1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * crash.c - kernel crash support code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/buildid.h> 10 #include <linux/init.h> 11 #include <linux/utsname.h> 12 #include <linux/vmalloc.h> 13 #include <linux/sizes.h> 14 #include <linux/kexec.h> 15 #include <linux/memory.h> 16 #include <linux/mm.h> 17 #include <linux/cpuhotplug.h> 18 #include <linux/memblock.h> 19 #include <linux/kmemleak.h> 20 #include <linux/crash_core.h> 21 #include <linux/reboot.h> 22 #include <linux/btf.h> 23 #include <linux/objtool.h> 24 #include <linux/delay.h> 25 26 #include <asm/page.h> 27 #include <asm/sections.h> 28 29 #include <crypto/sha1.h> 30 31 #include "kallsyms_internal.h" 32 #include "kexec_internal.h" 33 34 /* Per cpu memory for storing cpu states in case of system crash. */ 35 note_buf_t __percpu *crash_notes; 36 37 /* time to wait for possible DMA to finish before starting the kdump kernel 38 * when a CMA reservation is used 39 */ 40 #define CMA_DMA_TIMEOUT_SEC 10 41 42 #ifdef CONFIG_CRASH_DUMP 43 44 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 45 { 46 struct page *vmcoreinfo_page; 47 void *safecopy; 48 49 if (!IS_ENABLED(CONFIG_CRASH_DUMP)) 50 return 0; 51 if (image->type != KEXEC_TYPE_CRASH) 52 return 0; 53 54 /* 55 * For kdump, allocate one vmcoreinfo safe copy from the 56 * crash memory. as we have arch_kexec_protect_crashkres() 57 * after kexec syscall, we naturally protect it from write 58 * (even read) access under kernel direct mapping. But on 59 * the other hand, we still need to operate it when crash 60 * happens to generate vmcoreinfo note, hereby we rely on 61 * vmap for this purpose. 62 */ 63 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 64 if (!vmcoreinfo_page) { 65 pr_warn("Could not allocate vmcoreinfo buffer\n"); 66 return -ENOMEM; 67 } 68 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 69 if (!safecopy) { 70 pr_warn("Could not vmap vmcoreinfo buffer\n"); 71 return -ENOMEM; 72 } 73 74 image->vmcoreinfo_data_copy = safecopy; 75 crash_update_vmcoreinfo_safecopy(safecopy); 76 77 return 0; 78 } 79 80 81 82 int kexec_should_crash(struct task_struct *p) 83 { 84 /* 85 * If crash_kexec_post_notifiers is enabled, don't run 86 * crash_kexec() here yet, which must be run after panic 87 * notifiers in panic(). 88 */ 89 if (crash_kexec_post_notifiers) 90 return 0; 91 /* 92 * There are 4 panic() calls in make_task_dead() path, each of which 93 * corresponds to each of these 4 conditions. 94 */ 95 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 96 return 1; 97 return 0; 98 } 99 100 int kexec_crash_loaded(void) 101 { 102 return !!kexec_crash_image; 103 } 104 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 105 106 static void crash_cma_clear_pending_dma(void) 107 { 108 if (!crashk_cma_cnt) 109 return; 110 111 mdelay(CMA_DMA_TIMEOUT_SEC * 1000); 112 } 113 114 /* 115 * No panic_cpu check version of crash_kexec(). This function is called 116 * only when panic_cpu holds the current CPU number; this is the only CPU 117 * which processes crash_kexec routines. 118 */ 119 void __noclone __crash_kexec(struct pt_regs *regs) 120 { 121 /* Take the kexec_lock here to prevent sys_kexec_load 122 * running on one cpu from replacing the crash kernel 123 * we are using after a panic on a different cpu. 124 * 125 * If the crash kernel was not located in a fixed area 126 * of memory the xchg(&kexec_crash_image) would be 127 * sufficient. But since I reuse the memory... 