (!KDB_STATE(DOING_KGDB)) 1379 kdb_printf("Entering please attach debugger " 1380 "or use $D#44+ or $3#33\n"); 1381 break; 1382 } 1383 if (result && result != 1 && result != KDB_CMD_GO) 1384 kdb_printf("\nUnexpected kdb_local return code %d\n", 1385 result); 1386 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1387 break; 1388 } 1389 if (KDB_STATE(DOING_SS)) 1390 KDB_STATE_CLEAR(SSBPT); 1391 1392 /* Clean up any keyboard devices before leaving */ 1393 kdb_kbd_cleanup_state(); 1394 1395 return result; 1396 } 1397 1398 /* 1399 * kdb_mdr - This function implements the guts of the 'mdr', memory 1400 * read command. 1401 * mdr <addr arg>,<byte count> 1402 * Inputs: 1403 * addr Start address 1404 * count Number of bytes 1405 * Returns: 1406 * Always 0. Any errors are detected and printed by kdb_getarea. 1407 */ 1408 static int kdb_mdr(unsigned long addr, unsigned int count) 1409 { 1410 unsigned char c; 1411 while (count--) { 1412 if (kdb_getarea(c, addr)) 1413 return 0; 1414 kdb_printf("%02x", c); 1415 addr++; 1416 } 1417 kdb_printf("\n"); 1418 return 0; 1419 } 1420 1421 /* 1422 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1423 * 'md8' 'mdr' and 'mds' commands. 1424 * 1425 * md|mds [<addr arg> [<line count> [<radix>]]] 1426 * mdWcN [<addr arg> [<line count> [<radix>]]] 1427 * where W = is the width (1, 2, 4 or 8) and N is the count. 1428 * for eg., md1c20 reads 20 bytes, 1 at a time. 1429 * mdr <addr arg>,<byte count> 1430 */ 1431 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1432 int symbolic, int nosect, int bytesperword, 1433 int num, int repeat, int phys) 1434 { 1435 /* print just one line of data */ 1436 kdb_symtab_t symtab; 1437 char cbuf[32]; 1438 char *c = cbuf; 1439 int i; 1440 unsigned long word; 1441 1442 memset(cbuf, '\0', sizeof(cbuf)); 1443 if (phys) 1444 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1445 else 1446 kdb_printf(kdb_machreg_fmt0 " ", addr); 1447 1448 for (i = 0; i < num && repeat--; i++) { 1449 if (phys) { 1450 if (kdb_getphysword(&word, addr, bytesperword)) 1451 break; 1452 } else if (kdb_getword(&word, addr, bytesperword)) 1453 break; 1454 kdb_printf(fmtstr, word); 1455 if (symbolic) 1456 kdbnearsym(word, &symtab); 1457 else 1458 memset(&symtab, 0, sizeof(symtab)); 1459 if (symtab.sym_name) { 1460 kdb_symbol_print(word, &symtab, 0); 1461 if (!nosect) { 1462 kdb_printf("\n"); 1463 kdb_printf(" %s %s " 1464 kdb_machreg_fmt " " 1465 kdb_machreg_fmt " " 1466 kdb_machreg_fmt, symtab.mod_name, 1467 symtab.sec_name, symtab.sec_start, 1468 symtab.sym_start, symtab.sym_end); 1469 } 1470 addr += bytesperword; 1471 } else { 1472 union { 1473 u64 word; 1474 unsigned char c[8]; 1475 } wc; 1476 unsigned char *cp; 1477 #ifdef __BIG_ENDIAN 1478 cp = wc.c + 8 - bytesperword; 1479 #else 1480 cp = wc.c; 1481 #endif 1482 wc.word = word; 1483 #define printable_char(c) \ 1484 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1485 switch (bytesperword) { 1486 case 8: 1487 *c++ = printable_char(*cp++); 1488 *c++ = printable_char(*cp++); 1489 *c++ = printable_char(*cp++); 1490 *c++ = printable_char(*cp++); 1491 addr += 4; 1492 case 4: 1493 *c++ = printable_char(*cp++); 1494 *c++ = printable_char(*cp++); 1495 addr += 2; 1496 case 2: 1497 *c++ = printable_char(*cp++); 1498 addr++; 1499 case 1: 1500 *c++ = printable_char(*cp++); 1501 addr++; 1502 break; 1503 } 1504 #undef printable_char 1505 } 1506 } 1507 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1508 " ", cbuf); 1509 } 1510 1511 static int kdb_md(int argc, const char **argv) 1512 { 1513 static unsigned long last_addr; 1514 static int last_radix, last_bytesperword, last_repeat; 1515 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1516 int nosect = 0; 1517 char fmtchar, fmtstr[64]; 1518 unsigned long addr; 1519 unsigned long word; 1520 long offset = 0; 1521 int symbolic = 0; 1522 int valid = 0; 1523 int phys = 0; 1524 1525 kdbgetintenv("MDCOUNT", &mdcount); 1526 kdbgetintenv("RADIX", &radix); 1527 kdbgetintenv("BYTESPERWORD", &bytesperword); 1528 1529 /* Assume 'md <addr>' and start with environment values */ 1530 repeat = mdcount * 16 / bytesperword; 1531 1532 if (strcmp(argv[0], "mdr") == 0) { 1533 if (argc != 2) 1534 return KDB_ARGCOUNT; 1535 valid = 1; 1536 } else if (isdigit(argv[0][2])) { 1537 bytesperword = (int)(argv[0][2] - '0'); 1538 if (bytesperword == 0) { 1539 bytesperword = last_bytesperword; 1540 if (bytesperword == 0) 1541 bytesperword = 4; 1542 } 1543 last_bytesperword = bytesperword; 1544 repeat = mdcount * 16 / bytesperword; 1545 if (!argv[0][3]) 1546 valid = 1; 1547 else if (argv[0][3] == 'c' && argv[0][4]) { 1548 char *p; 1549 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1550 mdcount = ((repeat * bytesperword) + 15) / 16; 1551 valid = !