1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/smt.h> 14 #include <linux/unistd.h> 15 #include <linux/cpu.h> 16 #include <linux/oom.h> 17 #include <linux/rcupdate.h> 18 #include <linux/export.h> 19 #include <linux/bug.h> 20 #include <linux/kthread.h> 21 #include <linux/stop_machine.h> 22 #include <linux/mutex.h> 23 #include <linux/gfp.h> 24 #include <linux/suspend.h> 25 #include <linux/lockdep.h> 26 #include <linux/tick.h> 27 #include <linux/irq.h> 28 #include <linux/nmi.h> 29 #include <linux/smpboot.h> 30 #include <linux/relay.h> 31 #include <linux/slab.h> 32 #include <linux/percpu-rwsem.h> 33 34 #include <trace/events/power.h> 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/cpuhp.h> 37 38 #include "smpboot.h" 39 40 /** 41 * cpuhp_cpu_state - Per cpu hotplug state storage 42 * @state: The current cpu state 43 * @target: The target state 44 * @thread: Pointer to the hotplug thread 45 * @should_run: Thread should execute 46 * @rollback: Perform a rollback 47 * @single: Single callback invocation 48 * @bringup: Single callback bringup or teardown selector 49 * @cb_state: The state for a single callback (install/uninstall) 50 * @result: Result of the operation 51 * @done_up: Signal completion to the issuer of the task for cpu-up 52 * @done_down: Signal completion to the issuer of the task for cpu-down 53 */ 54 struct cpuhp_cpu_state { 55 enum cpuhp_state state; 56 enum cpuhp_state target; 57 enum cpuhp_state fail; 58 #ifdef CONFIG_SMP 59 struct task_struct *thread; 60 bool should_run; 61 bool rollback; 62 bool single; 63 bool bringup; 64 bool booted_once; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 79 static struct lockdep_map cpuhp_state_up_map = 80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 81 static struct lockdep_map cpuhp_state_down_map = 82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 83 84 85 static inline void cpuhp_lock_acquire(bool bringup) 86 { 87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 88 } 89 90 static inline void cpuhp_lock_release(bool bringup) 91 { 92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 93 } 94 #else 95 96 static inline void cpuhp_lock_acquire(bool bringup) { } 97 static inline void cpuhp_lock_release(bool bringup) { } 98 99 #endif 100 101 /** 102 * cpuhp_step - Hotplug state machine step 103 * @name: Name of the step 104 * @startup: Startup function of the step 105 * @teardown: Teardown function of the step 106 * @cant_stop: Bringup/teardown can't be stopped at this step 107 */ 108 struct cpuhp_step { 109 const char *name; 110 union { 111 int (*single)(unsigned int cpu); 112 int (*multi)(unsigned int cpu, 113 struct hlist_node *node); 114 } startup; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } teardown; 120 struct hlist_head list; 121 bool cant_stop; 122 bool multi_instance; 123 }; 124 125 static DEFINE_MUTEX(cpuhp_state_mutex); 126 static struct cpuhp_step cpuhp_hp_states[]; 127 128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 129 { 130 return cpuhp_hp_states + state; 131 } 132 133 /** 134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 135 * @cpu: The cpu for which the callback should be invoked 136 * @state: The state to do callbacks for 137 * @bringup: True if the bringup callback should be invoked 138 * @node: For multi-instance, do a single entry callback for install/remove 139 * @lastp: For multi-instance rollback, remember how far we got 140 * 141 * Called from cpu hotplug and from the state register machinery. 142 */ 143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 144 bool bringup, struct hlist_node *node, 145 struct hlist_node **lastp) 146 { 147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 148 struct cpuhp_step *step = cpuhp_get_step(state); 149 int (*cbm)(unsigned int cpu, struct hlist_node *node); 150 int (*cb)(unsigned int cpu); 151 int ret, cnt; 152 153 if (st->fail == state) { 154 st->fail = CPUHP_INVALID; 155 156 if (!(bringup ? step->startup.single : step->teardown.single)) 157 return 0; 158 159 return -EAGAIN; 160 } 161 162 if (!step->multi_instance) { 163 WARN_ON_ONCE(lastp && *lastp); 164 cb = bringup ? step->startup.single : step->teardown.single; 165 if (!cb) 166 return 0; 167 trace_cpuhp_enter(cpu, st->target, state, cb); 168 ret = cb(cpu); 169 trace_cpuhp_exit(cpu, st->state, state, ret); 170 return ret; 171 } 172 cbm = bringup ? step->startup.multi : step->teardown.multi; 173 if (!cbm) 174 return 0; 175 176 /* Single invocation for instance add/remove */ 177 if (node) { 178 WARN_ON_ONCE(lastp && *lastp); 179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 180 ret = cbm(cpu, node); 181 trace_cpuhp_exit(cpu, st->state, state, ret); 182 return ret; 183 } 184 185 /* State transition. Invoke on all instances */ 186 cnt = 0; 187 hlist_for_each(node, &step->list) { 188 if (lastp && node == *lastp) 189 break; 190 191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 192 ret = cbm(cpu, node); 193 trace_cpuhp_exit(cpu, st->state, state, ret); 194 if (ret) { 195 if (!lastp) 196 goto err; 197 198 *lastp = node; 199 return ret; 200 } 201 cnt++; 202 } 203 if (lastp) 204 *lastp = NULL; 205 return 0; 206 err: 207 /* Rollback the instances if one failed */ 208 cbm = !bringup ? step->startup.multi : step->teardown.multi; 209 if (!cbm) 210 return ret; 211 212 hlist_for_each(node, &step->list) { 213 if (!cnt--) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 /* 220 * Rollback must not fail, 221 */ 222 WARN_ON_ONCE(ret); 223 } 224 return ret; 225 } 226 227 #ifdef CONFIG_SMP 228 static bool cpuhp_is_ap_state(enum cpuhp_state state) 229 { 230 /* 231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 232 * purposes as that state is handled explicitly in cpu_down. 233 */ 234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 235 } 236 237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 238 { 239 struct completion *done = bringup ? &st->done_up : &st->done_down; 240 wait_for_completion(done); 241 } 242 243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 244 { 245 struct completion *done = bringup ? &st->done_up : &st->done_down; 246 complete(done); 247 } 248 249 /* 250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 251 */ 252 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 253 { 254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 255 } 256 257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 258 static DEFINE_MUTEX(cpu_add_remove_lock); 259 bool cpuhp_tasks_frozen; 260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 261 262 /* 263 * The following two APIs (cpu_maps_update_begin/done) must be used when 264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 265 */ 266 void cpu_maps_update_begin(void) 267 { 268 mutex_lock(&cpu_add_remove_lock); 269 } 270 271 void cpu_maps_update_done(void) 272 { 273 mutex_unlock(&cpu_add_remove_lock); 274 } 275 276 /* 277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 278 * Should always be manipulated under cpu_add_remove_lock 279 */ 280 static int cpu_hotplug_disabled; 281 282 #ifdef CONFIG_HOTPLUG_CPU 283 284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 285 286 void cpus_read_lock(void) 287 { 288 percpu_down_read(&cpu_hotplug_lock); 289 } 290 EXPORT_SYMBOL_GPL(cpus_read_lock); 291 292 int cpus_read_trylock(void) 293 { 294 return percpu_down_read_trylock(&cpu_hotplug_lock); 295 } 296 EXPORT_SYMBOL_GPL(cpus_read_trylock); 297 298 void cpus_read_unlock(void) 299 { 300 percpu_up_read(&cpu_hotplug_lock); 301 } 302 EXPORT_SYMBOL_GPL(cpus_read_unlock); 303 304 void cpus_write_lock(void) 305 { 306 percpu_down_write(&cpu_hotplug_lock); 307 } 308 309 void cpus_write_unlock(void) 310 { 311 percpu_up_write(&cpu_hotplug_lock); 312 } 313 314 void lockdep_assert_cpus_held(void) 315 { 316 percpu_rwsem_assert_held(&cpu_hotplug_lock); 317 } 318 319 static void lockdep_acquire_cpus_lock(void) 320 { 321 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 322 } 323 324 static void lockdep_release_cpus_lock(void) 325 { 326 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_); 327 } 328 329 /* 330 * Wait for currently running CPU hotplug operations to complete (if any) and 331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 333 * hotplug path before performing hotplug operations. So acquiring that lock 334 * guarantees mutual exclusion from any currently running hotplug operations. 