128 */ 129 if (kexec_trylock()) { 130 if (kexec_crash_image) { 131 struct pt_regs fixed_regs; 132 133 crash_setup_regs(&fixed_regs, regs); 134 crash_save_vmcoreinfo(); 135 machine_crash_shutdown(&fixed_regs); 136 crash_cma_clear_pending_dma(); 137 machine_kexec(kexec_crash_image); 138 } 139 kexec_unlock(); 140 } 141 } 142 STACK_FRAME_NON_STANDARD(__crash_kexec); 143 144 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 145 { 146 int old_cpu, this_cpu; 147 148 /* 149 * Only one CPU is allowed to execute the crash_kexec() code as with 150 * panic(). Otherwise parallel calls of panic() and crash_kexec() 151 * may stop each other. To exclude them, we use panic_cpu here too. 152 */ 153 old_cpu = PANIC_CPU_INVALID; 154 this_cpu = raw_smp_processor_id(); 155 156 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { 157 /* This is the 1st CPU which comes here, so go ahead. */ 158 __crash_kexec(regs); 159 160 /* 161 * Reset panic_cpu to allow another panic()/crash_kexec() 162 * call. 163 */ 164 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 165 } 166 } 167 168 static inline resource_size_t crash_resource_size(const struct resource *res) 169 { 170 return !res->end ? 0 : resource_size(res); 171 } 172 173 174 175 176 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, 177 void **addr, unsigned long *sz) 178 { 179 Elf64_Ehdr *ehdr; 180 Elf64_Phdr *phdr; 181 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 182 unsigned char *buf; 183 unsigned int cpu, i; 184 unsigned long long notes_addr; 185 unsigned long mstart, mend; 186 187 /* extra phdr for vmcoreinfo ELF note */ 188 nr_phdr = nr_cpus + 1; 189 nr_phdr += mem->nr_ranges; 190 191 /* 192 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 193 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 194 * I think this is required by tools like gdb. So same physical 195 * memory will be mapped in two ELF headers. One will contain kernel 196 * text virtual addresses and other will have __va(physical) addresses. 197 */ 198 199 nr_phdr++; 200 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 201 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 202 203 buf = vzalloc(elf_sz); 204 if (!buf) 205 return -ENOMEM; 206 207 ehdr = (Elf64_Ehdr *)buf; 208 phdr = (Elf64_Phdr *)(ehdr + 1); 209 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 210 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 211 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 212 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 213 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 214 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 215 ehdr->e_type = ET_CORE; 216 ehdr->e_machine = ELF_ARCH; 217 ehdr->e_version = EV_CURRENT; 218 ehdr->e_phoff = sizeof(Elf64_Ehdr); 219 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 220 ehdr->e_phentsize = sizeof(Elf64_Phdr); 221 222 /* Prepare one phdr of type PT_NOTE for each possible CPU */ 223 for_each_possible_cpu(cpu) { 224 phdr->p_type = PT_NOTE; 225 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 226 phdr->p_offset = phdr->p_paddr = notes_addr; 227 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 228 (ehdr->e_phnum)++; 229 phdr++; 230 } 231 232 /* Prepare one PT_NOTE header for vmcoreinfo */ 233 phdr->p_type = PT_NOTE; 234 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 235 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 236 (ehdr->e_phnum)++; 237 phdr++; 238 239 /* Prepare PT_LOAD type program header for kernel text region */ 240 if (need_kernel_map) { 241 phdr->p_type = PT_LOAD; 242 phdr->p_flags = PF_R|PF_W|PF_X; 243 phdr->p_vaddr = (unsigned long) _text; 244 phdr->p_filesz = phdr->p_memsz = _end - _text; 245 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 246 ehdr->e_phnum++; 247 phdr++; 248 } 249 250 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 251 for (i = 0; i < mem->nr_ranges; i++) { 252 mstart = mem->ranges[i].start; 253 mend = mem->ranges[i].end; 254 255 phdr->p_type = PT_LOAD; 256 phdr->p_flags = PF_R|PF_W|PF_X; 257 phdr->p_offset = mstart; 258 259 phdr->p_paddr = mstart; 260 phdr->p_vaddr = (unsigned long) __va(mstart); 261 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 262 phdr->p_align = 0; 263 ehdr->e_phnum++; 264 #ifdef CONFIG_KEXEC_FILE 265 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 266 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 267 ehdr->e_phnum, phdr->p_offset); 268 #endif 269 phdr++; 270 } 271 272 *addr = buf; 273 *sz = elf_sz; 274 return 0; 275 } 