xref: /linux/kernel/debug/debug_core.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 
59 #include <asm/cacheflush.h>
60 #include <asm/byteorder.h>
61 #include <linux/atomic.h>
62 
63 #include "debug_core.h"
64 
65 static int kgdb_break_asap;
66 
67 struct debuggerinfo_struct kgdb_info[NR_CPUS];
68 
69 /**
70  * kgdb_connected - Is a host GDB connected to us?
71  */
72 int				kgdb_connected;
73 EXPORT_SYMBOL_GPL(kgdb_connected);
74 
75 /* All the KGDB handlers are installed */
76 int			kgdb_io_module_registered;
77 
78 /* Guard for recursive entry */
79 static int			exception_level;
80 
81 struct kgdb_io		*dbg_io_ops;
82 static DEFINE_SPINLOCK(kgdb_registration_lock);
83 
84 /* Action for the reboot notifiter, a global allow kdb to change it */
85 static int kgdbreboot;
86 /* kgdb console driver is loaded */
87 static int kgdb_con_registered;
88 /* determine if kgdb console output should be used */
89 static int kgdb_use_con;
90 /* Flag for alternate operations for early debugging */
91 bool dbg_is_early = true;
92 /* Next cpu to become the master debug core */
93 int dbg_switch_cpu;
94 
95 /* Use kdb or gdbserver mode */
96 int dbg_kdb_mode = 1;
97 
98 static int __init opt_kgdb_con(char *str)
99 {
100 	kgdb_use_con = 1;
101 	return 0;
102 }
103 
104 early_param("kgdbcon", opt_kgdb_con);
105 
106 module_param(kgdb_use_con, int, 0644);
107 module_param(kgdbreboot, int, 0644);
108 
109 /*
110  * Holds information about breakpoints in a kernel. These breakpoints are
111  * added and removed by gdb.
112  */
113 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
114 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
115 };
116 
117 /*
118  * The CPU# of the active CPU, or -1 if none:
119  */
120 atomic_t			kgdb_active = ATOMIC_INIT(-1);
121 EXPORT_SYMBOL_GPL(kgdb_active);
122 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
123 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
124 
125 /*
126  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
127  * bootup code (which might not have percpu set up yet):
128  */
129 static atomic_t			masters_in_kgdb;
130 static atomic_t			slaves_in_kgdb;
131 static atomic_t			kgdb_break_tasklet_var;
132 atomic_t			kgdb_setting_breakpoint;
133 
134 struct task_struct		*kgdb_usethread;
135 struct task_struct		*kgdb_contthread;
136 
137 int				kgdb_single_step;
138 static pid_t			kgdb_sstep_pid;
139 
140 /* to keep track of the CPU which is doing the single stepping*/
141 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
142 
143 /*
144  * If you are debugging a problem where roundup (the collection of
145  * all other CPUs) is a problem [this should be extremely rare],
146  * then use the nokgdbroundup option to avoid roundup. In that case
147  * the other CPUs might interfere with your debugging context, so
148  * use this with care:
149  */
150 static int kgdb_do_roundup = 1;
151 
152 static int __init opt_nokgdbroundup(char *str)
153 {
154 	kgdb_do_roundup = 0;
155 
156 	return 0;
157 }
158 
159 early_param("nokgdbroundup", opt_nokgdbroundup);
160 
161 /*
162  * Finally, some KGDB code :-)
163  */
164 
165 /*
166  * Weak aliases for breakpoint management,
167  * can be overriden by architectures when needed:
168  */
169 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
170 {
171 	int err;
172 
173 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
174 				BREAK_INSTR_SIZE);
175 	if (err)
176 		return err;
177 	err = probe_kernel_write((char *)bpt->bpt_addr,
178 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
179 	return err;
180 }
181 
182 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
183 {
184 	return probe_kernel_write((char *)bpt->bpt_addr,
185 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
186 }
187 
188 int __weak kgdb_validate_break_address(unsigned long addr)
189 {
190 	struct kgdb_bkpt tmp;
191 	int err;
192 	/* Validate setting the breakpoint and then removing it.  If the
193 	 * remove fails, the kernel needs to emit a bad message because we
194 	 * are deep trouble not being able to put things back the way we
195 	 * found them.