335 */ 336 void cpu_hotplug_disable(void) 337 { 338 cpu_maps_update_begin(); 339 cpu_hotplug_disabled++; 340 cpu_maps_update_done(); 341 } 342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 343 344 static void __cpu_hotplug_enable(void) 345 { 346 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 347 return; 348 cpu_hotplug_disabled--; 349 } 350 351 void cpu_hotplug_enable(void) 352 { 353 cpu_maps_update_begin(); 354 __cpu_hotplug_enable(); 355 cpu_maps_update_done(); 356 } 357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 358 359 #else 360 361 static void lockdep_acquire_cpus_lock(void) 362 { 363 } 364 365 static void lockdep_release_cpus_lock(void) 366 { 367 } 368 369 #endif /* CONFIG_HOTPLUG_CPU */ 370 371 /* 372 * Architectures that need SMT-specific errata handling during SMT hotplug 373 * should override this. 374 */ 375 void __weak arch_smt_update(void) { } 376 377 #ifdef CONFIG_HOTPLUG_SMT 378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 379 380 void __init cpu_smt_disable(bool force) 381 { 382 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 383 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 384 return; 385 386 if (force) { 387 pr_info("SMT: Force disabled\n"); 388 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 389 } else { 390 pr_info("SMT: disabled\n"); 391 cpu_smt_control = CPU_SMT_DISABLED; 392 } 393 } 394 395 /* 396 * The decision whether SMT is supported can only be done after the full 397 * CPU identification. Called from architecture code. 398 */ 399 void __init cpu_smt_check_topology(void) 400 { 401 if (!topology_smt_supported()) 402 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 403 } 404 405 static int __init smt_cmdline_disable(char *str) 406 { 407 cpu_smt_disable(str && !strcmp(str, "force")); 408 return 0; 409 } 410 early_param("nosmt", smt_cmdline_disable); 411 412 static inline bool cpu_smt_allowed(unsigned int cpu) 413 { 414 if (cpu_smt_control == CPU_SMT_ENABLED) 415 return true; 416 417 if (topology_is_primary_thread(cpu)) 418 return true; 419 420 /* 421 * On x86 it's required to boot all logical CPUs at least once so 422 * that the init code can get a chance to set CR4.MCE on each 423 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 424 * core will shutdown the machine. 425 */ 426 return !per_cpu(cpuhp_state, cpu).booted_once; 427 } 428 #else 429 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 430 #endif 431 432 static inline enum cpuhp_state 433 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 434 { 435 enum cpuhp_state prev_state = st->state; 436 437 st->rollback = false; 438 st->last = NULL; 439 440 st->target = target; 441 st->single = false; 442 st->bringup = st->state < target; 443 444 return prev_state; 445 } 446 447 static inline void 448 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 449 { 450 st->rollback = true; 451 452 /* 453 * If we have st->last we need to undo partial multi_instance of this 454 * state first. Otherwise start undo at the previous state. 455 */ 456 if (!st->last) { 457 if (st->bringup) 458 st->state--; 459 else 460 st->state++; 461 } 462 463 st->target = prev_state; 464 st->bringup = !st->bringup; 465 } 466 467 /* Regular hotplug invocation of the AP hotplug thread */ 468 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 469 { 470 if (!st->single && st->state == st->target) 471 return; 472 473 st->result = 0; 474 /* 475 * Make sure the above stores are visible before should_run becomes 476 * true. Paired with the mb() above in cpuhp_thread_fun() 477 */ 478 smp_mb(); 479 st->should_run = true; 480 wake_up_process(st->thread); 481 wait_for_ap_thread(st, st->bringup); 482 } 483 484 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 485 { 486 enum cpuhp_state prev_state; 487 int ret; 488 489 prev_state = cpuhp_set_state(st, target); 490 __cpuhp_kick_ap(st); 491 if ((ret = st->result)) { 492 cpuhp_reset_state(st, prev_state); 493 __cpuhp_kick_ap(st); 494 } 495 496 return ret; 497 } 498 499 static int bringup_wait_for_ap(unsigned int cpu) 500 { 501 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 502 503 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 504 wait_for_ap_thread(st, true); 505 if (WARN_ON_ONCE((!cpu_online(cpu)))) 506 return -ECANCELED; 507 508 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 509 stop_machine_unpark(cpu); 510 kthread_unpark(st->thread); 511 512 /* 513 * SMT soft disabling on X86 requires to bring the CPU out of the 514 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 515 * CPU marked itself as booted_once in cpu_notify_starting() so the 516 * cpu_smt_allowed() check will now return false if this is not the 517 * primary sibling. 518 */ 519 if (!cpu_smt_allowed(cpu)) 520 return -ECANCELED; 521 522 if (st->target <= CPUHP_AP_ONLINE_IDLE) 523 return 0; 524 525 return cpuhp_kick_ap(st, st->target); 526 } 527 528 static int bringup_cpu(unsigned int cpu) 529 { 530 struct task_struct *idle = idle_thread_get(cpu); 531 int ret; 532 533 /* 534 * Some architectures have to walk the irq descriptors to 535 * setup the vector space for the cpu which comes online. 536 * Prevent irq alloc/free across the bringup. 537 */ 538 irq_lock_sparse(); 539 540 /* Arch-specific enabling code. */ 541 ret = __cpu_up(cpu, idle); 542 irq_unlock_sparse(); 543 if (ret) 544 return ret; 545 return bringup_wait_for_ap(cpu); 546 } 547 548 /* 549 * Hotplug state machine related functions 550 */ 551 552 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 553 { 554 for (st->state--; st->state > st->target; st->state--) 555 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 556 } 557 558 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 559 enum cpuhp_state target) 560 { 561 enum cpuhp_state prev_state = st->state; 562 int ret = 0; 563 564 while (st->state < target) { 565 st->state++; 566 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 567 if (ret) { 568 st->target = prev_state; 569 undo_cpu_up(cpu, st); 570 break; 571 } 572 } 573 return ret; 574 } 575 576 /* 577 * The cpu hotplug threads manage the bringup and teardown of the cpus 578 */ 579 static void cpuhp_create(unsigned int cpu) 580 { 581 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 582 583 init_completion(&st->done_up); 584 init_completion(&st->done_down); 585 } 586 587 static int cpuhp_should_run(unsigned int cpu) 588 { 589 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 590 591 return st->should_run; 592 } 593 594 /* 595 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 596 * callbacks when a state gets [un]installed at runtime. 597 * 598 * Each invocation of this function by the smpboot thread does a single AP 599 * state callback. 600 * 601 * It has 3 modes of operation: 602 * - single: runs st->cb_state 603 * - up: runs ++st->state, while st->state < st->target 604 * - down: runs st->state--, while st->state > st->target 605 * 606 * When complete or on error, should_run is cleared and the completion is fired. 