276 277 int crash_exclude_mem_range(struct crash_mem *mem, 278 unsigned long long mstart, unsigned long long mend) 279 { 280 int i; 281 unsigned long long start, end, p_start, p_end; 282 283 for (i = 0; i < mem->nr_ranges; i++) { 284 start = mem->ranges[i].start; 285 end = mem->ranges[i].end; 286 p_start = mstart; 287 p_end = mend; 288 289 if (p_start > end) 290 continue; 291 292 /* 293 * Because the memory ranges in mem->ranges are stored in 294 * ascending order, when we detect `p_end < start`, we can 295 * immediately exit the for loop, as the subsequent memory 296 * ranges will definitely be outside the range we are looking 297 * for. 298 */ 299 if (p_end < start) 300 break; 301 302 /* Truncate any area outside of range */ 303 if (p_start < start) 304 p_start = start; 305 if (p_end > end) 306 p_end = end; 307 308 /* Found completely overlapping range */ 309 if (p_start == start && p_end == end) { 310 memmove(&mem->ranges[i], &mem->ranges[i + 1], 311 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 312 i--; 313 mem->nr_ranges--; 314 } else if (p_start > start && p_end < end) { 315 /* Split original range */ 316 if (mem->nr_ranges >= mem->max_nr_ranges) 317 return -ENOMEM; 318 319 memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], 320 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 321 322 mem->ranges[i].end = p_start - 1; 323 mem->ranges[i + 1].start = p_end + 1; 324 mem->ranges[i + 1].end = end; 325 326 i++; 327 mem->nr_ranges++; 328 } else if (p_start != start) 329 mem->ranges[i].end = p_start - 1; 330 else 331 mem->ranges[i].start = p_end + 1; 332 } 333 334 return 0; 335 } 336 337 ssize_t crash_get_memory_size(void) 338 { 339 ssize_t size = 0; 340 341 if (!kexec_trylock()) 342 return -EBUSY; 343 344 size += crash_resource_size(&crashk_res); 345 size += crash_resource_size(&crashk_low_res); 346 347 kexec_unlock(); 348 return size; 349 } 350 351 static int __crash_shrink_memory(struct resource *old_res, 352 unsigned long new_size) 353 { 354 struct resource *ram_res; 355 356 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 357 if (!ram_res) 358 return -ENOMEM; 359 360 ram_res->start = old_res->start + new_size; 361 ram_res->end = old_res->end; 362 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 363 ram_res->name = "System RAM"; 364 365 if (!new_size) { 366 release_resource(old_res); 367 old_res->start = 0; 368 old_res->end = 0; 369 } else { 370 crashk_res.end = ram_res->start - 1; 371 } 372 373 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 374 insert_resource(&iomem_resource, ram_res); 375 376 return 0; 377 } 378 379 int crash_shrink_memory(unsigned long new_size) 380 { 381 int ret = 0; 382 unsigned long old_size, low_size; 383 384 if (!kexec_trylock()) 385 return -EBUSY; 386 387 if (kexec_crash_image) { 388 ret = -ENOENT; 389 goto unlock; 390 } 391 392 low_size = crash_resource_size(&crashk_low_res); 393 old_size = crash_resource_size(&crashk_res) + low_size; 394 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 395 if (new_size >= old_size) { 396 ret = (new_size == old_size) ? 0 : -EINVAL; 397 goto unlock; 398 } 399 400 /* 401 * (low_size > new_size) implies that low_size is greater than zero. 402 * This also means that if low_size is zero, the else branch is taken. 403 * 404 * If low_size is greater than 0, (low_size > new_size) indicates that 405 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 406 * needs to be shrunken. 407 */ 408 if (low_size > new_size) { 409 ret = __crash_shrink_memory(&crashk_res, 0); 410 if (ret) 411 goto unlock; 412 413 ret = __crash_shrink_memory(&crashk_low_res, new_size); 414 } else { 415 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 416 } 417 418 /* Swap crashk_res and crashk_low_res if needed */ 419 if (!crashk_res.end && crashk_low_res.end) { 420 crashk_res.start = crashk_low_res.start; 421 crashk_res.end = crashk_low_res.end; 422 release_resource(&crashk_low_res); 423 crashk_low_res.start = 0; 424 crashk_low_res.end = 0; 425 insert_resource(&iomem_resource, &crashk_res); 426 } 427 428 unlock: 429 kexec_unlock(); 430 return ret; 431 } 432 433 void crash_save_cpu(struct pt_regs *regs, int cpu) 434 { 435 struct elf_prstatus prstatus; 436 u32 *buf; 437 438 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 439 return; 440 441 /* Using ELF notes here is opportunistic. 