xref: /linux/kernel/debug/debug_core.c (revision d4b996f9ef1fe83d9ce9ad5c1ca0bd8231638ce5)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifier, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 module_param(kgdb_use_con, int, 0644);
98 module_param(kgdbreboot, int, 0644);
99 
100 /*
101  * Holds information about breakpoints in a kernel. These breakpoints are
102  * added and removed by gdb.
103  */
104 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
105 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
106 };
107 
108 /*
109  * The CPU# of the active CPU, or -1 if none:
110  */
111 atomic_t			kgdb_active = ATOMIC_INIT(-1);
112 EXPORT_SYMBOL_GPL(kgdb_active);
113 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
115 
116 /*
117  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
118  * bootup code (which might not have percpu set up yet):
119  */
120 static atomic_t			masters_in_kgdb;
121 static atomic_t			slaves_in_kgdb;
122 atomic_t			kgdb_setting_breakpoint;
123 
124 struct task_struct		*kgdb_usethread;
125 struct task_struct		*kgdb_contthread;
126 
127 int				kgdb_single_step;
128 static pid_t			kgdb_sstep_pid;
129 
130 /* to keep track of the CPU which is doing the single stepping*/
131 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
132 
133 /*
134  * If you are debugging a problem where roundup (the collection of
135  * all other CPUs) is a problem [this should be extremely rare],
136  * then use the nokgdbroundup option to avoid roundup. In that case
137  * the other CPUs might interfere with your debugging context, so
138  * use this with care:
139  */
140 static int kgdb_do_roundup = 1;
141 
142 static int __init opt_nokgdbroundup(char *str)
143 {
144 	kgdb_do_roundup = 0;
145 
146 	return 0;
147 }
148 
149 early_param("nokgdbroundup", opt_nokgdbroundup);
150 
151 /*
152  * Finally, some KGDB code :-)
153  */
154 
155 /*
156  * Weak aliases for breakpoint management,
157  * can be overridden by architectures when needed:
158  */
159 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
160 {
161 	int err;
162 
163 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
164 				BREAK_INSTR_SIZE);
165 	if (err)
166 		return err;
167 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
168 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
169 	return err;
170 }
171 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
172 
173 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
174 {
175 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
176 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
177 }
178 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
179 
180 int __weak kgdb_validate_break_address(unsigned long addr)
181 {
182 	struct kgdb_bkpt tmp;
183 	int err;
184 
185 	if (kgdb_within_blocklist(addr))
186 		return -EINVAL;
187 
188 	/* Validate setting the breakpoint and then removing it.  If the
189 	 * remove fails, the kernel needs to emit a bad message because we
190 	 * are deep trouble not being able to put things back the way we
191 	 * found them.
192 	 */
193 	tmp.bpt_addr = addr;
194 	err = kgdb_arch_set_breakpoint(&tmp);
195 	if (err)
196 		return err;
197 	err = kgdb_arch_remove_breakpoint(&tmp);
198 	if (err)
199 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
200 		       addr);
201 	return err;
202 }
203 
204 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
205 {
206 	return instruction_pointer(regs);
207 }
208 NOKPROBE_SYMBOL(kgdb_arch_pc);
209 
210 int __weak kgdb_arch_init(void)
211 {
212 	return 0;
213 }
214 
215 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
216 {
217 	return 0;
218 }
219 NOKPROBE_SYMBOL(kgdb_skipexception);
220 
221 #ifdef CONFIG_SMP
222 
223 /*
224  * Default (weak) implementation for kgdb_roundup_cpus
225  */
226 
227 void __weak kgdb_call_nmi_hook(void *ignored)
228 {
229 	/*
230 	 * NOTE: get_irq_regs() is supposed to get the registers from
231 	 * before the IPI interrupt happened and so is supposed to
232 	 * show where the processor was.  In some situations it's
233 	 * possible we might be called without an IPI, so it might be
234 	 * safer to figure out how to make kgdb_breakpoint() work
235 	 * properly here.
236 	 */
237 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
238 }
239 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
240 
241 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
242 	CSD_INIT(kgdb_call_nmi_hook, NULL);
243 
244 void __weak kgdb_roundup_cpus(void)
245 {
246 	call_single_data_t *csd;
247 	int this_cpu = raw_smp_processor_id();
248 	int cpu;
249 	int ret;
250 
251 	for_each_online_cpu(cpu) {
252 		/* No need to roundup ourselves */
253 		if (cpu == this_cpu)
254 			continue;
255 
256 		csd = &per_cpu(kgdb_roundup_csd, cpu);
257 
258 		/*
259 		 * If it didn't round up last time, don't try again
260 		 * since smp_call_function_single_async() will block.