607 */ 608 static void cpuhp_thread_fun(unsigned int cpu) 609 { 610 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 611 bool bringup = st->bringup; 612 enum cpuhp_state state; 613 614 if (WARN_ON_ONCE(!st->should_run)) 615 return; 616 617 /* 618 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 619 * that if we see ->should_run we also see the rest of the state. 620 */ 621 smp_mb(); 622 623 /* 624 * The BP holds the hotplug lock, but we're now running on the AP, 625 * ensure that anybody asserting the lock is held, will actually find 626 * it so. 627 */ 628 lockdep_acquire_cpus_lock(); 629 cpuhp_lock_acquire(bringup); 630 631 if (st->single) { 632 state = st->cb_state; 633 st->should_run = false; 634 } else { 635 if (bringup) { 636 st->state++; 637 state = st->state; 638 st->should_run = (st->state < st->target); 639 WARN_ON_ONCE(st->state > st->target); 640 } else { 641 state = st->state; 642 st->state--; 643 st->should_run = (st->state > st->target); 644 WARN_ON_ONCE(st->state < st->target); 645 } 646 } 647 648 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 649 650 if (cpuhp_is_atomic_state(state)) { 651 local_irq_disable(); 652 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 653 local_irq_enable(); 654 655 /* 656 * STARTING/DYING must not fail! 657 */ 658 WARN_ON_ONCE(st->result); 659 } else { 660 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 661 } 662 663 if (st->result) { 664 /* 665 * If we fail on a rollback, we're up a creek without no 666 * paddle, no way forward, no way back. We loose, thanks for 667 * playing. 668 */ 669 WARN_ON_ONCE(st->rollback); 670 st->should_run = false; 671 } 672 673 cpuhp_lock_release(bringup); 674 lockdep_release_cpus_lock(); 675 676 if (!st->should_run) 677 complete_ap_thread(st, bringup); 678 } 679 680 /* Invoke a single callback on a remote cpu */ 681 static int 682 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 683 struct hlist_node *node) 684 { 685 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 686 int ret; 687 688 if (!cpu_online(cpu)) 689 return 0; 690 691 cpuhp_lock_acquire(false); 692 cpuhp_lock_release(false); 693 694 cpuhp_lock_acquire(true); 695 cpuhp_lock_release(true); 696 697 /* 698 * If we are up and running, use the hotplug thread. For early calls 699 * we invoke the thread function directly. 700 */ 701 if (!st->thread) 702 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 703 704 st->rollback = false; 705 st->last = NULL; 706 707 st->node = node; 708 st->bringup = bringup; 709 st->cb_state = state; 710 st->single = true; 711 712 __cpuhp_kick_ap(st); 713 714 /* 715 * If we failed and did a partial, do a rollback. 716 */ 717 if ((ret = st->result) && st->last) { 718 st->rollback = true; 719 st->bringup = !bringup; 720 721 __cpuhp_kick_ap(st); 722 } 723 724 /* 725 * Clean up the leftovers so the next hotplug operation wont use stale 726 * data. 727 */ 728 st->node = st->last = NULL; 729 return ret; 730 } 731 732 static int cpuhp_kick_ap_work(unsigned int cpu) 733 { 734 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 735 enum cpuhp_state prev_state = st->state; 736 int ret; 737 738 cpuhp_lock_acquire(false); 739 cpuhp_lock_release(false); 740 741 cpuhp_lock_acquire(true); 742 cpuhp_lock_release(true); 743 744 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 745 ret = cpuhp_kick_ap(st, st->target); 746 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 747 748 return ret; 749 } 750 751 static struct smp_hotplug_thread cpuhp_threads = { 752 .store = &cpuhp_state.thread, 753 .create = &cpuhp_create, 754 .thread_should_run = cpuhp_should_run, 755 .thread_fn = cpuhp_thread_fun, 756 .thread_comm = "cpuhp/%u", 757 .selfparking = true, 758 }; 759 760 void __init cpuhp_threads_init(void) 761 { 762 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 763 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 764 } 765 766 #ifdef CONFIG_HOTPLUG_CPU 767 /** 768 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 769 * @cpu: a CPU id 770 * 771 * This function walks all processes, finds a valid mm struct for each one and 772 * then clears a corresponding bit in mm's cpumask. While this all sounds 773 * trivial, there are various non-obvious corner cases, which this function 774 * tries to solve in a safe manner. 775 * 776 * Also note that the function uses a somewhat relaxed locking scheme, so it may 777 * be called only for an already offlined CPU. 778 */ 779 void clear_tasks_mm_cpumask(int cpu) 780 { 781 struct task_struct *p; 782 783 /* 784 * This function is called after the cpu is taken down and marked 785 * offline, so its not like new tasks will ever get this cpu set in 786 * their mm mask. -- Peter Zijlstra 787 * Thus, we may use rcu_read_lock() here, instead of grabbing 788 * full-fledged tasklist_lock. 789 */ 790 WARN_ON(cpu_online(cpu)); 791 rcu_read_lock(); 792 for_each_process(p) { 793 struct task_struct *t; 794 795 /* 796 * Main thread might exit, but other threads may still have 797 * a valid mm. Find one. 798 */ 799 t = find_lock_task_mm(p); 800 if (!t) 801 continue; 802 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 803 task_unlock(t); 804 } 805 rcu_read_unlock(); 806 } 807 808 /* Take this CPU down. */ 809 static int take_cpu_down(void *_param) 810 { 811 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 812 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 813 int err, cpu = smp_processor_id(); 814 int ret; 815 816 /* Ensure this CPU doesn't handle any more interrupts. */ 817 err = __cpu_disable(); 818 if (err < 0) 819 return err; 820 821 /* 822 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 823 * do this step again. 824 */ 825 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 826 st->state--; 827 /* Invoke the former CPU_DYING callbacks */ 828 for (; st->state > target; st->state--) { 829 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 830 /* 831 * DYING must not fail! 832 */ 833 WARN_ON_ONCE(ret); 834 } 835 836 /* Give up timekeeping duties */ 837 tick_handover_do_timer(); 838 /* Park the stopper thread */ 839 stop_machine_park(cpu); 840 return 0; 841 } 842 843 static int takedown_cpu(unsigned int cpu) 844 { 845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 846 int err; 847 848 /* Park the smpboot threads */ 849 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 850 851 /* 852 * Prevent irq alloc/free while the dying cpu reorganizes the 853 * interrupt affinities. 854 */ 855 irq_lock_sparse(); 856 857 /* 858 * So now all preempt/rcu users must observe !cpu_active(). 859 */ 860 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 861 if (err) { 862 /* CPU refused to die */ 863 irq_unlock_sparse(); 864 /* Unpark the hotplug thread so we can rollback there */ 865 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 866 return err; 867 } 868 BUG_ON(cpu_online(cpu)); 869 870 /* 871 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 872 * all runnable tasks from the CPU, there's only the idle task left now 873 * that the migration thread is done doing the stop_machine thing. 