xref: /linux/kernel/debug/debug_core.c (revision e74e1d55728509b352e4eec4283dd5b2781b2070)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 static int __init opt_kgdb_con(char *str)
98 {
99 	kgdb_use_con = 1;
100 	return 0;
101 }
102 
103 early_param("kgdbcon", opt_kgdb_con);
104 
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
107 
108 /*
109  * Holds information about breakpoints in a kernel. These breakpoints are
110  * added and removed by gdb.
111  */
112 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
114 };
115 
116 /*
117  * The CPU# of the active CPU, or -1 if none:
118  */
119 atomic_t			kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
123 
124 /*
125  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126  * bootup code (which might not have percpu set up yet):
127  */
128 static atomic_t			masters_in_kgdb;
129 static atomic_t			slaves_in_kgdb;
130 static atomic_t			kgdb_break_tasklet_var;
131 atomic_t			kgdb_setting_breakpoint;
132 
133 struct task_struct		*kgdb_usethread;
134 struct task_struct		*kgdb_contthread;
135 
136 int				kgdb_single_step;
137 static pid_t			kgdb_sstep_pid;
138 
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141 
142 /*
143  * If you are debugging a problem where roundup (the collection of
144  * all other CPUs) is a problem [this should be extremely rare],
145  * then use the nokgdbroundup option to avoid roundup. In that case
146  * the other CPUs might interfere with your debugging context, so
147  * use this with care:
148  */
149 static int kgdb_do_roundup = 1;
150 
151 static int __init opt_nokgdbroundup(char *str)
152 {
153 	kgdb_do_roundup = 0;
154 
155 	return 0;
156 }
157 
158 early_param("nokgdbroundup", opt_nokgdbroundup);
159 
160 /*
161  * Finally, some KGDB code :-)
162  */
163 
164 /*
165  * Weak aliases for breakpoint management,
166  * can be overriden by architectures when needed:
167  */
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
169 {
170 	int err;
171 
172 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
173 				BREAK_INSTR_SIZE);
174 	if (err)
175 		return err;
176 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
177 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 	return err;
179 }
180 
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
182 {
183 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
184 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
185 }
186 
187 int __weak kgdb_validate_break_address(unsigned long addr)
188 {
189 	struct kgdb_bkpt tmp;
190 	int err;
191 	/* Validate setting the breakpoint and then removing it.  If the
192 	 * remove fails, the kernel needs to emit a bad message because we
193 	 * are deep trouble not being able to put things back the way we
194 	 * found them.
195 	 */
196 	tmp.bpt_addr = addr;
197 	err = kgdb_arch_set_breakpoint(&tmp);
198 	if (err)
199 		return err;
200 	err = kgdb_arch_remove_breakpoint(&tmp);
201 	if (err)
202 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 		       addr);
204 	return err;
205 }
206 
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
208 {
209 	return instruction_pointer(regs);
210 }
211 
212 int __weak kgdb_arch_init(void)
213 {
214 	return 0;
215 }
216 
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
218 {
219 	return 0;
220 }
221 
222 #ifdef CONFIG_SMP
223 
224 /*
225  * Default (weak) implementation for kgdb_roundup_cpus
226  */
227 
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
229 
230 void __weak kgdb_call_nmi_hook(void *ignored)
231 {
232 	/*
233 	 * NOTE: get_irq_regs() is supposed to get the registers from
234 	 * before the IPI interrupt happened and so is supposed to
235 	 * show where the processor was.  In some situations it's
236 	 * possible we might be called without an IPI, so it might be
237 	 * safer to figure out how to make kgdb_breakpoint() work
238 	 * properly here.
239 	 */
240 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
241 }
242 
243 void __weak kgdb_roundup_cpus(void)
244 {
245 	call_single_data_t *csd;
246 	int this_cpu = raw_smp_processor_id();
247 	int cpu;
248 	int ret;
249 
250 	for_each_online_cpu(cpu) {
251 		/* No need to roundup ourselves */
252 		if (cpu == this_cpu)
253 			continue;
254 
255 		csd = &per_cpu(kgdb_roundup_csd, cpu);
256 
257 		/*
258 		 * If it didn't round up last time, don't try again
259 		 * since smp_call_function_single_async() will block.