196 	 */
197 	tmp.bpt_addr = addr;
198 	err = kgdb_arch_set_breakpoint(&tmp);
199 	if (err)
200 		return err;
201 	err = kgdb_arch_remove_breakpoint(&tmp);
202 	if (err)
203 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
204 		       addr);
205 	return err;
206 }
207 
208 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
209 {
210 	return instruction_pointer(regs);
211 }
212 
213 int __weak kgdb_arch_init(void)
214 {
215 	return 0;
216 }
217 
218 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
219 {
220 	return 0;
221 }
222 
223 /*
224  * Some architectures need cache flushes when we set/clear a
225  * breakpoint:
226  */
227 static void kgdb_flush_swbreak_addr(unsigned long addr)
228 {
229 	if (!CACHE_FLUSH_IS_SAFE)
230 		return;
231 
232 	if (current->mm) {
233 		int i;
234 
235 		for (i = 0; i < VMACACHE_SIZE; i++) {
236 			if (!current->vmacache.vmas[i])
237 				continue;
238 			flush_cache_range(current->vmacache.vmas[i],
239 					  addr, addr + BREAK_INSTR_SIZE);
240 		}
241 	}
242 
243 	/* Force flush instruction cache if it was outside the mm */
244 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
245 }
246 
247 /*
248  * SW breakpoint management:
249  */
250 int dbg_activate_sw_breakpoints(void)
251 {
252 	int error;
253 	int ret = 0;
254 	int i;
255 
256 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
257 		if (kgdb_break[i].state != BP_SET)
258 			continue;
259 
260 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
261 		if (error) {
262 			ret = error;
263 			pr_info("BP install failed: %lx\n",
264 				kgdb_break[i].bpt_addr);
265 			continue;
266 		}
267 
268 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
269 		kgdb_break[i].state = BP_ACTIVE;
270 	}
271 	return ret;
272 }
273 
274 int dbg_set_sw_break(unsigned long addr)
275 {
276 	int err = kgdb_validate_break_address(addr);
277 	int breakno = -1;
278 	int i;
279 
280 	if (err)
281 		return err;
282 
283 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
284 		if ((kgdb_break[i].state == BP_SET) &&
285 					(kgdb_break[i].bpt_addr == addr))
286 			return -EEXIST;
287 	}
288 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
289 		if (kgdb_break[i].state == BP_REMOVED &&
290 					kgdb_break[i].bpt_addr == addr) {
291 			breakno = i;
292 			break;
293 		}
294 	}
295 
296 	if (breakno == -1) {
297 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
298 			if (kgdb_break[i].state == BP_UNDEFINED) {
299 				breakno = i;
300 				break;
301 			}
302 		}
303 	}
304 
305 	if (breakno == -1)
306 		return -E2BIG;
307 
308 	kgdb_break[breakno].state = BP_SET;
309 	kgdb_break[breakno].type = BP_BREAKPOINT;
310 	kgdb_break[breakno].bpt_addr = addr;
311 
312 	return 0;
313 }
314 
315 int dbg_deactivate_sw_breakpoints(void)
316 {
317 	int error;
318 	int ret = 0;
319 	int i;
320 
321 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
322 		if (kgdb_break[i].state != BP_ACTIVE)
323 			continue;
324 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
325 		if (error) {
326 			pr_info("BP remove failed: %lx\n",
327 				kgdb_break[i].bpt_addr);
328 			ret = error;
329 		}
330 
331 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
332 		kgdb_break[i].state = BP_SET;
333 	}
334 	return ret;
335 }
336 
337 int dbg_remove_sw_break(unsigned long addr)
338 {
339 	int i;
340 
341 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
342 		if ((kgdb_break[i].state == BP_SET) &&
343 				(kgdb_break[i].bpt_addr == addr)) {
344 			kgdb_break[i].state = BP_REMOVED;
345 			return 0;
346 		}
347 	}
348 	return -ENOENT;
349 }
350 
351 int kgdb_isremovedbreak(unsigned long addr)
352 {
353 	int i;
354 
355 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
356 		if ((kgdb_break[i].state == BP_REMOVED) &&