*p; 1552 } 1553 last_repeat = repeat; 1554 } else if (strcmp(argv[0], "md") == 0) 1555 valid = 1; 1556 else if (strcmp(argv[0], "mds") == 0) 1557 valid = 1; 1558 else if (strcmp(argv[0], "mdp") == 0) { 1559 phys = valid = 1; 1560 } 1561 if (!valid) 1562 return KDB_NOTFOUND; 1563 1564 if (argc == 0) { 1565 if (last_addr == 0) 1566 return KDB_ARGCOUNT; 1567 addr = last_addr; 1568 radix = last_radix; 1569 bytesperword = last_bytesperword; 1570 repeat = last_repeat; 1571 mdcount = ((repeat * bytesperword) + 15) / 16; 1572 } 1573 1574 if (argc) { 1575 unsigned long val; 1576 int diag, nextarg = 1; 1577 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1578 &offset, NULL); 1579 if (diag) 1580 return diag; 1581 if (argc > nextarg+2) 1582 return KDB_ARGCOUNT; 1583 1584 if (argc >= nextarg) { 1585 diag = kdbgetularg(argv[nextarg], &val); 1586 if (!diag) { 1587 mdcount = (int) val; 1588 repeat = mdcount * 16 / bytesperword; 1589 } 1590 } 1591 if (argc >= nextarg+1) { 1592 diag = kdbgetularg(argv[nextarg+1], &val); 1593 if (!diag) 1594 radix = (int) val; 1595 } 1596 } 1597 1598 if (strcmp(argv[0], "mdr") == 0) 1599 return kdb_mdr(addr, mdcount); 1600 1601 switch (radix) { 1602 case 10: 1603 fmtchar = 'd'; 1604 break; 1605 case 16: 1606 fmtchar = 'x'; 1607 break; 1608 case 8: 1609 fmtchar = 'o'; 1610 break; 1611 default: 1612 return KDB_BADRADIX; 1613 } 1614 1615 last_radix = radix; 1616 1617 if (bytesperword > KDB_WORD_SIZE) 1618 return KDB_BADWIDTH; 1619 1620 switch (bytesperword) { 1621 case 8: 1622 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1623 break; 1624 case 4: 1625 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1626 break; 1627 case 2: 1628 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1629 break; 1630 case 1: 1631 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1632 break; 1633 default: 1634 return KDB_BADWIDTH; 1635 } 1636 1637 last_repeat = repeat; 1638 last_bytesperword = bytesperword; 1639 1640 if (strcmp(argv[0], "mds") == 0) { 1641 symbolic = 1; 1642 /* Do not save these changes as last_*, they are temporary mds 1643 * overrides. 1644 */ 1645 bytesperword = KDB_WORD_SIZE; 1646 repeat = mdcount; 1647 kdbgetintenv("NOSECT", &nosect); 1648 } 1649 1650 /* Round address down modulo BYTESPERWORD */ 1651 1652 addr &= ~(bytesperword-1); 1653 1654 while (repeat > 0) { 1655 unsigned long a; 1656 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1657 1658 if (KDB_FLAG(CMD_INTERRUPT)) 1659 return 0; 1660 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1661 if (phys) { 1662 if (kdb_getphysword(&word, a, bytesperword) 1663 || word) 1664 break; 1665 } else if (kdb_getword(&word, a, bytesperword) || word) 1666 break; 1667 } 1668 n = min(num, repeat); 1669 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1670 num, repeat, phys); 1671 addr += bytesperword * n; 1672 repeat -= n; 1673 z = (z + num - 1) / num; 1674 if (z > 2) { 1675 int s = num * (z-2); 1676 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1677 " zero suppressed\n", 1678 addr, addr + bytesperword * s - 1); 1679 addr += bytesperword * s; 1680 repeat -= s; 1681 } 1682 } 1683 last_addr = addr; 1684 1685 return 0; 1686 } 1687 1688 /* 1689 * kdb_mm - This function implements the 'mm' command. 1690 * mm address-expression new-value 1691 * Remarks: 1692 * mm works on machine words, mmW works on bytes. 1693 */ 1694 static int kdb_mm(int argc, const char **argv) 1695 { 1696 int diag; 1697 unsigned long addr; 1698 long offset = 0; 1699 unsigned long contents; 1700 int nextarg; 1701 int width; 1702 1703 if (argv[0][2] && !isdigit(argv[0][2])) 1704 return KDB_NOTFOUND; 1705 1706 if (argc < 2) 1707 return KDB_ARGCOUNT; 1708 1709 nextarg = 1; 1710 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1711 if (diag) 1712 return diag; 1713 1714 if (nextarg > argc) 1715 return KDB_ARGCOUNT; 1716 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1717 if (diag) 1718 return diag; 1719 1720 if (nextarg != argc + 1) 1721 return KDB_ARGCOUNT; 1722 1723 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1724 diag = kdb_putword(addr, contents, width); 1725 if (diag) 1726 return diag; 1727 1728 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * kdb_go - This function implements the 'go' command. 1735 * go [address-expression] 1736 */ 1737 static int kdb_go(int argc, const char **argv) 1738 { 1739 unsigned long addr; 1740 int diag; 1741 int nextarg; 1742 long offset; 1743 1744 if (raw_smp_processor_id() != kdb_initial_cpu) { 1745 kdb_printf("go must execute on the entry cpu, " 1746 "please use \"cpu %d\" and then execute go\n", 1747 kdb_initial_cpu); 1748 return KDB_BADCPUNUM; 1749 } 1750 if (argc == 1) { 1751 nextarg = 1; 1752 diag = kdbgetaddrarg(argc, argv, &nextarg, 1753 &addr, &offset, NULL); 1754 if (diag) 1755 return diag; 1756 } else if (argc) { 1757 return KDB_ARGCOUNT; 1758 } 1759 1760 diag = KDB_CMD_GO; 1761 if (KDB_FLAG(CATASTROPHIC)) { 1762 kdb_printf("Catastrophic error detected\n"); 1763 kdb_printf("kdb_continue_catastrophic=%d, ", 1764 kdb_continue_catastrophic); 1765 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1766 kdb_printf("type go a second time if you really want " 1767 "to continue\n"); 1768 return 0; 1769 } 1770 if (kdb_continue_catastrophic == 2) { 1771 kdb_printf("forcing reboot\n"); 1772 kdb_reboot(0, NULL); 1773 } 1774 kdb_printf("attempting to continue\n"); 1775 } 1776 return diag; 1777 } 1778 1779 /* 1780 * kdb_rd - This function implements the 'rd' command. 