260 		 *
261 		 * If rounding_up is false then we know that the
262 		 * previous call must have at least started and that
263 		 * means smp_call_function_single_async() won't block.
264 		 */
265 		if (kgdb_info[cpu].rounding_up)
266 			continue;
267 		kgdb_info[cpu].rounding_up = true;
268 
269 		csd->func = kgdb_call_nmi_hook;
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 
276 #endif
277 
278 /*
279  * Some architectures need cache flushes when we set/clear a
280  * breakpoint:
281  */
282 static void kgdb_flush_swbreak_addr(unsigned long addr)
283 {
284 	if (!CACHE_FLUSH_IS_SAFE)
285 		return;
286 
287 	if (current->mm) {
288 		int i;
289 
290 		for (i = 0; i < VMACACHE_SIZE; i++) {
291 			if (!current->vmacache.vmas[i])
292 				continue;
293 			flush_cache_range(current->vmacache.vmas[i],
294 					  addr, addr + BREAK_INSTR_SIZE);
295 		}
296 	}
297 
298 	/* Force flush instruction cache if it was outside the mm */
299 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
300 }
301 
302 /*
303  * SW breakpoint management:
304  */
305 int dbg_activate_sw_breakpoints(void)
306 {
307 	int error;
308 	int ret = 0;
309 	int i;
310 
311 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 		if (kgdb_break[i].state != BP_SET)
313 			continue;
314 
315 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 		if (error) {
317 			ret = error;
318 			pr_info("BP install failed: %lx\n",
319 				kgdb_break[i].bpt_addr);
320 			continue;
321 		}
322 
323 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 		kgdb_break[i].state = BP_ACTIVE;
325 	}
326 	return ret;
327 }
328 
329 int dbg_set_sw_break(unsigned long addr)
330 {
331 	int err = kgdb_validate_break_address(addr);
332 	int breakno = -1;
333 	int i;
334 
335 	if (err)
336 		return err;
337 
338 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 		if ((kgdb_break[i].state == BP_SET) &&
340 					(kgdb_break[i].bpt_addr == addr))
341 			return -EEXIST;
342 	}
343 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 		if (kgdb_break[i].state == BP_REMOVED &&
345 					kgdb_break[i].bpt_addr == addr) {
346 			breakno = i;
347 			break;
348 		}
349 	}
350 
351 	if (breakno == -1) {
352 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 			if (kgdb_break[i].state == BP_UNDEFINED) {
354 				breakno = i;
355 				break;
356 			}
357 		}
358 	}
359 
360 	if (breakno == -1)
361 		return -E2BIG;
362 
363 	kgdb_break[breakno].state = BP_SET;
364 	kgdb_break[breakno].type = BP_BREAKPOINT;
365 	kgdb_break[breakno].bpt_addr = addr;
366 
367 	return 0;
368 }
369 
370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 	int error;
373 	int ret = 0;
374 	int i;
375 
376 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 		if (kgdb_break[i].state != BP_ACTIVE)
378 			continue;
379 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 		if (error) {
381 			pr_info("BP remove failed: %lx\n",
382 				kgdb_break[i].bpt_addr);
383 			ret = error;
384 		}
385 
386 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 		kgdb_break[i].state = BP_SET;
388 	}
389 	return ret;
390 }
391 
392 int dbg_remove_sw_break(unsigned long addr)
393 {
394 	int i;
395 
396 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
397 		if ((kgdb_break[i].state == BP_SET) &&
398 				(kgdb_break[i].bpt_addr == addr)) {
399 			kgdb_break[i].state = BP_REMOVED;
400 			return 0;
401 		}
402 	}
403 	return -ENOENT;
404 }
405 
406 int kgdb_isremovedbreak(unsigned long addr)
407 {
408 	int i;
409 
410 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
411 		if ((kgdb_break[i].state == BP_REMOVED) &&
412 					(kgdb_break[i].bpt_addr == addr))
413 			return 1;
414 	}
415 	return 0;
416 }
417 
418 int kgdb_has_hit_break(unsigned long addr)
419 {
420 	int i;
421 
422 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
423 		if (kgdb_break[i].state == BP_ACTIVE &&
424 		    kgdb_break[i].bpt_addr == addr)
425 			return 1;
426 	}
427 	return 0;
428 }
429 
430 int dbg_remove_all_break(void)
431 {
432 	int error;
433 	int i;
434 
435 	/* Clear memory breakpoints. */
436 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
437 		if (kgdb_break[i].state != BP_ACTIVE)
438 			goto setundefined;
439 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
440 		if (error)
441 			pr_err("breakpoint remove failed: %lx\n",