357 					(kgdb_break[i].bpt_addr == addr))
358 			return 1;
359 	}
360 	return 0;
361 }
362 
363 int dbg_remove_all_break(void)
364 {
365 	int error;
366 	int i;
367 
368 	/* Clear memory breakpoints. */
369 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
370 		if (kgdb_break[i].state != BP_ACTIVE)
371 			goto setundefined;
372 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
373 		if (error)
374 			pr_err("breakpoint remove failed: %lx\n",
375 			       kgdb_break[i].bpt_addr);
376 setundefined:
377 		kgdb_break[i].state = BP_UNDEFINED;
378 	}
379 
380 	/* Clear hardware breakpoints. */
381 	if (arch_kgdb_ops.remove_all_hw_break)
382 		arch_kgdb_ops.remove_all_hw_break();
383 
384 	return 0;
385 }
386 
387 /*
388  * Return true if there is a valid kgdb I/O module.  Also if no
389  * debugger is attached a message can be printed to the console about
390  * waiting for the debugger to attach.
391  *
392  * The print_wait argument is only to be true when called from inside
393  * the core kgdb_handle_exception, because it will wait for the
394  * debugger to attach.
395  */
396 static int kgdb_io_ready(int print_wait)
397 {
398 	if (!dbg_io_ops)
399 		return 0;
400 	if (kgdb_connected)
401 		return 1;
402 	if (atomic_read(&kgdb_setting_breakpoint))
403 		return 1;
404 	if (print_wait) {
405 #ifdef CONFIG_KGDB_KDB
406 		if (!dbg_kdb_mode)
407 			pr_crit("waiting... or $3#33 for KDB\n");
408 #else
409 		pr_crit("Waiting for remote debugger\n");
410 #endif
411 	}
412 	return 1;
413 }
414 
415 static int kgdb_reenter_check(struct kgdb_state *ks)
416 {
417 	unsigned long addr;
418 
419 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
420 		return 0;
421 
422 	/* Panic on recursive debugger calls: */
423 	exception_level++;
424 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
425 	dbg_deactivate_sw_breakpoints();
426 
427 	/*
428 	 * If the break point removed ok at the place exception
429 	 * occurred, try to recover and print a warning to the end
430 	 * user because the user planted a breakpoint in a place that
431 	 * KGDB needs in order to function.
432 	 */
433 	if (dbg_remove_sw_break(addr) == 0) {
434 		exception_level = 0;
435 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
436 		dbg_activate_sw_breakpoints();
437 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
438 		WARN_ON_ONCE(1);
439 
440 		return 1;
441 	}
442 	dbg_remove_all_break();
443 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
444 
445 	if (exception_level > 1) {
446 		dump_stack();
447 		panic("Recursive entry to debugger");
448 	}
449 
450 	pr_crit("re-enter exception: ALL breakpoints killed\n");
451 #ifdef CONFIG_KGDB_KDB
452 	/* Allow kdb to debug itself one level */
453 	return 0;
454 #endif
455 	dump_stack();
456 	panic("Recursive entry to debugger");
457 
458 	return 1;
459 }
460 
461 static void dbg_touch_watchdogs(void)
462 {
463 	touch_softlockup_watchdog_sync();
464 	clocksource_touch_watchdog();
465 	rcu_cpu_stall_reset();
466 }
467 
468 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
469 		int exception_state)
470 {
471 	unsigned long flags;
472 	int sstep_tries = 100;
473 	int error;
474 	int cpu;
475 	int trace_on = 0;
476 	int online_cpus = num_online_cpus();
477 	u64 time_left;
478 
479 	kgdb_info[ks->cpu].enter_kgdb++;
480 	kgdb_info[ks->cpu].exception_state |= exception_state;
481 
482 	if (exception_state == DCPU_WANT_MASTER)
483 		atomic_inc(&masters_in_kgdb);
484 	else
485 		atomic_inc(&slaves_in_kgdb);
486 
487 	if (arch_kgdb_ops.disable_hw_break)
488 		arch_kgdb_ops.disable_hw_break(regs);
489 
490 acquirelock:
491 	/*
492 	 * Interrupts will be restored by the 'trap return' code, except when
493 	 * single stepping.
