xref: /linux/kernel/cpu.c (revision fc782242749fa4235592854fafe1a1297583c1fb)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33 
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37 
38 #include "smpboot.h"
39 
40 /**
41  * cpuhp_cpu_state - Per cpu hotplug state storage
42  * @state:	The current cpu state
43  * @target:	The target state
44  * @thread:	Pointer to the hotplug thread
45  * @should_run:	Thread should execute
46  * @rollback:	Perform a rollback
47  * @single:	Single callback invocation
48  * @bringup:	Single callback bringup or teardown selector
49  * @cb_state:	The state for a single callback (install/uninstall)
50  * @result:	Result of the operation
51  * @done_up:	Signal completion to the issuer of the task for cpu-up
52  * @done_down:	Signal completion to the issuer of the task for cpu-down
53  */
54 struct cpuhp_cpu_state {
55 	enum cpuhp_state	state;
56 	enum cpuhp_state	target;
57 	enum cpuhp_state	fail;
58 #ifdef CONFIG_SMP
59 	struct task_struct	*thread;
60 	bool			should_run;
61 	bool			rollback;
62 	bool			single;
63 	bool			bringup;
64 	bool			booted_once;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83 
84 
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89 
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95 
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98 
99 #endif
100 
101 /**
102  * cpuhp_step - Hotplug state machine step
103  * @name:	Name of the step
104  * @startup:	Startup function of the step
105  * @teardown:	Teardown function of the step
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			cant_stop;
122 	bool			multi_instance;
123 };
124 
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127 
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 	return cpuhp_hp_states + state;
131 }
132 
133 /**
134  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135  * @cpu:	The cpu for which the callback should be invoked
136  * @state:	The state to do callbacks for
137  * @bringup:	True if the bringup callback should be invoked
138  * @node:	For multi-instance, do a single entry callback for install/remove
139  * @lastp:	For multi-instance rollback, remember how far we got
140  *
141  * Called from cpu hotplug and from the state register machinery.
142  */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 				 bool bringup, struct hlist_node *node,
145 				 struct hlist_node **lastp)
146 {
147 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 	struct cpuhp_step *step = cpuhp_get_step(state);
149 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 	int (*cb)(unsigned int cpu);
151 	int ret, cnt;
152 
153 	if (st->fail == state) {
154 		st->fail = CPUHP_INVALID;
155 
156 		if (!(bringup ? step->startup.single : step->teardown.single))
157 			return 0;
158 
159 		return -EAGAIN;
160 	}
161 
162 	if (!step->multi_instance) {
163 		WARN_ON_ONCE(lastp && *lastp);
164 		cb = bringup ? step->startup.single : step->teardown.single;
165 		if (!cb)
166 			return 0;
167 		trace_cpuhp_enter(cpu, st->target, state, cb);
168 		ret = cb(cpu);
169 		trace_cpuhp_exit(cpu, st->state, state, ret);
170 		return ret;
171 	}
172 	cbm = bringup ? step->startup.multi : step->teardown.multi;
173 	if (!cbm)
174 		return 0;
175 
176 	/* Single invocation for instance add/remove */
177 	if (node) {
178 		WARN_ON_ONCE(lastp && *lastp);
179 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 		ret = cbm(cpu, node);
181 		trace_cpuhp_exit(cpu, st->state, state, ret);
182 		return ret;
183 	}
184 
185 	/* State transition. Invoke on all instances */
186 	cnt = 0;
187 	hlist_for_each(node, &step->list) {
188 		if (lastp && node == *lastp)
189 			break;
190 
191 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 		ret = cbm(cpu, node);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		if (ret) {
195 			if (!lastp)
196 				goto err;
197 
198 			*lastp = node;
199 			return ret;
200 		}
201 		cnt++;
202 	}
203 	if (lastp)
204 		*lastp = NULL;
205 	return 0;
206 err:
207 	/* Rollback the instances if one failed */
208 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 	if (!cbm)
210 		return ret;
211 
212 	hlist_for_each(node, &step->list) {
213 		if (!cnt--)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		/*
220 		 * Rollback must not fail,
221 		 */
222 		WARN_ON_ONCE(ret);
223 	}
224 	return ret;
225 }
226 
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 	/*
231 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 	 * purposes as that state is handled explicitly in cpu_down.
