1 /* 2 * Kernel Debug Core 3 * 4 * Maintainer: Jason Wessel <jason.wessel@windriver.com> 5 * 6 * Copyright (C) 2000-2001 VERITAS Software Corporation. 7 * Copyright (C) 2002-2004 Timesys Corporation 8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> 9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz> 10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> 11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 12 * Copyright (C) 2005-2009 Wind River Systems, Inc. 13 * Copyright (C) 2007 MontaVista Software, Inc. 14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 15 * 16 * Contributors at various stages not listed above: 17 * Jason Wessel ( jason.wessel@windriver.com ) 18 * George Anzinger <george@mvista.com> 19 * Anurekh Saxena (anurekh.saxena@timesys.com) 20 * Lake Stevens Instrument Division (Glenn Engel) 21 * Jim Kingdon, Cygnus Support. 22 * 23 * Original KGDB stub: David Grothe <dave@gcom.com>, 24 * Tigran Aivazian <tigran@sco.com> 25 * 26 * This file is licensed under the terms of the GNU General Public License 27 * version 2. This program is licensed "as is" without any warranty of any 28 * kind, whether express or implied. 29 */ 30 31 #define pr_fmt(fmt) "KGDB: " fmt 32 33 #include <linux/pid_namespace.h> 34 #include <linux/clocksource.h> 35 #include <linux/serial_core.h> 36 #include <linux/interrupt.h> 37 #include <linux/spinlock.h> 38 #include <linux/console.h> 39 #include <linux/threads.h> 40 #include <linux/uaccess.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/sched.h> 47 #include <linux/sysrq.h> 48 #include <linux/reboot.h> 49 #include <linux/init.h> 50 #include <linux/kgdb.h> 51 #include <linux/kdb.h> 52 #include <linux/nmi.h> 53 #include <linux/pid.h> 54 #include <linux/smp.h> 55 #include <linux/mm.h> 56 #include <linux/vmacache.h> 57 #include <linux/rcupdate.h> 58 #include <linux/irq.h> 59 60 #include <asm/cacheflush.h> 61 #include <asm/byteorder.h> 62 #include <linux/atomic.h> 63 64 #include "debug_core.h" 65 66 static int kgdb_break_asap; 67 68 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 69 70 /* kgdb_connected - Is a host GDB connected to us? */ 71 int kgdb_connected; 72 EXPORT_SYMBOL_GPL(kgdb_connected); 73 74 /* All the KGDB handlers are installed */ 75 int kgdb_io_module_registered; 76 77 /* Guard for recursive entry */ 78 static int exception_level; 79 80 struct kgdb_io *dbg_io_ops; 81 static DEFINE_SPINLOCK(kgdb_registration_lock); 82 83 /* Action for the reboot notifier, a global allow kdb to change it */ 84 static int kgdbreboot; 85 /* kgdb console driver is loaded */ 86 static int kgdb_con_registered; 87 /* determine if kgdb console output should be used */ 88 static int kgdb_use_con; 89 /* Flag for alternate operations for early debugging */ 90 bool dbg_is_early = true; 91 /* Next cpu to become the master debug core */ 92 int dbg_switch_cpu; 93 94 /* Use kdb or gdbserver mode */ 95 int dbg_kdb_mode = 1; 96 97 module_param(kgdb_use_con, int, 0644); 98 module_param(kgdbreboot, int, 0644); 99 100 /* 101 * Holds information about breakpoints in a kernel. These breakpoints are 102 * added and removed by gdb. 103 */ 104 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 105 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 106 }; 107 108 /* 109 * The CPU# of the active CPU, or -1 if none: 110 */ 111 atomic_t kgdb_active = ATOMIC_INIT(-1); 112 EXPORT_SYMBOL_GPL(kgdb_active); 113 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 115 116 /* 117 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 118 * bootup code (which might not have percpu set up yet): 119 */ 120 static atomic_t masters_in_kgdb; 121 static atomic_t slaves_in_kgdb; 122 atomic_t kgdb_setting_breakpoint; 123 124 struct task_struct *kgdb_usethread; 125 struct task_struct *kgdb_contthread; 126 127 int kgdb_single_step; 128 static pid_t kgdb_sstep_pid; 129 130 /* to keep track of the CPU which is doing the single stepping*/ 131 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 132 133 /* 134 * If you are debugging a problem where roundup (the collection of 135 * all