494 	 */
495 	local_irq_save(flags);
496 
497 	cpu = ks->cpu;
498 	kgdb_info[cpu].debuggerinfo = regs;
499 	kgdb_info[cpu].task = current;
500 	kgdb_info[cpu].ret_state = 0;
501 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
502 
503 	/* Make sure the above info reaches the primary CPU */
504 	smp_mb();
505 
506 	if (exception_level == 1) {
507 		if (raw_spin_trylock(&dbg_master_lock))
508 			atomic_xchg(&kgdb_active, cpu);
509 		goto cpu_master_loop;
510 	}
511 
512 	/*
513 	 * CPU will loop if it is a slave or request to become a kgdb
514 	 * master cpu and acquire the kgdb_active lock:
515 	 */
516 	while (1) {
517 cpu_loop:
518 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
519 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
520 			goto cpu_master_loop;
521 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
522 			if (raw_spin_trylock(&dbg_master_lock)) {
523 				atomic_xchg(&kgdb_active, cpu);
524 				break;
525 			}
526 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
527 			if (!raw_spin_is_locked(&dbg_slave_lock))
528 				goto return_normal;
529 		} else {
530 return_normal:
531 			/* Return to normal operation by executing any
532 			 * hw breakpoint fixup.
533 			 */
534 			if (arch_kgdb_ops.correct_hw_break)
535 				arch_kgdb_ops.correct_hw_break();
536 			if (trace_on)
537 				tracing_on();
538 			kgdb_info[cpu].exception_state &=
539 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
540 			kgdb_info[cpu].enter_kgdb--;
541 			smp_mb__before_atomic();
542 			atomic_dec(&slaves_in_kgdb);
543 			dbg_touch_watchdogs();
544 			local_irq_restore(flags);
545 			return 0;
546 		}
547 		cpu_relax();
548 	}
549 
550 	/*
551 	 * For single stepping, try to only enter on the processor
552 	 * that was single stepping.  To guard against a deadlock, the
553 	 * kernel will only try for the value of sstep_tries before
554 	 * giving up and continuing on.
555 	 */
556 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
557 	    (kgdb_info[cpu].task &&
558 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
559 		atomic_set(&kgdb_active, -1);
560 		raw_spin_unlock(&dbg_master_lock);
561 		dbg_touch_watchdogs();
562 		local_irq_restore(flags);
563 
564 		goto acquirelock;
565 	}
566 
567 	if (!kgdb_io_ready(1)) {
568 		kgdb_info[cpu].ret_state = 1;
569 		goto kgdb_restore; /* No I/O connection, resume the system */
570 	}
571 
572 	/*
573 	 * Don't enter if we have hit a removed breakpoint.