233 	 */
234 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236 
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 	struct completion *done = bringup ? &st->done_up : &st->done_down;
240 	wait_for_completion(done);
241 }
242 
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 	struct completion *done = bringup ? &st->done_up : &st->done_down;
246 	complete(done);
247 }
248 
249 /*
250  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251  */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256 
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261 
262 /*
263  * The following two APIs (cpu_maps_update_begin/done) must be used when
264  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265  */
266 void cpu_maps_update_begin(void)
267 {
268 	mutex_lock(&cpu_add_remove_lock);
269 }
270 
271 void cpu_maps_update_done(void)
272 {
273 	mutex_unlock(&cpu_add_remove_lock);
274 }
275 
276 /*
277  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278  * Should always be manipulated under cpu_add_remove_lock
279  */
280 static int cpu_hotplug_disabled;
281 
282 #ifdef CONFIG_HOTPLUG_CPU
283 
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285 
286 void cpus_read_lock(void)
287 {
288 	percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291 
292 int cpus_read_trylock(void)
293 {
294 	return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297 
298 void cpus_read_unlock(void)
299 {
300 	percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303 
304 void cpus_write_lock(void)
305 {
306 	percpu_down_write(&cpu_hotplug_lock);
307 }
308 
309 void cpus_write_unlock(void)
310 {
311 	percpu_up_write(&cpu_hotplug_lock);
312 }
313 
314 void lockdep_assert_cpus_held(void)
315 {
316 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
317 }
318 
319 static void lockdep_acquire_cpus_lock(void)
320 {
321 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
322 }
323 
324 static void lockdep_release_cpus_lock(void)
325 {
326 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
327 }
328 
329 /*
330  * Wait for currently running CPU hotplug operations to complete (if any) and
331  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333  * hotplug path before performing hotplug operations. So acquiring that lock
334  * guarantees mutual exclusion from any currently running hotplug operations.
335  */
336 void cpu_hotplug_disable(void)
337 {
338 	cpu_maps_update_begin();
339 	cpu_hotplug_disabled++;
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
343 
344 static void __cpu_hotplug_enable(void)
345 {
346 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
347 		return;
348 	cpu_hotplug_disabled--;
349 }
350 
351 void cpu_hotplug_enable(void)
352 {
353 	cpu_maps_update_begin();
354 	__cpu_hotplug_enable();
355 	cpu_maps_update_done();
356 }
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
358 
359 #else
360 
361 static void lockdep_acquire_cpus_lock(void)
362 {
363 }
364 
365 static void lockdep_release_cpus_lock(void)
366 {
367 }
368 
369 #endif	/* CONFIG_HOTPLUG_CPU */
370 
371 /*
372  * Architectures that need SMT-specific errata handling during SMT hotplug
373  * should override this.
374  */
375 void __weak arch_smt_update(void) { }
376 
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
379 
380 void __init cpu_smt_disable(bool force)
381 {
382 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
383 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
384 		return;
385 
386 	if (force) {
387 		pr_info("SMT: Force disabled\n");
388 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
389 	} else {
390 		pr_info("SMT: disabled\n");
391 		cpu_smt_control = CPU_SMT_DISABLED;
392 	}
393 }
394 
395 /*
396  * The decision whether SMT is supported can only be done after the full
397  * CPU identification. Called from architecture code.