874 * 875 * Wait for the stop thread to go away. 876 */ 877 wait_for_ap_thread(st, false); 878 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 879 880 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 881 irq_unlock_sparse(); 882 883 hotplug_cpu__broadcast_tick_pull(cpu); 884 /* This actually kills the CPU. */ 885 __cpu_die(cpu); 886 887 tick_cleanup_dead_cpu(cpu); 888 rcutree_migrate_callbacks(cpu); 889 return 0; 890 } 891 892 static void cpuhp_complete_idle_dead(void *arg) 893 { 894 struct cpuhp_cpu_state *st = arg; 895 896 complete_ap_thread(st, false); 897 } 898 899 void cpuhp_report_idle_dead(void) 900 { 901 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 902 903 BUG_ON(st->state != CPUHP_AP_OFFLINE); 904 rcu_report_dead(smp_processor_id()); 905 st->state = CPUHP_AP_IDLE_DEAD; 906 /* 907 * We cannot call complete after rcu_report_dead() so we delegate it 908 * to an online cpu. 909 */ 910 smp_call_function_single(cpumask_first(cpu_online_mask), 911 cpuhp_complete_idle_dead, st, 0); 912 } 913 914 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 915 { 916 for (st->state++; st->state < st->target; st->state++) 917 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 918 } 919 920 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 921 enum cpuhp_state target) 922 { 923 enum cpuhp_state prev_state = st->state; 924 int ret = 0; 925 926 for (; st->state > target; st->state--) { 927 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 928 if (ret) { 929 st->target = prev_state; 930 if (st->state < prev_state) 931 undo_cpu_down(cpu, st); 932 break; 933 } 934 } 935 return ret; 936 } 937 938 /* Requires cpu_add_remove_lock to be held */ 939 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 940 enum cpuhp_state target) 941 { 942 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 943 int prev_state, ret = 0; 944 945 if (num_online_cpus() == 1) 946 return -EBUSY; 947 948 if (!cpu_present(cpu)) 949 return -EINVAL; 950 951 cpus_write_lock(); 952 953 cpuhp_tasks_frozen = tasks_frozen; 954 955 prev_state = cpuhp_set_state(st, target); 956 /* 957 * If the current CPU state is in the range of the AP hotplug thread, 958 * then we need to kick the thread. 959 */ 960 if (st->state > CPUHP_TEARDOWN_CPU) { 961 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 962 ret = cpuhp_kick_ap_work(cpu); 963 /* 964 * The AP side has done the error rollback already. Just 965 * return the error code.. 966 */ 967 if (ret) 968 goto out; 969 970 /* 971 * We might have stopped still in the range of the AP hotplug 972 * thread. Nothing to do anymore. 973 */ 974 if (st->state > CPUHP_TEARDOWN_CPU) 975 goto out; 976 977 st->target = target; 978 } 979 /* 980 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 981 * to do the further cleanups. 982 */ 983 ret = cpuhp_down_callbacks(cpu, st, target); 984 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 985 cpuhp_reset_state(st, prev_state); 986 __cpuhp_kick_ap(st); 987 } 988 989 out: 990 cpus_write_unlock(); 991 /* 992 * Do post unplug cleanup. This is still protected against 993 * concurrent CPU hotplug via cpu_add_remove_lock. 994 */ 995 lockup_detector_cleanup(); 996 arch_smt_update(); 997 return ret; 998 } 999 1000 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1001 { 1002 if (cpu_hotplug_disabled) 1003 return -EBUSY; 1004 return _cpu_down(cpu, 0, target); 1005 } 1006 1007 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1008 { 1009 int err; 1010 1011 cpu_maps_update_begin(); 1012 err = cpu_down_maps_locked(cpu, target); 1013 cpu_maps_update_done(); 1014 return err; 1015 } 1016 1017 int cpu_down(unsigned int cpu) 1018 { 1019 return do_cpu_down(cpu, CPUHP_OFFLINE); 1020 } 1021 EXPORT_SYMBOL(cpu_down); 1022 1023 #else 1024 #define takedown_cpu NULL 1025 #endif /*CONFIG_HOTPLUG_CPU*/ 1026 1027 /** 1028 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1029 * @cpu: cpu that just started 1030 * 1031 * It must be called by the arch code on the new cpu, before the new cpu 1032 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1033 */ 1034 void notify_cpu_starting(unsigned int cpu) 1035 { 1036 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1037 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1038 int ret; 1039 1040 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1041 st->booted_once = true; 1042 while (st->state < target) { 1043 st->state++; 1044 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1045 /* 1046 * STARTING must not fail! 1047 */ 1048 WARN_ON_ONCE(ret); 1049 } 1050 } 1051 1052 /* 1053 * Called from the idle task. Wake up the controlling task which brings the 1054 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1055 * the rest of the online bringup to the hotplug thread. 1056 */ 1057 void cpuhp_online_idle(enum cpuhp_state state) 1058 { 1059 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1060 1061 /* Happens for the boot cpu */ 1062 if (state != CPUHP_AP_ONLINE_IDLE) 1063 return; 1064 1065 st->state = CPUHP_AP_ONLINE_IDLE; 1066 complete_ap_thread(st, true); 1067 } 1068 1069 /* Requires cpu_add_remove_lock to be held */ 1070 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1071 { 1072 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1073 struct task_struct *idle; 1074 int ret = 0; 1075 1076 cpus_write_lock(); 1077 1078 if (!cpu_present(cpu)) { 1079 ret = -EINVAL; 1080 goto out; 1081 } 1082 1083 /* 1084 * The caller of do_cpu_up might have raced with another 1085 * caller. Ignore it for now. 1086 */ 1087 if (st->state >= target) 1088 goto out; 1089 1090 if (st->state == CPUHP_OFFLINE) { 1091 /* Let it fail before we try to bring the cpu up */ 1092 idle = idle_thread_get(cpu); 1093 if (IS_ERR(idle)) { 1094 ret = PTR_ERR(idle); 1095 goto out; 1096 } 1097 } 1098 1099 cpuhp_tasks_frozen = tasks_frozen; 1100 1101 cpuhp_set_state(st, target); 1102 /* 1103 * If the current CPU state is in the range of the AP hotplug thread, 1104 * then we need to kick the thread once more. 1105 */ 1106 if (st->state > CPUHP_BRINGUP_CPU) { 1107 ret = cpuhp_kick_ap_work(cpu); 1108 /* 1109 * The AP side has done the error rollback already. Just 1110 * return the error code.. 1111 */ 1112 if (ret) 1113 goto out; 1114 } 1115 1116 /* 1117 * Try to reach the target state. We max out on the BP at 1118 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1119 * responsible for bringing it up to the target state. 1120 */ 1121 target = min((int)target, CPUHP_BRINGUP_CPU); 1122 ret = cpuhp_up_callbacks(cpu, st, target); 1123 out: 1124 cpus_write_unlock(); 1125 arch_smt_update(); 1126 return ret; 1127 } 1128 1129 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1130 { 1131 int err = 0; 1132 1133 if (!cpu_possible(cpu)) { 1134 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1135 cpu); 1136 #if defined(CONFIG_IA64) 1137 pr_err("please check additional_cpus= boot parameter\n"); 1138 #endif 1139 return -EINVAL; 1140 } 1141 1142 err = try_online_node(cpu_to_node(cpu)); 1143 if (err) 1144 return err; 1145 1146 cpu_maps_update_begin(); 1147 1148 if (cpu_hotplug_disabled) { 1149 err = -EBUSY; 1150 goto out; 1151 } 1152 if (!cpu_smt_allowed(cpu)) { 1153 err = -EPERM; 1154 goto out; 1155 } 1156 1157 err = _cpu_up(cpu, 0, target); 1158 out: 1159 cpu_maps_update_done(); 1160 return err; 1161 } 1162 1163 int cpu_up(unsigned int cpu) 1164 { 1165 return do_cpu_up(cpu, CPUHP_ONLINE); 1166 } 1167 EXPORT_SYMBOL_GPL(cpu_up); 1168 1169 #ifdef CONFIG_PM_SLEEP_SMP 1170 static cpumask_var_t frozen_cpus; 1171 1172 int freeze_secondary_cpus(int primary) 1173 { 1174 int cpu, error = 0; 1175 1176 cpu_maps_update_begin(); 1177 if (!cpu_online(primary)) 1178 primary = cpumask_first(cpu_online_mask); 1179 /* 1180 * We take down all of the non-boot CPUs in one shot to avoid races 1181 * with the userspace trying to use the CPU hotplug at the same time 1182 */ 1183 cpumask_clear(frozen_cpus); 1184 1185 pr_info("Disabling non-boot CPUs ...