574 	 */
575 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
576 		goto kgdb_restore;
577 
578 	/* Call the I/O driver's pre_exception routine */
579 	if (dbg_io_ops->pre_exception)
580 		dbg_io_ops->pre_exception();
581 
582 	/*
583 	 * Get the passive CPU lock which will hold all the non-primary
584 	 * CPU in a spin state while the debugger is active
585 	 */
586 	if (!kgdb_single_step)
587 		raw_spin_lock(&dbg_slave_lock);
588 
589 #ifdef CONFIG_SMP
590 	/* If send_ready set, slaves are already waiting */
591 	if (ks->send_ready)
592 		atomic_set(ks->send_ready, 1);
593 
594 	/* Signal the other CPUs to enter kgdb_wait() */
595 	else if ((!kgdb_single_step) && kgdb_do_roundup)
596 		kgdb_roundup_cpus(flags);
597 #endif
598 
599 	/*
600 	 * Wait for the other CPUs to be notified and be waiting for us:
601 	 */
602 	time_left = MSEC_PER_SEC;
603 	while (kgdb_do_roundup && --time_left &&
604 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
605 		   online_cpus)
606 		udelay(1000);
607 	if (!time_left)
608 		pr_crit("Timed out waiting for secondary CPUs.\n");
609 
610 	/*
611 	 * At this point the primary processor is completely
612 	 * in the debugger and all secondary CPUs are quiescent
613 	 */
614 	dbg_deactivate_sw_breakpoints();
615 	kgdb_single_step = 0;
616 	kgdb_contthread = current;
617 	exception_level = 0;
618 	trace_on = tracing_is_on();
619 	if (trace_on)
620 		tracing_off();
621 
622 	while (1) {
623 cpu_master_loop:
624 		if (dbg_kdb_mode) {
625 			kgdb_connected = 1;
626 			error = kdb_stub(ks);
627 			if (error == -1)
628 				continue;
629 			kgdb_connected = 0;
630 		} else {
631 			error = gdb_serial_stub(ks);
632 		}
633 
634 		if (error == DBG_PASS_EVENT) {
635 			dbg_kdb_mode = !dbg_kdb_mode;
636 		} else if (error == DBG_SWITCH_CPU_EVENT) {
637 			kgdb_info[dbg_switch_cpu].exception_state |=
638 				DCPU_NEXT_MASTER;
639 			goto cpu_loop;
640 		} else {
641 			kgdb_info[cpu].ret_state = error;
642 			break;
643 		}
644 	}
645 
646 	/* Call the I/O driver's post_exception routine */
647 	if (dbg_io_ops->post_exception)
648 		dbg_io_ops->post_exception();
649 
650 	if (!kgdb_single_step) {
651 		raw_spin_unlock(&dbg_slave_lock);
652 		/* Wait till all the CPUs have quit from the debugger. */
653 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
654 			cpu_relax();
655 	}
656 
657 kgdb_restore:
658 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
659 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
660 		if (kgdb_info[sstep_cpu].task)
661 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
662 		else
663 			kgdb_sstep_pid = 0;
664 	}
665 	if (arch_kgdb_ops.correct_hw_break)
666 		arch_kgdb_ops.correct_hw_break();
667 	if (trace_on)
668 		tracing_on();
669 
670 	kgdb_info[cpu].exception_state &=
671 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
672 	kgdb_info[cpu].enter_kgdb--;
673 	smp_mb__before_atomic();
674 	atomic_dec(&masters_in_kgdb);
675 	/* Free kgdb_active */
676 	atomic_set(&kgdb_active, -1);
677 	raw_spin_unlock(&dbg_master_lock);
678 	dbg_touch_watchdogs();
679 	local_irq_restore(flags);
680 
681 	return kgdb_info[cpu].ret_state;
682 }
683 
684 /*
685  * kgdb_handle_exception() - main entry point from a kernel exception
686  *
687  * Locking hierarchy:
688  *	interface locks, if any (begin_session)
689  *	kgdb lock (kgdb_active)
690  */
691 int
692 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
693 {
694 	struct kgdb_state kgdb_var;
695 	struct kgdb_state *ks = &kgdb_var;
696 	int ret = 0;
697 
698 	if (arch_kgdb_ops.enable_nmi)
699 		arch_kgdb_ops.enable_nmi(0);
700 	/*
701 	 * Avoid entering the debugger if we were triggered due to an oops
702 	 * but panic_timeout indicates the system should automatically
703 	 * reboot on panic. We don't want to get stuck waiting for input
704 	 * on such systems, especially if its "just" an oops.
