1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * crash.c - kernel crash support code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/buildid.h> 10 #include <linux/init.h> 11 #include <linux/utsname.h> 12 #include <linux/vmalloc.h> 13 #include <linux/sizes.h> 14 #include <linux/kexec.h> 15 #include <linux/memory.h> 16 #include <linux/mm.h> 17 #include <linux/cpuhotplug.h> 18 #include <linux/memblock.h> 19 #include <linux/kmemleak.h> 20 #include <linux/crash_core.h> 21 #include <linux/reboot.h> 22 #include <linux/btf.h> 23 #include <linux/objtool.h> 24 25 #include <asm/page.h> 26 #include <asm/sections.h> 27 28 #include <crypto/sha1.h> 29 30 #include "kallsyms_internal.h" 31 #include "kexec_internal.h" 32 33 /* Per cpu memory for storing cpu states in case of system crash. */ 34 note_buf_t __percpu *crash_notes; 35 36 #ifdef CONFIG_CRASH_DUMP 37 38 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 39 { 40 struct page *vmcoreinfo_page; 41 void *safecopy; 42 43 if (!IS_ENABLED(CONFIG_CRASH_DUMP)) 44 return 0; 45 if (image->type != KEXEC_TYPE_CRASH) 46 return 0; 47 48 /* 49 * For kdump, allocate one vmcoreinfo safe copy from the 50 * crash memory. as we have arch_kexec_protect_crashkres() 51 * after kexec syscall, we naturally protect it from write 52 * (even read) access under kernel direct mapping. But on 53 * the other hand, we still need to operate it when crash 54 * happens to generate vmcoreinfo note, hereby we rely on 55 * vmap for this purpose. 56 */ 57 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 58 if (!vmcoreinfo_page) { 59 pr_warn("Could not allocate vmcoreinfo buffer\n"); 60 return -ENOMEM; 61 } 62 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 63 if (!safecopy) { 64 pr_warn("Could not vmap vmcoreinfo buffer\n"); 65 return -ENOMEM; 66 } 67 68 image->vmcoreinfo_data_copy = safecopy; 69 crash_update_vmcoreinfo_safecopy(safecopy); 70 71 return 0; 72 } 73 74 75 76 int kexec_should_crash(struct task_struct *p) 77 { 78 /* 79 * If crash_kexec_post_notifiers is enabled, don't run 80 * crash_kexec() here yet, which must be run after panic 81 * notifiers in panic(). 82 */ 83 if (crash_kexec_post_notifiers) 84 return 0; 85 /* 86 * There are 4 panic() calls in make_task_dead() path, each of which 87 * corresponds to each of these 4 conditions. 88 */ 89 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 90 return 1; 91 return 0; 92 } 93 94 int kexec_crash_loaded(void) 95 { 96 return !!kexec_crash_image; 97 } 98 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 99 100 /* 101 * No panic_cpu check version of crash_kexec(). This function is called 102 * only when panic_cpu holds the current CPU number; this is the only CPU 103 * which processes crash_kexec routines. 104 */ 105 void __noclone __crash_kexec(struct pt_regs *regs) 106 { 107 /* Take the kexec_lock here to prevent sys_kexec_load 108 * running on one cpu from replacing the crash kernel 109 * we are using after a panic on a different cpu. 110 * 111 * If the crash kernel was not located in a fixed area 112 * of memory the xchg(&kexec_crash_image) would be 113 * sufficient. But since I reuse the memory... 114 */ 115 if (kexec_trylock()) { 116 if (kexec_crash_image) { 117 struct pt_regs fixed_regs; 118 119 crash_setup_regs(&fixed_regs, regs); 120 crash_save_vmcoreinfo(); 121 machine_crash_shutdown(&fixed_regs); 122 machine_kexec(kexec_crash_image); 123 } 124 kexec_unlock(); 125 } 126 } 127 STACK_FRAME_NON_STANDARD(__crash_kexec); 128 129 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 130 { 131 int old_cpu, this_cpu; 132 133 /* 134 * Only one CPU is allowed to execute the crash_kexec() code as with 135 * panic(). Otherwise parallel calls of panic() and crash_kexec() 136 * may stop each other. To exclude them, we use panic_cpu here too. 137 */ 138 old_cpu = PANIC_CPU_INVALID; 139 this_cpu = raw_smp_processor_id(); 140 141 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { 142 /* This is the 1st CPU which comes here, so go ahead. */ 143 __crash_kexec(regs); 144 145 /* 146 * Reset panic_cpu to allow another panic()/crash_kexec() 147 * call. 148 */ 149 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 150 } 151 } 152 153 static inline resource_size_t crash_resource_size(const struct resource *res) 154 { 155 return !res->end ? 