\n"); 1186 for_each_online_cpu(cpu) { 1187 if (cpu == primary) 1188 continue; 1189 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1190 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1191 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1192 if (!error) 1193 cpumask_set_cpu(cpu, frozen_cpus); 1194 else { 1195 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1196 break; 1197 } 1198 } 1199 1200 if (!error) 1201 BUG_ON(num_online_cpus() > 1); 1202 else 1203 pr_err("Non-boot CPUs are not disabled\n"); 1204 1205 /* 1206 * Make sure the CPUs won't be enabled by someone else. We need to do 1207 * this even in case of failure as all disable_nonboot_cpus() users are 1208 * supposed to do enable_nonboot_cpus() on the failure path. 1209 */ 1210 cpu_hotplug_disabled++; 1211 1212 cpu_maps_update_done(); 1213 return error; 1214 } 1215 1216 void __weak arch_enable_nonboot_cpus_begin(void) 1217 { 1218 } 1219 1220 void __weak arch_enable_nonboot_cpus_end(void) 1221 { 1222 } 1223 1224 void enable_nonboot_cpus(void) 1225 { 1226 int cpu, error; 1227 1228 /* Allow everyone to use the CPU hotplug again */ 1229 cpu_maps_update_begin(); 1230 __cpu_hotplug_enable(); 1231 if (cpumask_empty(frozen_cpus)) 1232 goto out; 1233 1234 pr_info("Enabling non-boot CPUs ...\n"); 1235 1236 arch_enable_nonboot_cpus_begin(); 1237 1238 for_each_cpu(cpu, frozen_cpus) { 1239 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1240 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1241 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1242 if (!error) { 1243 pr_info("CPU%d is up\n", cpu); 1244 continue; 1245 } 1246 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1247 } 1248 1249 arch_enable_nonboot_cpus_end(); 1250 1251 cpumask_clear(frozen_cpus); 1252 out: 1253 cpu_maps_update_done(); 1254 } 1255 1256 static int __init alloc_frozen_cpus(void) 1257 { 1258 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1259 return -ENOMEM; 1260 return 0; 1261 } 1262 core_initcall(alloc_frozen_cpus); 1263 1264 /* 1265 * When callbacks for CPU hotplug notifications are being executed, we must 1266 * ensure that the state of the system with respect to the tasks being frozen 1267 * or not, as reported by the notification, remains unchanged *throughout the 1268 * duration* of the execution of the callbacks. 1269 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1270 * 1271 * This synchronization is implemented by mutually excluding regular CPU 1272 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1273 * Hibernate notifications. 1274 */ 1275 static int 1276 cpu_hotplug_pm_callback(struct notifier_block *nb, 1277 unsigned long action, void *ptr) 1278 { 1279 switch (action) { 1280 1281 case PM_SUSPEND_PREPARE: 1282 case PM_HIBERNATION_PREPARE: 1283 cpu_hotplug_disable(); 1284 break; 1285 1286 case PM_POST_SUSPEND: 1287 case PM_POST_HIBERNATION: 1288 cpu_hotplug_enable(); 1289 break; 1290 1291 default: 1292 return NOTIFY_DONE; 1293 } 1294 1295 return NOTIFY_OK; 1296 } 1297 1298 1299 static int __init cpu_hotplug_pm_sync_init(void) 1300 { 1301 /* 1302 * cpu_hotplug_pm_callback has higher priority than x86 1303 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1304 * to disable cpu hotplug to avoid cpu hotplug race. 1305 */ 1306 pm_notifier(cpu_hotplug_pm_callback, 0); 1307 return 0; 1308 } 1309 core_initcall(cpu_hotplug_pm_sync_init); 1310 1311 #endif /* CONFIG_PM_SLEEP_SMP */ 1312 1313 int __boot_cpu_id; 1314 1315 #endif /* CONFIG_SMP */ 1316 1317 /* Boot processor state steps */ 1318 static struct cpuhp_step cpuhp_hp_states[] = { 1319 [CPUHP_OFFLINE] = { 1320 .name = "offline", 1321 .startup.single = NULL, 1322 .teardown.single = NULL, 1323 }, 1324 #ifdef CONFIG_SMP 1325 [CPUHP_CREATE_THREADS]= { 1326 .name = "threads:prepare", 1327 .startup.single = smpboot_create_threads, 1328 .teardown.single = NULL, 1329 .cant_stop = true, 1330 }, 1331 [CPUHP_PERF_PREPARE] = { 1332 .name = "perf:prepare", 1333 .startup.single = perf_event_init_cpu, 1334 .teardown.single = perf_event_exit_cpu, 1335 }, 1336 [CPUHP_WORKQUEUE_PREP] = { 1337 .name = "workqueue:prepare", 1338 .startup.single = workqueue_prepare_cpu, 1339 .teardown.single = NULL, 1340 }, 1341 [CPUHP_HRTIMERS_PREPARE] = { 1342 .name = "hrtimers:prepare", 1343 .startup.single = hrtimers_prepare_cpu, 1344 .teardown.single = hrtimers_dead_cpu, 1345 }, 1346 [CPUHP_SMPCFD_PREPARE] = { 1347 .name = "smpcfd:prepare", 1348 .startup.single = smpcfd_prepare_cpu, 1349 .teardown.single = smpcfd_dead_cpu, 1350 }, 1351 [CPUHP_RELAY_PREPARE] = { 1352 .name = "relay:prepare", 1353 .startup.single = relay_prepare_cpu, 1354 .teardown.single = NULL, 1355 }, 1356 [CPUHP_SLAB_PREPARE] = { 1357 .name = "slab:prepare", 1358 .startup.single = slab_prepare_cpu, 1359 .teardown.single = slab_dead_cpu, 1360 }, 1361 [CPUHP_RCUTREE_PREP] = { 1362 .name = "RCU/tree:prepare", 1363 .startup.single = rcutree_prepare_cpu, 1364 .teardown.single = rcutree_dead_cpu, 1365 }, 1366 /* 1367 * On the tear-down path, timers_dead_cpu() must be invoked 1368 * before blk_mq_queue_reinit_notify() from notify_dead(), 1369 * otherwise a RCU stall occurs. 1370 */ 1371 [CPUHP_TIMERS_PREPARE] = { 1372 .name = "timers:prepare", 1373 .startup.single = timers_prepare_cpu, 1374 .teardown.single = timers_dead_cpu, 1375 }, 1376 /* Kicks the plugged cpu into life */ 1377 [CPUHP_BRINGUP_CPU] = { 1378 .name = "cpu:bringup", 1379 .startup.single = bringup_cpu, 1380 .teardown.single = NULL, 1381 .cant_stop = true, 1382 }, 1383 /* Final state before CPU kills itself */ 1384 [CPUHP_AP_IDLE_DEAD] = { 1385 .name = "idle:dead", 1386 }, 1387 /* 1388 * Last state before CPU enters the idle loop to die. Transient state 1389 * for synchronization. 1390 */ 1391 [CPUHP_AP_OFFLINE] = { 1392 .name = "ap:offline", 1393 .cant_stop = true, 1394 }, 1395 /* First state is scheduler control. Interrupts are disabled */ 1396 [CPUHP_AP_SCHED_STARTING] = { 1397 .name = "sched:starting", 1398 .startup.single = sched_cpu_starting, 1399 .teardown.single = sched_cpu_dying, 1400 }, 1401 [CPUHP_AP_RCUTREE_DYING] = { 1402 .name = "RCU/tree:dying", 1403 .startup.single = NULL, 1404 .teardown.single = rcutree_dying_cpu, 1405 }, 1406 [CPUHP_AP_SMPCFD_DYING] = { 1407 .name = "smpcfd:dying", 1408 .startup.single = NULL, 1409 .teardown.single = smpcfd_dying_cpu, 1410 }, 1411 /* Entry state on starting. Interrupts enabled from here on. Transient 1412 * state for synchronsization */ 1413 [CPUHP_AP_ONLINE] = { 1414 .name = "ap:online", 1415 }, 1416 /* 1417 * Handled on controll processor until the plugged processor manages 1418 * this itself. 