1781 */ 1782 static int kdb_rd(int argc, const char **argv) 1783 { 1784 int len = kdb_check_regs(); 1785 #if DBG_MAX_REG_NUM > 0 1786 int i; 1787 char *rname; 1788 int rsize; 1789 u64 reg64; 1790 u32 reg32; 1791 u16 reg16; 1792 u8 reg8; 1793 1794 if (len) 1795 return len; 1796 1797 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1798 rsize = dbg_reg_def[i].size * 2; 1799 if (rsize > 16) 1800 rsize = 2; 1801 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1802 len = 0; 1803 kdb_printf("\n"); 1804 } 1805 if (len) 1806 len += kdb_printf(" "); 1807 switch(dbg_reg_def[i].size * 8) { 1808 case 8: 1809 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1810 if (!rname) 1811 break; 1812 len += kdb_printf("%s: %02x", rname, reg8); 1813 break; 1814 case 16: 1815 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1816 if (!rname) 1817 break; 1818 len += kdb_printf("%s: %04x", rname, reg16); 1819 break; 1820 case 32: 1821 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1822 if (!rname) 1823 break; 1824 len += kdb_printf("%s: %08x", rname, reg32); 1825 break; 1826 case 64: 1827 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1828 if (!rname) 1829 break; 1830 len += kdb_printf("%s: %016llx", rname, reg64); 1831 break; 1832 default: 1833 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1834 } 1835 } 1836 kdb_printf("\n"); 1837 #else 1838 if (len) 1839 return len; 1840 1841 kdb_dumpregs(kdb_current_regs); 1842 #endif 1843 return 0; 1844 } 1845 1846 /* 1847 * kdb_rm - This function implements the 'rm' (register modify) command. 1848 * rm register-name new-contents 1849 * Remarks: 1850 * Allows register modification with the same restrictions as gdb 1851 */ 1852 static int kdb_rm(int argc, const char **argv) 1853 { 1854 #if DBG_MAX_REG_NUM > 0 1855 int diag; 1856 const char *rname; 1857 int i; 1858 u64 reg64; 1859 u32 reg32; 1860 u16 reg16; 1861 u8 reg8; 1862 1863 if (argc != 2) 1864 return KDB_ARGCOUNT; 1865 /* 1866 * Allow presence or absence of leading '%' symbol. 1867 */ 1868 rname = argv[1]; 1869 if (*rname == '%') 1870 rname++; 1871 1872 diag = kdbgetu64arg(argv[2], ®64); 1873 if (diag) 1874 return diag; 1875 1876 diag = kdb_check_regs(); 1877 if (diag) 1878 return diag; 1879 1880 diag = KDB_BADREG; 1881 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1882 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1883 diag = 0; 1884 break; 1885 } 1886 } 1887 if (!diag) { 1888 switch(dbg_reg_def[i].size * 8) { 1889 case 8: 1890 reg8 = reg64; 1891 dbg_set_reg(i, ®8, kdb_current_regs); 1892 break; 1893 case 16: 1894 reg16 = reg64; 1895 dbg_set_reg(i, ®16, kdb_current_regs); 1896 break; 1897 case 32: 1898 reg32 = reg64; 1899 dbg_set_reg(i, ®32, kdb_current_regs); 1900 break; 1901 case 64: 1902 dbg_set_reg(i, ®64, kdb_current_regs); 1903 break; 1904 } 1905 } 1906 return diag; 1907 #else 1908 kdb_printf("ERROR: Register set currently not implemented\n"); 1909 return 0; 1910 #endif 1911 } 1912 1913 #if defined(CONFIG_MAGIC_SYSRQ) 1914 /* 1915 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1916 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1917 * sr <magic-sysrq-code> 1918 */ 1919 static int kdb_sr(int argc, const char **argv) 1920 { 1921 if (argc != 1) 1922 return KDB_ARGCOUNT; 1923 kdb_trap_printk++; 1924 __handle_sysrq(*argv[1], false); 1925 kdb_trap_printk--; 1926 1927 return 0; 1928 } 1929 #endif /* CONFIG_MAGIC_SYSRQ */ 1930 1931 /* 1932 * kdb_ef - This function implements the 'regs' (display exception 1933 * frame) command. This command takes an address and expects to 1934 * find an exception frame at that address, formats and prints 1935 * it. 1936 * regs address-expression 1937 * Remarks: 1938 * Not done yet. 1939 */ 1940 static int kdb_ef(int argc, const char **argv) 1941 { 1942 int diag; 1943 unsigned long addr; 1944 long offset; 1945 int nextarg; 1946 1947 if (argc != 1) 1948 return KDB_ARGCOUNT; 1949 1950 nextarg = 1; 1951 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1952 if (diag) 1953 return diag; 1954 show_regs((struct pt_regs *)addr); 1955 return 0; 1956 } 1957 1958 #if defined(CONFIG_MODULES) 1959 /* 1960 * kdb_lsmod - This function implements the 'lsmod' command. Lists 1961 * currently loaded kernel modules. 1962 * Mostly taken from userland lsmod. 1963 */ 1964 static int kdb_lsmod(int argc, const char **argv) 1965 { 1966 struct module *mod; 1967 1968 if (argc != 0) 1969 return KDB_ARGCOUNT; 1970 1971 kdb_printf("Module Size modstruct Used by\n"); 1972 list_for_each_entry(mod, kdb_modules, list) { 1973 1974 kdb_printf("%-20s%8u 0x%p ", mod->name, 1975 mod->core_size, (void *)mod); 1976 #ifdef CONFIG_MODULE_UNLOAD 1977 kdb_printf("%4ld ", module_refcount(mod)); 1978 #endif 1979 if (mod->state == MODULE_STATE_GOING) 1980 kdb_printf(" (Unloading)"); 1981 else if (mod->state == MODULE_STATE_COMING) 1982 kdb_printf(" (Loading)"); 1983 else 1984 kdb_printf(" (Live)"); 1985 kdb_printf(" 0x%p", mod->module_core); 1986 1987 #ifdef CONFIG_MODULE_UNLOAD 1988 { 1989 struct module_use *use; 1990 kdb_printf(" [ "); 1991 list_for_each_entry(use, &mod->source_list, 1992 source_list) 1993 kdb_printf("%s ", use->target->name); 1994 kdb_printf("]\n"); 1995 } 1996 #endif 1997 } 1998 1999 return 0; 2000 } 2001 2002 #endif /* CONFIG_MODULES */ 2003 2004 /* 2005 * kdb_env - This function implements the 'env' command. Display the 2006 * current environment variables. 2007 */ 2008 2009 static int kdb_env(int argc, const char **argv) 2010 { 2011 int i; 2012 2013 for (i = 0; i < __nenv; i++) { 2014 if (__env[i]) 2015 kdb_printf("%s\n", __env[i]); 2016 } 2017 2018 if (KDB_DEBUG(MASK)) 2019 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2020 2021 return 0; 2022 } 2023 2024 #ifdef CONFIG_PRINTK 2025 /* 2026 * kdb_dmesg - This function implements the 'dmesg' command to display 2027 * the contents of the syslog buffer. 