0 : resource_size(res); 156 } 157 158 159 160 161 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, 162 void **addr, unsigned long *sz) 163 { 164 Elf64_Ehdr *ehdr; 165 Elf64_Phdr *phdr; 166 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 167 unsigned char *buf; 168 unsigned int cpu, i; 169 unsigned long long notes_addr; 170 unsigned long mstart, mend; 171 172 /* extra phdr for vmcoreinfo ELF note */ 173 nr_phdr = nr_cpus + 1; 174 nr_phdr += mem->nr_ranges; 175 176 /* 177 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 178 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 179 * I think this is required by tools like gdb. So same physical 180 * memory will be mapped in two ELF headers. One will contain kernel 181 * text virtual addresses and other will have __va(physical) addresses. 182 */ 183 184 nr_phdr++; 185 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 186 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 187 188 buf = vzalloc(elf_sz); 189 if (!buf) 190 return -ENOMEM; 191 192 ehdr = (Elf64_Ehdr *)buf; 193 phdr = (Elf64_Phdr *)(ehdr + 1); 194 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 195 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 196 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 197 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 198 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 199 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 200 ehdr->e_type = ET_CORE; 201 ehdr->e_machine = ELF_ARCH; 202 ehdr->e_version = EV_CURRENT; 203 ehdr->e_phoff = sizeof(Elf64_Ehdr); 204 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 205 ehdr->e_phentsize = sizeof(Elf64_Phdr); 206 207 /* Prepare one phdr of type PT_NOTE for each possible CPU */ 208 for_each_possible_cpu(cpu) { 209 phdr->p_type = PT_NOTE; 210 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 211 phdr->p_offset = phdr->p_paddr = notes_addr; 212 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 213 (ehdr->e_phnum)++; 214 phdr++; 215 } 216 217 /* Prepare one PT_NOTE header for vmcoreinfo */ 218 phdr->p_type = PT_NOTE; 219 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 220 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 221 (ehdr->e_phnum)++; 222 phdr++; 223 224 /* Prepare PT_LOAD type program header for kernel text region */ 225 if (need_kernel_map) { 226 phdr->p_type = PT_LOAD; 227 phdr->p_flags = PF_R|PF_W|PF_X; 228 phdr->p_vaddr = (unsigned long) _text; 229 phdr->p_filesz = phdr->p_memsz = _end - _text; 230 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 231 ehdr->e_phnum++; 232 phdr++; 233 } 234 235 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 236 for (i = 0; i < mem->nr_ranges; i++) { 237 mstart = mem->ranges[i].start; 238 mend = mem->ranges[i].end; 239 240 phdr->p_type = PT_LOAD; 241 phdr->p_flags = PF_R|PF_W|PF_X; 242 phdr->p_offset = mstart; 243 244 phdr->p_paddr = mstart; 245 phdr->p_vaddr = (unsigned long) __va(mstart); 246 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 247 phdr->p_align = 0; 248 ehdr->e_phnum++; 249 #ifdef CONFIG_KEXEC_FILE 250 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 251 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 252 ehdr->e_phnum, phdr->p_offset); 253 #endif 254 phdr++; 255 } 256 257 *addr = buf; 258 *sz = elf_sz; 259 return 0; 260 } 261 262 int crash_exclude_mem_range(struct crash_mem *mem, 263 unsigned long long mstart, unsigned long long mend) 264 { 265 int i; 266 unsigned long long start, end, p_start, p_end; 267 268 for (i = 0; i < mem->nr_ranges; i++) { 