398  */
399 void __init cpu_smt_check_topology(void)
400 {
401 	if (!topology_smt_supported())
402 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
403 }
404 
405 static int __init smt_cmdline_disable(char *str)
406 {
407 	cpu_smt_disable(str && !strcmp(str, "force"));
408 	return 0;
409 }
410 early_param("nosmt", smt_cmdline_disable);
411 
412 static inline bool cpu_smt_allowed(unsigned int cpu)
413 {
414 	if (cpu_smt_control == CPU_SMT_ENABLED)
415 		return true;
416 
417 	if (topology_is_primary_thread(cpu))
418 		return true;
419 
420 	/*
421 	 * On x86 it's required to boot all logical CPUs at least once so
422 	 * that the init code can get a chance to set CR4.MCE on each
423 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
424 	 * core will shutdown the machine.
425 	 */
426 	return !per_cpu(cpuhp_state, cpu).booted_once;
427 }
428 #else
429 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
430 #endif
431 
432 static inline enum cpuhp_state
433 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
434 {
435 	enum cpuhp_state prev_state = st->state;
436 
437 	st->rollback = false;
438 	st->last = NULL;
439 
440 	st->target = target;
441 	st->single = false;
442 	st->bringup = st->state < target;
443 
444 	return prev_state;
445 }
446 
447 static inline void
448 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
449 {
450 	st->rollback = true;
451 
452 	/*
453 	 * If we have st->last we need to undo partial multi_instance of this
454 	 * state first. Otherwise start undo at the previous state.
455 	 */
456 	if (!st->last) {
457 		if (st->bringup)
458 			st->state--;
459 		else
460 			st->state++;
461 	}
462 
463 	st->target = prev_state;
464 	st->bringup = !st->bringup;
465 }
466 
467 /* Regular hotplug invocation of the AP hotplug thread */
468 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
469 {
470 	if (!st->single && st->state == st->target)
471 		return;
472 
473 	st->result = 0;
474 	/*
475 	 * Make sure the above stores are visible before should_run becomes
476 	 * true. Paired with the mb() above in cpuhp_thread_fun()
477 	 */
478 	smp_mb();
479 	st->should_run = true;
480 	wake_up_process(st->thread);
481 	wait_for_ap_thread(st, st->bringup);
482 }
483 
484 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
485 {
486 	enum cpuhp_state prev_state;
487 	int ret;
488 
489 	prev_state = cpuhp_set_state(st, target);
490 	__cpuhp_kick_ap(st);
491 	if ((ret = st->result)) {
492 		cpuhp_reset_state(st, prev_state);
493 		__cpuhp_kick_ap(st);
494 	}
495 
496 	return ret;
497 }
498 
499 static int bringup_wait_for_ap(unsigned int cpu)
500 {
501 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
502 
503 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
504 	wait_for_ap_thread(st, true);
505 	if (WARN_ON_ONCE((!cpu_online(cpu))))
506 		return -ECANCELED;
507 
508 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
509 	stop_machine_unpark(cpu);
510 	kthread_unpark(st->thread);
511 
512 	/*
513 	 * SMT soft disabling on X86 requires to bring the CPU out of the
514 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
515 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
516 	 * cpu_smt_allowed() check will now return false if this is not the
517 	 * primary sibling.
518 	 */
519 	if (!cpu_smt_allowed(cpu))
520 		return -ECANCELED;
521 
522 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
523 		return 0;
524 
525 	return cpuhp_kick_ap(st, st->target);
526 }
527 
528 static int bringup_cpu(unsigned int cpu)
529 {
530 	struct task_struct *idle = idle_thread_get(cpu);
531 	int ret;
532 
533 	/*
534 	 * Some architectures have to walk the irq descriptors to
535 	 * setup the vector space for the cpu which comes online.
536 	 * Prevent irq alloc/free across the bringup.