other CPUs) is a problem [this should be extremely rare], 136 * then use the nokgdbroundup option to avoid roundup. In that case 137 * the other CPUs might interfere with your debugging context, so 138 * use this with care: 139 */ 140 static int kgdb_do_roundup = 1; 141 142 static int __init opt_nokgdbroundup(char *str) 143 { 144 kgdb_do_roundup = 0; 145 146 return 0; 147 } 148 149 early_param("nokgdbroundup", opt_nokgdbroundup); 150 151 /* 152 * Finally, some KGDB code :-) 153 */ 154 155 /* 156 * Weak aliases for breakpoint management, 157 * can be overridden by architectures when needed: 158 */ 159 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 160 { 161 int err; 162 163 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr, 164 BREAK_INSTR_SIZE); 165 if (err) 166 return err; 167 err = copy_to_kernel_nofault((char *)bpt->bpt_addr, 168 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 169 return err; 170 } 171 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint); 172 173 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 174 { 175 return copy_to_kernel_nofault((char *)bpt->bpt_addr, 176 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 177 } 178 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint); 179 180 int __weak kgdb_validate_break_address(unsigned long addr) 181 { 182 struct kgdb_bkpt tmp; 183 int err; 184 185 if (kgdb_within_blocklist(addr)) 186 return -EINVAL; 187 188 /* Validate setting the breakpoint and then removing it. If the 189 * remove fails, the kernel needs to emit a bad message because we 190 * are deep trouble not being able to put things back the way we 191 * found them. 192 */ 193 tmp.bpt_addr = addr; 194 err = kgdb_arch_set_breakpoint(&tmp); 195 if (err) 196 return err; 197 err = kgdb_arch_remove_breakpoint(&tmp); 198 if (err) 199 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 200 addr); 201 return err; 202 } 203 204 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 205 { 206 return instruction_pointer(regs); 207 } 208 NOKPROBE_SYMBOL(kgdb_arch_pc); 209 210 int __weak kgdb_arch_init(void) 211 { 212 return 0; 213 } 214 215 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 216 { 217 return 0; 218 } 219 NOKPROBE_SYMBOL(kgdb_skipexception); 220 221 #ifdef CONFIG_SMP 222 223 /* 224 * Default (weak) implementation for kgdb_roundup_cpus 225 */ 226 227 void __weak kgdb_call_nmi_hook(void *ignored) 228 { 229 /* 230 * NOTE: get_irq_regs() is supposed to get the registers from 231 * before the IPI interrupt happened and so is supposed to 232 * show where the processor was. In some situations it's 233 * possible we might be called without an IPI, so it might be 234 * safer to figure out how to make kgdb_breakpoint() work 235 * properly here. 236 */ 237 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 238 } 239 NOKPROBE_SYMBOL(kgdb_call_nmi_hook); 240 241 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) = 242 CSD_INIT(kgdb_call_nmi_hook, NULL); 243 244 void __weak kgdb_roundup_cpus(void) 245 { 246 call_single_data_t *csd; 247 int this_cpu = raw_smp_processor_id(); 248 int cpu; 249 int ret; 250 251 for_each_online_cpu(cpu) { 252 /* No need to roundup ourselves */ 253 if (cpu == this_cpu) 254 continue; 255 256 csd = &per_cpu(kgdb_roundup_csd, cpu); 257 258 /* 259 * If it didn't round up last time, don't try again 260 * since smp_call_function_single_async() will block. 261 * 262 * If rounding_up is false then we know that the 263 * previous call must have at least started and that 264 * means smp_call_function_single_async() won't block. 