xref: /linux/kernel/debug/debug_core.c (revision 9e4d52a00a0217857fa40dc998971a375f861a61)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel Debug Core
4  *
5  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6  *
7  * Copyright (C) 2000-2001 VERITAS Software Corporation.
8  * Copyright (C) 2002-2004 Timesys Corporation
9  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
10  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
11  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
12  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
13  * Copyright (C) 2005-2009 Wind River Systems, Inc.
14  * Copyright (C) 2007 MontaVista Software, Inc.
15  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16  *
17  * Contributors at various stages not listed above:
18  *  Jason Wessel ( jason.wessel@windriver.com )
19  *  George Anzinger <george@mvista.com>
20  *  Anurekh Saxena (anurekh.saxena@timesys.com)
21  *  Lake Stevens Instrument Division (Glenn Engel)
22  *  Jim Kingdon, Cygnus Support.
23  *
24  * Original KGDB stub: David Grothe <dave@gcom.com>,
25  * Tigran Aivazian <tigran@sco.com>
26  */
27 
28 #define pr_fmt(fmt) "KGDB: " fmt
29 
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/serial_core.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/console.h>
36 #include <linux/threads.h>
37 #include <linux/uaccess.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/ptrace.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/reboot.h>
46 #include <linux/init.h>
47 #include <linux/kgdb.h>
48 #include <linux/kdb.h>
49 #include <linux/nmi.h>
50 #include <linux/pid.h>
51 #include <linux/smp.h>
52 #include <linux/mm.h>
53 #include <linux/vmacache.h>
54 #include <linux/rcupdate.h>
55 #include <linux/irq.h>
56 
57 #include <asm/cacheflush.h>
58 #include <asm/byteorder.h>
59 #include <linux/atomic.h>
60 
61 #include "debug_core.h"
62 
63 static int kgdb_break_asap;
64 
65 struct debuggerinfo_struct kgdb_info[NR_CPUS];
66 
67 /* kgdb_connected - Is a host GDB connected to us? */
68 int				kgdb_connected;
69 EXPORT_SYMBOL_GPL(kgdb_connected);
70 
71 /* All the KGDB handlers are installed */
72 int			kgdb_io_module_registered;
73 
74 /* Guard for recursive entry */
75 static int			exception_level;
76 
77 struct kgdb_io		*dbg_io_ops;
78 static DEFINE_SPINLOCK(kgdb_registration_lock);
79 
80 /* Action for the reboot notifier, a global allow kdb to change it */
81 static int kgdbreboot;
82 /* kgdb console driver is loaded */
83 static int kgdb_con_registered;
84 /* determine if kgdb console output should be used */
85 static int kgdb_use_con;
86 /* Flag for alternate operations for early debugging */
87 bool dbg_is_early = true;
88 /* Next cpu to become the master debug core */
89 int dbg_switch_cpu;
90 
91 /* Use kdb or gdbserver mode */
92 int dbg_kdb_mode = 1;
93 
94 module_param(kgdb_use_con, int, 0644);
95 module_param(kgdbreboot, int, 0644);
96 
97 /*
98  * Holds information about breakpoints in a kernel. These breakpoints are
99  * added and removed by gdb.
100  */
101 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
102 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
103 };
104 
105 /*
106  * The CPU# of the active CPU, or -1 if none:
107  */
108 atomic_t			kgdb_active = ATOMIC_INIT(-1);
109 EXPORT_SYMBOL_GPL(kgdb_active);
110 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
111 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
112 
113 /*
114  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
115  * bootup code (which might not have percpu set up yet):
116  */
117 static atomic_t			masters_in_kgdb;
118 static atomic_t			slaves_in_kgdb;
119 atomic_t			kgdb_setting_breakpoint;
120 
121 struct task_struct		*kgdb_usethread;
122 struct task_struct		*kgdb_contthread;
123 
124 int				kgdb_single_step;
125 static pid_t			kgdb_sstep_pid;
126 
127 /* to keep track of the CPU which is doing the single stepping*/
128 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
129 
130 /*
131  * If you are debugging a problem where roundup (the collection of
132  * all other CPUs) is a problem [this should be extremely rare],
133  * then use the nokgdbroundup option to avoid roundup. In that case
134  * the other CPUs might interfere with your debugging context, so
135  * use this with care:
136  */
137 static int kgdb_do_roundup = 1;
138 
139 static int __init opt_nokgdbroundup(char *str)
140 {
141 	kgdb_do_roundup = 0;
142 
143 	return 0;
144 }
145 
146 early_param("nokgdbroundup", opt_nokgdbroundup);
147 
148 /*
149  * Finally, some KGDB code :-)
150  */
151 
152 /*
153  * Weak aliases for breakpoint management,
154  * can be overridden by architectures when needed:
155  */
156 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
157 {
158 	int err;
159 
160 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
161 				BREAK_INSTR_SIZE);
162 	if (err)
163 		return err;
164 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
165 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
166 	return err;
167 }
168 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
169 
170 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
173 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
174 }
175 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
176 
177 int __weak kgdb_validate_break_address(unsigned long addr)
178 {
179 	struct kgdb_bkpt tmp;
180 	int err;
181 
182 	if (kgdb_within_blocklist(addr))
183 		return -EINVAL;
184 
185 	/* Validate setting the breakpoint and then removing it.  If the
186 	 * remove fails, the kernel needs to emit a bad message because we
187 	 * are deep trouble not being able to put things back the way we
188 	 * found them.