705 	 */
706 	if (signo != SIGTRAP && panic_timeout)
707 		return 1;
708 
709 	memset(ks, 0, sizeof(struct kgdb_state));
710 	ks->cpu			= raw_smp_processor_id();
711 	ks->ex_vector		= evector;
712 	ks->signo		= signo;
713 	ks->err_code		= ecode;
714 	ks->linux_regs		= regs;
715 
716 	if (kgdb_reenter_check(ks))
717 		goto out; /* Ouch, double exception ! */
718 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
719 		goto out;
720 
721 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
722 out:
723 	if (arch_kgdb_ops.enable_nmi)
724 		arch_kgdb_ops.enable_nmi(1);
725 	return ret;
726 }
727 
728 /*
729  * GDB places a breakpoint at this function to know dynamically
730  * loaded objects. It's not defined static so that only one instance with this
731  * name exists in the kernel.
732  */
733 
734 static int module_event(struct notifier_block *self, unsigned long val,
735 	void *data)
736 {
737 	return 0;
738 }
739 
740 static struct notifier_block dbg_module_load_nb = {
741 	.notifier_call	= module_event,
742 };
743 
744 int kgdb_nmicallback(int cpu, void *regs)
745 {
746 #ifdef CONFIG_SMP
747 	struct kgdb_state kgdb_var;
748 	struct kgdb_state *ks = &kgdb_var;
749 
750 	memset(ks, 0, sizeof(struct kgdb_state));
751 	ks->cpu			= cpu;
752 	ks->linux_regs		= regs;
753 
754 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
755 			raw_spin_is_locked(&dbg_master_lock)) {
756 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
757 		return 0;
758 	}
759 #endif
760 	return 1;
761 }
762 
763 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
764 							atomic_t *send_ready)
765 {
766 #ifdef CONFIG_SMP
767 	if (!kgdb_io_ready(0) || !send_ready)
768 		return 1;
769 
770 	if (kgdb_info[cpu].enter_kgdb == 0) {
771 		struct kgdb_state kgdb_var;
772 		struct kgdb_state *ks = &kgdb_var;
773 
774 		memset(ks, 0, sizeof(struct kgdb_state));
775 		ks->cpu			= cpu;
776 		ks->ex_vector		= trapnr;
777 		ks->signo		= SIGTRAP;
778 		ks->err_code		= err_code;
779 		ks->linux_regs		= regs;
780 		ks->send_ready		= send_ready;
781 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
782 		return 0;
783 	}
784 #endif
785 	return 1;
786 }
787 
788 static void kgdb_console_write(struct console *co, const char *s,
789    unsigned count)
790 {
791 	unsigned long flags;
792 
793 	/* If we're debugging, or KGDB has not connected, don't try
794 	 * and print. */
795 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
796 		return;
797 
798 	local_irq_save(flags);
799 	gdbstub_msg_write(s, count);
800 	local_irq_restore(flags);
801 }
802 
803 static struct console kgdbcons = {
804 	.name		= "kgdb",
805 	.write		= kgdb_console_write,
806 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
807 	.index		= -1,
808 };
809 
810 #ifdef CONFIG_MAGIC_SYSRQ
811 static void sysrq_handle_dbg(int key)
812 {
813 	if (!dbg_io_ops) {
814 		pr_crit("ERROR: No KGDB I/O module available\n");
815 		return;
816 	}
817 	if (!kgdb_connected) {
818 #ifdef CONFIG_KGDB_KDB
819 		if (!dbg_kdb_mode)
820 			pr_crit("KGDB or $3#33 for KDB\n");
821 #else
822 		pr_crit("Entering KGDB\n");
823 #endif
824 	}
825 
826 	kgdb_breakpoint();
827 }
828 
829 static struct sysrq_key_op sysrq_dbg_op = {
830 	.handler	= sysrq_handle_dbg,
831 	.help_msg	= "debug(g)",
832 	.action_msg	= "DEBUG",
833 };
834 #endif
835 
836 static int kgdb_panic_event(struct notifier_block *self,
837 			    unsigned long val,
838 			    void *data)
839 {
840 	/*
841 	 * Avoid entering the debugger if we were triggered due to a panic
842 	 * We don't want to get stuck waiting for input from user in such case.