265 */ 266 if (kgdb_info[cpu].rounding_up) 267 continue; 268 kgdb_info[cpu].rounding_up = true; 269 270 ret = smp_call_function_single_async(cpu, csd); 271 if (ret) 272 kgdb_info[cpu].rounding_up = false; 273 } 274 } 275 NOKPROBE_SYMBOL(kgdb_roundup_cpus); 276 277 #endif 278 279 /* 280 * Some architectures need cache flushes when we set/clear a 281 * breakpoint: 282 */ 283 static void kgdb_flush_swbreak_addr(unsigned long addr) 284 { 285 if (!CACHE_FLUSH_IS_SAFE) 286 return; 287 288 if (current->mm) { 289 int i; 290 291 for (i = 0; i < VMACACHE_SIZE; i++) { 292 if (!current->vmacache.vmas[i]) 293 continue; 294 flush_cache_range(current->vmacache.vmas[i], 295 addr, addr + BREAK_INSTR_SIZE); 296 } 297 } 298 299 /* Force flush instruction cache if it was outside the mm */ 300 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 301 } 302 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr); 303 304 /* 305 * SW breakpoint management: 306 */ 307 int dbg_activate_sw_breakpoints(void) 308 { 309 int error; 310 int ret = 0; 311 int i; 312 313 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 314 if (kgdb_break[i].state != BP_SET) 315 continue; 316 317 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 318 if (error) { 319 ret = error; 320 pr_info("BP install failed: %lx\n", 321 kgdb_break[i].bpt_addr); 322 continue; 323 } 324 325 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 326 kgdb_break[i].state = BP_ACTIVE; 327 } 328 return ret; 329 } 330 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints); 331 332 int dbg_set_sw_break(unsigned long addr) 333 { 334 int err = kgdb_validate_break_address(addr); 335 int breakno = -1; 336 int i; 337 338 if (err) 339 return err; 340 341 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 342 if ((kgdb_break[i].state == BP_SET) && 343 (kgdb_break[i].bpt_addr == addr)) 344 return -EEXIST; 345 } 346 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 347 if (kgdb_break[i].state == BP_REMOVED && 348 kgdb_break[i].bpt_addr == addr) { 349 breakno = i; 350 break; 351 } 352 } 353 354 if (breakno == -1) { 355 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 356 if (kgdb_break[i].state == BP_UNDEFINED) { 357 breakno = i; 358 break; 359 } 360 } 361 } 362 363 if (breakno == -1) 364 return -E2BIG; 365 366 kgdb_break[breakno].state = BP_SET; 367 kgdb_break[breakno].type = BP_BREAKPOINT; 368 kgdb_break[breakno].bpt_addr = addr; 369 370 return 0; 371 } 372 373 int dbg_deactivate_sw_breakpoints(void) 374 { 375 int error; 376 int ret = 0; 377 int i; 378 379 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 380 if (kgdb_break[i].state != BP_ACTIVE) 381 continue; 382 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 383 if (error) { 384 pr_info("BP remove failed: %lx\n", 385 kgdb_break[i].bpt_addr); 386 ret = error; 387 } 388 389 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 390 kgdb_break[i].state = BP_SET; 391 } 392 return ret; 393 } 394 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints); 395 396 int dbg_remove_sw_break(unsigned long addr) 397 { 398 int i; 399 400 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 401 if ((kgdb_break[i].state == BP_SET) && 402 (kgdb_break[i].bpt_addr == addr)) { 403 kgdb_break[i].state = BP_REMOVED; 404 return 0; 405 } 406 } 407 return -ENOENT; 408 } 409 410 int kgdb_isremovedbreak(unsigned long addr) 411 { 412 int i; 413 414 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 415 if ((kgdb_break[i].state == BP_REMOVED) && 416 (kgdb_break[i].bpt_addr == addr)) 417 return 1; 418 } 419 return 0; 420 } 421 422 int kgdb_has_hit_break(unsigned long addr) 423 { 424 int i; 425 426 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 427 if (kgdb_break[i].state == BP_ACTIVE && 428 kgdb_break[i].bpt_addr == addr) 429 return 1; 430 } 431 return 0; 432 } 433 434 int dbg_remove_all_break(void) 435 { 436 int error; 437 int i; 438 439 /* Clear memory breakpoints. */ 440 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 441 if (kgdb_break[i].state != BP_ACTIVE) 442 goto setundefined; 443 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 444 if (error) 445 pr_err("breakpoint remove failed: %lx\n", 446 kgdb_break[i].bpt_addr); 447 setundefined: 448 kgdb_break[i].state = BP_UNDEFINED; 449 } 450 451 /* Clear hardware breakpoints. */ 452 if (arch_kgdb_ops.remove_all_hw_break) 453 arch_kgdb_ops.remove_all_hw_break(); 454 455 return 0; 456 } 457 458 void kgdb_free_init_mem(void) 459 { 460 int i; 461 462 /* Clear init memory breakpoints. */ 463 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 464 