269 start = mem->ranges[i].start; 270 end = mem->ranges[i].end; 271 p_start = mstart; 272 p_end = mend; 273 274 if (p_start > end) 275 continue; 276 277 /* 278 * Because the memory ranges in mem->ranges are stored in 279 * ascending order, when we detect `p_end < start`, we can 280 * immediately exit the for loop, as the subsequent memory 281 * ranges will definitely be outside the range we are looking 282 * for. 283 */ 284 if (p_end < start) 285 break; 286 287 /* Truncate any area outside of range */ 288 if (p_start < start) 289 p_start = start; 290 if (p_end > end) 291 p_end = end; 292 293 /* Found completely overlapping range */ 294 if (p_start == start && p_end == end) { 295 memmove(&mem->ranges[i], &mem->ranges[i + 1], 296 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 297 i--; 298 mem->nr_ranges--; 299 } else if (p_start > start && p_end < end) { 300 /* Split original range */ 301 if (mem->nr_ranges >= mem->max_nr_ranges) 302 return -ENOMEM; 303 304 memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], 305 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); 306 307 mem->ranges[i].end = p_start - 1; 308 mem->ranges[i + 1].start = p_end + 1; 309 mem->ranges[i + 1].end = end; 310 311 i++; 312 mem->nr_ranges++; 313 } else if (p_start != start) 314 mem->ranges[i].end = p_start - 1; 315 else 316 mem->ranges[i].start = p_end + 1; 317 } 318 319 return 0; 320 } 321 322 ssize_t crash_get_memory_size(void) 323 { 324 ssize_t size = 0; 325 326 if (!kexec_trylock()) 327 return -EBUSY; 328 329 size += crash_resource_size(&crashk_res); 330 size += crash_resource_size(&crashk_low_res); 331 332 kexec_unlock(); 333 return size; 334 } 335 336 static int __crash_shrink_memory(struct resource *old_res, 337 unsigned long new_size) 338 { 339 struct resource *ram_res; 340 341 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 342 if (!ram_res) 343 return -ENOMEM; 344 345 ram_res->start = old_res->start + new_size; 346 ram_res->end = old_res->end; 347 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 348 ram_res->name = "System RAM"; 349 350 if (!new_size) { 351 release_resource(old_res); 352 old_res->start = 0; 353 old_res->end = 0; 354 } else { 355 crashk_res.end = ram_res->start - 1; 356 } 357 358 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 359 insert_resource(&iomem_resource, ram_res); 360 361 return 0; 362 } 363 364 int crash_shrink_memory(unsigned long new_size) 365 { 366 int ret = 0; 367 unsigned long old_size, low_size; 368 369 if (!kexec_trylock()) 370 return -EBUSY; 371 372 if (kexec_crash_image) { 373 ret = -ENOENT; 374 goto unlock; 375 } 376 377 low_size = crash_resource_size(&crashk_low_res); 378 old_size = crash_resource_size(&crashk_res) + low_size; 379 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 380 if (new_size >= old_size) { 381 ret = (new_size == old_size) ? 0 : -EINVAL; 382 goto unlock; 383 } 384 385 /* 386 * (low_size > new_size) implies that low_size is greater than zero. 387 * This also means that if low_size is zero, the else branch is taken. 388 * 389 * If low_size is greater than 0, (low_size > new_size) indicates that 390 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 391 * needs to be shrunken. 392 */ 393 if (low_size > new_size) { 394 ret = __crash_shrink_memory(&crashk_res, 0); 395 if (ret) 396 goto unlock; 397 398 ret = __crash_shrink_memory(&crashk_low_res, new_size); 399 } else { 400 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 401 } 402 403 /* Swap crashk_res and crashk_low_res if needed */ 404 if (!crashk_res.end && crashk_low_res.end) { 405 crashk_res.start = crashk_low_res.start; 406 crashk_res.end = crashk_low_res.end; 407 release_resource(&crashk_low_res); 408 crashk_low_res.start = 0; 409 crashk_low_res.end = 0; 410 insert_resource(&iomem_resource, &crashk_res); 411 } 412 413 unlock: 414 kexec_unlock(); 415 return ret; 416 } 417 418 void crash_save_cpu(struct pt_regs *regs, int cpu) 419 { 420 struct elf_prstatus prstatus; 421 u32 *buf; 422 423 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 424 return; 425 426 /* Using ELF notes here is opportunistic. 