189 	 */
190 	tmp.bpt_addr = addr;
191 	err = kgdb_arch_set_breakpoint(&tmp);
192 	if (err)
193 		return err;
194 	err = kgdb_arch_remove_breakpoint(&tmp);
195 	if (err)
196 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
197 		       addr);
198 	return err;
199 }
200 
201 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
202 {
203 	return instruction_pointer(regs);
204 }
205 NOKPROBE_SYMBOL(kgdb_arch_pc);
206 
207 int __weak kgdb_arch_init(void)
208 {
209 	return 0;
210 }
211 
212 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
213 {
214 	return 0;
215 }
216 NOKPROBE_SYMBOL(kgdb_skipexception);
217 
218 #ifdef CONFIG_SMP
219 
220 /*
221  * Default (weak) implementation for kgdb_roundup_cpus
222  */
223 
224 void __weak kgdb_call_nmi_hook(void *ignored)
225 {
226 	/*
227 	 * NOTE: get_irq_regs() is supposed to get the registers from
228 	 * before the IPI interrupt happened and so is supposed to
229 	 * show where the processor was.  In some situations it's
230 	 * possible we might be called without an IPI, so it might be
231 	 * safer to figure out how to make kgdb_breakpoint() work
232 	 * properly here.
233 	 */
234 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
235 }
236 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
237 
238 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
239 	CSD_INIT(kgdb_call_nmi_hook, NULL);
240 
241 void __weak kgdb_roundup_cpus(void)
242 {
243 	call_single_data_t *csd;
244 	int this_cpu = raw_smp_processor_id();
245 	int cpu;
246 	int ret;
247 
248 	for_each_online_cpu(cpu) {
249 		/* No need to roundup ourselves */
250 		if (cpu == this_cpu)
251 			continue;
252 
253 		csd = &per_cpu(kgdb_roundup_csd, cpu);
254 
255 		/*
256 		 * If it didn't round up last time, don't try again
257 		 * since smp_call_function_single_async() will block.
258 		 *
259 		 * If rounding_up is false then we know that the
260 		 * previous call must have at least started and that
261 		 * means smp_call_function_single_async() won't block.
262 		 */
263 		if (kgdb_info[cpu].rounding_up)
264 			continue;
265 		kgdb_info[cpu].rounding_up = true;
266 
267 		ret = smp_call_function_single_async(cpu, csd);
268 		if (ret)
269 			kgdb_info[cpu].rounding_up = false;
270 	}
271 }
272 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
273 
274 #endif
275 
276 /*
277  * Some architectures need cache flushes when we set/clear a
278  * breakpoint:
279  */
280 static void kgdb_flush_swbreak_addr(unsigned long addr)
281 {
282 	if (!CACHE_FLUSH_IS_SAFE)
283 		return;
284 
285 	if (current->mm) {
286 		int i;
287 
288 		for (i = 0; i < VMACACHE_SIZE; i++) {
289 			if (!current->vmacache.vmas[i])
290 				continue;
291 			flush_cache_range(current->vmacache.vmas[i],
292 					  addr, addr + BREAK_INSTR_SIZE);
293 		}
294 	}
295 
296 	/* Force flush instruction cache if it was outside the mm */
297 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
298 }
299 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
300 
301 /*
302  * SW breakpoint management:
303  */
304 int dbg_activate_sw_breakpoints(void)
305 {
306 	int error;
307 	int ret = 0;
308 	int i;
309 
310 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
311 		if (kgdb_break[i].state != BP_SET)
312 			continue;
313 
314 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
315 		if (error) {
316 			ret = error;
317 			pr_info("BP install failed: %lx\n",
318 				kgdb_break[i].bpt_addr);
319 			continue;
320 		}
321 
322 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
323 		kgdb_break[i].state = BP_ACTIVE;
324 	}
325 	return ret;
326 }
327 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
328 
329 int dbg_set_sw_break(unsigned long addr)
330 {
331 	int err = kgdb_validate_break_address(addr);
332 	int breakno = -1;
333 	int i;
334 
335 	if (err)
336 		return err;
337 
338 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 		if ((kgdb_break[i].state == BP_SET) &&
340 					(kgdb_break[i].bpt_addr == addr))
341 			return -EEXIST;
342 	}
343 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 		if (kgdb_break[i].state == BP_REMOVED &&
345 					kgdb_break[i].bpt_addr == addr) {
346 			breakno = i;