261 		 *
262 		 * If rounding_up is false then we know that the
263 		 * previous call must have at least started and that
264 		 * means smp_call_function_single_async() won't block.
265 		 */
266 		if (kgdb_info[cpu].rounding_up)
267 			continue;
268 		kgdb_info[cpu].rounding_up = true;
269 
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
276 
277 #endif
278 
279 /*
280  * Some architectures need cache flushes when we set/clear a
281  * breakpoint:
282  */
283 static void kgdb_flush_swbreak_addr(unsigned long addr)
284 {
285 	if (!CACHE_FLUSH_IS_SAFE)
286 		return;
287 
288 	if (current->mm) {
289 		int i;
290 
291 		for (i = 0; i < VMACACHE_SIZE; i++) {
292 			if (!current->vmacache.vmas[i])
293 				continue;
294 			flush_cache_range(current->vmacache.vmas[i],
295 					  addr, addr + BREAK_INSTR_SIZE);
296 		}
297 	}
298 
299 	/* Force flush instruction cache if it was outside the mm */
300 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
301 }
302 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
303 
304 /*
305  * SW breakpoint management:
306  */
307 int dbg_activate_sw_breakpoints(void)
308 {
309 	int error;
310 	int ret = 0;
311 	int i;
312 
313 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
314 		if (kgdb_break[i].state != BP_SET)
315 			continue;
316 
317 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
318 		if (error) {
319 			ret = error;
320 			pr_info("BP install failed: %lx\n",
321 				kgdb_break[i].bpt_addr);
322 			continue;
323 		}
324 
325 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
326 		kgdb_break[i].state = BP_ACTIVE;
327 	}
328 	return ret;
329 }
330 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
331 
332 int dbg_set_sw_break(unsigned long addr)
333 {
334 	int err = kgdb_validate_break_address(addr);
335 	int breakno = -1;
336 	int i;
337 
338 	if (err)
339 		return err;
340 
341 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
342 		if ((kgdb_break[i].state == BP_SET) &&
343 					(kgdb_break[i].bpt_addr == addr))
344 			return -EEXIST;
345 	}
346 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
347 		if (kgdb_break[i].state == BP_REMOVED &&
348 					kgdb_break[i].bpt_addr == addr) {
349 			breakno = i;
350 			break;
351 		}
352 	}
353 
354 	if (breakno == -1) {
355 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
356 			if (kgdb_break[i].state == BP_UNDEFINED) {
357 				breakno = i;
358 				break;
359 			}
360 		}
361 	}
362 
363 	if (breakno == -1)
364 		return -E2BIG;
365 
366 	kgdb_break[breakno].state = BP_SET;
367 	kgdb_break[breakno].type = BP_BREAKPOINT;
368 	kgdb_break[breakno].bpt_addr = addr;
369 
370 	return 0;
371 }
372 
373 int dbg_deactivate_sw_breakpoints(void)
374 {
375 	int error;
376 	int ret = 0;
377 	int i;
378 
379 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
380 		if (kgdb_break[i].state != BP_ACTIVE)
381 			continue;
382 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
383 		if (error) {
384 			pr_info("BP remove failed: %lx\n",
385 				kgdb_break[i].bpt_addr);
386 			ret = error;
387 		}
388 
389 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
390 		kgdb_break[i].state = BP_SET;
391 	}
392 	return ret;
393 }
394 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
395 
396 int dbg_remove_sw_break(unsigned long addr)
397 {
398 	int i;
399 
400 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
401 		if ((kgdb_break[i].state == BP_SET) &&
402 				(kgdb_break[i].bpt_addr == addr)) {
403 			kgdb_break[i].state = BP_REMOVED;
404 			return 0;
405 		}
406 	}
407 	return -ENOENT;
408 }
409 
410 int kgdb_isremovedbreak(unsigned long addr)
411 {
412 	int i;
413 
414 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