843 	 * panic_timeout indicates the system should automatically
844 	 * reboot on panic.
845 	 */
846 	if (panic_timeout)
847 		return NOTIFY_DONE;
848 
849 	if (dbg_kdb_mode)
850 		kdb_printf("PANIC: %s\n", (char *)data);
851 	kgdb_breakpoint();
852 	return NOTIFY_DONE;
853 }
854 
855 static struct notifier_block kgdb_panic_event_nb = {
856        .notifier_call	= kgdb_panic_event,
857        .priority	= INT_MAX,
858 };
859 
860 void __weak kgdb_arch_late(void)
861 {
862 }
863 
864 void __init dbg_late_init(void)
865 {
866 	dbg_is_early = false;
867 	if (kgdb_io_module_registered)
868 		kgdb_arch_late();
869 	kdb_init(KDB_INIT_FULL);
870 }
871 
872 static int
873 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
874 {
875 	/*
876 	 * Take the following action on reboot notify depending on value:
877 	 *    1 == Enter debugger
878 	 *    0 == [the default] detatch debug client
879 	 *   -1 == Do nothing... and use this until the board resets
880 	 */
881 	switch (kgdbreboot) {
882 	case 1:
883 		kgdb_breakpoint();
884 	case -1:
885 		goto done;
886 	}
887 	if (!dbg_kdb_mode)
888 		gdbstub_exit(code);
889 done:
890 	return NOTIFY_DONE;
891 }
892 
893 static struct notifier_block dbg_reboot_notifier = {
894 	.notifier_call		= dbg_notify_reboot,
895 	.next			= NULL,
896 	.priority		= INT_MAX,
897 };
898 
899 static void kgdb_register_callbacks(void)
900 {
901 	if (!kgdb_io_module_registered) {
902 		kgdb_io_module_registered = 1;
903 		kgdb_arch_init();
904 		if (!dbg_is_early)
905 			kgdb_arch_late();
906 		register_module_notifier(&dbg_module_load_nb);
907 		register_reboot_notifier(&dbg_reboot_notifier);
908 		atomic_notifier_chain_register(&panic_notifier_list,
909 					       &kgdb_panic_event_nb);
910 #ifdef CONFIG_MAGIC_SYSRQ
911 		register_sysrq_key('g', &sysrq_dbg_op);
912 #endif
913 		if (kgdb_use_con && !kgdb_con_registered) {
914 			register_console(&kgdbcons);
915 			kgdb_con_registered = 1;
916 		}
917 	}
918 }
919 
920 static void kgdb_unregister_callbacks(void)
921 {
922 	/*
923 	 * When this routine is called KGDB should unregister from the
924 	 * panic handler and clean up, making sure it is not handling any
925 	 * break exceptions at the time.
926 	 */
927 	if (kgdb_io_module_registered) {
928 		kgdb_io_module_registered = 0;
929 		unregister_reboot_notifier(&dbg_reboot_notifier);
930 		unregister_module_notifier(&dbg_module_load_nb);
931 		atomic_notifier_chain_unregister(&panic_notifier_list,
932 					       &kgdb_panic_event_nb);
933 		kgdb_arch_exit();
934 #ifdef CONFIG_MAGIC_SYSRQ
935 		unregister_sysrq_key('g', &sysrq_dbg_op);
936 #endif
937 		if (kgdb_con_registered) {
938 			unregister_console(&kgdbcons);
939 			kgdb_con_registered = 0;
940 		}
941 	}
942 }
943 
944 /*
945  * There are times a tasklet needs to be used vs a compiled in
946  * break point so as to cause an exception outside a kgdb I/O module,
947  * such as is the case with kgdboe, where calling a breakpoint in the
948  * I/O driver itself would be fatal.