347 			break;
348 		}
349 	}
350 
351 	if (breakno == -1) {
352 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 			if (kgdb_break[i].state == BP_UNDEFINED) {
354 				breakno = i;
355 				break;
356 			}
357 		}
358 	}
359 
360 	if (breakno == -1)
361 		return -E2BIG;
362 
363 	kgdb_break[breakno].state = BP_SET;
364 	kgdb_break[breakno].type = BP_BREAKPOINT;
365 	kgdb_break[breakno].bpt_addr = addr;
366 
367 	return 0;
368 }
369 
370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 	int error;
373 	int ret = 0;
374 	int i;
375 
376 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 		if (kgdb_break[i].state != BP_ACTIVE)
378 			continue;
379 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 		if (error) {
381 			pr_info("BP remove failed: %lx\n",
382 				kgdb_break[i].bpt_addr);
383 			ret = error;
384 		}
385 
386 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 		kgdb_break[i].state = BP_SET;
388 	}
389 	return ret;
390 }
391 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
392 
393 int dbg_remove_sw_break(unsigned long addr)
394 {
395 	int i;
396 
397 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
398 		if ((kgdb_break[i].state == BP_SET) &&
399 				(kgdb_break[i].bpt_addr == addr)) {
400 			kgdb_break[i].state = BP_REMOVED;
401 			return 0;
402 		}
403 	}
404 	return -ENOENT;
405 }
406 
407 int kgdb_isremovedbreak(unsigned long addr)
408 {
409 	int i;
410 
411 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
412 		if ((kgdb_break[i].state == BP_REMOVED) &&
413 					(kgdb_break[i].bpt_addr == addr))
414 			return 1;
415 	}
416 	return 0;
417 }
418 
419 int kgdb_has_hit_break(unsigned long addr)
420 {
421 	int i;
422 
423 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
424 		if (kgdb_break[i].state == BP_ACTIVE &&
425 		    kgdb_break[i].bpt_addr == addr)
426 			return 1;
427 	}
428 	return 0;
429 }
430 
431 int dbg_remove_all_break(void)
432 {
433 	int error;
434 	int i;
435 
436 	/* Clear memory breakpoints. */
437 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
438 		if (kgdb_break[i].state != BP_ACTIVE)
439 			goto setundefined;
440 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
441 		if (error)
442 			pr_err("breakpoint remove failed: %lx\n",
443 			       kgdb_break[i].bpt_addr);
444 setundefined:
445 		kgdb_break[i].state = BP_UNDEFINED;
446 	}
447 
448 	/* Clear hardware breakpoints. */
449 	if (arch_kgdb_ops.remove_all_hw_break)
450 		arch_kgdb_ops.remove_all_hw_break();
451 
452 	return 0;
453 }
454 
455 void kgdb_free_init_mem(void)
456 {
457 	int i;
458 
459 	/* Clear init memory breakpoints. */
460 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
461 		if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
462 			kgdb_break[i].state = BP_UNDEFINED;
463 	}
464 }
465 
466 #ifdef CONFIG_KGDB_KDB
467 void kdb_dump_stack_on_cpu(int cpu)
468 {
469 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
470 		dump_stack();
471 		return;
472 	}
473 
474 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
475 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
476 			   cpu);
477 		return;
478 	}
479 
480 	/*
481 	 * In general, architectures don't support dumping the stack of a
482 	 * "running" process that's not the current one.  From the point of
483 	 * view of the Linux, kernel processes that are looping in the kgdb
484 	 * slave loop are still "running".  There's also no API (that actually
485 	 * works across all architectures) that can do a stack crawl based
486 	 * on registers passed as a parameter.
487 	 *
488 	 * Solve this conundrum by asking slave CPUs to do the backtrace
489 	 * themselves.
490 	 */
491 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
492 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
493 		cpu_relax();
494 }
495 #endif
496 
497 /*
498  * Return true if there is a valid kgdb I/O module.  Also if no
499  * debugger is attached a message can be printed to the console about
500  * waiting for the debugger to attach.
501  *
502  * The print_wait argument is only to be true when called from inside
503  * the core kgdb_handle_exception, because it will wait for the
504  * debugger to attach.