415 		if ((kgdb_break[i].state == BP_REMOVED) &&
416 					(kgdb_break[i].bpt_addr == addr))
417 			return 1;
418 	}
419 	return 0;
420 }
421 
422 int kgdb_has_hit_break(unsigned long addr)
423 {
424 	int i;
425 
426 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
427 		if (kgdb_break[i].state == BP_ACTIVE &&
428 		    kgdb_break[i].bpt_addr == addr)
429 			return 1;
430 	}
431 	return 0;
432 }
433 
434 int dbg_remove_all_break(void)
435 {
436 	int error;
437 	int i;
438 
439 	/* Clear memory breakpoints. */
440 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
441 		if (kgdb_break[i].state != BP_ACTIVE)
442 			goto setundefined;
443 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
444 		if (error)
445 			pr_err("breakpoint remove failed: %lx\n",
446 			       kgdb_break[i].bpt_addr);
447 setundefined:
448 		kgdb_break[i].state = BP_UNDEFINED;
449 	}
450 
451 	/* Clear hardware breakpoints. */
452 	if (arch_kgdb_ops.remove_all_hw_break)
453 		arch_kgdb_ops.remove_all_hw_break();
454 
455 	return 0;
456 }
457 
458 void kgdb_free_init_mem(void)
459 {
460 	int i;
461 
462 	/* Clear init memory breakpoints. */
463 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
464 		if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
465 			kgdb_break[i].state = BP_UNDEFINED;
466 	}
467 }
468 
469 #ifdef CONFIG_KGDB_KDB
470 void kdb_dump_stack_on_cpu(int cpu)
471 {
472 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
473 		dump_stack();
474 		return;
475 	}
476 
477 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
478 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
479 			   cpu);
480 		return;
481 	}
482 
483 	/*
484 	 * In general, architectures don't support dumping the stack of a
485 	 * "running" process that's not the current one.  From the point of
486 	 * view of the Linux, kernel processes that are looping in the kgdb
487 	 * slave loop are still "running".  There's also no API (that actually
488 	 * works across all architectures) that can do a stack crawl based
489 	 * on registers passed as a parameter.
490 	 *
491 	 * Solve this conundrum by asking slave CPUs to do the backtrace
492 	 * themselves.
493 	 */
494 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
495 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
496 		cpu_relax();
497 }
498 #endif
499 
500 /*
501  * Return true if there is a valid kgdb I/O module.  Also if no
502  * debugger is attached a message can be printed to the console about
503  * waiting for the debugger to attach.
504  *
505  * The print_wait argument is only to be true when called from inside
506  * the core kgdb_handle_exception, because it will wait for the
507  * debugger to attach.
508  */
509 static int kgdb_io_ready(int print_wait)
510 {
511 	if (!dbg_io_ops)
512 		return 0;
513 	if (kgdb_connected)
514 		return 1;
515 	if (atomic_read(&kgdb_setting_breakpoint))
516 		return 1;
517 	if (print_wait) {
518 #ifdef CONFIG_KGDB_KDB
519 		if (!dbg_kdb_mode)
520 			pr_crit("waiting... or $3#33 for KDB\n");
521 #else
522 		pr_crit("Waiting for remote debugger\n");
523 #endif
524 	}
525 	return 1;
526 }
527 NOKPROBE_SYMBOL(kgdb_io_ready);
528 
529 static int kgdb_reenter_check(struct kgdb_state *ks)
530 {
531 	unsigned long addr;
532 
533 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
534 		return 0;
535 
536 	/* Panic on recursive debugger calls: */
537 	exception_level++;
538 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
539 	dbg_deactivate_sw_breakpoints();
540 
541 	/*
542 	 * If the break point removed ok at the place exception
543 	 * occurred, try to recover and print a warning to the end
544 	 * user because the user planted a breakpoint in a place that
545 	 * KGDB needs in order to function.