if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0)) 465 kgdb_break[i].state = BP_UNDEFINED; 466 } 467 } 468 469 #ifdef CONFIG_KGDB_KDB 470 void kdb_dump_stack_on_cpu(int cpu) 471 { 472 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 473 dump_stack(); 474 return; 475 } 476 477 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 478 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 479 cpu); 480 return; 481 } 482 483 /* 484 * In general, architectures don't support dumping the stack of a 485 * "running" process that's not the current one. From the point of 486 * view of the Linux, kernel processes that are looping in the kgdb 487 * slave loop are still "running". There's also no API (that actually 488 * works across all architectures) that can do a stack crawl based 489 * on registers passed as a parameter. 490 * 491 * Solve this conundrum by asking slave CPUs to do the backtrace 492 * themselves. 493 */ 494 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 495 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 496 cpu_relax(); 497 } 498 #endif 499 500 /* 501 * Return true if there is a valid kgdb I/O module. Also if no 502 * debugger is attached a message can be printed to the console about 503 * waiting for the debugger to attach. 504 * 505 * The print_wait argument is only to be true when called from inside 506 * the core kgdb_handle_exception, because it will wait for the 507 * debugger to attach. 508 */ 509 static int kgdb_io_ready(int print_wait) 510 { 511 if (!dbg_io_ops) 512 return 0; 513 if (kgdb_connected) 514 return 1; 515 if (atomic_read(&kgdb_setting_breakpoint)) 516 return 1; 517 if (print_wait) { 518 #ifdef CONFIG_KGDB_KDB 519 if (!dbg_kdb_mode) 520 pr_crit("waiting... or $3#33 for KDB\n"); 521 #else 522 pr_crit("Waiting for remote debugger\n"); 523 #endif 524 } 525 return 1; 526 } 527 NOKPROBE_SYMBOL(kgdb_io_ready); 528 529 static int kgdb_reenter_check(struct kgdb_state *ks) 530 { 531 unsigned long addr; 532 533 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 534 return 0; 535 536 /* Panic on recursive debugger calls: */ 537 exception_level++; 538 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 539 dbg_deactivate_sw_breakpoints(); 540 541 /* 542 * If the break point removed ok at the place exception 543 * occurred, try to recover and print a warning to the end 544 * user because the user planted a breakpoint in a place that 545 * KGDB needs in order to function. 546 */ 547 if (dbg_remove_sw_break(addr) == 0) { 548 exception_level = 0; 549 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 550 dbg_activate_sw_breakpoints(); 551 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 552 WARN_ON_ONCE(1); 553 554 return 1; 555 } 556 dbg_remove_all_break(); 557 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 558 559 if (exception_level > 1) { 560 dump_stack(); 561 kgdb_io_module_registered = false; 562 panic("Recursive entry to debugger"); 563 } 564 565 pr_crit("re-enter exception: ALL breakpoints killed\n"); 566 #ifdef CONFIG_KGDB_KDB 567 /* Allow kdb to debug itself one level */ 568 return 0; 569 #endif 570 dump_stack(); 571 panic("Recursive entry to debugger"); 572 573 return 1; 574 } 575 NOKPROBE_SYMBOL(kgdb_reenter_check); 576 577 static void dbg_touch_watchdogs(void) 578 { 579 touch_softlockup_watchdog_sync(); 580 clocksource_touch_watchdog(); 581 rcu_cpu_stall_reset(); 582 } 583 NOKPROBE_SYMBOL(dbg_touch_watchdogs); 584 585 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 586 int exception_state) 587 { 588 unsigned long flags; 589 int sstep_tries = 100; 590 int error; 591 int cpu; 592 int trace_on = 0; 593 int online_cpus = num_online_cpus(); 594 u64 time_left; 595 596 kgdb_info[ks->cpu].enter_kgdb++; 597 kgdb_info[ks->cpu].exception_state |= exception_state; 598 599 if (exception_state == DCPU_WANT_MASTER) 600 atomic_inc(&masters_in_kgdb); 601 else 602 atomic_inc(&slaves_in_kgdb); 603 604 if (arch_kgdb_ops.disable_hw_break) 605 arch_kgdb_ops.disable_hw_break(regs); 606 607 acquirelock: 608 rcu_read_lock(); 609 /* 610 * Interrupts will be restored by the 'trap return' code, except when 611 * single stepping. 