442 			       kgdb_break[i].bpt_addr);
443 setundefined:
444 		kgdb_break[i].state = BP_UNDEFINED;
445 	}
446 
447 	/* Clear hardware breakpoints. */
448 	if (arch_kgdb_ops.remove_all_hw_break)
449 		arch_kgdb_ops.remove_all_hw_break();
450 
451 	return 0;
452 }
453 
454 #ifdef CONFIG_KGDB_KDB
455 void kdb_dump_stack_on_cpu(int cpu)
456 {
457 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
458 		dump_stack();
459 		return;
460 	}
461 
462 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
463 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
464 			   cpu);
465 		return;
466 	}
467 
468 	/*
469 	 * In general, architectures don't support dumping the stack of a
470 	 * "running" process that's not the current one.  From the point of
471 	 * view of the Linux, kernel processes that are looping in the kgdb
472 	 * slave loop are still "running".  There's also no API (that actually
473 	 * works across all architectures) that can do a stack crawl based
474 	 * on registers passed as a parameter.
475 	 *
476 	 * Solve this conundrum by asking slave CPUs to do the backtrace
477 	 * themselves.
478 	 */
479 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
480 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
481 		cpu_relax();
482 }
483 #endif
484 
485 /*
486  * Return true if there is a valid kgdb I/O module.  Also if no
487  * debugger is attached a message can be printed to the console about
488  * waiting for the debugger to attach.
489  *
490  * The print_wait argument is only to be true when called from inside
491  * the core kgdb_handle_exception, because it will wait for the
492  * debugger to attach.
493  */
494 static int kgdb_io_ready(int print_wait)
495 {
496 	if (!dbg_io_ops)
497 		return 0;
498 	if (kgdb_connected)
499 		return 1;
500 	if (atomic_read(&kgdb_setting_breakpoint))
501 		return 1;
502 	if (print_wait) {
503 #ifdef CONFIG_KGDB_KDB
504 		if (!dbg_kdb_mode)
505 			pr_crit("waiting... or $3#33 for KDB\n");
506 #else
507 		pr_crit("Waiting for remote debugger\n");
508 #endif
509 	}
510 	return 1;
511 }
512 
513 static int kgdb_reenter_check(struct kgdb_state *ks)
514 {
515 	unsigned long addr;
516 
517 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
518 		return 0;
519 
520 	/* Panic on recursive debugger calls: */
521 	exception_level++;
522 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
523 	dbg_deactivate_sw_breakpoints();
524 
525 	/*
526 	 * If the break point removed ok at the place exception
527 	 * occurred, try to recover and print a warning to the end
528 	 * user because the user planted a breakpoint in a place that
529 	 * KGDB needs in order to function.
530 	 */
531 	if (dbg_remove_sw_break(addr) == 0) {
532 		exception_level = 0;
533 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
534 		dbg_activate_sw_breakpoints();
535 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
536 		WARN_ON_ONCE(1);
537 
538 		return 1;
539 	}
540 	dbg_remove_all_break();
541 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
542 
543 	if (exception_level > 1) {
544 		dump_stack();
545 		kgdb_io_module_registered = false;
546 		panic("Recursive entry to debugger");
547 	}
548 
549 	pr_crit("re-enter exception: ALL breakpoints killed\n");
550 #ifdef CONFIG_KGDB_KDB
551 	/* Allow kdb to debug itself one level */
552 	return 0;
553 #endif
554 	dump_stack();
555 	panic("Recursive entry to debugger");
556 
557 	return 1;
558 }
559 
560 static void dbg_touch_watchdogs(void)
561 {
562 	touch_softlockup_watchdog_sync();
563 	clocksource_touch_watchdog();
564 	rcu_cpu_stall_reset();
565 }
566 
567 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
568 		int exception_state)
569 {
570 	unsigned long flags;
571 	int sstep_tries = 100;
572 	int error;
573 	int cpu;
574 	int trace_on = 0;
575 	int online_cpus = num_online_cpus();
576 	u64 time_left;
577 
578 	kgdb_info[ks->cpu].enter_kgdb++;
579 	kgdb_info[ks->cpu].exception_state |= exception_state;
580 
581 	if (exception_state == DCPU_WANT_MASTER)
582 		atomic_inc(&masters_in_kgdb);
583 	else
584 		atomic_inc(&slaves_in_kgdb);
585 
586 	if (arch_kgdb_ops.disable_hw_break)
587 		arch_kgdb_ops.disable_hw_break(regs);
588 
589 acquirelock:
590 	rcu_read_lock();
591 	/*
592 	 * Interrupts will be restored by the 'trap return' code, except when
593 	 * single stepping.