505  */
506 static int kgdb_io_ready(int print_wait)
507 {
508 	if (!dbg_io_ops)
509 		return 0;
510 	if (kgdb_connected)
511 		return 1;
512 	if (atomic_read(&kgdb_setting_breakpoint))
513 		return 1;
514 	if (print_wait) {
515 #ifdef CONFIG_KGDB_KDB
516 		if (!dbg_kdb_mode)
517 			pr_crit("waiting... or $3#33 for KDB\n");
518 #else
519 		pr_crit("Waiting for remote debugger\n");
520 #endif
521 	}
522 	return 1;
523 }
524 NOKPROBE_SYMBOL(kgdb_io_ready);
525 
526 static int kgdb_reenter_check(struct kgdb_state *ks)
527 {
528 	unsigned long addr;
529 
530 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
531 		return 0;
532 
533 	/* Panic on recursive debugger calls: */
534 	exception_level++;
535 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
536 	dbg_deactivate_sw_breakpoints();
537 
538 	/*
539 	 * If the break point removed ok at the place exception
540 	 * occurred, try to recover and print a warning to the end
541 	 * user because the user planted a breakpoint in a place that
542 	 * KGDB needs in order to function.
543 	 */
544 	if (dbg_remove_sw_break(addr) == 0) {
545 		exception_level = 0;
546 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
547 		dbg_activate_sw_breakpoints();
548 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
549 		WARN_ON_ONCE(1);
550 
551 		return 1;
552 	}
553 	dbg_remove_all_break();
554 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
555 
556 	if (exception_level > 1) {
557 		dump_stack();
558 		kgdb_io_module_registered = false;
559 		panic("Recursive entry to debugger");
560 	}
561 
562 	pr_crit("re-enter exception: ALL breakpoints killed\n");
563 #ifdef CONFIG_KGDB_KDB
564 	/* Allow kdb to debug itself one level */
565 	return 0;
566 #endif
567 	dump_stack();
568 	panic("Recursive entry to debugger");
569 
570 	return 1;
571 }
572 NOKPROBE_SYMBOL(kgdb_reenter_check);
573 
574 static void dbg_touch_watchdogs(void)
575 {
576 	touch_softlockup_watchdog_sync();
577 	clocksource_touch_watchdog();
578 	rcu_cpu_stall_reset();
579 }
580 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
581 
582 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
583 		int exception_state)
584 {
585 	unsigned long flags;
586 	int sstep_tries = 100;
587 	int error;
588 	int cpu;
589 	int trace_on = 0;
590 	int online_cpus = num_online_cpus();
591 	u64 time_left;
592 
593 	kgdb_info[ks->cpu].enter_kgdb++;
594 	kgdb_info[ks->cpu].exception_state |= exception_state;
595 
596 	if (exception_state == DCPU_WANT_MASTER)
597 		atomic_inc(&masters_in_kgdb);
598 	else
599 		atomic_inc(&slaves_in_kgdb);
600 
601 	if (arch_kgdb_ops.disable_hw_break)
602 		arch_kgdb_ops.disable_hw_break(regs);
603 
604 acquirelock:
605 	rcu_read_lock();
606 	/*
607 	 * Interrupts will be restored by the 'trap return' code, except when
608 	 * single stepping.
609 	 */
610 	local_irq_save(flags);
611 
612 	cpu = ks->cpu;
613 	kgdb_info[cpu].debuggerinfo = regs;
614 	kgdb_info[cpu].task = current;
615 	kgdb_info[cpu].ret_state = 0;
616 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
617 
618 	/* Make sure the above info reaches the primary CPU */
619 	smp_mb();
620 
621 	if (exception_level == 1) {
622 		if (raw_spin_trylock(&dbg_master_lock))
623 			atomic_xchg(&kgdb_active, cpu);
624 		goto cpu_master_loop;
625 	}
626 
627 	/*
628 	 * CPU will loop if it is a slave or request to become a kgdb
629 	 * master cpu and acquire the kgdb_active lock:
630 	 */
631 	while (1) {
632 cpu_loop:
633 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
634 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
635 			goto cpu_master_loop;
636 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
637 			if (raw_spin_trylock(&dbg_master_lock)) {
638 				atomic_xchg(&kgdb_active, cpu);
639 				break;
640 			}
641 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
642 			dump_stack();
643 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
644 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
645 			if (!raw_spin_is_locked(&dbg_slave_lock))
646 				goto return_normal;
647 		} else {
648 return_normal:
649 			/* Return to normal operation by executing any
650 			 * hw breakpoint fixup.