2028 * dmesg [lines] [adjust] 2029 */ 2030 static int kdb_dmesg(int argc, const char **argv) 2031 { 2032 int diag; 2033 int logging; 2034 int lines = 0; 2035 int adjust = 0; 2036 int n = 0; 2037 int skip = 0; 2038 struct kmsg_dumper dumper = { .active = 1 }; 2039 size_t len; 2040 char buf[201]; 2041 2042 if (argc > 2) 2043 return KDB_ARGCOUNT; 2044 if (argc) { 2045 char *cp; 2046 lines = simple_strtol(argv[1], &cp, 0); 2047 if (*cp) 2048 lines = 0; 2049 if (argc > 1) { 2050 adjust = simple_strtoul(argv[2], &cp, 0); 2051 if (*cp || adjust < 0) 2052 adjust = 0; 2053 } 2054 } 2055 2056 /* disable LOGGING if set */ 2057 diag = kdbgetintenv("LOGGING", &logging); 2058 if (!diag && logging) { 2059 const char *setargs[] = { "set", "LOGGING", "0" }; 2060 kdb_set(2, setargs); 2061 } 2062 2063 kmsg_dump_rewind_nolock(&dumper); 2064 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2065 n++; 2066 2067 if (lines < 0) { 2068 if (adjust >= n) 2069 kdb_printf("buffer only contains %d lines, nothing " 2070 "printed\n", n); 2071 else if (adjust - lines >= n) 2072 kdb_printf("buffer only contains %d lines, last %d " 2073 "lines printed\n", n, n - adjust); 2074 skip = adjust; 2075 lines = abs(lines); 2076 } else if (lines > 0) { 2077 skip = n - lines - adjust; 2078 lines = abs(lines); 2079 if (adjust >= n) { 2080 kdb_printf("buffer only contains %d lines, " 2081 "nothing printed\n", n); 2082 skip = n; 2083 } else if (skip < 0) { 2084 lines += skip; 2085 skip = 0; 2086 kdb_printf("buffer only contains %d lines, first " 2087 "%d lines printed\n", n, lines); 2088 } 2089 } else { 2090 lines = n; 2091 } 2092 2093 if (skip >= n || skip < 0) 2094 return 0; 2095 2096 kmsg_dump_rewind_nolock(&dumper); 2097 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2098 if (skip) { 2099 skip--; 2100 continue; 2101 } 2102 if (!lines--) 2103 break; 2104 if (KDB_FLAG(CMD_INTERRUPT)) 2105 return 0; 2106 2107 kdb_printf("%.*s\n", (int)len - 1, buf); 2108 } 2109 2110 return 0; 2111 } 2112 #endif /* CONFIG_PRINTK */ 2113 2114 /* Make sure we balance enable/disable calls, must disable first. */ 2115 static atomic_t kdb_nmi_disabled; 2116 2117 static int kdb_disable_nmi(int argc, const char *argv[]) 2118 { 2119 if (atomic_read(&kdb_nmi_disabled)) 2120 return 0; 2121 atomic_set(&kdb_nmi_disabled, 1); 2122 arch_kgdb_ops.enable_nmi(0); 2123 return 0; 2124 } 2125 2126 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2127 { 2128 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2129 return -EINVAL; 2130 arch_kgdb_ops.enable_nmi(1); 2131 return 0; 2132 } 2133 2134 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2135 .set = kdb_param_enable_nmi, 2136 }; 2137 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2138 2139 /* 2140 * kdb_cpu - This function implements the 'cpu' command. 2141 * cpu [<cpunum>] 2142 * Returns: 2143 * KDB_CMD_CPU for success, a kdb diagnostic if error 2144 */ 2145 static void kdb_cpu_status(void) 2146 { 2147 int i, start_cpu, first_print = 1; 2148 char state, prev_state = '?'; 2149 2150 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2151 kdb_printf("Available cpus: "); 2152 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2153 if (!cpu_online(i)) { 2154 state = 'F'; /* cpu is offline */ 2155 } else { 2156 state = ' '; /* cpu is responding to kdb */ 2157 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2158 state = 'I'; /* idle task */ 2159 } 2160 if (state != prev_state) { 2161 if (prev_state != '?') { 2162 if (!first_print) 2163 kdb_printf(", "); 2164 first_print = 0; 2165 kdb_printf("%d", start_cpu); 2166 if (start_cpu < i-1) 2167 kdb_printf("-%d", i-1); 2168 if (prev_state != ' ') 2169 kdb_printf("(%c)", prev_state); 2170 } 2171 prev_state = state; 2172 start_cpu = i; 2173 } 2174 } 2175 /* print the trailing cpus, ignoring them if they are all offline */ 2176 if (prev_state != 'F') { 2177 if (!first_print) 2178 kdb_printf(", "); 2179 kdb_printf("%d", start_cpu); 2180 if (start_cpu < i-1) 2181 kdb_printf("-%d", i-1); 2182 if (prev_state != ' ') 2183 kdb_printf("(%c)", prev_state); 2184 } 2185 kdb_printf("\n"); 2186 } 2187 2188 static int kdb_cpu(int argc, const char **argv) 2189 { 2190 unsigned long cpunum; 2191 int diag; 2192 2193 if (argc == 0) { 2194 kdb_cpu_status(); 2195 return 0; 2196 } 2197 2198 if (argc != 1) 2199 return KDB_ARGCOUNT; 2200 2201 diag = kdbgetularg(argv[1], &cpunum); 2202 if (diag) 2203 return diag; 2204 2205 /* 2206 * Validate cpunum 2207 */ 2208 if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) 2209 return KDB_BADCPUNUM; 2210 2211 dbg_switch_cpu = cpunum; 2212 2213 /* 2214 * Switch to other cpu 2215 */ 2216 return KDB_CMD_CPU; 2217 } 2218 2219 /* The user may not realize that ps/bta with no parameters does not print idle 2220 * or sleeping system daemon processes, so tell them how many were suppressed. 