537 	 */
538 	irq_lock_sparse();
539 
540 	/* Arch-specific enabling code. */
541 	ret = __cpu_up(cpu, idle);
542 	irq_unlock_sparse();
543 	if (ret)
544 		return ret;
545 	return bringup_wait_for_ap(cpu);
546 }
547 
548 /*
549  * Hotplug state machine related functions
550  */
551 
552 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
553 {
554 	for (st->state--; st->state > st->target; st->state--)
555 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
556 }
557 
558 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
559 			      enum cpuhp_state target)
560 {
561 	enum cpuhp_state prev_state = st->state;
562 	int ret = 0;
563 
564 	while (st->state < target) {
565 		st->state++;
566 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
567 		if (ret) {
568 			st->target = prev_state;
569 			undo_cpu_up(cpu, st);
570 			break;
571 		}
572 	}
573 	return ret;
574 }
575 
576 /*
577  * The cpu hotplug threads manage the bringup and teardown of the cpus
578  */
579 static void cpuhp_create(unsigned int cpu)
580 {
581 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
582 
583 	init_completion(&st->done_up);
584 	init_completion(&st->done_down);
585 }
586 
587 static int cpuhp_should_run(unsigned int cpu)
588 {
589 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
590 
591 	return st->should_run;
592 }
593 
594 /*
595  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
596  * callbacks when a state gets [un]installed at runtime.
597  *
598  * Each invocation of this function by the smpboot thread does a single AP
599  * state callback.
600  *
601  * It has 3 modes of operation:
602  *  - single: runs st->cb_state
603  *  - up:     runs ++st->state, while st->state < st->target
604  *  - down:   runs st->state--, while st->state > st->target
605  *
606  * When complete or on error, should_run is cleared and the completion is fired.
607  */
608 static void cpuhp_thread_fun(unsigned int cpu)
609 {
610 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
611 	bool bringup = st->bringup;
612 	enum cpuhp_state state;
613 
614 	if (WARN_ON_ONCE(!st->should_run))
615 		return;
616 
617 	/*
618 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
619 	 * that if we see ->should_run we also see the rest of the state.
620 	 */
621 	smp_mb();
622 
623 	/*
624 	 * The BP holds the hotplug lock, but we're now running on the AP,
625 	 * ensure that anybody asserting the lock is held, will actually find
626 	 * it so.
627 	 */
628 	lockdep_acquire_cpus_lock();
629 	cpuhp_lock_acquire(bringup);
630 
631 	if (st->single) {
632 		state = st->cb_state;
633 		st->should_run = false;
634 	} else {
635 		if (bringup) {
636 			st->state++;
637 			state = st->state;
638 			st->should_run = (st->state < st->target);
639 			WARN_ON_ONCE(st->state > st->target);
640 		} else {
641 			state = st->state;
642 			st->state--;
643 			st->should_run = (st->state > st->target);
644 			WARN_ON_ONCE(st->state < st->target);
645 		}
646 	}
647 
648 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
649 
650 	if (cpuhp_is_atomic_state(state)) {
651 		local_irq_disable();
652 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
653 		local_irq_enable();
654 
655 		/*
656 		 * STARTING/DYING must not fail!
657 		 */
658 		WARN_ON_ONCE(st->result);
659 	} else {
660 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
661 	}
662 
663 	if (st->result) {
664 		/*
665 		 * If we fail on a rollback, we're up a creek without no
666 		 * paddle, no way forward, no way back. We loose, thanks for
667 		 * playing.
668 		 */
669 		WARN_ON_ONCE(st->rollback);
670 		st->should_run = false;
671 	}
672 
673 	cpuhp_lock_release(bringup);
674 	lockdep_release_cpus_lock();
675 
676 	if (!st->should_run)
677 		complete_ap_thread(st, bringup);
678 }
679 
680 /* Invoke a single callback on a remote cpu */
681 static int
682 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
683 			 struct hlist_node *node)
684 {
685 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
686 	int ret;
687 
688 	if (!cpu_online(cpu))
689 		return 0;
690 
691 	cpuhp_lock_acquire(false);
692 	cpuhp_lock_release(false);
693 
694 	cpuhp_lock_acquire(true);
695 	cpuhp_lock_release(true);
696 
697 	/*
698 	 * If we are up and running, use the hotplug thread. For early calls
699 	 * we invoke the thread function directly.