594 	 */
595 	local_irq_save(flags);
596 
597 	cpu = ks->cpu;
598 	kgdb_info[cpu].debuggerinfo = regs;
599 	kgdb_info[cpu].task = current;
600 	kgdb_info[cpu].ret_state = 0;
601 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
602 
603 	/* Make sure the above info reaches the primary CPU */
604 	smp_mb();
605 
606 	if (exception_level == 1) {
607 		if (raw_spin_trylock(&dbg_master_lock))
608 			atomic_xchg(&kgdb_active, cpu);
609 		goto cpu_master_loop;
610 	}
611 
612 	/*
613 	 * CPU will loop if it is a slave or request to become a kgdb
614 	 * master cpu and acquire the kgdb_active lock:
615 	 */
616 	while (1) {
617 cpu_loop:
618 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
619 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
620 			goto cpu_master_loop;
621 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
622 			if (raw_spin_trylock(&dbg_master_lock)) {
623 				atomic_xchg(&kgdb_active, cpu);
624 				break;
625 			}
626 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
627 			dump_stack();
628 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
629 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
630 			if (!raw_spin_is_locked(&dbg_slave_lock))
631 				goto return_normal;
632 		} else {
633 return_normal:
634 			/* Return to normal operation by executing any
635 			 * hw breakpoint fixup.
636 			 */
637 			if (arch_kgdb_ops.correct_hw_break)
638 				arch_kgdb_ops.correct_hw_break();
639 			if (trace_on)
640 				tracing_on();
641 			kgdb_info[cpu].debuggerinfo = NULL;
642 			kgdb_info[cpu].task = NULL;
643 			kgdb_info[cpu].exception_state &=
644 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
645 			kgdb_info[cpu].enter_kgdb--;
646 			smp_mb__before_atomic();
647 			atomic_dec(&slaves_in_kgdb);
648 			dbg_touch_watchdogs();
649 			local_irq_restore(flags);
650 			rcu_read_unlock();
651 			return 0;
652 		}
653 		cpu_relax();
654 	}
655 
656 	/*
657 	 * For single stepping, try to only enter on the processor
658 	 * that was single stepping.  To guard against a deadlock, the
659 	 * kernel will only try for the value of sstep_tries before
660 	 * giving up and continuing on.
661 	 */
662 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
663 	    (kgdb_info[cpu].task &&
664 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
665 		atomic_set(&kgdb_active, -1);
666 		raw_spin_unlock(&dbg_master_lock);
667 		dbg_touch_watchdogs();
668 		local_irq_restore(flags);
669 		rcu_read_unlock();
670 
671 		goto acquirelock;
672 	}
673 
674 	if (!kgdb_io_ready(1)) {
675 		kgdb_info[cpu].ret_state = 1;
676 		goto kgdb_restore; /* No I/O connection, resume the system */
677 	}
678 
679 	/*
680 	 * Don't enter if we have hit a removed breakpoint.