2221 */ 2222 void kdb_ps_suppressed(void) 2223 { 2224 int idle = 0, daemon = 0; 2225 unsigned long mask_I = kdb_task_state_string("I"), 2226 mask_M = kdb_task_state_string("M"); 2227 unsigned long cpu; 2228 const struct task_struct *p, *g; 2229 for_each_online_cpu(cpu) { 2230 p = kdb_curr_task(cpu); 2231 if (kdb_task_state(p, mask_I)) 2232 ++idle; 2233 } 2234 kdb_do_each_thread(g, p) { 2235 if (kdb_task_state(p, mask_M)) 2236 ++daemon; 2237 } kdb_while_each_thread(g, p); 2238 if (idle || daemon) { 2239 if (idle) 2240 kdb_printf("%d idle process%s (state I)%s\n", 2241 idle, idle == 1 ? "" : "es", 2242 daemon ? " and " : ""); 2243 if (daemon) 2244 kdb_printf("%d sleeping system daemon (state M) " 2245 "process%s", daemon, 2246 daemon == 1 ? "" : "es"); 2247 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2248 } 2249 } 2250 2251 /* 2252 * kdb_ps - This function implements the 'ps' command which shows a 2253 * list of the active processes. 2254 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2255 */ 2256 void kdb_ps1(const struct task_struct *p) 2257 { 2258 int cpu; 2259 unsigned long tmp; 2260 2261 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2262 return; 2263 2264 cpu = kdb_process_cpu(p); 2265 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2266 (void *)p, p->pid, p->parent->pid, 2267 kdb_task_has_cpu(p), kdb_process_cpu(p), 2268 kdb_task_state_char(p), 2269 (void *)(&p->thread), 2270 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2271 p->comm); 2272 if (kdb_task_has_cpu(p)) { 2273 if (!KDB_TSK(cpu)) { 2274 kdb_printf(" Error: no saved data for this cpu\n"); 2275 } else { 2276 if (KDB_TSK(cpu) != p) 2277 kdb_printf(" Error: does not match running " 2278 "process table (0x%p)\n", KDB_TSK(cpu)); 2279 } 2280 } 2281 } 2282 2283 static int kdb_ps(int argc, const char **argv) 2284 { 2285 struct task_struct *g, *p; 2286 unsigned long mask, cpu; 2287 2288 if (argc == 0) 2289 kdb_ps_suppressed(); 2290 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2291 (int)(2*sizeof(void *))+2, "Task Addr", 2292 (int)(2*sizeof(void *))+2, "Thread"); 2293 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2294 /* Run the active tasks first */ 2295 for_each_online_cpu(cpu) { 2296 if (KDB_FLAG(CMD_INTERRUPT)) 2297 return 0; 2298 p = kdb_curr_task(cpu); 2299 if (kdb_task_state(p, mask)) 2300 kdb_ps1(p); 2301 } 2302 kdb_printf("\n"); 2303 /* Now the real tasks */ 2304 kdb_do_each_thread(g, p) { 2305 if (KDB_FLAG(CMD_INTERRUPT)) 2306 return 0; 2307 if (kdb_task_state(p, mask)) 2308 kdb_ps1(p); 2309 } kdb_while_each_thread(g, p); 2310 2311 return 0; 2312 } 2313 2314 /* 2315 * kdb_pid - This function implements the 'pid' command which switches 2316 * the currently active process. 2317 * pid [<pid> | R] 2318 */ 2319 static int kdb_pid(int argc, const char **argv) 2320 { 2321 struct task_struct *p; 2322 unsigned long val; 2323 int diag; 2324 2325 if (argc > 1) 2326 return KDB_ARGCOUNT; 2327 2328 if (argc) { 2329 if (strcmp(argv[1], "R") == 0) { 2330 p = KDB_TSK(kdb_initial_cpu); 2331 } else { 2332 diag = kdbgetularg(argv[1], &val); 2333 if (diag) 2334 return KDB_BADINT; 2335 2336 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2337 if (!p) { 2338 kdb_printf("No task with pid=%d\n", (pid_t)val); 2339 return 0; 2340 } 2341 } 2342 kdb_set_current_task(p); 2343 } 2344 kdb_printf("KDB current process is %s(pid=%d)\n", 2345 kdb_current_task->comm, 2346 kdb_current_task->pid); 2347 2348 return 0; 2349 } 2350 2351 /* 2352 * kdb_ll - This function implements the 'll' command which follows a 2353 * linked list and executes an arbitrary command for each 2354 * element. 2355 */ 2356 static int kdb_ll(int argc, const char **argv) 2357 { 2358 int diag = 0; 2359 unsigned long addr; 2360 long offset = 0; 2361 unsigned long va; 2362 unsigned long linkoffset; 2363 int nextarg; 2364 const char *command; 2365 2366 if (argc != 3) 2367 return KDB_ARGCOUNT; 2368 2369 nextarg = 1; 2370 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2371 if (diag) 2372 return diag; 2373 2374 diag = kdbgetularg(argv[2], &linkoffset); 2375 if (diag) 2376 return diag; 2377 2378 /* 2379 * Using the starting address as 2380 * the first element in the list, and assuming that 2381 * the list ends with a null pointer. 2382 */ 2383 2384 va = addr; 2385 command = kdb_strdup(argv[3], GFP_KDB); 2386 if (!command) { 2387 kdb_printf("%s: cannot duplicate command\n", __func__); 2388 return 0; 2389 } 2390 /* Recursive use of kdb_parse, do not use argv after this point */ 2391 argv = NULL; 2392 2393 while (va) { 2394 char buf[80]; 2395 2396 if (KDB_FLAG(CMD_INTERRUPT)) 2397 goto out; 2398 2399 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); 2400 diag = kdb_parse(buf); 2401 if (diag) 2402 goto out; 2403 2404 addr = va + linkoffset; 2405 if (kdb_getword(&va, addr, sizeof(va))) 2406 goto out; 2407 } 2408 2409 out: 2410 kfree(command); 2411 return diag; 2412 } 2413 2414 static int kdb_kgdb(int argc, const char **argv) 2415 { 2416 return KDB_CMD_KGDB; 2417 } 2418 2419 /* 2420 * kdb_help - This function implements the 'help' and '?' commands. 2421 */ 2422 static int kdb_help(int argc, const char **argv) 2423 { 2424 kdbtab_t *kt; 2425 int i; 2426 2427 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2428 kdb_printf("-----------------------------" 2429 "-----------------------------\n"); 2430 for_each_kdbcmd(kt, i) { 2431 if (kt->cmd_name) 2432 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, 2433 kt->cmd_usage, kt->cmd_help); 2434 if (KDB_FLAG(CMD_INTERRUPT)) 2435 return 0; 2436 } 2437 return 0; 2438 } 2439 2440 /* 2441 * kdb_kill - This function implements the 'kill' commands. 