700 	 */
701 	if (!st->thread)
702 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
703 
704 	st->rollback = false;
705 	st->last = NULL;
706 
707 	st->node = node;
708 	st->bringup = bringup;
709 	st->cb_state = state;
710 	st->single = true;
711 
712 	__cpuhp_kick_ap(st);
713 
714 	/*
715 	 * If we failed and did a partial, do a rollback.
716 	 */
717 	if ((ret = st->result) && st->last) {
718 		st->rollback = true;
719 		st->bringup = !bringup;
720 
721 		__cpuhp_kick_ap(st);
722 	}
723 
724 	/*
725 	 * Clean up the leftovers so the next hotplug operation wont use stale
726 	 * data.
727 	 */
728 	st->node = st->last = NULL;
729 	return ret;
730 }
731 
732 static int cpuhp_kick_ap_work(unsigned int cpu)
733 {
734 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
735 	enum cpuhp_state prev_state = st->state;
736 	int ret;
737 
738 	cpuhp_lock_acquire(false);
739 	cpuhp_lock_release(false);
740 
741 	cpuhp_lock_acquire(true);
742 	cpuhp_lock_release(true);
743 
744 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
745 	ret = cpuhp_kick_ap(st, st->target);
746 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
747 
748 	return ret;
749 }
750 
751 static struct smp_hotplug_thread cpuhp_threads = {
752 	.store			= &cpuhp_state.thread,
753 	.create			= &cpuhp_create,
754 	.thread_should_run	= cpuhp_should_run,
755 	.thread_fn		= cpuhp_thread_fun,
756 	.thread_comm		= "cpuhp/%u",
757 	.selfparking		= true,
758 };
759 
760 void __init cpuhp_threads_init(void)
761 {
762 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
763 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
764 }
765 
766 #ifdef CONFIG_HOTPLUG_CPU
767 /**
768  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
769  * @cpu: a CPU id
770  *
771  * This function walks all processes, finds a valid mm struct for each one and
772  * then clears a corresponding bit in mm's cpumask.  While this all sounds
773  * trivial, there are various non-obvious corner cases, which this function
774  * tries to solve in a safe manner.
775  *
776  * Also note that the function uses a somewhat relaxed locking scheme, so it may
777  * be called only for an already offlined CPU.
778  */
779 void clear_tasks_mm_cpumask(int cpu)
780 {
781 	struct task_struct *p;
782 
783 	/*
784 	 * This function is called after the cpu is taken down and marked
785 	 * offline, so its not like new tasks will ever get this cpu set in
786 	 * their mm mask. -- Peter Zijlstra
787 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
788 	 * full-fledged tasklist_lock.
789 	 */
790 	WARN_ON(cpu_online(cpu));
791 	rcu_read_lock();
792 	for_each_process(p) {
793 		struct task_struct *t;
794 
795 		/*
796 		 * Main thread might exit, but other threads may still have
797 		 * a valid mm. Find one.
798 		 */
799 		t = find_lock_task_mm(p);
800 		if (!t)
801 			continue;
802 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
803 		task_unlock(t);
804 	}
805 	rcu_read_unlock();
806 }
807 
808 /* Take this CPU down. */
809 static int take_cpu_down(void *_param)
810 {
811 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
812 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
813 	int err, cpu = smp_processor_id();
814 	int ret;
815 
816 	/* Ensure this CPU doesn't handle any more interrupts. */
817 	err = __cpu_disable();
818 	if (err < 0)
819 		return err;
820 
821 	/*
822 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
823 	 * do this step again.
824 	 */
825 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
826 	st->state--;
827 	/* Invoke the former CPU_DYING callbacks */
828 	for (; st->state > target; st->state--) {
829 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
830 		/*
831 		 * DYING must not fail!