681 	 */
682 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
683 		goto kgdb_restore;
684 
685 	atomic_inc(&ignore_console_lock_warning);
686 
687 	/* Call the I/O driver's pre_exception routine */
688 	if (dbg_io_ops->pre_exception)
689 		dbg_io_ops->pre_exception();
690 
691 	/*
692 	 * Get the passive CPU lock which will hold all the non-primary
693 	 * CPU in a spin state while the debugger is active
694 	 */
695 	if (!kgdb_single_step)
696 		raw_spin_lock(&dbg_slave_lock);
697 
698 #ifdef CONFIG_SMP
699 	/* If send_ready set, slaves are already waiting */
700 	if (ks->send_ready)
701 		atomic_set(ks->send_ready, 1);
702 
703 	/* Signal the other CPUs to enter kgdb_wait() */
704 	else if ((!kgdb_single_step) && kgdb_do_roundup)
705 		kgdb_roundup_cpus();
706 #endif
707 
708 	/*
709 	 * Wait for the other CPUs to be notified and be waiting for us:
710 	 */
711 	time_left = MSEC_PER_SEC;
712 	while (kgdb_do_roundup && --time_left &&
713 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
714 		   online_cpus)
715 		udelay(1000);
716 	if (!time_left)
717 		pr_crit("Timed out waiting for secondary CPUs.\n");
718 
719 	/*
720 	 * At this point the primary processor is completely
721 	 * in the debugger and all secondary CPUs are quiescent
722 	 */
723 	dbg_deactivate_sw_breakpoints();
724 	kgdb_single_step = 0;
725 	kgdb_contthread = current;
726 	exception_level = 0;
727 	trace_on = tracing_is_on();
728 	if (trace_on)
729 		tracing_off();
730 
731 	while (1) {
732 cpu_master_loop:
733 		if (dbg_kdb_mode) {
734 			kgdb_connected = 1;
735 			error = kdb_stub(ks);
736 			if (error == -1)
737 				continue;
738 			kgdb_connected = 0;
739 		} else {
740 			error = gdb_serial_stub(ks);
741 		}
742 
743 		if (error == DBG_PASS_EVENT) {
744 			dbg_kdb_mode = !dbg_kdb_mode;
745 		} else if (error == DBG_SWITCH_CPU_EVENT) {
746 			kgdb_info[dbg_switch_cpu].exception_state |=
747 				DCPU_NEXT_MASTER;
748 			goto cpu_loop;
749 		} else {
750 			kgdb_info[cpu].ret_state = error;
751 			break;
752 		}
753 	}
754 
755 	/* Call the I/O driver's post_exception routine */
756 	if (dbg_io_ops->post_exception)
757 		dbg_io_ops->post_exception();
758 
759 	atomic_dec(&ignore_console_lock_warning);
760 
761 	if (!kgdb_single_step) {
762 		raw_spin_unlock(&dbg_slave_lock);
763 		/* Wait till all the CPUs have quit from the debugger. */
764 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
765 			cpu_relax();
766 	}
767 
768 kgdb_restore:
769 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
770 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
771 		if (kgdb_info[sstep_cpu].task)
772 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
773 		else
774 			kgdb_sstep_pid = 0;
775 	}
776 	if (arch_kgdb_ops.correct_hw_break)
777 		arch_kgdb_ops.correct_hw_break();
778 	if (trace_on)
779 		tracing_on();
780 
781 	kgdb_info[cpu].debuggerinfo = NULL;
782 	kgdb_info[cpu].task = NULL;
783 	kgdb_info[cpu].exception_state &=
784 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
785 	kgdb_info[cpu].enter_kgdb--;
786 	smp_mb__before_atomic();
787 	atomic_dec(&masters_in_kgdb);
788 	/* Free kgdb_active */
789 	atomic_set(&kgdb_active, -1);
790 	raw_spin_unlock(&dbg_master_lock);
791 	dbg_touch_watchdogs();
792 	local_irq_restore(flags);
793 	rcu_read_unlock();
794 
795 	return kgdb_info[cpu].ret_state;
796 }
797 
798 /*
799  * kgdb_handle_exception() - main entry point from a kernel exception
800  *
801  * Locking hierarchy:
802  *	interface locks, if any (begin_session)
803  *	kgdb lock (kgdb_active)
804  */
805 int
806 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
807 {
808 	struct kgdb_state kgdb_var;
809 	struct kgdb_state *ks = &kgdb_var;
810 	int ret = 0;
811 
812 	if (arch_kgdb_ops.enable_nmi)
813 		arch_kgdb_ops.enable_nmi(0);
814 	/*
815 	 * Avoid entering the debugger if we were triggered due to an oops
816 	 * but panic_timeout indicates the system should automatically
817 	 * reboot on panic. We don't want to get stuck waiting for input
818 	 * on such systems, especially if its "just" an oops.