949  */
950 static void kgdb_tasklet_bpt(unsigned long ing)
951 {
952 	kgdb_breakpoint();
953 	atomic_set(&kgdb_break_tasklet_var, 0);
954 }
955 
956 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
957 
958 void kgdb_schedule_breakpoint(void)
959 {
960 	if (atomic_read(&kgdb_break_tasklet_var) ||
961 		atomic_read(&kgdb_active) != -1 ||
962 		atomic_read(&kgdb_setting_breakpoint))
963 		return;
964 	atomic_inc(&kgdb_break_tasklet_var);
965 	tasklet_schedule(&kgdb_tasklet_breakpoint);
966 }
967 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
968 
969 static void kgdb_initial_breakpoint(void)
970 {
971 	kgdb_break_asap = 0;
972 
973 	pr_crit("Waiting for connection from remote gdb...\n");
974 	kgdb_breakpoint();
975 }
976 
977 /**
978  *	kgdb_register_io_module - register KGDB IO module
979  *	@new_dbg_io_ops: the io ops vector
980  *
981  *	Register it with the KGDB core.
982  */
983 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
984 {
985 	int err;
986 
987 	spin_lock(&kgdb_registration_lock);
988 
989 	if (dbg_io_ops) {
990 		spin_unlock(&kgdb_registration_lock);
991 
992 		pr_err("Another I/O driver is already registered with KGDB\n");
993 		return -EBUSY;
994 	}
995 
996 	if (new_dbg_io_ops->init) {
997 		err = new_dbg_io_ops->init();
998 		if (err) {
999 			spin_unlock(&kgdb_registration_lock);
1000 			return err;
1001 		}
1002 	}
1003 
1004 	dbg_io_ops = new_dbg_io_ops;
1005 
1006 	spin_unlock(&kgdb_registration_lock);
1007 
1008 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1009 
1010 	/* Arm KGDB now. */
1011 	kgdb_register_callbacks();
1012 
1013 	if (kgdb_break_asap)
1014 		kgdb_initial_breakpoint();
1015 
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1019 
1020 /**
1021  *	kkgdb_unregister_io_module - unregister KGDB IO module
1022  *	@old_dbg_io_ops: the io ops vector
1023  *
1024  *	Unregister it with the KGDB core.
1025  */
1026 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1027 {
1028 	BUG_ON(kgdb_connected);
1029 
1030 	/*
1031 	 * KGDB is no longer able to communicate out, so
1032 	 * unregister our callbacks and reset state.
1033 	 */
1034 	kgdb_unregister_callbacks();
1035 
1036 	spin_lock(&kgdb_registration_lock);
1037 
1038 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1039 	dbg_io_ops = NULL;
1040 
1041 	spin_unlock(&kgdb_registration_lock);
1042 
1043 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1044 		old_dbg_io_ops->name);
1045 }
1046 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1047 
1048 int dbg_io_get_char(void)
1049 {
1050 	int ret = dbg_io_ops->read_char();
1051 	if (ret == NO_POLL_CHAR)
1052 		return -1;
1053 	if (!dbg_kdb_mode)
1054 		return ret;
1055 	if (ret == 127)
1056 		return 8;
1057 	return ret;
1058 }
1059 
1060 /**
1061  * kgdb_breakpoint - generate breakpoint exception
1062  *
1063  * This function will generate a breakpoint exception.  It is used at the
1064  * beginning of a program to sync up with a debugger and can be used
1065  * otherwise as a quick means to stop program execution and "break" into
1066  * the debugger.
1067  */
1068 noinline void kgdb_breakpoint(void)
1069 {
1070 	atomic_inc(&kgdb_setting_breakpoint);
1071 	wmb(); /* Sync point before breakpoint */
1072 	arch_kgdb_breakpoint();
1073 	wmb(); /* Sync point after breakpoint */
1074 	atomic_dec(&kgdb_setting_breakpoint);
1075 }
1076 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1077 
1078 static int __init opt_kgdb_wait(char *str)
1079 {
1080 	kgdb_break_asap = 1;
1081 
1082 	kdb_init(KDB_INIT_EARLY);
1083 	if (kgdb_io_module_registered)
1084 		kgdb_initial_breakpoint();
1085 
1086 	return 0;
1087 }
1088 
1089 early_param("kgdbwait", opt_kgdb_wait);
1090