442 * I need a well defined structure format 443 * for the data I pass, and I need tags 444 * on the data to indicate what information I have 445 * squirrelled away. ELF notes happen to provide 446 * all of that, so there is no need to invent something new. 447 */ 448 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 449 if (!buf) 450 return; 451 memset(&prstatus, 0, sizeof(prstatus)); 452 prstatus.common.pr_pid = current->pid; 453 elf_core_copy_regs(&prstatus.pr_reg, regs); 454 buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS, 455 &prstatus, sizeof(prstatus)); 456 final_note(buf); 457 } 458 459 460 461 static int __init crash_notes_memory_init(void) 462 { 463 /* Allocate memory for saving cpu registers. */ 464 size_t size, align; 465 466 /* 467 * crash_notes could be allocated across 2 vmalloc pages when percpu 468 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 469 * pages are also on 2 continuous physical pages. In this case the 470 * 2nd part of crash_notes in 2nd page could be lost since only the 471 * starting address and size of crash_notes are exported through sysfs. 472 * Here round up the size of crash_notes to the nearest power of two 473 * and pass it to __alloc_percpu as align value. This can make sure 474 * crash_notes is allocated inside one physical page. 475 */ 476 size = sizeof(note_buf_t); 477 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 478 479 /* 480 * Break compile if size is bigger than PAGE_SIZE since crash_notes 481 * definitely will be in 2 pages with that. 482 */ 483 BUILD_BUG_ON(size > PAGE_SIZE); 484 485 crash_notes = __alloc_percpu(size, align); 486 if (!crash_notes) { 487 pr_warn("Memory allocation for saving cpu register states failed\n"); 488 return -ENOMEM; 489 } 490 return 0; 491 } 492 subsys_initcall(crash_notes_memory_init); 493 494 #endif /*CONFIG_CRASH_DUMP*/ 495 496 #ifdef CONFIG_CRASH_HOTPLUG 497 #undef pr_fmt 498 #define pr_fmt(fmt) "crash hp: " fmt 499 500 /* 501 * Different than kexec/kdump loading/unloading/jumping/shrinking which 502 * usually rarely happen, there will be many crash hotplug events notified 503 * during one short period, e.g one memory board is hot added and memory 504 * regions are online. So mutex lock __crash_hotplug_lock is used to 505 * serialize the crash hotplug handling specifically. 506 */ 507 static DEFINE_MUTEX(__crash_hotplug_lock); 508 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) 509 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) 510 511 /* 512 * This routine utilized when the crash_hotplug sysfs node is read. 513 * It reflects the kernel's ability/permission to update the kdump 514 * image directly. 515 */ 516 int crash_check_hotplug_support(void) 517 { 518 int rc = 0; 519 520 crash_hotplug_lock(); 521 /* Obtain lock while reading crash information */ 522 if (!kexec_trylock()) { 523 if (!kexec_in_progress) 524 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 525 crash_hotplug_unlock(); 526 return 0; 527 } 528 if (kexec_crash_image) { 529 rc = kexec_crash_image->hotplug_support; 530 } 531 /* Release lock now that update complete */ 532 kexec_unlock(); 533 crash_hotplug_unlock(); 534 535 return rc; 536 } 537 538 /* 539 * To accurately reflect hot un/plug changes of CPU and Memory resources 540 * (including onling and offlining of those resources), the relevant 541 * kexec segments must be updated with latest CPU and Memory resources. 542 * 543 * Architectures must ensure two things for all segments that need 544 * updating during hotplug events: 545 * 546 * 1. Segments must be large enough to accommodate a growing number of 547 * resources. 548 * 2. Exclude the segments from SHA verification. 