819 	 */
820 	if (signo != SIGTRAP && panic_timeout)
821 		return 1;
822 
823 	memset(ks, 0, sizeof(struct kgdb_state));
824 	ks->cpu			= raw_smp_processor_id();
825 	ks->ex_vector		= evector;
826 	ks->signo		= signo;
827 	ks->err_code		= ecode;
828 	ks->linux_regs		= regs;
829 
830 	if (kgdb_reenter_check(ks))
831 		goto out; /* Ouch, double exception ! */
832 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
833 		goto out;
834 
835 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
836 out:
837 	if (arch_kgdb_ops.enable_nmi)
838 		arch_kgdb_ops.enable_nmi(1);
839 	return ret;
840 }
841 
842 /*
843  * GDB places a breakpoint at this function to know dynamically loaded objects.
844  */
845 static int module_event(struct notifier_block *self, unsigned long val,
846 	void *data)
847 {
848 	return 0;
849 }
850 
851 static struct notifier_block dbg_module_load_nb = {
852 	.notifier_call	= module_event,
853 };
854 
855 int kgdb_nmicallback(int cpu, void *regs)
856 {
857 #ifdef CONFIG_SMP
858 	struct kgdb_state kgdb_var;
859 	struct kgdb_state *ks = &kgdb_var;
860 
861 	kgdb_info[cpu].rounding_up = false;
862 
863 	memset(ks, 0, sizeof(struct kgdb_state));
864 	ks->cpu			= cpu;
865 	ks->linux_regs		= regs;
866 
867 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
868 			raw_spin_is_locked(&dbg_master_lock)) {
869 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
870 		return 0;
871 	}
872 #endif
873 	return 1;
874 }
875 
876 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
877 							atomic_t *send_ready)
878 {
879 #ifdef CONFIG_SMP
880 	if (!kgdb_io_ready(0) || !send_ready)
881 		return 1;
882 
883 	if (kgdb_info[cpu].enter_kgdb == 0) {
884 		struct kgdb_state kgdb_var;
885 		struct kgdb_state *ks = &kgdb_var;
886 
887 		memset(ks, 0, sizeof(struct kgdb_state));
888 		ks->cpu			= cpu;
889 		ks->ex_vector		= trapnr;
890 		ks->signo		= SIGTRAP;
891 		ks->err_code		= err_code;
892 		ks->linux_regs		= regs;
893 		ks->send_ready		= send_ready;
894 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
895 		return 0;
896 	}
897 #endif
898 	return 1;
899 }
900 
901 static void kgdb_console_write(struct console *co, const char *s,
902    unsigned count)
903 {
904 	unsigned long flags;
905 
906 	/* If we're debugging, or KGDB has not connected, don't try
907 	 * and print. */
908 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
909 		return;
910 
911 	local_irq_save(flags);
912 	gdbstub_msg_write(s, count);
913 	local_irq_restore(flags);
914 }
915 
916 static struct console kgdbcons = {
917 	.name		= "kgdb",
918 	.write		= kgdb_console_write,
919 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
920 	.index		= -1,
921 };
922 
923 #ifdef CONFIG_MAGIC_SYSRQ
924 static void sysrq_handle_dbg(int key)
925 {
926 	if (!dbg_io_ops) {
927 		pr_crit("ERROR: No KGDB I/O module available\n");
928 		return;
929 	}
930 	if (!kgdb_connected) {
931 #ifdef CONFIG_KGDB_KDB
932 		if (!dbg_kdb_mode)
933 			pr_crit("KGDB or $3#33 for KDB\n");
934 #else
935 		pr_crit("Entering KGDB\n");
936 #endif
937 	}
938 
939 	kgdb_breakpoint();
940 }
941 
942 static const struct sysrq_key_op sysrq_dbg_op = {
943 	.handler	= sysrq_handle_dbg,
944 	.help_msg	= "debug(g)",
945 	.action_msg	= "DEBUG",
946 };
947 #endif
948 
949 void kgdb_panic(const char *msg)
950 {
951 	if (!kgdb_io_module_registered)
952 		return;
953 
954 	/*
955 	 * We don't want to get stuck waiting for input from user if
956 	 * "panic_timeout" indicates the system should automatically
957 	 * reboot on panic.