1419 */ 1420 [CPUHP_TEARDOWN_CPU] = { 1421 .name = "cpu:teardown", 1422 .startup.single = NULL, 1423 .teardown.single = takedown_cpu, 1424 .cant_stop = true, 1425 }, 1426 /* Handle smpboot threads park/unpark */ 1427 [CPUHP_AP_SMPBOOT_THREADS] = { 1428 .name = "smpboot/threads:online", 1429 .startup.single = smpboot_unpark_threads, 1430 .teardown.single = smpboot_park_threads, 1431 }, 1432 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1433 .name = "irq/affinity:online", 1434 .startup.single = irq_affinity_online_cpu, 1435 .teardown.single = NULL, 1436 }, 1437 [CPUHP_AP_PERF_ONLINE] = { 1438 .name = "perf:online", 1439 .startup.single = perf_event_init_cpu, 1440 .teardown.single = perf_event_exit_cpu, 1441 }, 1442 [CPUHP_AP_WATCHDOG_ONLINE] = { 1443 .name = "lockup_detector:online", 1444 .startup.single = lockup_detector_online_cpu, 1445 .teardown.single = lockup_detector_offline_cpu, 1446 }, 1447 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1448 .name = "workqueue:online", 1449 .startup.single = workqueue_online_cpu, 1450 .teardown.single = workqueue_offline_cpu, 1451 }, 1452 [CPUHP_AP_RCUTREE_ONLINE] = { 1453 .name = "RCU/tree:online", 1454 .startup.single = rcutree_online_cpu, 1455 .teardown.single = rcutree_offline_cpu, 1456 }, 1457 #endif 1458 /* 1459 * The dynamically registered state space is here 1460 */ 1461 1462 #ifdef CONFIG_SMP 1463 /* Last state is scheduler control setting the cpu active */ 1464 [CPUHP_AP_ACTIVE] = { 1465 .name = "sched:active", 1466 .startup.single = sched_cpu_activate, 1467 .teardown.single = sched_cpu_deactivate, 1468 }, 1469 #endif 1470 1471 /* CPU is fully up and running. */ 1472 [CPUHP_ONLINE] = { 1473 .name = "online", 1474 .startup.single = NULL, 1475 .teardown.single = NULL, 1476 }, 1477 }; 1478 1479 /* Sanity check for callbacks */ 1480 static int cpuhp_cb_check(enum cpuhp_state state) 1481 { 1482 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1483 return -EINVAL; 1484 return 0; 1485 } 1486 1487 /* 1488 * Returns a free for dynamic slot assignment of the Online state. The states 1489 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1490 * by having no name assigned. 1491 */ 1492 static int cpuhp_reserve_state(enum cpuhp_state state) 1493 { 1494 enum cpuhp_state i, end; 1495 struct cpuhp_step *step; 1496 1497 switch (state) { 1498 case CPUHP_AP_ONLINE_DYN: 1499 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1500 end = CPUHP_AP_ONLINE_DYN_END; 1501 break; 1502 case CPUHP_BP_PREPARE_DYN: 1503 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1504 end = CPUHP_BP_PREPARE_DYN_END; 1505 break; 1506 default: 1507 return -EINVAL; 1508 } 1509 1510 for (i = state; i <= end; i++, step++) { 1511 if (!step->name) 1512 return i; 1513 } 1514 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1515 return -ENOSPC; 1516 } 1517 1518 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1519 int (*startup)(unsigned int cpu), 1520 int (*teardown)(unsigned int cpu), 1521 bool multi_instance) 1522 { 1523 /* (Un)Install the callbacks for further cpu hotplug operations */ 1524 struct cpuhp_step *sp; 1525 int ret = 0; 1526 1527 /* 1528 * If name is NULL, then the state gets removed. 1529 * 1530 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1531 * the first allocation from these dynamic ranges, so the removal 1532 * would trigger a new allocation and clear the wrong (already 1533 * empty) state, leaving the callbacks of the to be cleared state 1534 * dangling, which causes wreckage on the next hotplug operation. 1535 */ 1536 if (name && (state == CPUHP_AP_ONLINE_DYN || 1537 state == CPUHP_BP_PREPARE_DYN)) { 1538 ret = cpuhp_reserve_state(state); 1539 if (ret < 0) 1540 return ret; 1541 state = ret; 1542 } 1543 sp = cpuhp_get_step(state); 1544 if (name && sp->name) 1545 return -EBUSY; 1546 1547 sp->startup.single = startup; 1548 sp->teardown.single = teardown; 1549 sp->name = name; 1550 sp->multi_instance = multi_instance; 1551 INIT_HLIST_HEAD(&sp->list); 1552 return ret; 1553 } 1554 1555 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1556 { 1557 return cpuhp_get_step(state)->teardown.single; 1558 } 1559 1560 /* 1561 * Call the startup/teardown function for a step either on the AP or 1562 * on the current CPU. 1563 */ 1564 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1565 struct hlist_node *node) 1566 { 1567 struct cpuhp_step *sp = cpuhp_get_step(state); 1568 int ret; 1569 1570 /* 1571 * If there's nothing to do, we done. 1572 * Relies on the union for multi_instance. 1573 */ 1574 if ((bringup && !sp->startup.single) || 1575 (!bringup && !sp->teardown.single)) 1576 return 0; 1577 /* 1578 * The non AP bound callbacks can fail on bringup. On teardown 1579 * e.g. module removal we crash for now. 1580 */ 1581 #ifdef CONFIG_SMP 1582 if (cpuhp_is_ap_state(state)) 1583 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1584 else 1585 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1586 #else 1587 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1588 #endif 1589 BUG_ON(ret && !bringup); 1590 return ret; 1591 } 1592 1593 /* 1594 * Called from __cpuhp_setup_state on a recoverable failure. 1595 * 1596 * Note: The teardown callbacks for rollback are not allowed to fail! 1597 */ 1598 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1599 struct hlist_node *node) 1600 { 1601 int cpu; 1602 1603 /* Roll back the already executed steps on the other cpus */ 1604 for_each_present_cpu(cpu) { 1605 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1606 int cpustate = st->state; 1607 1608 if (cpu >= failedcpu) 1609 break; 1610 1611 /* Did we invoke the startup call on that cpu ? */ 1612 if (cpustate >= state) 1613 cpuhp_issue_call(cpu, state, false, node); 1614 } 1615 } 1616 1617 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1618 struct hlist_node *node, 1619 bool invoke) 1620 { 1621 struct cpuhp_step *sp; 1622 int cpu; 1623 int ret; 1624 1625 lockdep_assert_cpus_held(); 1626 1627 sp = cpuhp_get_step(state); 1628 if (sp->multi_instance == false) 1629 return -EINVAL; 1630 1631 mutex_lock(&cpuhp_state_mutex); 1632 1633 if (!invoke || !sp->startup.multi) 1634 goto add_node; 1635 1636 /* 1637 * Try to call the startup callback for each present cpu 1638 * depending on the hotplug state of the cpu. 1639 */ 1640 for_each_present_cpu(cpu) { 1641 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1642 int cpustate = st->state; 1643 1644 if (cpustate < state) 1645 continue; 1646 1647 ret = cpuhp_issue_call(cpu, state, true, node); 1648 if (ret) { 1649 if (sp->teardown.multi) 1650 cpuhp_rollback_install(cpu, state, node); 1651 goto unlock; 1652 } 1653 } 1654 add_node: 1655 ret = 0; 1656 hlist_add_head(node, &sp->list); 1657 unlock: 1658 mutex_unlock(&cpuhp_state_mutex); 1659 return ret; 1660 } 1661 1662 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1663 bool invoke) 1664 { 1665 int ret; 1666 1667 cpus_read_lock(); 1668 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1669 cpus_read_unlock(); 1670 return ret; 1671 } 1672 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1673 1674 /** 1675 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1676 * @state: The state to setup 1677 * @invoke: If true, the startup function is invoked for cpus where 1678 * cpu state >= @state 1679 * @startup: startup callback function 1680 * @teardown: teardown callback function 1681 * @multi_instance: State is set up for multiple instances which get 1682 * added afterwards. 1683 * 1684 * The caller needs to hold cpus read locked while calling this function. 1685 * Returns: 1686 * On success: 1687 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1688 * 0 for all other states 1689 * On failure: proper (negative) error code 1690 */ 1691 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1692 const char *name, bool invoke, 1693 int (*startup)(unsigned int cpu), 1694 int (*teardown)(unsigned int cpu), 1695 bool multi_instance) 1696 { 1697 int cpu, ret = 0; 1698 bool dynstate; 1699 1700 lockdep_assert_cpus_held(); 1701 1702 if (cpuhp_cb_check(state) || !name) 1703 return -EINVAL; 1704 1705 mutex_lock(&cpuhp_state_mutex); 1706 1707 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1708 multi_instance); 1709 1710 dynstate = state == CPUHP_AP_ONLINE_DYN; 1711 if (ret > 0 && dynstate) { 1712 state = ret; 1713 ret = 0; 1714 } 1715 1716 if (ret || !invoke || !startup) 1717 goto out; 1718 1719 /* 1720 * Try to call the startup callback for each present cpu 1721 * depending on the hotplug state of the cpu. 1722 */ 1723 for_each_present_cpu(cpu) { 1724 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1725 int cpustate = st->state; 1726 1727 if (cpustate < state) 1728 continue; 1729 1730 ret = cpuhp_issue_call(cpu, state, true, NULL); 1731 if (ret) { 1732 if (teardown) 1733 cpuhp_rollback_install(cpu, state, NULL); 1734 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1735 goto out; 1736 } 1737 } 1738 out: 1739 mutex_unlock(&cpuhp_state_mutex); 1740 /* 1741 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1742 * dynamically allocated state in case of success. 