651 			 */
652 			if (arch_kgdb_ops.correct_hw_break)
653 				arch_kgdb_ops.correct_hw_break();
654 			if (trace_on)
655 				tracing_on();
656 			kgdb_info[cpu].debuggerinfo = NULL;
657 			kgdb_info[cpu].task = NULL;
658 			kgdb_info[cpu].exception_state &=
659 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
660 			kgdb_info[cpu].enter_kgdb--;
661 			smp_mb__before_atomic();
662 			atomic_dec(&slaves_in_kgdb);
663 			dbg_touch_watchdogs();
664 			local_irq_restore(flags);
665 			rcu_read_unlock();
666 			return 0;
667 		}
668 		cpu_relax();
669 	}
670 
671 	/*
672 	 * For single stepping, try to only enter on the processor
673 	 * that was single stepping.  To guard against a deadlock, the
674 	 * kernel will only try for the value of sstep_tries before
675 	 * giving up and continuing on.
676 	 */
677 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
678 	    (kgdb_info[cpu].task &&
679 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
680 		atomic_set(&kgdb_active, -1);
681 		raw_spin_unlock(&dbg_master_lock);
682 		dbg_touch_watchdogs();
683 		local_irq_restore(flags);
684 		rcu_read_unlock();
685 
686 		goto acquirelock;
687 	}
688 
689 	if (!kgdb_io_ready(1)) {
690 		kgdb_info[cpu].ret_state = 1;
691 		goto kgdb_restore; /* No I/O connection, resume the system */
692 	}
693 
694 	/*
695 	 * Don't enter if we have hit a removed breakpoint.
696 	 */
697 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
698 		goto kgdb_restore;
699 
700 	atomic_inc(&ignore_console_lock_warning);
701 
702 	/* Call the I/O driver's pre_exception routine */
703 	if (dbg_io_ops->pre_exception)
704 		dbg_io_ops->pre_exception();
705 
706 	/*
707 	 * Get the passive CPU lock which will hold all the non-primary
708 	 * CPU in a spin state while the debugger is active
709 	 */
710 	if (!kgdb_single_step)
711 		raw_spin_lock(&dbg_slave_lock);
712 
713 #ifdef CONFIG_SMP
714 	/* If send_ready set, slaves are already waiting */
715 	if (ks->send_ready)
716 		atomic_set(ks->send_ready, 1);
717 
718 	/* Signal the other CPUs to enter kgdb_wait() */
719 	else if ((!kgdb_single_step) && kgdb_do_roundup)
720 		kgdb_roundup_cpus();
721 #endif
722 
723 	/*
724 	 * Wait for the other CPUs to be notified and be waiting for us:
725 	 */
726 	time_left = MSEC_PER_SEC;
727 	while (kgdb_do_roundup && --time_left &&
728 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
729 		   online_cpus)
730 		udelay(1000);
731 	if (!time_left)
732 		pr_crit("Timed out waiting for secondary CPUs.\n");
733 
734 	/*
735 	 * At this point the primary processor is completely
736 	 * in the debugger and all secondary CPUs are quiescent
737 	 */
738 	dbg_deactivate_sw_breakpoints();
739 	kgdb_single_step = 0;
740 	kgdb_contthread = current;
741 	exception_level = 0;
742 	trace_on = tracing_is_on();
743 	if (trace_on)
744 		tracing_off();
745 
746 	while (1) {
747 cpu_master_loop:
748 		if (dbg_kdb_mode) {
749 			kgdb_connected = 1;
750 			error = kdb_stub(ks);
751 			if (error == -1)
752 				continue;
753 			kgdb_connected = 0;
754 		} else {
755 			error = gdb_serial_stub(ks);
756 		}
757 
758 		if (error == DBG_PASS_EVENT) {
759 			dbg_kdb_mode = !dbg_kdb_mode;
760 		} else if (error == DBG_SWITCH_CPU_EVENT) {
761 			kgdb_info[dbg_switch_cpu].exception_state |=
762 				DCPU_NEXT_MASTER;
763 			goto cpu_loop;
764 		} else {
765 			kgdb_info[cpu].ret_state = error;
766 			break;
767 		}
768 	}
769 
770 	dbg_activate_sw_breakpoints();
771 
772 	/* Call the I/O driver's post_exception routine */
773 	if (dbg_io_ops->post_exception)
774 		dbg_io_ops->post_exception();
775 
776 	atomic_dec(&ignore_console_lock_warning);
777 
778 	if (!kgdb_single_step) {
779 		raw_spin_unlock(&dbg_slave_lock);
780 		/* Wait till all the CPUs have quit from the debugger. */
781 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
782 			cpu_relax();
783 	}
784 
785 kgdb_restore:
786 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
787 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
788 		if (kgdb_info[sstep_cpu].task)
789 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
790 		else
791 			kgdb_sstep_pid = 0;
792 	}
793 	if (arch_kgdb_ops.correct_hw_break)
794 		arch_kgdb_ops.correct_hw_break();
795 	if (trace_on)
796 		tracing_on();
797 
798 	kgdb_info[cpu].debuggerinfo = NULL;
799 	kgdb_info[cpu].task = NULL;
800 	kgdb_info[cpu].exception_state &=
801 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
802 	kgdb_info[cpu].enter_kgdb--;
803 	smp_mb__before_atomic();
804 	atomic_dec(&masters_in_kgdb);
805 	/* Free kgdb_active */
806 	atomic_set(&kgdb_active, -1);
807 	raw_spin_unlock(&dbg_master_lock);
808 	dbg_touch_watchdogs();
809 	local_irq_restore(flags);
810 	rcu_read_unlock();
811 
812 	return kgdb_info[cpu].ret_state;
813 }
814 NOKPROBE_SYMBOL(kgdb_cpu_enter);
815 
816 /*
817  * kgdb_handle_exception() - main entry point from a kernel exception
818  *
819  * Locking hierarchy:
820  *	interface locks, if any (begin_session)
821  *	kgdb lock (kgdb_active)
822  */
823 int
824 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
825 {
826 	struct kgdb_state kgdb_var;
827 	struct kgdb_state *ks = &kgdb_var;
828 	int ret = 0;
829 
830 	if (arch_kgdb_ops.enable_nmi)
831 		arch_kgdb_ops.enable_nmi(0);
832 	/*
833 	 * Avoid entering the debugger if we were triggered due to an oops
834 	 * but panic_timeout indicates the system should automatically
835 	 * reboot on panic. We don't want to get stuck waiting for input
836 	 * on such systems, especially if its "just" an oops.
837 	 */
838 	if (signo != SIGTRAP && panic_timeout)
839 		return 1;
840 
841 	memset(ks, 0, sizeof(struct kgdb_state));
842 	ks->cpu			= raw_smp_processor_id();
843 	ks->ex_vector		= evector;
844 	ks->signo		= signo;
845 	ks->err_code		= ecode;
846 	ks->linux_regs		= regs;
847 
848 	if (kgdb_reenter_check(ks))
849 		goto out; /* Ouch, double exception ! */
850 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
851 		goto out;
852 
853 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
854 out:
855 	if (arch_kgdb_ops.enable_nmi)
856 		arch_kgdb_ops.enable_nmi(1);
857 	return ret;
858 }
859 NOKPROBE_SYMBOL(kgdb_handle_exception);
860 
861 /*
862  * GDB places a breakpoint at this function to know dynamically loaded objects.
863  */
864 static int module_event(struct notifier_block *self, unsigned long val,
865 	void *data)
866 {
867 	return 0;
868 }
869 
870 static struct notifier_block dbg_module_load_nb = {
871 	.notifier_call	= module_event,
872 };
873 
874 int kgdb_nmicallback(int cpu, void *regs)
875 {
876 #ifdef CONFIG_SMP
877 	struct kgdb_state kgdb_var;
878 	struct kgdb_state *ks = &kgdb_var;
879 
880 	kgdb_info[cpu].rounding_up = false;
881 
882 	memset(ks, 0, sizeof(struct kgdb_state));
883 	ks->cpu			= cpu;
884 	ks->linux_regs		= regs;
885 
886 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
887 			raw_spin_is_locked(&dbg_master_lock)) {
888 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
889 		return 0;
890 	}
891 #endif
892 	return 1;
893 }
894 NOKPROBE_SYMBOL(kgdb_nmicallback);
895 
896 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
897 							atomic_t *send_ready)
898 {
899 #ifdef CONFIG_SMP
900 	if (!kgdb_io_ready(0) || !send_ready)
901 		return 1;
902 
903 	if (kgdb_info[cpu].enter_kgdb == 0) {
904 		struct kgdb_state kgdb_var;
905 		struct kgdb_state *ks = &kgdb_var;
906 
907 		memset(ks, 0, sizeof(struct kgdb_state));
908 		ks->cpu			= cpu;
909 		ks->ex_vector		= trapnr;
910 		ks->signo		= SIGTRAP;
911 		ks->err_code		= err_code;
912 		ks->linux_regs		= regs;
913 		ks->send_ready		= send_ready;
914 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
915 		return 0;
916 	}
917 #endif
918 	return 1;
919 }
920 NOKPROBE_SYMBOL(kgdb_nmicallin);
921 