958 	 */
959 	if (panic_timeout)
960 		return;
961 
962 	if (dbg_kdb_mode)
963 		kdb_printf("PANIC: %s\n", msg);
964 
965 	kgdb_breakpoint();
966 }
967 
968 static void kgdb_initial_breakpoint(void)
969 {
970 	kgdb_break_asap = 0;
971 
972 	pr_crit("Waiting for connection from remote gdb...\n");
973 	kgdb_breakpoint();
974 }
975 
976 void __weak kgdb_arch_late(void)
977 {
978 }
979 
980 void __init dbg_late_init(void)
981 {
982 	dbg_is_early = false;
983 	if (kgdb_io_module_registered)
984 		kgdb_arch_late();
985 	kdb_init(KDB_INIT_FULL);
986 
987 	if (kgdb_io_module_registered && kgdb_break_asap)
988 		kgdb_initial_breakpoint();
989 }
990 
991 static int
992 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
993 {
994 	/*
995 	 * Take the following action on reboot notify depending on value:
996 	 *    1 == Enter debugger
997 	 *    0 == [the default] detatch debug client
998 	 *   -1 == Do nothing... and use this until the board resets
999 	 */
1000 	switch (kgdbreboot) {
1001 	case 1:
1002 		kgdb_breakpoint();
1003 	case -1:
1004 		goto done;
1005 	}
1006 	if (!dbg_kdb_mode)
1007 		gdbstub_exit(code);
1008 done:
1009 	return NOTIFY_DONE;
1010 }
1011 
1012 static struct notifier_block dbg_reboot_notifier = {
1013 	.notifier_call		= dbg_notify_reboot,
1014 	.next			= NULL,
1015 	.priority		= INT_MAX,
1016 };
1017 
1018 static void kgdb_register_callbacks(void)
1019 {
1020 	if (!kgdb_io_module_registered) {
1021 		kgdb_io_module_registered = 1;
1022 		kgdb_arch_init();
1023 		if (!dbg_is_early)
1024 			kgdb_arch_late();
1025 		register_module_notifier(&dbg_module_load_nb);
1026 		register_reboot_notifier(&dbg_reboot_notifier);
1027 #ifdef CONFIG_MAGIC_SYSRQ
1028 		register_sysrq_key('g', &sysrq_dbg_op);
1029 #endif
1030 		if (kgdb_use_con && !kgdb_con_registered) {
1031 			register_console(&kgdbcons);
1032 			kgdb_con_registered = 1;
1033 		}
1034 	}
1035 }
1036 
1037 static void kgdb_unregister_callbacks(void)
1038 {
1039 	/*
1040 	 * When this routine is called KGDB should unregister from
1041 	 * handlers and clean up, making sure it is not handling any
1042 	 * break exceptions at the time.
1043 	 */
1044 	if (kgdb_io_module_registered) {
1045 		kgdb_io_module_registered = 0;
1046 		unregister_reboot_notifier(&dbg_reboot_notifier);
1047 		unregister_module_notifier(&dbg_module_load_nb);
1048 		kgdb_arch_exit();
1049 #ifdef CONFIG_MAGIC_SYSRQ
1050 		unregister_sysrq_key('g', &sysrq_dbg_op);
1051 #endif
1052 		if (kgdb_con_registered) {
1053 			unregister_console(&kgdbcons);
1054 			kgdb_con_registered = 0;
1055 		}
1056 	}
1057 }
1058 
1059 /*
1060  * There are times a tasklet needs to be used vs a compiled in
1061  * break point so as to cause an exception outside a kgdb I/O module,
1062  * such as is the case with kgdboe, where calling a breakpoint in the
1063  * I/O driver itself would be fatal.
1064  */
1065 static void kgdb_tasklet_bpt(unsigned long ing)
1066 {
1067 	kgdb_breakpoint();
1068 	atomic_set(&kgdb_break_tasklet_var, 0);
1069 }
1070 
1071 static DECLARE_TASKLET_OLD(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt);
1072 
1073 void kgdb_schedule_breakpoint(void)
1074 {
1075 	if (atomic_read(&kgdb_break_tasklet_var) ||
1076 		atomic_read(&kgdb_active) != -1 ||
1077 		atomic_read(&kgdb_setting_breakpoint))
1078 		return;
1079 	atomic_inc(&kgdb_break_tasklet_var);
1080 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1081 }
1082 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1083 
1084 /**
1085  *	kgdb_register_io_module - register KGDB IO module
1086  *	@new_dbg_io_ops: the io ops vector
1087  *
1088  *	Register it with the KGDB core.