612 */ 613 local_irq_save(flags); 614 615 cpu = ks->cpu; 616 kgdb_info[cpu].debuggerinfo = regs; 617 kgdb_info[cpu].task = current; 618 kgdb_info[cpu].ret_state = 0; 619 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 620 621 /* Make sure the above info reaches the primary CPU */ 622 smp_mb(); 623 624 if (exception_level == 1) { 625 if (raw_spin_trylock(&dbg_master_lock)) 626 atomic_xchg(&kgdb_active, cpu); 627 goto cpu_master_loop; 628 } 629 630 /* 631 * CPU will loop if it is a slave or request to become a kgdb 632 * master cpu and acquire the kgdb_active lock: 633 */ 634 while (1) { 635 cpu_loop: 636 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 637 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 638 goto cpu_master_loop; 639 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 640 if (raw_spin_trylock(&dbg_master_lock)) { 641 atomic_xchg(&kgdb_active, cpu); 642 break; 643 } 644 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 645 dump_stack(); 646 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 647 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 648 if (!raw_spin_is_locked(&dbg_slave_lock)) 649 goto return_normal; 650 } else { 651 return_normal: 652 /* Return to normal operation by executing any 653 * hw breakpoint fixup. 654 */ 655 if (arch_kgdb_ops.correct_hw_break) 656 arch_kgdb_ops.correct_hw_break(); 657 if (trace_on) 658 tracing_on(); 659 kgdb_info[cpu].debuggerinfo = NULL; 660 kgdb_info[cpu].task = NULL; 661 kgdb_info[cpu].exception_state &= 662 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 663 kgdb_info[cpu].enter_kgdb--; 664 smp_mb__before_atomic(); 665 atomic_dec(&slaves_in_kgdb); 666 dbg_touch_watchdogs(); 667 local_irq_restore(flags); 668 rcu_read_unlock(); 669 return 0; 670 } 671 cpu_relax(); 672 } 673 674 /* 675 * For single stepping, try to only enter on the processor 676 * that was single stepping. To guard against a deadlock, the 677 * kernel will only try for the value of sstep_tries before 678 * giving up and continuing on. 679 */ 680 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 681 (kgdb_info[cpu].task && 682 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 683 atomic_set(&kgdb_active, -1); 684 raw_spin_unlock(&dbg_master_lock); 685 dbg_touch_watchdogs(); 686 local_irq_restore(flags); 687 rcu_read_unlock(); 688 689 goto acquirelock; 690 } 691 692 if (!kgdb_io_ready(1)) { 693 kgdb_info[cpu].ret_state = 1; 694 goto kgdb_restore; /* No I/O connection, resume the system */ 695 } 696 697 /* 698 * Don't enter if we have hit a removed breakpoint. 699 */ 700 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 701 goto kgdb_restore; 702 703 atomic_inc(&ignore_console_lock_warning); 704 705 /* Call the I/O driver's pre_exception routine */ 706 if (dbg_io_ops->pre_exception) 707 dbg_io_ops->pre_exception(); 708 709 /* 710 * Get the passive CPU lock which will hold all the non-primary 711 * CPU in a spin state while the debugger is active 712 */ 713 if (!kgdb_single_step) 714 raw_spin_lock(&dbg_slave_lock); 715 716 #ifdef CONFIG_SMP 717 /* If send_ready set, slaves are already waiting */ 718 if (ks->send_ready) 719 atomic_set(ks->send_ready, 1); 720 721 /* Signal the other CPUs to enter kgdb_wait() */ 722 else if ((!kgdb_single_step) && kgdb_do_roundup) 723 kgdb_roundup_cpus(); 724 #endif 725 726 /* 727 * Wait for the other CPUs to be notified and be waiting for us: 728 */ 729 time_left = MSEC_PER_SEC; 730 while (kgdb_do_roundup && --time_left && 731 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 732 online_cpus) 733 udelay(1000); 734 if (!time_left) 735 pr_crit("Timed out waiting for secondary CPUs.