2442 */ 2443 static int kdb_kill(int argc, const char **argv) 2444 { 2445 long sig, pid; 2446 char *endp; 2447 struct task_struct *p; 2448 struct siginfo info; 2449 2450 if (argc != 2) 2451 return KDB_ARGCOUNT; 2452 2453 sig = simple_strtol(argv[1], &endp, 0); 2454 if (*endp) 2455 return KDB_BADINT; 2456 if (sig >= 0) { 2457 kdb_printf("Invalid signal parameter.<-signal>\n"); 2458 return 0; 2459 } 2460 sig = -sig; 2461 2462 pid = simple_strtol(argv[2], &endp, 0); 2463 if (*endp) 2464 return KDB_BADINT; 2465 if (pid <= 0) { 2466 kdb_printf("Process ID must be large than 0.\n"); 2467 return 0; 2468 } 2469 2470 /* Find the process. */ 2471 p = find_task_by_pid_ns(pid, &init_pid_ns); 2472 if (!p) { 2473 kdb_printf("The specified process isn't found.\n"); 2474 return 0; 2475 } 2476 p = p->group_leader; 2477 info.si_signo = sig; 2478 info.si_errno = 0; 2479 info.si_code = SI_USER; 2480 info.si_pid = pid; /* same capabilities as process being signalled */ 2481 info.si_uid = 0; /* kdb has root authority */ 2482 kdb_send_sig_info(p, &info); 2483 return 0; 2484 } 2485 2486 struct kdb_tm { 2487 int tm_sec; /* seconds */ 2488 int tm_min; /* minutes */ 2489 int tm_hour; /* hours */ 2490 int tm_mday; /* day of the month */ 2491 int tm_mon; /* month */ 2492 int tm_year; /* year */ 2493 }; 2494 2495 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2496 { 2497 /* This will work from 1970-2099, 2100 is not a leap year */ 2498 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2499 31, 30, 31, 30, 31 }; 2500 memset(tm, 0, sizeof(*tm)); 2501 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2502 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2503 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2504 tm->tm_min = tm->tm_sec / 60 % 60; 2505 tm->tm_hour = tm->tm_sec / 60 / 60; 2506 tm->tm_sec = tm->tm_sec % 60; 2507 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2508 tm->tm_mday %= (4*365+1); 2509 mon_day[1] = 29; 2510 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2511 tm->tm_mday -= mon_day[tm->tm_mon]; 2512 if (++tm->tm_mon == 12) { 2513 tm->tm_mon = 0; 2514 ++tm->tm_year; 2515 mon_day[1] = 28; 2516 } 2517 } 2518 ++tm->tm_mday; 2519 } 2520 2521 /* 2522 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2523 * I cannot call that code directly from kdb, it has an unconditional 2524 * cli()/sti() and calls routines that take locks which can stop the debugger. 2525 */ 2526 static void kdb_sysinfo(struct sysinfo *val) 2527 { 2528 struct timespec uptime; 2529 do_posix_clock_monotonic_gettime(&uptime); 2530 memset(val, 0, sizeof(*val)); 2531 val->uptime = uptime.tv_sec; 2532 val->loads[0] = avenrun[0]; 2533 val->loads[1] = avenrun[1]; 2534 val->loads[2] = avenrun[2]; 2535 val->procs = nr_threads-1; 2536 si_meminfo(val); 2537 2538 return; 2539 } 2540 2541 /* 2542 * kdb_summary - This function implements the 'summary' command. 2543 */ 2544 static int kdb_summary(int argc, const char **argv) 2545 { 2546 struct timespec now; 2547 struct kdb_tm tm; 2548 struct sysinfo val; 2549 2550 if (argc) 2551 return KDB_ARGCOUNT; 2552 2553 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2554 kdb_printf("release %s\n", init_uts_ns.name.release); 2555 kdb_printf("version %s\n", init_uts_ns.name.version); 2556 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2557 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2558 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2559 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2560 2561 now = __current_kernel_time(); 2562 kdb_gmtime(&now, &tm); 2563 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2564 "tz_minuteswest %d\n", 2565 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2566 tm.tm_hour, tm.tm_min, tm.tm_sec, 2567 sys_tz.tz_minuteswest); 2568 2569 kdb_sysinfo(&val); 2570 kdb_printf("uptime "); 2571 if (val.uptime > (24*60*60)) { 2572 int days = val.uptime / (24*60*60); 2573 val.uptime %= (24*60*60); 2574 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2575 } 2576 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2577 2578 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2579 2580 #define LOAD_INT(x) ((x) >> FSHIFT) 2581 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2582 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2583 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2584 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2585 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2586 #undef LOAD_INT 2587 #undef LOAD_FRAC 2588 /* Display in kilobytes */ 2589 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2590 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2591 "Buffers: %8lu kB\n", 2592 val.totalram, val.freeram, val.bufferram); 2593 return 0; 2594 } 2595 2596 /* 2597 * kdb_per_cpu - This function implements the 'per_cpu' command. 