546 	 */
547 	if (dbg_remove_sw_break(addr) == 0) {
548 		exception_level = 0;
549 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
550 		dbg_activate_sw_breakpoints();
551 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
552 		WARN_ON_ONCE(1);
553 
554 		return 1;
555 	}
556 	dbg_remove_all_break();
557 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
558 
559 	if (exception_level > 1) {
560 		dump_stack();
561 		kgdb_io_module_registered = false;
562 		panic("Recursive entry to debugger");
563 	}
564 
565 	pr_crit("re-enter exception: ALL breakpoints killed\n");
566 #ifdef CONFIG_KGDB_KDB
567 	/* Allow kdb to debug itself one level */
568 	return 0;
569 #endif
570 	dump_stack();
571 	panic("Recursive entry to debugger");
572 
573 	return 1;
574 }
575 NOKPROBE_SYMBOL(kgdb_reenter_check);
576 
577 static void dbg_touch_watchdogs(void)
578 {
579 	touch_softlockup_watchdog_sync();
580 	clocksource_touch_watchdog();
581 	rcu_cpu_stall_reset();
582 }
583 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
584 
585 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
586 		int exception_state)
587 {
588 	unsigned long flags;
589 	int sstep_tries = 100;
590 	int error;
591 	int cpu;
592 	int trace_on = 0;
593 	int online_cpus = num_online_cpus();
594 	u64 time_left;
595 
596 	kgdb_info[ks->cpu].enter_kgdb++;
597 	kgdb_info[ks->cpu].exception_state |= exception_state;
598 
599 	if (exception_state == DCPU_WANT_MASTER)
600 		atomic_inc(&masters_in_kgdb);
601 	else
602 		atomic_inc(&slaves_in_kgdb);
603 
604 	if (arch_kgdb_ops.disable_hw_break)
605 		arch_kgdb_ops.disable_hw_break(regs);
606 
607 acquirelock:
608 	rcu_read_lock();
609 	/*
610 	 * Interrupts will be restored by the 'trap return' code, except when
611 	 * single stepping.
612 	 */
613 	local_irq_save(flags);
614 
615 	cpu = ks->cpu;
616 	kgdb_info[cpu].debuggerinfo = regs;
617 	kgdb_info[cpu].task = current;
618 	kgdb_info[cpu].ret_state = 0;
619 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
620 
621 	/* Make sure the above info reaches the primary CPU */
622 	smp_mb();
623 
624 	if (exception_level == 1) {
625 		if (raw_spin_trylock(&dbg_master_lock))
626 			atomic_xchg(&kgdb_active, cpu);
627 		goto cpu_master_loop;
628 	}
629 
630 	/*
631 	 * CPU will loop if it is a slave or request to become a kgdb
632 	 * master cpu and acquire the kgdb_active lock:
633 	 */
634 	while (1) {
635 cpu_loop:
636 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
637 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
638 			goto cpu_master_loop;
639 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
640 			if (raw_spin_trylock(&dbg_master_lock)) {
641 				atomic_xchg(&kgdb_active, cpu);
642 				break;
643 			}
644 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
645 			dump_stack();
646 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
647 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
648 			if (!raw_spin_is_locked(&dbg_slave_lock))
649 				goto return_normal;
650 		} else {
651 return_normal:
652 			/* Return to normal operation by executing any
653 			 * hw breakpoint fixup.
654 			 */
655 			if (arch_kgdb_ops.correct_hw_break)
656 				arch_kgdb_ops.correct_hw_break();
657 			if (trace_on)
658 				tracing_on();
659 			kgdb_info[cpu].debuggerinfo = NULL;
660 			kgdb_info[cpu].task = NULL;
661 			kgdb_info[cpu].exception_state &=
662 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
663 			kgdb_info[cpu].enter_kgdb--;
664 			smp_mb__before_atomic();
665 			atomic_dec(&slaves_in_kgdb);
666 			dbg_touch_watchdogs();
667 			local_irq_restore(flags);
668 			rcu_read_unlock();
669 			return 0;
670 		}
671 		cpu_relax();
672 	}
673 
674 	/*
675 	 * For single stepping, try to only enter on the processor
676 	 * that was single stepping.  To guard against a deadlock, the
677 	 * kernel will only try for the value of sstep_tries before
678 	 * giving up and continuing on.
679 	 */
680 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
681 	    (kgdb_info[cpu].task &&
682 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
683 		atomic_set(&kgdb_active, -1);
684 		raw_spin_unlock(&dbg_master_lock);
685 		dbg_touch_watchdogs();
686 		local_irq_restore(flags);
687 		rcu_read_unlock();
688 
689 		goto acquirelock;
690 	}
691 
692 	if (!kgdb_io_ready(1)) {
693 		kgdb_info[cpu].ret_state = 1;
694 		goto kgdb_restore; /* No I/O connection, resume the system */
695 	}
696 
697 	/*
698 	 * Don't enter if we have hit a removed breakpoint.