\n"); 736 737 /* 738 * At this point the primary processor is completely 739 * in the debugger and all secondary CPUs are quiescent 740 */ 741 dbg_deactivate_sw_breakpoints(); 742 kgdb_single_step = 0; 743 kgdb_contthread = current; 744 exception_level = 0; 745 trace_on = tracing_is_on(); 746 if (trace_on) 747 tracing_off(); 748 749 while (1) { 750 cpu_master_loop: 751 if (dbg_kdb_mode) { 752 kgdb_connected = 1; 753 error = kdb_stub(ks); 754 if (error == -1) 755 continue; 756 kgdb_connected = 0; 757 } else { 758 error = gdb_serial_stub(ks); 759 } 760 761 if (error == DBG_PASS_EVENT) { 762 dbg_kdb_mode = !dbg_kdb_mode; 763 } else if (error == DBG_SWITCH_CPU_EVENT) { 764 kgdb_info[dbg_switch_cpu].exception_state |= 765 DCPU_NEXT_MASTER; 766 goto cpu_loop; 767 } else { 768 kgdb_info[cpu].ret_state = error; 769 break; 770 } 771 } 772 773 dbg_activate_sw_breakpoints(); 774 775 /* Call the I/O driver's post_exception routine */ 776 if (dbg_io_ops->post_exception) 777 dbg_io_ops->post_exception(); 778 779 atomic_dec(&ignore_console_lock_warning); 780 781 if (!kgdb_single_step) { 782 raw_spin_unlock(&dbg_slave_lock); 783 /* Wait till all the CPUs have quit from the debugger. */ 784 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 785 cpu_relax(); 786 } 787 788 kgdb_restore: 789 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 790 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 791 if (kgdb_info[sstep_cpu].task) 792 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 793 else 794 kgdb_sstep_pid = 0; 795 } 796 if (arch_kgdb_ops.correct_hw_break) 797 arch_kgdb_ops.correct_hw_break(); 798 if (trace_on) 799 tracing_on(); 800 801 kgdb_info[cpu].debuggerinfo = NULL; 802 kgdb_info[cpu].task = NULL; 803 kgdb_info[cpu].exception_state &= 804 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 805 kgdb_info[cpu].enter_kgdb--; 806 smp_mb__before_atomic(); 807 atomic_dec(&masters_in_kgdb); 808 /* Free kgdb_active */ 809 atomic_set(&kgdb_active, -1); 810 raw_spin_unlock(&dbg_master_lock); 811 dbg_touch_watchdogs(); 812 local_irq_restore(flags); 813 rcu_read_unlock(); 814 815 return kgdb_info[cpu].ret_state; 816 } 817 NOKPROBE_SYMBOL(kgdb_cpu_enter); 818 819 /* 820 * kgdb_handle_exception() - main entry point from a kernel exception 821 * 822 * Locking hierarchy: 823 * interface locks, if any (begin_session) 824 * kgdb lock (kgdb_active) 825 */ 826 int 827 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 828 { 829 struct kgdb_state kgdb_var; 830 struct kgdb_state *ks = &kgdb_var; 831 int ret = 0; 832 833 if (arch_kgdb_ops.enable_nmi) 834 arch_kgdb_ops.enable_nmi(0); 835 /* 836 * Avoid entering the debugger if we were triggered due to an oops 837 * but panic_timeout indicates the system should automatically 838 * reboot on panic. We don't want to get stuck waiting for input 839 * on such systems, especially if its "just" an oops. 840 */ 841 if (signo != SIGTRAP && panic_timeout) 842 return 1; 843 844 memset(ks, 0, sizeof(struct kgdb_state)); 845 ks->cpu = raw_smp_processor_id(); 846 ks->ex_vector = evector; 847 ks->signo = signo; 848 ks->err_code = ecode; 849 ks->linux_regs = regs; 850 851 if (kgdb_reenter_check(ks)) 852 goto out; /* Ouch, double exception ! */ 853 if (kgdb_info[ks->cpu].enter_kgdb != 0) 854 goto out; 855 856 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 857 out: 858 if (arch_kgdb_ops.enable_nmi) 859 arch_kgdb_ops.enable_nmi(1); 860 return ret; 861 } 862 NOKPROBE_SYMBOL(kgdb_handle_exception); 863 864 /* 865 * GDB places a breakpoint at this function to know dynamically loaded objects. 866 */ 867 static int module_event(struct notifier_block *self, unsigned long val, 868 void *data) 869 { 870 return 0; 871 } 872 873 static struct notifier_block dbg_module_load_nb = { 874 .notifier_call = module_event, 875 }; 876 877 int kgdb_nmicallback(int cpu, void *regs) 878 { 879 #ifdef CONFIG_SMP 880 struct kgdb_state kgdb_var; 881 struct kgdb_state *ks = &kgdb_var; 882 883 kgdb_info[cpu].rounding_up = false; 884 885 memset(ks, 0, sizeof(struct kgdb_state)); 886 ks->cpu = cpu; 887 ks->linux_regs = regs; 888 889 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 890 raw_spin_is_locked(&dbg_master_lock)) { 891 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 892 return 0; 893 } 894 #endif 895 return 1; 896 } 897 NOKPROBE_SYMBOL(kgdb_nmicallback); 898 899 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 900 atomic_t *send_ready) 901 { 902 #ifdef CONFIG_SMP 903 if (!kgdb_io_ready(0) || !send_ready) 904 return 1; 905 906 if (kgdb_info[cpu].enter_kgdb == 0) { 907 struct kgdb_state kgdb_var; 908 struct kgdb_state *ks = &kgdb_var; 909 910 memset(ks, 0, sizeof(struct kgdb_state)); 911 ks->cpu = cpu; 912 ks->ex_vector = trapnr; 913 ks->signo = SIGTRAP; 914 ks->err_code = err_code; 915 ks->linux_regs = regs; 916 ks->send_ready = send_ready; 917 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 918 return 0; 919 } 920 #endif 921 return 1; 922 } 923 NOKPROBE_SYMBOL(kgdb_nmicallin); 924 925 static void kgdb_console_write(struct console *co, const char *s, 926 unsigned count) 927 { 928 unsigned long flags; 929 930 /* If we're debugging, or KGDB has not connected, don't try 931 * and print. */ 932 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 933 return; 934 935 local_irq_save(flags); 936 gdbstub_msg_write(s, count); 937 local_irq_restore(flags); 938 } 939 940 static struct console kgdbcons = { 941 .name = "kgdb", 942 .write = kgdb_console_write, 943 .flags = CON_PRINTBUFFER | CON_ENABLED, 944 .index = -1, 945 }; 946 947 static int __init opt_kgdb_con(char *str) 948 { 949 kgdb_use_con = 1; 950 951 if (kgdb_io_module_registered && !kgdb_con_registered) { 952 register_console(&kgdbcons); 953 kgdb_con_registered = 1; 954 } 955 956 return 0; 957 } 958 959 early_param("kgdbcon", opt_kgdb_con); 960 961 #ifdef CONFIG_MAGIC_SYSRQ 962 static void sysrq_handle_dbg(int key) 963 { 964 if (!dbg_io_ops) { 965 pr_crit("ERROR: No KGDB I/O module available\n"); 966 return; 967 } 968 if (!kgdb_connected) { 969 #ifdef CONFIG_KGDB_KDB 970 if (!dbg_kdb_mode) 971 pr_crit("KGDB or $3#33 for KDB\n"); 972 #else 973 pr_crit("Entering KGDB\n"); 974 #endif 975 } 976 977 kgdb_breakpoint(); 978 } 979 980 static const struct sysrq_key_op sysrq_dbg_op = { 981 .handler = sysrq_handle_dbg, 982 .help_msg = "debug(g)", 983 .action_msg = "DEBUG", 984 }; 985 #endif 986 987 void kgdb_panic(const char *msg) 988 { 989 if (!kgdb_io_module_registered) 990 return; 991 992 /* 993 * We don't want to get stuck waiting for input from user if 994 * "panic_timeout" indicates the system should automatically 995 * reboot on panic. 996 */ 997 if (panic_timeout) 998 return; 999 1000 if (dbg_kdb_mode) 1001 kdb_printf("PANIC: %s\n", msg); 1002 1003 kgdb_breakpoint(); 1004 } 1005 1006 static void kgdb_initial_breakpoint(void) 1007 { 1008 kgdb_break_asap = 0; 1009 1010 pr_crit("Waiting for connection from remote gdb...\n"); 1011 kgdb_breakpoint(); 1012 } 1013 1014 void __weak kgdb_arch_late(void) 1015 { 1016 } 1017 1018 void __init dbg_late_init(void) 1019 { 1020 dbg_is_early = false; 1021 if (kgdb_io_module_registered) 1022 kgdb_arch_late(); 1023 kdb_init(KDB_INIT_FULL); 1024 1025 if (kgdb_io_module_registered && kgdb_break_asap) 1026 kgdb_initial_breakpoint(); 1027 } 1028 1029 static int 1030 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 1031 { 1032 /* 1033 * Take the following action on reboot notify depending on value: 1034 * 1 == Enter debugger 1035 * 0 == [the default] detach debug client 1036 * -1 == Do nothing... and use this until the board resets 1037 */ 1038 switch (kgdbreboot) { 1039 case 1: 1040 kgdb_breakpoint(); 1041 goto done; 1042 case -1: 1043 goto done; 1044 } 1045 if (!dbg_kdb_mode) 1046 gdbstub_exit(code); 1047 done: 1048 return NOTIFY_DONE; 1049 } 1050 1051 static struct notifier_block dbg_reboot_notifier = { 1052 .notifier_call = dbg_notify_reboot, 1053 .next = NULL, 1054 .priority = INT_MAX, 1055 }; 1056 1057 static void kgdb_register_callbacks(void) 1058 { 1059 if (!kgdb_io_module_registered) { 1060 kgdb_io_module_registered = 1; 1061 kgdb_arch_init(); 1062 if (!dbg_is_early) 1063 kgdb_arch_late(); 1064 register_module_notifier(&dbg_module_load_nb); 1065 register_reboot_notifier(&dbg_reboot_notifier); 1066 #ifdef CONFIG_MAGIC_SYSRQ 1067 register_sysrq_key('g', &sysrq_dbg_op); 1068 #endif 1069 if (kgdb_use_con && !kgdb_con_registered) { 1070 register_console(&kgdbcons); 1071 kgdb_con_registered = 1; 1072 } 1073 } 1074 } 1075 1076 static void