427 * I need a well defined structure format 428 * for the data I pass, and I need tags 429 * on the data to indicate what information I have 430 * squirrelled away. ELF notes happen to provide 431 * all of that, so there is no need to invent something new. 432 */ 433 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 434 if (!buf) 435 return; 436 memset(&prstatus, 0, sizeof(prstatus)); 437 prstatus.common.pr_pid = current->pid; 438 elf_core_copy_regs(&prstatus.pr_reg, regs); 439 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 440 &prstatus, sizeof(prstatus)); 441 final_note(buf); 442 } 443 444 445 446 static int __init crash_notes_memory_init(void) 447 { 448 /* Allocate memory for saving cpu registers. */ 449 size_t size, align; 450 451 /* 452 * crash_notes could be allocated across 2 vmalloc pages when percpu 453 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 454 * pages are also on 2 continuous physical pages. In this case the 455 * 2nd part of crash_notes in 2nd page could be lost since only the 456 * starting address and size of crash_notes are exported through sysfs. 457 * Here round up the size of crash_notes to the nearest power of two 458 * and pass it to __alloc_percpu as align value. This can make sure 459 * crash_notes is allocated inside one physical page. 460 */ 461 size = sizeof(note_buf_t); 462 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 463 464 /* 465 * Break compile if size is bigger than PAGE_SIZE since crash_notes 466 * definitely will be in 2 pages with that. 467 */ 468 BUILD_BUG_ON(size > PAGE_SIZE); 469 470 crash_notes = __alloc_percpu(size, align); 471 if (!crash_notes) { 472 pr_warn("Memory allocation for saving cpu register states failed\n"); 473 return -ENOMEM; 474 } 475 return 0; 476 } 477 subsys_initcall(crash_notes_memory_init); 478 479 #endif /*CONFIG_CRASH_DUMP*/ 480 481 #ifdef CONFIG_CRASH_HOTPLUG 482 #undef pr_fmt 483 #define pr_fmt(fmt) "crash hp: " fmt 484 485 /* 486 * Different than kexec/kdump loading/unloading/jumping/shrinking which 487 * usually rarely happen, there will be many crash hotplug events notified 488 * during one short period, e.g one memory board is hot added and memory 489 * regions are online. So mutex lock __crash_hotplug_lock is used to 490 * serialize the crash hotplug handling specifically. 491 */ 492 static DEFINE_MUTEX(__crash_hotplug_lock); 493 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) 494 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) 495 496 /* 497 * This routine utilized when the crash_hotplug sysfs node is read. 498 * It reflects the kernel's ability/permission to update the kdump 499 * image directly. 500 */ 501 int crash_check_hotplug_support(void) 502 { 503 int rc = 0; 504 505 crash_hotplug_lock(); 506 /* Obtain lock while reading crash information */ 507 if (!kexec_trylock()) { 508 if (!kexec_in_progress) 509 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 510 crash_hotplug_unlock(); 511 return 0; 512 } 513 if (kexec_crash_image) { 514 rc = kexec_crash_image->hotplug_support; 515 } 516 /* Release lock now that update complete */ 517 kexec_unlock(); 518 crash_hotplug_unlock(); 519 520 return rc; 521 } 522 523 /* 524 * To accurately reflect hot un/plug changes of CPU and Memory resources 525 * (including onling and offlining of those resources), the relevant 526 * kexec segments must be updated with latest CPU and Memory resources. 527 * 528 * Architectures must ensure two things for all segments that need 529 * updating during hotplug events: 530 * 531 * 1. Segments must be large enough to accommodate a growing number of 532 * resources. 533 * 2. Exclude the segments from SHA verification. 