699 	 */
700 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
701 		goto kgdb_restore;
702 
703 	atomic_inc(&ignore_console_lock_warning);
704 
705 	/* Call the I/O driver's pre_exception routine */
706 	if (dbg_io_ops->pre_exception)
707 		dbg_io_ops->pre_exception();
708 
709 	/*
710 	 * Get the passive CPU lock which will hold all the non-primary
711 	 * CPU in a spin state while the debugger is active
712 	 */
713 	if (!kgdb_single_step)
714 		raw_spin_lock(&dbg_slave_lock);
715 
716 #ifdef CONFIG_SMP
717 	/* If send_ready set, slaves are already waiting */
718 	if (ks->send_ready)
719 		atomic_set(ks->send_ready, 1);
720 
721 	/* Signal the other CPUs to enter kgdb_wait() */
722 	else if ((!kgdb_single_step) && kgdb_do_roundup)
723 		kgdb_roundup_cpus();
724 #endif
725 
726 	/*
727 	 * Wait for the other CPUs to be notified and be waiting for us:
728 	 */
729 	time_left = MSEC_PER_SEC;
730 	while (kgdb_do_roundup && --time_left &&
731 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
732 		   online_cpus)
733 		udelay(1000);
734 	if (!time_left)
735 		pr_crit("Timed out waiting for secondary CPUs.\n");
736 
737 	/*
738 	 * At this point the primary processor is completely
739 	 * in the debugger and all secondary CPUs are quiescent
740 	 */
741 	dbg_deactivate_sw_breakpoints();
742 	kgdb_single_step = 0;
743 	kgdb_contthread = current;
744 	exception_level = 0;
745 	trace_on = tracing_is_on();
746 	if (trace_on)
747 		tracing_off();
748 
749 	while (1) {
750 cpu_master_loop:
751 		if (dbg_kdb_mode) {
752 			kgdb_connected = 1;
753 			error = kdb_stub(ks);
754 			if (error == -1)
755 				continue;
756 			kgdb_connected = 0;
757 		} else {
758 			error = gdb_serial_stub(ks);
759 		}
760 
761 		if (error == DBG_PASS_EVENT) {
762 			dbg_kdb_mode = !dbg_kdb_mode;
763 		} else if (error == DBG_SWITCH_CPU_EVENT) {
764 			kgdb_info[dbg_switch_cpu].exception_state |=
765 				DCPU_NEXT_MASTER;
766 			goto cpu_loop;
767 		} else {
768 			kgdb_info[cpu].ret_state = error;
769 			break;
770 		}
771 	}
772 
773 	dbg_activate_sw_breakpoints();
774 
775 	/* Call the I/O driver's post_exception routine */
776 	if (dbg_io_ops->post_exception)
777 		dbg_io_ops->post_exception();
778 
779 	atomic_dec(&ignore_console_lock_warning);
780 
781 	if (!kgdb_single_step) {
782 		raw_spin_unlock(&dbg_slave_lock);
783 		/* Wait till all the CPUs have quit from the debugger. */
784 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
785 			cpu_relax();
786 	}
787 
788 kgdb_restore:
789 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
790 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
791 		if (kgdb_info[sstep_cpu].task)
792 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
793 		else
794 			kgdb_sstep_pid = 0;
795 	}
796 	if (arch_kgdb_ops.correct_hw_break)
797 		arch_kgdb_ops.correct_hw_break();
798 	if (trace_on)
799 		tracing_on();
800 
801 	kgdb_info[cpu].debuggerinfo = NULL;
802 	kgdb_info[cpu].task = NULL;
803 	kgdb_info[cpu].exception_state &=
804 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
805 	kgdb_info[cpu].enter_kgdb--;
806 	smp_mb__before_atomic();
807 	atomic_dec(&masters_in_kgdb);
808 	/* Free kgdb_active */
809 	atomic_set(&kgdb_active, -1);
810 	raw_spin_unlock(&dbg_master_lock);
811 	dbg_touch_watchdogs();
812 	local_irq_restore(flags);
813 	rcu_read_unlock();
814 
815 	return kgdb_info[cpu].ret_state;
816 }
817 NOKPROBE_SYMBOL(kgdb_cpu_enter);
818 
819 /*
820  * kgdb_handle_exception() - main entry point from a kernel exception
821  *
822  * Locking hierarchy:
823  *	interface locks, if any (begin_session)
824  *	kgdb lock (kgdb_active)
825  */
826 int
827 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
828 {
829 	struct kgdb_state kgdb_var;
830 	struct kgdb_state *ks = &kgdb_var;
831 	int ret = 0;
832 
833 	if (arch_kgdb_ops.enable_nmi)
834 		arch_kgdb_ops.enable_nmi(0);
835 	/*
836 	 * Avoid entering the debugger if we were triggered due to an oops
837 	 * but panic_timeout indicates the system should automatically
838 	 * reboot on panic. We don't want to get stuck waiting for input
839 	 * on such systems, especially if its "just" an oops.