922 static void kgdb_console_write(struct console *co, const char *s,
923    unsigned count)
924 {
925 	unsigned long flags;
926 
927 	/* If we're debugging, or KGDB has not connected, don't try
928 	 * and print. */
929 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
930 		return;
931 
932 	local_irq_save(flags);
933 	gdbstub_msg_write(s, count);
934 	local_irq_restore(flags);
935 }
936 
937 static struct console kgdbcons = {
938 	.name		= "kgdb",
939 	.write		= kgdb_console_write,
940 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
941 	.index		= -1,
942 };
943 
944 static int __init opt_kgdb_con(char *str)
945 {
946 	kgdb_use_con = 1;
947 
948 	if (kgdb_io_module_registered && !kgdb_con_registered) {
949 		register_console(&kgdbcons);
950 		kgdb_con_registered = 1;
951 	}
952 
953 	return 0;
954 }
955 
956 early_param("kgdbcon", opt_kgdb_con);
957 
958 #ifdef CONFIG_MAGIC_SYSRQ
959 static void sysrq_handle_dbg(int key)
960 {
961 	if (!dbg_io_ops) {
962 		pr_crit("ERROR: No KGDB I/O module available\n");
963 		return;
964 	}
965 	if (!kgdb_connected) {
966 #ifdef CONFIG_KGDB_KDB
967 		if (!dbg_kdb_mode)
968 			pr_crit("KGDB or $3#33 for KDB\n");
969 #else
970 		pr_crit("Entering KGDB\n");
971 #endif
972 	}
973 
974 	kgdb_breakpoint();
975 }
976 
977 static const struct sysrq_key_op sysrq_dbg_op = {
978 	.handler	= sysrq_handle_dbg,
979 	.help_msg	= "debug(g)",
980 	.action_msg	= "DEBUG",
981 };
982 #endif
983 
984 void kgdb_panic(const char *msg)
985 {
986 	if (!kgdb_io_module_registered)
987 		return;
988 
989 	/*
990 	 * We don't want to get stuck waiting for input from user if
991 	 * "panic_timeout" indicates the system should automatically
992 	 * reboot on panic.
993 	 */
994 	if (panic_timeout)
995 		return;
996 
997 	if (dbg_kdb_mode)
998 		kdb_printf("PANIC: %s\n", msg);
999 
1000 	kgdb_breakpoint();
1001 }
1002 
1003 static void kgdb_initial_breakpoint(void)
1004 {
1005 	kgdb_break_asap = 0;
1006 
1007 	pr_crit("Waiting for connection from remote gdb...\n");
1008 	kgdb_breakpoint();
1009 }
1010 
1011 void __weak kgdb_arch_late(void)
1012 {
1013 }
1014 
1015 void __init dbg_late_init(void)
1016 {
1017 	dbg_is_early = false;
1018 	if (kgdb_io_module_registered)
1019 		kgdb_arch_late();
1020 	kdb_init(KDB_INIT_FULL);
1021 
1022 	if (kgdb_io_module_registered && kgdb_break_asap)
1023 		kgdb_initial_breakpoint();
1024 }
1025 
1026 static int
1027 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1028 {
1029 	/*
1030 	 * Take the following action on reboot notify depending on value:
1031 	 *    1 == Enter debugger
1032 	 *    0 == [the default] detach debug client
1033 	 *   -1 == Do nothing... and use this until the board resets
1034 	 */
1035 	switch (kgdbreboot) {
1036 	case 1:
1037 		kgdb_breakpoint();
1038 		goto done;
1039 	case -1:
1040 		goto done;
1041 	}
1042 	if (!dbg_kdb_mode)
1043 		gdbstub_exit(code);
1044 done:
1045 	return NOTIFY_DONE;
1046 }
1047 
1048 static struct notifier_block dbg_reboot_notifier = {
1049 	.notifier_call		= dbg_notify_reboot,
1050 	.next			= NULL,
1051 	.priority		= INT_MAX,
1052 };
1053 
1054 static void kgdb_register_callbacks(void)
1055 {
1056 	if (!kgdb_io_module_registered) {
1057 		kgdb_io_module_registered = 1;
1058 		kgdb_arch_init();
1059 		if (!dbg_is_early)
1060 			kgdb_arch_late();
1061 		register_module_notifier(&dbg_module_load_nb);
1062 		register_reboot_notifier(&dbg_reboot_notifier);
1063 #ifdef CONFIG_MAGIC_SYSRQ
1064 		register_sysrq_key('g', &sysrq_dbg_op);
1065 #endif
1066 		if (kgdb_use_con && !kgdb_con_registered) {
1067 			register_console(&kgdbcons);
1068 			kgdb_con_registered = 1;
1069 		}
1070 	}
1071 }
1072 
1073 static void kgdb_unregister_callbacks(void)
1074 {
1075 	/*
1076 	 * When this routine is called KGDB should unregister from
1077 	 * handlers and clean up, making sure it is not handling any
1078 	 * break exceptions at the time.