2598 */ 2599 static int kdb_per_cpu(int argc, const char **argv) 2600 { 2601 char fmtstr[64]; 2602 int cpu, diag, nextarg = 1; 2603 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2604 2605 if (argc < 1 || argc > 3) 2606 return KDB_ARGCOUNT; 2607 2608 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2609 if (diag) 2610 return diag; 2611 2612 if (argc >= 2) { 2613 diag = kdbgetularg(argv[2], &bytesperword); 2614 if (diag) 2615 return diag; 2616 } 2617 if (!bytesperword) 2618 bytesperword = KDB_WORD_SIZE; 2619 else if (bytesperword > KDB_WORD_SIZE) 2620 return KDB_BADWIDTH; 2621 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2622 if (argc >= 3) { 2623 diag = kdbgetularg(argv[3], &whichcpu); 2624 if (diag) 2625 return diag; 2626 if (!cpu_online(whichcpu)) { 2627 kdb_printf("cpu %ld is not online\n", whichcpu); 2628 return KDB_BADCPUNUM; 2629 } 2630 } 2631 2632 /* Most architectures use __per_cpu_offset[cpu], some use 2633 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2634 */ 2635 #ifdef __per_cpu_offset 2636 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2637 #else 2638 #ifdef CONFIG_SMP 2639 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2640 #else 2641 #define KDB_PCU(cpu) 0 2642 #endif 2643 #endif 2644 for_each_online_cpu(cpu) { 2645 if (KDB_FLAG(CMD_INTERRUPT)) 2646 return 0; 2647 2648 if (whichcpu != ~0UL && whichcpu != cpu) 2649 continue; 2650 addr = symaddr + KDB_PCU(cpu); 2651 diag = kdb_getword(&val, addr, bytesperword); 2652 if (diag) { 2653 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2654 "read, diag=%d\n", cpu, addr, diag); 2655 continue; 2656 } 2657 kdb_printf("%5d ", cpu); 2658 kdb_md_line(fmtstr, addr, 2659 bytesperword == KDB_WORD_SIZE, 2660 1, bytesperword, 1, 1, 0); 2661 } 2662 #undef KDB_PCU 2663 return 0; 2664 } 2665 2666 /* 2667 * display help for the use of cmd | grep pattern 2668 */ 2669 static int kdb_grep_help(int argc, const char **argv) 2670 { 2671 kdb_printf("Usage of cmd args | grep pattern:\n"); 2672 kdb_printf(" Any command's output may be filtered through an "); 2673 kdb_printf("emulated 'pipe'.\n"); 2674 kdb_printf(" 'grep' is just a key word.\n"); 2675 kdb_printf(" The pattern may include a very limited set of " 2676 "metacharacters:\n"); 2677 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2678 kdb_printf(" And if there are spaces in the pattern, you may " 2679 "quote it:\n"); 2680 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2681 " or \"^pat tern$\"\n"); 2682 return 0; 2683 } 2684 2685 /* 2686 * kdb_register_repeat - This function is used to register a kernel 2687 * debugger command. 2688 * Inputs: 2689 * cmd Command name 2690 * func Function to execute the command 2691 * usage A simple usage string showing arguments 2692 * help A simple help string describing command 2693 * repeat Does the command auto repeat on enter? 2694 * Returns: 2695 * zero for success, one if a duplicate command. 2696 */ 2697 #define kdb_command_extend 50 /* arbitrary */ 2698 int kdb_register_repeat(char *cmd, 2699 kdb_func_t func, 2700 char *usage, 2701 char *help, 2702 short minlen, 2703 kdb_repeat_t repeat) 2704 { 2705 int i; 2706 kdbtab_t *kp; 2707 2708 /* 2709 * Brute force method to determine duplicates 2710 */ 2711 for_each_kdbcmd(kp, i) { 2712 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2713 kdb_printf("Duplicate kdb command registered: " 2714 "%s, func %p help %s\n", cmd, func, help); 2715 return 1; 2716 } 2717 } 2718 2719 /* 2720 * Insert command into first available location in table 2721 */ 2722 for_each_kdbcmd(kp, i) { 2723 if (kp->cmd_name == NULL) 2724 break; 2725 } 2726 2727 if (i >= kdb_max_commands) { 2728 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2729 kdb_command_extend) * sizeof(*new), GFP_KDB); 2730 if (!new) { 2731 kdb_printf("Could not allocate new kdb_command " 2732 "table\n"); 2733 return 1; 2734 } 2735 if (kdb_commands) { 2736 memcpy(new, kdb_commands, 2737 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2738 kfree(kdb_commands); 2739 } 2740 memset(new + kdb_max_commands, 0, 2741 kdb_command_extend * sizeof(*new)); 2742 kdb_commands = new; 2743 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2744 kdb_max_commands += kdb_command_extend; 2745 } 2746 2747 kp->cmd_name = cmd; 2748 kp->cmd_func = func; 2749 kp->cmd_usage = usage; 2750 kp->cmd_help = help; 2751 kp->cmd_flags = 0; 2752 kp->cmd_minlen = minlen; 2753 kp->cmd_repeat = repeat; 2754 2755 return 0; 2756 } 2757 EXPORT_SYMBOL_GPL(kdb_register_repeat); 2758 2759 2760 /* 2761 * kdb_register - Compatibility register function for commands that do 2762 * not need to specify a repeat state. Equivalent to 2763 * kdb_register_repeat with KDB_REPEAT_NONE. 2764 * Inputs: 2765 * cmd Command name 2766 * func Function to execute the command 2767 * usage A simple usage string showing arguments 2768 * help A simple help string describing command 2769 * Returns: 2770 * zero for success, one if a duplicate command. 2771 */ 2772 int kdb_register(char *cmd, 2773 kdb_func_t func, 2774 char *usage, 2775 char *help, 2776 short minlen) 2777 { 2778 return kdb_register_repeat(cmd, func, usage, help, minlen, 2779 KDB_REPEAT_NONE); 2780 } 2781 EXPORT_SYMBOL_GPL(kdb_register); 2782 2783 /* 2784 * kdb_unregister - This function is used to unregister a kernel 2785 * debugger command. It is generally called when a module which 2786 * implements kdb commands is unloaded. 2787 * Inputs: 2788 * cmd Command name 2789 * Returns: 2790 * zero for success, one command not registered. 2791 */ 2792 int kdb_unregister(char *cmd) 2793 { 2794 int i; 2795 kdbtab_t *kp; 2796 2797 /* 2798 * find the command. 