840 	 */
841 	if (signo != SIGTRAP && panic_timeout)
842 		return 1;
843 
844 	memset(ks, 0, sizeof(struct kgdb_state));
845 	ks->cpu			= raw_smp_processor_id();
846 	ks->ex_vector		= evector;
847 	ks->signo		= signo;
848 	ks->err_code		= ecode;
849 	ks->linux_regs		= regs;
850 
851 	if (kgdb_reenter_check(ks))
852 		goto out; /* Ouch, double exception ! */
853 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
854 		goto out;
855 
856 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
857 out:
858 	if (arch_kgdb_ops.enable_nmi)
859 		arch_kgdb_ops.enable_nmi(1);
860 	return ret;
861 }
862 NOKPROBE_SYMBOL(kgdb_handle_exception);
863 
864 /*
865  * GDB places a breakpoint at this function to know dynamically loaded objects.
866  */
867 static int module_event(struct notifier_block *self, unsigned long val,
868 	void *data)
869 {
870 	return 0;
871 }
872 
873 static struct notifier_block dbg_module_load_nb = {
874 	.notifier_call	= module_event,
875 };
876 
877 int kgdb_nmicallback(int cpu, void *regs)
878 {
879 #ifdef CONFIG_SMP
880 	struct kgdb_state kgdb_var;
881 	struct kgdb_state *ks = &kgdb_var;
882 
883 	kgdb_info[cpu].rounding_up = false;
884 
885 	memset(ks, 0, sizeof(struct kgdb_state));
886 	ks->cpu			= cpu;
887 	ks->linux_regs		= regs;
888 
889 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
890 			raw_spin_is_locked(&dbg_master_lock)) {
891 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
892 		return 0;
893 	}
894 #endif
895 	return 1;
896 }
897 NOKPROBE_SYMBOL(kgdb_nmicallback);
898 
899 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
900 							atomic_t *send_ready)
901 {
902 #ifdef CONFIG_SMP
903 	if (!kgdb_io_ready(0) || !send_ready)
904 		return 1;
905 
906 	if (kgdb_info[cpu].enter_kgdb == 0) {
907 		struct kgdb_state kgdb_var;
908 		struct kgdb_state *ks = &kgdb_var;
909 
910 		memset(ks, 0, sizeof(struct kgdb_state));
911 		ks->cpu			= cpu;
912 		ks->ex_vector		= trapnr;
913 		ks->signo		= SIGTRAP;
914 		ks->err_code		= err_code;
915 		ks->linux_regs		= regs;
916 		ks->send_ready		= send_ready;
917 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
918 		return 0;
919 	}
920 #endif
921 	return 1;
922 }
923 NOKPROBE_SYMBOL(kgdb_nmicallin);
924 
925 static void kgdb_console_write(struct console *co, const char *s,
926    unsigned count)
927 {
928 	unsigned long flags;
929 
930 	/* If we're debugging, or KGDB has not connected, don't try
931 	 * and print. */
932 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
933 		return;
934 
935 	local_irq_save(flags);
936 	gdbstub_msg_write(s, count);
937 	local_irq_restore(flags);
938 }
939 
940 static struct console kgdbcons = {
941 	.name		= "kgdb",
942 	.write		= kgdb_console_write,
943 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
944 	.index		= -1,
945 };
946 
947 static int __init opt_kgdb_con(char *str)
948 {
949 	kgdb_use_con = 1;
950 
951 	if (kgdb_io_module_registered && !kgdb_con_registered) {
952 		register_console(&kgdbcons);
953 		kgdb_con_registered = 1;
954 	}
955 
956 	return 0;
957 }
958 
959 early_param("kgdbcon", opt_kgdb_con);
960 
961 #ifdef CONFIG_MAGIC_SYSRQ
962 static void sysrq_handle_dbg(int key)
963 {
964 	if (!dbg_io_ops) {
965 		pr_crit("ERROR: No KGDB I/O module available\n");
966 		return;
967 	}
968 	if (!kgdb_connected) {
969 #ifdef CONFIG_KGDB_KDB
970 		if (!dbg_kdb_mode)
971 			pr_crit("KGDB or $3#33 for KDB\n");
972 #else
973 		pr_crit("Entering KGDB\n");
974 #endif
975 	}
976 
977 	kgdb_breakpoint();
978 }
979 
980 static const struct sysrq_key_op sysrq_dbg_op = {
981 	.handler	= sysrq_handle_dbg,
982 	.help_msg	= "debug(g)",
983 	.action_msg	= "DEBUG",
984 };
985 #endif
986 
987 void kgdb_panic(const char *msg)
988 {
989 	if (!kgdb_io_module_registered)
990 		return;
991 
992 	/*
993 	 * We don't want to get stuck waiting for input from user if
994 	 * "panic_timeout" indicates the system should automatically
995 	 * reboot on panic.