kgdb_unregister_callbacks(void) 1077 { 1078 /* 1079 * When this routine is called KGDB should unregister from 1080 * handlers and clean up, making sure it is not handling any 1081 * break exceptions at the time. 1082 */ 1083 if (kgdb_io_module_registered) { 1084 kgdb_io_module_registered = 0; 1085 unregister_reboot_notifier(&dbg_reboot_notifier); 1086 unregister_module_notifier(&dbg_module_load_nb); 1087 kgdb_arch_exit(); 1088 #ifdef CONFIG_MAGIC_SYSRQ 1089 unregister_sysrq_key('g', &sysrq_dbg_op); 1090 #endif 1091 if (kgdb_con_registered) { 1092 unregister_console(&kgdbcons); 1093 kgdb_con_registered = 0; 1094 } 1095 } 1096 } 1097 1098 /** 1099 * kgdb_register_io_module - register KGDB IO module 1100 * @new_dbg_io_ops: the io ops vector 1101 * 1102 * Register it with the KGDB core. 1103 */ 1104 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1105 { 1106 struct kgdb_io *old_dbg_io_ops; 1107 int err; 1108 1109 spin_lock(&kgdb_registration_lock); 1110 1111 old_dbg_io_ops = dbg_io_ops; 1112 if (old_dbg_io_ops) { 1113 if (!old_dbg_io_ops->deinit) { 1114 spin_unlock(&kgdb_registration_lock); 1115 1116 pr_err("KGDB I/O driver %s can't replace %s.\n", 1117 new_dbg_io_ops->name, old_dbg_io_ops->name); 1118 return -EBUSY; 1119 } 1120 pr_info("Replacing I/O driver %s with %s\n", 1121 old_dbg_io_ops->name, new_dbg_io_ops->name); 1122 } 1123 1124 if (new_dbg_io_ops->init) { 1125 err = new_dbg_io_ops->init(); 1126 if (err) { 1127 spin_unlock(&kgdb_registration_lock); 1128 return err; 1129 } 1130 } 1131 1132 dbg_io_ops = new_dbg_io_ops; 1133 1134 spin_unlock(&kgdb_registration_lock); 1135 1136 if (old_dbg_io_ops) { 1137 old_dbg_io_ops->deinit(); 1138 return 0; 1139 } 1140 1141 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1142 1143 /* Arm KGDB now. */ 1144 kgdb_register_callbacks(); 1145 1146 if (kgdb_break_asap && 1147 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))) 1148 kgdb_initial_breakpoint(); 1149 1150 return 0; 1151 } 1152 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1153 1154 /** 1155 * kgdb_unregister_io_module - unregister KGDB IO module 1156 * @old_dbg_io_ops: the io ops vector 1157 * 1158 * Unregister it with the KGDB core. 1159 */ 1160 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1161 { 1162 BUG_ON(kgdb_connected); 1163 1164 /* 1165 * KGDB is no longer able to communicate out, so 1166 * unregister our callbacks and reset state. 1167 */ 1168 kgdb_unregister_callbacks(); 1169 1170 spin_lock(&kgdb_registration_lock); 1171 1172 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1173 dbg_io_ops = NULL; 1174 1175 spin_unlock(&kgdb_registration_lock); 1176 1177 if (old_dbg_io_ops->deinit) 1178 old_dbg_io_ops->deinit(); 1179 1180 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1181 old_dbg_io_ops->name); 1182 } 1183 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1184 1185 int dbg_io_get_char(void) 1186 { 1187 int ret = dbg_io_ops->read_char(); 1188 if (ret == NO_POLL_CHAR) 1189 return -1; 1190 if (!dbg_kdb_mode) 1191 return ret; 1192 if (ret == 127) 1193 return 8; 1194 return ret; 1195 } 1196 1197 /** 1198 * kgdb_breakpoint - generate breakpoint exception 1199 * 1200 * This function will generate a breakpoint exception. It is used at the 1201 * beginning of a program to sync up with a debugger and can be used 1202 * otherwise as a quick means to stop program execution and "break" into 1203 * the debugger. 1204 */ 1205 noinline void kgdb_breakpoint(void) 1206 { 1207 atomic_inc(&kgdb_setting_breakpoint); 1208 wmb(); /* Sync point before breakpoint */ 1209 arch_kgdb_breakpoint(); 1210 wmb(); /* Sync point after breakpoint */ 1211 atomic_dec(&kgdb_setting_breakpoint); 1212 } 1213 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1214 1215 static int __init opt_kgdb_wait(char *str) 1216 { 1217 kgdb_break_asap = 1; 1218 1219 kdb_init(KDB_INIT_EARLY); 1220 if (kgdb_io_module_registered && 1221 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)) 1222 kgdb_initial_breakpoint(); 1223 1224 return 0; 1225 } 1226 1227 early_param("kgdbwait", opt_kgdb_wait); 1228