549 * 550 * For example, on most architectures, the elfcorehdr (which is passed 551 * to the crash kernel via the elfcorehdr= parameter) must include the 552 * new list of CPUs and memory. To make changes to the elfcorehdr, it 553 * should be large enough to permit a growing number of CPU and Memory 554 * resources. One can estimate the elfcorehdr memory size based on 555 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is 556 * excluded from SHA verification by default if the architecture 557 * supports crash hotplug. 558 */ 559 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg) 560 { 561 struct kimage *image; 562 563 crash_hotplug_lock(); 564 /* Obtain lock while changing crash information */ 565 if (!kexec_trylock()) { 566 if (!kexec_in_progress) 567 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 568 crash_hotplug_unlock(); 569 return; 570 } 571 572 /* Check kdump is not loaded */ 573 if (!kexec_crash_image) 574 goto out; 575 576 image = kexec_crash_image; 577 578 /* Check that kexec segments update is permitted */ 579 if (!image->hotplug_support) 580 goto out; 581 582 if (hp_action == KEXEC_CRASH_HP_ADD_CPU || 583 hp_action == KEXEC_CRASH_HP_REMOVE_CPU) 584 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); 585 else 586 pr_debug("hp_action %u\n", hp_action); 587 588 /* 589 * The elfcorehdr_index is set to -1 when the struct kimage 590 * is allocated. Find the segment containing the elfcorehdr, 591 * if not already found. 592 */ 593 if (image->elfcorehdr_index < 0) { 594 unsigned long mem; 595 unsigned char *ptr; 596 unsigned int n; 597 598 for (n = 0; n < image->nr_segments; n++) { 599 mem = image->segment[n].mem; 600 ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); 601 if (ptr) { 602 /* The segment containing elfcorehdr */ 603 if (memcmp(ptr, ELFMAG, SELFMAG) == 0) 604 image->elfcorehdr_index = (int)n; 605 kunmap_local(ptr); 606 } 607 } 608 } 609 610 if (image->elfcorehdr_index < 0) { 611 pr_err("unable to locate elfcorehdr segment"); 612 goto out; 613 } 614 615 /* Needed in order for the segments to be updated */ 616 arch_kexec_unprotect_crashkres(); 617 618 /* Differentiate between normal load and hotplug update */ 619 image->hp_action = hp_action; 620 621 /* Now invoke arch-specific update handler */ 622 arch_crash_handle_hotplug_event(image, arg); 623 624 /* No longer handling a hotplug event */ 625 image->hp_action = KEXEC_CRASH_HP_NONE; 626 image->elfcorehdr_updated = true; 627 628 /* Change back to read-only */ 629 arch_kexec_protect_crashkres(); 630 631 /* Errors in the callback is not a reason to rollback state */ 632 out: 633 /* Release lock now that update complete */ 634 kexec_unlock(); 635 crash_hotplug_unlock(); 636 } 637 638 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg) 639 { 640 switch (val) { 641 case MEM_ONLINE: 642 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, 643 KEXEC_CRASH_HP_INVALID_CPU, arg); 644 break; 645 646 case MEM_OFFLINE: 647 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, 648 KEXEC_CRASH_HP_INVALID_CPU, arg); 649 break; 650 } 651 return NOTIFY_OK; 652 } 653 654 static struct notifier_block crash_memhp_nb = { 655 .notifier_call = crash_memhp_notifier, 656 .priority = 0 657 }; 658 659 static int crash_cpuhp_online(unsigned int cpu) 660 { 661 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL); 662 return 0; 663 } 664 665 static int crash_cpuhp_offline(unsigned int cpu) 666 { 667 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL); 668 return 0; 669 } 670 671 static int __init crash_hotplug_init(void) 672 { 673 int result = 0; 674 675 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) 676 register_memory_notifier(&crash_memhp_nb); 677 678 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 679 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, 680 "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); 681 } 682 683 return result; 684 } 685 686 subsys_initcall(crash_hotplug_init); 687 #endif 688