996 	 */
997 	if (panic_timeout)
998 		return;
999 
1000 	if (dbg_kdb_mode)
1001 		kdb_printf("PANIC: %s\n", msg);
1002 
1003 	kgdb_breakpoint();
1004 }
1005 
1006 static void kgdb_initial_breakpoint(void)
1007 {
1008 	kgdb_break_asap = 0;
1009 
1010 	pr_crit("Waiting for connection from remote gdb...\n");
1011 	kgdb_breakpoint();
1012 }
1013 
1014 void __weak kgdb_arch_late(void)
1015 {
1016 }
1017 
1018 void __init dbg_late_init(void)
1019 {
1020 	dbg_is_early = false;
1021 	if (kgdb_io_module_registered)
1022 		kgdb_arch_late();
1023 	kdb_init(KDB_INIT_FULL);
1024 
1025 	if (kgdb_io_module_registered && kgdb_break_asap)
1026 		kgdb_initial_breakpoint();
1027 }
1028 
1029 static int
1030 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1031 {
1032 	/*
1033 	 * Take the following action on reboot notify depending on value:
1034 	 *    1 == Enter debugger
1035 	 *    0 == [the default] detach debug client
1036 	 *   -1 == Do nothing... and use this until the board resets
1037 	 */
1038 	switch (kgdbreboot) {
1039 	case 1:
1040 		kgdb_breakpoint();
1041 		goto done;
1042 	case -1:
1043 		goto done;
1044 	}
1045 	if (!dbg_kdb_mode)
1046 		gdbstub_exit(code);
1047 done:
1048 	return NOTIFY_DONE;
1049 }
1050 
1051 static struct notifier_block dbg_reboot_notifier = {
1052 	.notifier_call		= dbg_notify_reboot,
1053 	.next			= NULL,
1054 	.priority		= INT_MAX,
1055 };
1056 
1057 static void kgdb_register_callbacks(void)
1058 {
1059 	if (!kgdb_io_module_registered) {
1060 		kgdb_io_module_registered = 1;
1061 		kgdb_arch_init();
1062 		if (!dbg_is_early)
1063 			kgdb_arch_late();
1064 		register_module_notifier(&dbg_module_load_nb);
1065 		register_reboot_notifier(&dbg_reboot_notifier);
1066 #ifdef CONFIG_MAGIC_SYSRQ
1067 		register_sysrq_key('g', &sysrq_dbg_op);
1068 #endif
1069 		if (kgdb_use_con && !kgdb_con_registered) {
1070 			register_console(&kgdbcons);
1071 			kgdb_con_registered = 1;
1072 		}
1073 	}
1074 }
1075 
1076 static void kgdb_unregister_callbacks(void)
1077 {
1078 	/*
1079 	 * When this routine is called KGDB should unregister from
1080 	 * handlers and clean up, making sure it is not handling any
1081 	 * break exceptions at the time.