534 * 535 * For example, on most architectures, the elfcorehdr (which is passed 536 * to the crash kernel via the elfcorehdr= parameter) must include the 537 * new list of CPUs and memory. To make changes to the elfcorehdr, it 538 * should be large enough to permit a growing number of CPU and Memory 539 * resources. One can estimate the elfcorehdr memory size based on 540 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is 541 * excluded from SHA verification by default if the architecture 542 * supports crash hotplug. 543 */ 544 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg) 545 { 546 struct kimage *image; 547 548 crash_hotplug_lock(); 549 /* Obtain lock while changing crash information */ 550 if (!kexec_trylock()) { 551 if (!kexec_in_progress) 552 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); 553 crash_hotplug_unlock(); 554 return; 555 } 556 557 /* Check kdump is not loaded */ 558 if (!kexec_crash_image) 559 goto out; 560 561 image = kexec_crash_image; 562 563 /* Check that kexec segments update is permitted */ 564 if (!image->hotplug_support) 565 goto out; 566 567 if (hp_action == KEXEC_CRASH_HP_ADD_CPU || 568 hp_action == KEXEC_CRASH_HP_REMOVE_CPU) 569 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); 570 else 571 pr_debug("hp_action %u\n", hp_action); 572 573 /* 574 * The elfcorehdr_index is set to -1 when the struct kimage 575 * is allocated. Find the segment containing the elfcorehdr, 576 * if not already found. 577 */ 578 if (image->elfcorehdr_index < 0) { 579 unsigned long mem; 580 unsigned char *ptr; 581 unsigned int n; 582 583 for (n = 0; n < image->nr_segments; n++) { 584 mem = image->segment[n].mem; 585 ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); 586 if (ptr) { 587 /* The segment containing elfcorehdr */ 588 if (memcmp(ptr, ELFMAG, SELFMAG) == 0) 589 image->elfcorehdr_index = (int)n; 590 kunmap_local(ptr); 591 } 592 } 593 } 594 595 if (image->elfcorehdr_index < 0) { 596 pr_err("unable to locate elfcorehdr segment"); 597 goto out; 598 } 599 600 /* Needed in order for the segments to be updated */ 601 arch_kexec_unprotect_crashkres(); 602 603 /* Differentiate between normal load and hotplug update */ 604 image->hp_action = hp_action; 605 606 /* Now invoke arch-specific update handler */ 607 arch_crash_handle_hotplug_event(image, arg); 608 609 /* No longer handling a hotplug event */ 610 image->hp_action = KEXEC_CRASH_HP_NONE; 611 image->elfcorehdr_updated = true; 612 613 /* Change back to read-only */ 614 arch_kexec_protect_crashkres(); 615 616 /* Errors in the callback is not a reason to rollback state */ 617 out: 618 /* Release lock now that update complete */ 619 kexec_unlock(); 620 crash_hotplug_unlock(); 621 } 622 623 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg) 624 { 625 switch (val) { 626 case MEM_ONLINE: 627 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, 628 KEXEC_CRASH_HP_INVALID_CPU, arg); 629 break; 630 631 case MEM_OFFLINE: 632 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, 633 KEXEC_CRASH_HP_INVALID_CPU, arg); 634 break; 635 } 636 return NOTIFY_OK; 637 } 638 639 static struct notifier_block crash_memhp_nb = { 640 .notifier_call = crash_memhp_notifier, 641 .priority = 0 642 }; 643 644 static int crash_cpuhp_online(unsigned int cpu) 645 { 646 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL); 647 return 0; 648 } 649 650 static int crash_cpuhp_offline(unsigned int cpu) 651 { 652 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL); 653 return 0; 654 } 655 656 static int __init crash_hotplug_init(void) 657 { 658 int result = 0; 659 660 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) 661 register_memory_notifier(&crash_memhp_nb); 662 663 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 664 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, 665 "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); 666 } 667 668 return result; 669 } 670 671 subsys_initcall(crash_hotplug_init); 672 #endif 673