xref: /linux/kernel/debug/kdb/kdb_bt.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel Debugger Architecture Independent Stack Traceback
4  *
5  * Copyright (c) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
6  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
7  */
8 
9 #include <linux/ctype.h>
10 #include <linux/string.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/signal.h>
13 #include <linux/sched/debug.h>
14 #include <linux/kdb.h>
15 #include <linux/nmi.h>
16 #include "kdb_private.h"
17 
18 
19 static void kdb_show_stack(struct task_struct *p, void *addr)
20 {
21 	kdb_trap_printk++;
22 
23 	if (!addr && kdb_task_has_cpu(p)) {
24 		int old_lvl = console_loglevel;
25 
26 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
27 		kdb_dump_stack_on_cpu(kdb_process_cpu(p));
28 		console_loglevel = old_lvl;
29 	} else {
30 		show_stack(p, addr, KERN_EMERG);
31 	}
32 
33 	kdb_trap_printk--;
34 }
35 
36 /*
37  * kdb_bt
38  *
39  *	This function implements the 'bt' command.  Print a stack
40  *	traceback.
41  *
42  *	bt [<address-expression>]	(addr-exp is for alternate stacks)
43  *	btp <pid>			Kernel stack for <pid>
44  *	btt <address-expression>	Kernel stack for task structure at
45  *					<address-expression>
46  *	bta [state_chars>|A]		All useful processes, optionally
47  *					filtered by state
48  *	btc [<cpu>]			The current process on one cpu,
49  *					default is all cpus
50  *
51  *	bt <address-expression> refers to a address on the stack, that location
52  *	is assumed to contain a return address.
53  *
54  *	btt <address-expression> refers to the address of a struct task.
55  *
56  * Inputs:
57  *	argc	argument count
58  *	argv	argument vector
59  * Outputs:
60  *	None.
61  * Returns:
62  *	zero for success, a kdb diagnostic if error
63  * Locking:
64  *	none.
65  * Remarks:
66  *	Backtrack works best when the code uses frame pointers.  But even
67  *	without frame pointers we should get a reasonable trace.
68  *
69  *	mds comes in handy when examining the stack to do a manual traceback or
70  *	to get a starting point for bt <address-expression>.
71  */
72 
73 static int
74 kdb_bt1(struct task_struct *p, const char *mask, bool btaprompt)
75 {
76 	char ch;
77 
78 	if (kdb_getarea(ch, (unsigned long)p) ||
79 	    kdb_getarea(ch, (unsigned long)(p+1)-1))
80 		return KDB_BADADDR;
81 	if (!kdb_task_state(p, mask))
82 		return 0;
83 	kdb_printf("Stack traceback for pid %d\n", p->pid);
84 	kdb_ps1(p);
85 	kdb_show_stack(p, NULL);
86 	if (btaprompt) {
87 		kdb_printf("Enter <q> to end, <cr> or <space> to continue:");
88 		do {
89 			ch = kdb_getchar();
90 		} while (!strchr("\r\n q", ch));
91 		kdb_printf("\n");
92 
93 		/* reset the pager */
94 		kdb_nextline = 1;
95 
96 		if (ch == 'q')
97 			return 1;
98 	}
99 	touch_nmi_watchdog();
100 	return 0;
101 }
102 
103 static void
104 kdb_bt_cpu(unsigned long cpu)
105 {
106 	struct task_struct *kdb_tsk;
107 
108 	if (cpu >= num_possible_cpus() || !cpu_online(cpu)) {
109 		kdb_printf("WARNING: no process for cpu %ld\n", cpu);
110 		return;
111 	}
112 
113 	/* If a CPU failed to round up we could be here */
114 	kdb_tsk = KDB_TSK(cpu);
115 	if (!kdb_tsk) {
116 		kdb_printf("WARNING: no task for cpu %ld\n", cpu);
117 		return;
118 	}
119 
120 	kdb_bt1(kdb_tsk, "A", false);
121 }
122 
123 int
124 kdb_bt(int argc, const char **argv)
125 {
126 	int diag;
127 	int btaprompt = 1;
128 	int nextarg;
129 	unsigned long addr;
130 	long offset;
131 
132 	/* Prompt after each proc in bta */
133 	kdbgetintenv("BTAPROMPT", &btaprompt);
134 
135 	if (strcmp(argv[0], "bta") == 0) {
136 		struct task_struct *g, *p;
137 		unsigned long cpu;
138 		const char *mask = argc ? argv[1] : kdbgetenv("PS");
139 
140 		if (argc == 0)
141 			kdb_ps_suppressed();
142 		/* Run the active tasks first */
143 		for_each_online_cpu(cpu) {
144 			p = curr_task(cpu);
145 			if (kdb_bt1(p, mask, btaprompt))
146 				return 0;
147 		}
148 		/* Now the inactive tasks */
149 		for_each_process_thread(g, p) {
150 			if (KDB_FLAG(CMD_INTERRUPT))
151 				return 0;
152 			if (task_curr(p))
153 				continue;
154 			if (kdb_bt1(p, mask, btaprompt))
155 				return 0;
156 		}
157 	} else if (strcmp(argv[0], "btp") == 0) {
158 		struct task_struct *p;
159 		unsigned long pid;
160 		if (argc != 1)
161 			return KDB_ARGCOUNT;
162 		diag = kdbgetularg((char *)argv[1], &pid);
163 		if (diag)
164 			return diag;
165 		p = find_task_by_pid_ns(pid, &init_pid_ns);
166 		if (p)
167 			return kdb_bt1(p, "A", false);
168 		kdb_printf("No process with pid == %ld found\n", pid);
169 		return 0;
170 	} else if (strcmp(argv[0], "btt") == 0) {
171 		if (argc != 1)
172 			return KDB_ARGCOUNT;
173 		diag = kdbgetularg((char *)argv[1], &addr);
174 		if (diag)
175 			return diag;
176 		return kdb_bt1((struct task_struct *)addr, "A", false);
177 	} else if (strcmp(argv[0], "btc") == 0) {
178 		unsigned long cpu = ~0;
179 		if (argc > 1)
180 			return KDB_ARGCOUNT;
181 		if (argc == 1) {
182 			diag = kdbgetularg((char *)argv[1], &cpu);
183 			if (diag)
184 				return diag;
185 		}
186 		if (cpu != ~0) {
187 			kdb_bt_cpu(cpu);
188 		} else {
189 			/*
190 			 * Recursive use of kdb_parse, do not use argv after
191 			 * this point.
192 			 */
193 			argv = NULL;
194 			kdb_printf("btc: cpu status: ");
195 			kdb_parse("cpu\n");
196 			for_each_online_cpu(cpu) {
197 				kdb_bt_cpu(cpu);
198 				touch_nmi_watchdog();
199 			}
200 		}
201 		return 0;
202 	} else {
203 		if (argc) {
204 			nextarg = 1;
205 			diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
206 					     &offset, NULL);
207 			if (diag)
208 				return diag;
209 			kdb_show_stack(kdb_current_task, (void *)addr);
210 			return 0;
211 		} else {
212 			return kdb_bt1(kdb_current_task, "A", false);
213 		}
214 	}
215 
216 	/* NOTREACHED */
217 	return 0;
218 }
219