1079 	 */
1080 	if (kgdb_io_module_registered) {
1081 		kgdb_io_module_registered = 0;
1082 		unregister_reboot_notifier(&dbg_reboot_notifier);
1083 		unregister_module_notifier(&dbg_module_load_nb);
1084 		kgdb_arch_exit();
1085 #ifdef CONFIG_MAGIC_SYSRQ
1086 		unregister_sysrq_key('g', &sysrq_dbg_op);
1087 #endif
1088 		if (kgdb_con_registered) {
1089 			unregister_console(&kgdbcons);
1090 			kgdb_con_registered = 0;
1091 		}
1092 	}
1093 }
1094 
1095 /**
1096  *	kgdb_register_io_module - register KGDB IO module
1097  *	@new_dbg_io_ops: the io ops vector
1098  *
1099  *	Register it with the KGDB core.
1100  */
1101 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1102 {
1103 	struct kgdb_io *old_dbg_io_ops;
1104 	int err;
1105 
1106 	spin_lock(&kgdb_registration_lock);
1107 
1108 	old_dbg_io_ops = dbg_io_ops;
1109 	if (old_dbg_io_ops) {
1110 		if (!old_dbg_io_ops->deinit) {
1111 			spin_unlock(&kgdb_registration_lock);
1112 
1113 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1114 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1115 			return -EBUSY;
1116 		}
1117 		pr_info("Replacing I/O driver %s with %s\n",
1118 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1119 	}
1120 
1121 	if (new_dbg_io_ops->init) {
1122 		err = new_dbg_io_ops->init();
1123 		if (err) {
1124 			spin_unlock(&kgdb_registration_lock);
1125 			return err;
1126 		}
1127 	}
1128 
1129 	dbg_io_ops = new_dbg_io_ops;
1130 
1131 	spin_unlock(&kgdb_registration_lock);
1132 
1133 	if (old_dbg_io_ops) {
1134 		old_dbg_io_ops->deinit();
1135 		return 0;
1136 	}
1137 
1138 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1139 
1140 	/* Arm KGDB now. */
1141 	kgdb_register_callbacks();
1142 
1143 	if (kgdb_break_asap &&
1144 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1145 		kgdb_initial_breakpoint();
1146 
1147 	return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1150 
1151 /**
1152  *	kgdb_unregister_io_module - unregister KGDB IO module
1153  *	@old_dbg_io_ops: the io ops vector
1154  *
1155  *	Unregister it with the KGDB core.
1156  */
1157 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1158 {
1159 	BUG_ON(kgdb_connected);
1160 
1161 	/*
1162 	 * KGDB is no longer able to communicate out, so
1163 	 * unregister our callbacks and reset state.
1164 	 */
1165 	kgdb_unregister_callbacks();
1166 
1167 	spin_lock(&kgdb_registration_lock);
1168 
1169 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1170 	dbg_io_ops = NULL;
1171 
1172 	spin_unlock(&kgdb_registration_lock);
1173 
1174 	if (old_dbg_io_ops->deinit)
1175 		old_dbg_io_ops->deinit();
1176 
1177 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1178 		old_dbg_io_ops->name);
1179 }
1180 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1181 
1182 int dbg_io_get_char(void)
1183 {
1184 	int ret = dbg_io_ops->read_char();
1185 	if (ret == NO_POLL_CHAR)
1186 		return -1;
1187 	if (!dbg_kdb_mode)
1188 		return ret;
1189 	if (ret == 127)
1190 		return 8;
1191 	return ret;
1192 }
1193 
1194 /**
1195  * kgdb_breakpoint - generate breakpoint exception
1196  *
1197  * This function will generate a breakpoint exception.  It is used at the
1198  * beginning of a program to sync up with a debugger and can be used
1199  * otherwise as a quick means to stop program execution and "break" into
1200  * the debugger.
1201  */
1202 noinline void kgdb_breakpoint(void)
1203 {
1204 	atomic_inc(&kgdb_setting_breakpoint);
1205 	wmb(); /* Sync point before breakpoint */
1206 	arch_kgdb_breakpoint();
1207 	wmb(); /* Sync point after breakpoint */
1208 	atomic_dec(&kgdb_setting_breakpoint);
1209 }
1210 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1211 
1212 static int __init opt_kgdb_wait(char *str)
1213 {
1214 	kgdb_break_asap = 1;
1215 
1216 	kdb_init(KDB_INIT_EARLY);
1217 	if (kgdb_io_module_registered &&
1218 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1219 		kgdb_initial_breakpoint();
1220 
1221 	return 0;
1222 }
1223 
1224 early_param("kgdbwait", opt_kgdb_wait);
1225