2799 */ 2800 for_each_kdbcmd(kp, i) { 2801 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2802 kp->cmd_name = NULL; 2803 return 0; 2804 } 2805 } 2806 2807 /* Couldn't find it. */ 2808 return 1; 2809 } 2810 EXPORT_SYMBOL_GPL(kdb_unregister); 2811 2812 /* Initialize the kdb command table. */ 2813 static void __init kdb_inittab(void) 2814 { 2815 int i; 2816 kdbtab_t *kp; 2817 2818 for_each_kdbcmd(kp, i) 2819 kp->cmd_name = NULL; 2820 2821 kdb_register_repeat("md", kdb_md, "<vaddr>", 2822 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2823 KDB_REPEAT_NO_ARGS); 2824 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 2825 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); 2826 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", 2827 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); 2828 kdb_register_repeat("mds", kdb_md, "<vaddr>", 2829 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); 2830 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", 2831 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); 2832 kdb_register_repeat("go", kdb_go, "[<vaddr>]", 2833 "Continue Execution", 1, KDB_REPEAT_NONE); 2834 kdb_register_repeat("rd", kdb_rd, "", 2835 "Display Registers", 0, KDB_REPEAT_NONE); 2836 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", 2837 "Modify Registers", 0, KDB_REPEAT_NONE); 2838 kdb_register_repeat("ef", kdb_ef, "<vaddr>", 2839 "Display exception frame", 0, KDB_REPEAT_NONE); 2840 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", 2841 "Stack traceback", 1, KDB_REPEAT_NONE); 2842 kdb_register_repeat("btp", kdb_bt, "<pid>", 2843 "Display stack for process <pid>", 0, KDB_REPEAT_NONE); 2844 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", 2845 "Display stack all processes", 0, KDB_REPEAT_NONE); 2846 kdb_register_repeat("btc", kdb_bt, "", 2847 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); 2848 kdb_register_repeat("btt", kdb_bt, "<vaddr>", 2849 "Backtrace process given its struct task address", 0, 2850 KDB_REPEAT_NONE); 2851 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", 2852 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); 2853 kdb_register_repeat("env", kdb_env, "", 2854 "Show environment variables", 0, KDB_REPEAT_NONE); 2855 kdb_register_repeat("set", kdb_set, "", 2856 "Set environment variables", 0, KDB_REPEAT_NONE); 2857 kdb_register_repeat("help", kdb_help, "", 2858 "Display Help Message", 1, KDB_REPEAT_NONE); 2859 kdb_register_repeat("?", kdb_help, "", 2860 "Display Help Message", 0, KDB_REPEAT_NONE); 2861 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", 2862 "Switch to new cpu", 0, KDB_REPEAT_NONE); 2863 kdb_register_repeat("kgdb", kdb_kgdb, "", 2864 "Enter kgdb mode", 0, KDB_REPEAT_NONE); 2865 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", 2866 "Display active task list", 0, KDB_REPEAT_NONE); 2867 kdb_register_repeat("pid", kdb_pid, "<pidnum>", 2868 "Switch to another task", 0, KDB_REPEAT_NONE); 2869 kdb_register_repeat("reboot", kdb_reboot, "", 2870 "Reboot the machine immediately", 0, KDB_REPEAT_NONE); 2871 #if defined(CONFIG_MODULES) 2872 kdb_register_repeat("lsmod", kdb_lsmod, "", 2873 "List loaded kernel modules", 0, KDB_REPEAT_NONE); 2874 #endif 2875 #if defined(CONFIG_MAGIC_SYSRQ) 2876 kdb_register_repeat("sr", kdb_sr, "<key>", 2877 "Magic SysRq key", 0, KDB_REPEAT_NONE); 2878 #endif 2879 #if defined(CONFIG_PRINTK) 2880 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", 2881 "Display syslog buffer", 0, KDB_REPEAT_NONE); 2882 #endif 2883 if (arch_kgdb_ops.enable_nmi) { 2884 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "", 2885 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE); 2886 } 2887 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2888 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); 2889 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", 2890 "Send a signal to a process", 0, KDB_REPEAT_NONE); 2891 kdb_register_repeat("summary", kdb_summary, "", 2892 "Summarize the system", 4, KDB_REPEAT_NONE); 2893 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2894 "Display per_cpu variables", 3, KDB_REPEAT_NONE); 2895 kdb_register_repeat("grephelp", kdb_grep_help, "", 2896 "Display help on | grep", 0, KDB_REPEAT_NONE); 2897 } 2898 2899 /* Execute any commands defined in kdb_cmds. */ 2900 static void __init kdb_cmd_init(void) 2901 { 2902 int i, diag; 2903 for (i = 0; kdb_cmds[i]; ++i) { 2904 diag = kdb_parse(kdb_cmds[i]); 2905 if (diag) 2906 kdb_printf("kdb command %s failed, kdb diag %d\n", 2907 kdb_cmds[i], diag); 2908 } 2909 if (defcmd_in_progress) { 2910 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2911 kdb_parse("endefcmd"); 2912 } 2913 } 2914 2915 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2916 void __init kdb_init(int lvl) 2917 { 2918 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2919 int i; 2920 2921 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2922 return; 2923 for (i = kdb_init_lvl; i < lvl; i++) { 2924 switch (i) { 2925 case KDB_NOT_INITIALIZED: 2926 kdb_inittab(); /* Initialize Command Table */ 2927 kdb_initbptab(); /* Initialize Breakpoints */ 2928 break; 2929 case KDB_INIT_EARLY: 2930 kdb_cmd_init(); /* Build kdb_cmds tables */ 2931 break; 2932 } 2933 } 2934 kdb_init_lvl = lvl; 2935 } 2936