1743 */ 1744 if (!ret && dynstate) 1745 return state; 1746 return ret; 1747 } 1748 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1749 1750 int __cpuhp_setup_state(enum cpuhp_state state, 1751 const char *name, bool invoke, 1752 int (*startup)(unsigned int cpu), 1753 int (*teardown)(unsigned int cpu), 1754 bool multi_instance) 1755 { 1756 int ret; 1757 1758 cpus_read_lock(); 1759 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1760 teardown, multi_instance); 1761 cpus_read_unlock(); 1762 return ret; 1763 } 1764 EXPORT_SYMBOL(__cpuhp_setup_state); 1765 1766 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1767 struct hlist_node *node, bool invoke) 1768 { 1769 struct cpuhp_step *sp = cpuhp_get_step(state); 1770 int cpu; 1771 1772 BUG_ON(cpuhp_cb_check(state)); 1773 1774 if (!sp->multi_instance) 1775 return -EINVAL; 1776 1777 cpus_read_lock(); 1778 mutex_lock(&cpuhp_state_mutex); 1779 1780 if (!invoke || !cpuhp_get_teardown_cb(state)) 1781 goto remove; 1782 /* 1783 * Call the teardown callback for each present cpu depending 1784 * on the hotplug state of the cpu. This function is not 1785 * allowed to fail currently! 1786 */ 1787 for_each_present_cpu(cpu) { 1788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1789 int cpustate = st->state; 1790 1791 if (cpustate >= state) 1792 cpuhp_issue_call(cpu, state, false, node); 1793 } 1794 1795 remove: 1796 hlist_del(node); 1797 mutex_unlock(&cpuhp_state_mutex); 1798 cpus_read_unlock(); 1799 1800 return 0; 1801 } 1802 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1803 1804 /** 1805 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1806 * @state: The state to remove 1807 * @invoke: If true, the teardown function is invoked for cpus where 1808 * cpu state >= @state 1809 * 1810 * The caller needs to hold cpus read locked while calling this function. 1811 * The teardown callback is currently not allowed to fail. Think 1812 * about module removal! 1813 */ 1814 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1815 { 1816 struct cpuhp_step *sp = cpuhp_get_step(state); 1817 int cpu; 1818 1819 BUG_ON(cpuhp_cb_check(state)); 1820 1821 lockdep_assert_cpus_held(); 1822 1823 mutex_lock(&cpuhp_state_mutex); 1824 if (sp->multi_instance) { 1825 WARN(!hlist_empty(&sp->list), 1826 "Error: Removing state %d which has instances left.\n", 1827 state); 1828 goto remove; 1829 } 1830 1831 if (!invoke || !cpuhp_get_teardown_cb(state)) 1832 goto remove; 1833 1834 /* 1835 * Call the teardown callback for each present cpu depending 1836 * on the hotplug state of the cpu. This function is not 1837 * allowed to fail currently! 1838 */ 1839 for_each_present_cpu(cpu) { 1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1841 int cpustate = st->state; 1842 1843 if (cpustate >= state) 1844 cpuhp_issue_call(cpu, state, false, NULL); 1845 } 1846 remove: 1847 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1848 mutex_unlock(&cpuhp_state_mutex); 1849 } 1850 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1851 1852 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1853 { 1854 cpus_read_lock(); 1855 __cpuhp_remove_state_cpuslocked(state, invoke); 1856 cpus_read_unlock(); 1857 } 1858 EXPORT_SYMBOL(__cpuhp_remove_state); 1859 1860 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1861 static ssize_t show_cpuhp_state(struct device *dev, 1862 struct device_attribute *attr, char *buf) 1863 { 1864 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1865 1866 return sprintf(buf, "%d\n", st->state); 1867 } 1868 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1869 1870 static ssize_t write_cpuhp_target(struct device *dev, 1871 struct device_attribute *attr, 1872 const char *buf, size_t count) 1873 { 1874 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1875 struct cpuhp_step *sp; 1876 int target, ret; 1877 1878 ret = kstrtoint(buf, 10, &target); 1879 if (ret) 1880 return ret; 1881 1882 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1883 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1884 return -EINVAL; 1885 #else 1886 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1887 return -EINVAL; 1888 #endif 1889 1890 ret = lock_device_hotplug_sysfs(); 1891 if (ret) 1892 return ret; 1893 1894 mutex_lock(&cpuhp_state_mutex); 1895 sp = cpuhp_get_step(target); 1896 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1897 mutex_unlock(&cpuhp_state_mutex); 1898 if (ret) 1899 goto out; 1900 1901 if (st->state < target) 1902 ret = do_cpu_up(dev->id, target); 1903 else 1904 ret = do_cpu_down(dev->id, target); 1905 out: 1906 unlock_device_hotplug(); 1907 return ret ? ret : count; 1908 } 1909 1910 static ssize_t show_cpuhp_target(struct device *dev, 1911 struct device_attribute *attr, char *buf) 1912 { 1913 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1914 1915 return sprintf(buf, "%d\n", st->target); 1916 } 1917 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1918 1919 1920 static ssize_t write_cpuhp_fail(struct device *dev, 1921 struct device_attribute *attr, 1922 const char *buf, size_t count) 1923 { 1924 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1925 struct cpuhp_step *sp; 1926 int fail, ret; 1927 1928 ret = kstrtoint(buf, 10, &fail); 1929 if (ret) 1930 return ret; 1931 1932 /* 1933 * Cannot fail STARTING/DYING callbacks. 1934 */ 1935 if (cpuhp_is_atomic_state(fail)) 1936 return -EINVAL; 1937 1938 /* 1939 * Cannot fail anything that doesn't have callbacks. 1940 */ 1941 mutex_lock(&cpuhp_state_mutex); 1942 sp = cpuhp_get_step(fail); 1943 if (!sp->startup.single && !sp->teardown.single) 1944 ret = -EINVAL; 1945 mutex_unlock(&cpuhp_state_mutex); 1946 if (ret) 1947 return ret; 1948 1949 st->fail = fail; 1950 1951 return count; 1952 } 1953 1954 static ssize_t show_cpuhp_fail(struct device *dev, 1955 struct device_attribute *attr, char *buf) 1956 { 1957 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1958 1959 return sprintf(buf, "%d\n", st->fail); 1960 } 1961 1962 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1963 1964 static struct attribute *cpuhp_cpu_attrs[] = { 1965 &dev_attr_state.attr, 1966 &dev_attr_target.attr, 1967 &dev_attr_fail.attr, 1968 NULL 1969 }; 1970 1971 static const struct attribute_group cpuhp_cpu_attr_group = { 1972 .attrs = cpuhp_cpu_attrs, 1973 .name = "hotplug", 1974 NULL 1975 }; 1976 1977 static ssize_t show_cpuhp_states(struct device *dev, 1978 struct device_attribute *attr, char *buf) 1979 { 1980 ssize_t cur, res = 0; 1981 int i; 1982 1983 mutex_lock(&cpuhp_state_mutex); 1984 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1985 struct cpuhp_step *sp = cpuhp_get_step(i); 1986 1987 if (sp->name) { 1988 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1989 buf += cur; 1990 res += cur; 1991 } 1992 } 1993 mutex_unlock(&cpuhp_state_mutex); 1994 return res; 1995 } 1996 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1997 1998 static struct attribute *cpuhp_cpu_root_attrs[] = { 1999 &dev_attr_states.attr, 2000 NULL 2001 }; 2002 2003 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2004 .attrs = cpuhp_cpu_root_attrs, 2005 .name = "hotplug", 2006 NULL 2007 }; 2008 2009 #ifdef CONFIG_HOTPLUG_SMT 