1082 	 */
1083 	if (kgdb_io_module_registered) {
1084 		kgdb_io_module_registered = 0;
1085 		unregister_reboot_notifier(&dbg_reboot_notifier);
1086 		unregister_module_notifier(&dbg_module_load_nb);
1087 		kgdb_arch_exit();
1088 #ifdef CONFIG_MAGIC_SYSRQ
1089 		unregister_sysrq_key('g', &sysrq_dbg_op);
1090 #endif
1091 		if (kgdb_con_registered) {
1092 			unregister_console(&kgdbcons);
1093 			kgdb_con_registered = 0;
1094 		}
1095 	}
1096 }
1097 
1098 /**
1099  *	kgdb_register_io_module - register KGDB IO module
1100  *	@new_dbg_io_ops: the io ops vector
1101  *
1102  *	Register it with the KGDB core.
1103  */
1104 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1105 {
1106 	struct kgdb_io *old_dbg_io_ops;
1107 	int err;
1108 
1109 	spin_lock(&kgdb_registration_lock);
1110 
1111 	old_dbg_io_ops = dbg_io_ops;
1112 	if (old_dbg_io_ops) {
1113 		if (!old_dbg_io_ops->deinit) {
1114 			spin_unlock(&kgdb_registration_lock);
1115 
1116 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1117 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1118 			return -EBUSY;
1119 		}
1120 		pr_info("Replacing I/O driver %s with %s\n",
1121 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1122 	}
1123 
1124 	if (new_dbg_io_ops->init) {
1125 		err = new_dbg_io_ops->init();
1126 		if (err) {
1127 			spin_unlock(&kgdb_registration_lock);
1128 			return err;
1129 		}
1130 	}
1131 
1132 	dbg_io_ops = new_dbg_io_ops;
1133 
1134 	spin_unlock(&kgdb_registration_lock);
1135 
1136 	if (old_dbg_io_ops) {
1137 		old_dbg_io_ops->deinit();
1138 		return 0;
1139 	}
1140 
1141 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1142 
1143 	/* Arm KGDB now. */
1144 	kgdb_register_callbacks();
1145 
1146 	if (kgdb_break_asap &&
1147 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1148 		kgdb_initial_breakpoint();
1149 
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1153 
1154 /**
1155  *	kgdb_unregister_io_module - unregister KGDB IO module
1156  *	@old_dbg_io_ops: the io ops vector
1157  *
1158  *	Unregister it with the KGDB core.
1159  */
1160 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1161 {
1162 	BUG_ON(kgdb_connected);
1163 
1164 	/*
1165 	 * KGDB is no longer able to communicate out, so
1166 	 * unregister our callbacks and reset state.
1167 	 */
1168 	kgdb_unregister_callbacks();
1169 
1170 	spin_lock(&kgdb_registration_lock);
1171 
1172 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1173 	dbg_io_ops = NULL;
1174 
1175 	spin_unlock(&kgdb_registration_lock);
1176 
1177 	if (old_dbg_io_ops->deinit)
1178 		old_dbg_io_ops->deinit();
1179 
1180 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1181 		old_dbg_io_ops->name);
1182 }
1183 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1184 
1185 int dbg_io_get_char(void)
1186 {
1187 	int ret = dbg_io_ops->read_char();
1188 	if (ret == NO_POLL_CHAR)
1189 		return -1;
1190 	if (!dbg_kdb_mode)
1191 		return ret;
1192 	if (ret == 127)
1193 		return 8;
1194 	return ret;
1195 }
1196 
1197 /**
1198  * kgdb_breakpoint - generate breakpoint exception
1199  *
1200  * This function will generate a breakpoint exception.  It is used at the
1201  * beginning of a program to sync up with a debugger and can be used
1202  * otherwise as a quick means to stop program execution and "break" into
1203  * the debugger.
1204  */
1205 noinline void kgdb_breakpoint(void)
1206 {
1207 	atomic_inc(&kgdb_setting_breakpoint);
1208 	wmb(); /* Sync point before breakpoint */
1209 	arch_kgdb_breakpoint();
1210 	wmb(); /* Sync point after breakpoint */
1211 	atomic_dec(&kgdb_setting_breakpoint);
1212 }
1213 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1214 
1215 static int __init opt_kgdb_wait(char *str)
1216 {
1217 	kgdb_break_asap = 1;
1218 
1219 	kdb_init(KDB_INIT_EARLY);
1220 	if (kgdb_io_module_registered &&
1221 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1222 		kgdb_initial_breakpoint();
1223 
1224 	return 0;
1225 }
1226 
1227 early_param("kgdbwait", opt_kgdb_wait);
1228