1089  */
1090 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1091 {
1092 	struct kgdb_io *old_dbg_io_ops;
1093 	int err;
1094 
1095 	spin_lock(&kgdb_registration_lock);
1096 
1097 	old_dbg_io_ops = dbg_io_ops;
1098 	if (old_dbg_io_ops) {
1099 		if (!old_dbg_io_ops->deinit) {
1100 			spin_unlock(&kgdb_registration_lock);
1101 
1102 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1103 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1104 			return -EBUSY;
1105 		}
1106 		pr_info("Replacing I/O driver %s with %s\n",
1107 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1108 	}
1109 
1110 	if (new_dbg_io_ops->init) {
1111 		err = new_dbg_io_ops->init();
1112 		if (err) {
1113 			spin_unlock(&kgdb_registration_lock);
1114 			return err;
1115 		}
1116 	}
1117 
1118 	dbg_io_ops = new_dbg_io_ops;
1119 
1120 	spin_unlock(&kgdb_registration_lock);
1121 
1122 	if (old_dbg_io_ops) {
1123 		old_dbg_io_ops->deinit();
1124 		return 0;
1125 	}
1126 
1127 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1128 
1129 	/* Arm KGDB now. */
1130 	kgdb_register_callbacks();
1131 
1132 	if (kgdb_break_asap &&
1133 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1134 		kgdb_initial_breakpoint();
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1139 
1140 /**
1141  *	kkgdb_unregister_io_module - unregister KGDB IO module
1142  *	@old_dbg_io_ops: the io ops vector
1143  *
1144  *	Unregister it with the KGDB core.
1145  */
1146 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1147 {
1148 	BUG_ON(kgdb_connected);
1149 
1150 	/*
1151 	 * KGDB is no longer able to communicate out, so
1152 	 * unregister our callbacks and reset state.
1153 	 */
1154 	kgdb_unregister_callbacks();
1155 
1156 	spin_lock(&kgdb_registration_lock);
1157 
1158 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1159 	dbg_io_ops = NULL;
1160 
1161 	spin_unlock(&kgdb_registration_lock);
1162 
1163 	if (old_dbg_io_ops->deinit)
1164 		old_dbg_io_ops->deinit();
1165 
1166 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1167 		old_dbg_io_ops->name);
1168 }
1169 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1170 
1171 int dbg_io_get_char(void)
1172 {
1173 	int ret = dbg_io_ops->read_char();
1174 	if (ret == NO_POLL_CHAR)
1175 		return -1;
1176 	if (!dbg_kdb_mode)
1177 		return ret;
1178 	if (ret == 127)
1179 		return 8;
1180 	return ret;
1181 }
1182 
1183 /**
1184  * kgdb_breakpoint - generate breakpoint exception
1185  *
1186  * This function will generate a breakpoint exception.  It is used at the
1187  * beginning of a program to sync up with a debugger and can be used
1188  * otherwise as a quick means to stop program execution and "break" into
1189  * the debugger.
1190  */
1191 noinline void kgdb_breakpoint(void)
1192 {
1193 	atomic_inc(&kgdb_setting_breakpoint);
1194 	wmb(); /* Sync point before breakpoint */
1195 	arch_kgdb_breakpoint();
1196 	wmb(); /* Sync point after breakpoint */
1197 	atomic_dec(&kgdb_setting_breakpoint);
1198 }
1199 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1200 
1201 static int __init opt_kgdb_wait(char *str)
1202 {
1203 	kgdb_break_asap = 1;
1204 
1205 	kdb_init(KDB_INIT_EARLY);
1206 	if (kgdb_io_module_registered &&
1207 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1208 		kgdb_initial_breakpoint();
1209 
1210 	return 0;
1211 }
1212 
1213 early_param("kgdbwait", opt_kgdb_wait);
1214