2010 2011 static const char *smt_states[] = { 2012 [CPU_SMT_ENABLED] = "on", 2013 [CPU_SMT_DISABLED] = "off", 2014 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2015 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2016 }; 2017 2018 static ssize_t 2019 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2020 { 2021 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]); 2022 } 2023 2024 static void cpuhp_offline_cpu_device(unsigned int cpu) 2025 { 2026 struct device *dev = get_cpu_device(cpu); 2027 2028 dev->offline = true; 2029 /* Tell user space about the state change */ 2030 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2031 } 2032 2033 static void cpuhp_online_cpu_device(unsigned int cpu) 2034 { 2035 struct device *dev = get_cpu_device(cpu); 2036 2037 dev->offline = false; 2038 /* Tell user space about the state change */ 2039 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2040 } 2041 2042 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2043 { 2044 int cpu, ret = 0; 2045 2046 cpu_maps_update_begin(); 2047 for_each_online_cpu(cpu) { 2048 if (topology_is_primary_thread(cpu)) 2049 continue; 2050 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2051 if (ret) 2052 break; 2053 /* 2054 * As this needs to hold the cpu maps lock it's impossible 2055 * to call device_offline() because that ends up calling 2056 * cpu_down() which takes cpu maps lock. cpu maps lock 2057 * needs to be held as this might race against in kernel 2058 * abusers of the hotplug machinery (thermal management). 2059 * 2060 * So nothing would update device:offline state. That would 2061 * leave the sysfs entry stale and prevent onlining after 2062 * smt control has been changed to 'off' again. This is 2063 * called under the sysfs hotplug lock, so it is properly 2064 * serialized against the regular offline usage. 2065 */ 2066 cpuhp_offline_cpu_device(cpu); 2067 } 2068 if (!ret) 2069 cpu_smt_control = ctrlval; 2070 cpu_maps_update_done(); 2071 return ret; 2072 } 2073 2074 static int cpuhp_smt_enable(void) 2075 { 2076 int cpu, ret = 0; 2077 2078 cpu_maps_update_begin(); 2079 cpu_smt_control = CPU_SMT_ENABLED; 2080 for_each_present_cpu(cpu) { 2081 /* Skip online CPUs and CPUs on offline nodes */ 2082 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2083 continue; 2084 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2085 if (ret) 2086 break; 2087 /* See comment in cpuhp_smt_disable() */ 2088 cpuhp_online_cpu_device(cpu); 2089 } 2090 cpu_maps_update_done(); 2091 return ret; 2092 } 2093 2094 static ssize_t 2095 store_smt_control(struct device *dev, struct device_attribute *attr, 2096 const char *buf, size_t count) 2097 { 2098 int ctrlval, ret; 2099 2100 if (sysfs_streq(buf, "on")) 2101 ctrlval = CPU_SMT_ENABLED; 2102 else if (sysfs_streq(buf, "off")) 2103 ctrlval = CPU_SMT_DISABLED; 2104 else if (sysfs_streq(buf, "forceoff")) 2105 ctrlval = CPU_SMT_FORCE_DISABLED; 2106 else 2107 return -EINVAL; 2108 2109 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2110 return -EPERM; 2111 2112 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2113 return -ENODEV; 2114 2115 ret = lock_device_hotplug_sysfs(); 2116 if (ret) 2117 return ret; 2118 2119 if (ctrlval != cpu_smt_control) { 2120 switch (ctrlval) { 2121 case CPU_SMT_ENABLED: 2122 ret = cpuhp_smt_enable(); 2123 break; 2124 case CPU_SMT_DISABLED: 2125 case CPU_SMT_FORCE_DISABLED: 2126 ret = cpuhp_smt_disable(ctrlval); 2127 break; 2128 } 2129 } 2130 2131 unlock_device_hotplug(); 2132 return ret ? ret : count; 2133 } 2134 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2135 2136 static ssize_t 2137 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2138 { 2139 bool active = topology_max_smt_threads() > 1; 2140 2141 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active); 2142 } 2143 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2144 2145 static struct attribute *cpuhp_smt_attrs[] = { 2146 &dev_attr_control.attr, 2147 &dev_attr_active.attr, 2148 NULL 2149 }; 2150 2151 static const struct attribute_group cpuhp_smt_attr_group = { 2152 .attrs = cpuhp_smt_attrs, 2153 .name = "smt", 2154 NULL 2155 }; 2156 2157 static int __init cpu_smt_state_init(void) 2158 { 2159 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2160 &cpuhp_smt_attr_group); 2161 } 2162 2163 #else 2164 static inline int cpu_smt_state_init(void) { return 0; } 2165 #endif 2166 2167 static int __init cpuhp_sysfs_init(void) 2168 { 2169 int cpu, ret; 2170 2171 ret = cpu_smt_state_init(); 2172 if (ret) 2173 return ret; 2174 2175 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2176 &cpuhp_cpu_root_attr_group); 2177 if (ret) 2178 return ret; 2179 2180 for_each_possible_cpu(cpu) { 2181 struct device *dev = get_cpu_device(cpu); 2182 2183 if (!dev) 2184 continue; 2185 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2186 if (ret) 2187 return ret; 2188 } 2189 return 0; 2190 } 2191 device_initcall(cpuhp_sysfs_init); 2192 #endif 2193 2194 /* 2195 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2196 * represents all NR_CPUS bits binary values of 1<<nr. 2197 * 2198 * It is used by cpumask_of() to get a constant address to a CPU 2199 * mask value that has a single bit set only. 2200 */ 2201 2202 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2203 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2204 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2205 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2206 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2207 2208 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2209 2210 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2211 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2212 #if BITS_PER_LONG > 32 2213 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2214 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2215 #endif 2216 }; 2217 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2218 2219 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2220 EXPORT_SYMBOL(cpu_all_bits); 2221 2222 #ifdef CONFIG_INIT_ALL_POSSIBLE 2223 struct cpumask __cpu_possible_mask __read_mostly 2224 = {CPU_BITS_ALL}; 2225 #else 2226 struct cpumask __cpu_possible_mask __read_mostly; 2227 #endif 2228 EXPORT_SYMBOL(__cpu_possible_mask); 2229 2230 struct cpumask __cpu_online_mask __read_mostly; 2231 EXPORT_SYMBOL(__cpu_online_mask); 2232 2233 struct cpumask __cpu_present_mask __read_mostly; 2234 EXPORT_SYMBOL(__cpu_present_mask); 2235 2236 struct cpumask __cpu_active_mask __read_mostly; 2237 EXPORT_SYMBOL(__cpu_active_mask); 2238 2239 void init_cpu_present(const struct cpumask *src) 2240 { 2241 cpumask_copy(&__cpu_present_mask, src); 2242 } 2243 2244 void init_cpu_possible(const struct cpumask *src) 2245 { 2246 cpumask_copy(&__cpu_possible_mask, src); 2247 } 2248 2249 void init_cpu_online(const struct cpumask *src) 2250 { 2251 cpumask_copy(&__cpu_online_mask, src); 2252 } 2253 2254 /* 2255 * Activate the first processor. 2256 */ 2257 void __init boot_cpu_init(void) 2258 { 2259 int cpu = smp_processor_id(); 2260 2261 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2262 set_cpu_online(cpu, true); 2263 set_cpu_active(cpu, true); 2264 set_cpu_present(cpu, true); 2265 set_cpu_possible(cpu, true); 2266 2267 #ifdef CONFIG_SMP 2268 __boot_cpu_id = cpu; 2269 #endif 2270 } 2271 2272 /* 2273 * Must be called _AFTER_ setting up the per_cpu areas 2274 */ 2275 void __init boot_cpu_hotplug_init(void) 2276 { 2277 #ifdef CONFIG_SMP 2278 this_cpu_write(cpuhp_state.booted_once, true); 2279 #endif 2280 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2281 } 2282