832 		 */
833 		WARN_ON_ONCE(ret);
834 	}
835 
836 	/* Give up timekeeping duties */
837 	tick_handover_do_timer();
838 	/* Park the stopper thread */
839 	stop_machine_park(cpu);
840 	return 0;
841 }
842 
843 static int takedown_cpu(unsigned int cpu)
844 {
845 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
846 	int err;
847 
848 	/* Park the smpboot threads */
849 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
850 
851 	/*
852 	 * Prevent irq alloc/free while the dying cpu reorganizes the
853 	 * interrupt affinities.
854 	 */
855 	irq_lock_sparse();
856 
857 	/*
858 	 * So now all preempt/rcu users must observe !cpu_active().
859 	 */
860 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
861 	if (err) {
862 		/* CPU refused to die */
863 		irq_unlock_sparse();
864 		/* Unpark the hotplug thread so we can rollback there */
865 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
866 		return err;
867 	}
868 	BUG_ON(cpu_online(cpu));
869 
870 	/*
871 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
872 	 * all runnable tasks from the CPU, there's only the idle task left now
873 	 * that the migration thread is done doing the stop_machine thing.
874 	 *
875 	 * Wait for the stop thread to go away.
876 	 */
877 	wait_for_ap_thread(st, false);
878 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
879 
880 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
881 	irq_unlock_sparse();
882 
883 	hotplug_cpu__broadcast_tick_pull(cpu);
884 	/* This actually kills the CPU. */
885 	__cpu_die(cpu);
886 
887 	tick_cleanup_dead_cpu(cpu);
888 	rcutree_migrate_callbacks(cpu);
889 	return 0;
890 }
891 
892 static void cpuhp_complete_idle_dead(void *arg)
893 {
894 	struct cpuhp_cpu_state *st = arg;
895 
896 	complete_ap_thread(st, false);
897 }
898 
899 void cpuhp_report_idle_dead(void)
900 {
901 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
902 
903 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
904 	rcu_report_dead(smp_processor_id());
905 	st->state = CPUHP_AP_IDLE_DEAD;
906 	/*
907 	 * We cannot call complete after rcu_report_dead() so we delegate it
908 	 * to an online cpu.
909 	 */
910 	smp_call_function_single(cpumask_first(cpu_online_mask),
911 				 cpuhp_complete_idle_dead, st, 0);
912 }
913 
914 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
915 {
916 	for (st->state++; st->state < st->target; st->state++)
917 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
918 }
919 
920 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
921 				enum cpuhp_state target)
922 {
923 	enum cpuhp_state prev_state = st->state;
924 	int ret = 0;
925 
926 	for (; st->state > target; st->state--) {
927 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
928 		if (ret) {
929 			st->target = prev_state;
930 			if (st->state < prev_state)
931 				undo_cpu_down(cpu, st);
932 			break;
933 		}
934 	}
935 	return ret;
936 }
937 
938 /* Requires cpu_add_remove_lock to be held */
939 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
940 			   enum cpuhp_state target)
941 {
942 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
943 	int prev_state, ret = 0;
944 
945 	if (num_online_cpus() == 1)
946 		return -EBUSY;
947 
948 	if (!cpu_present(cpu))
949 		return -EINVAL;
950 
951 	cpus_write_lock();
952 
953 	cpuhp_tasks_frozen = tasks_frozen;
954 
955 	prev_state = cpuhp_set_state(st, target);
956 	/*
957 	 * If the current CPU state is in the range of the AP hotplug thread,
958 	 * then we need to kick the thread.
959 	 */
960 	if (st->state > CPUHP_TEARDOWN_CPU) {
961 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
962 		ret = cpuhp_kick_ap_work(cpu);
963 		/*
964 		 * The AP side has done the error rollback already. Just
965 		 * return the error code..
966 		 */
967 		if (ret)
968 			goto out;
969 
970 		/*
971 		 * We might have stopped still in the range of the AP hotplug
972 		 * thread. Nothing to do anymore.
973 		 */
974 		if (st->state > CPUHP_TEARDOWN_CPU)
975 			goto out;
976 
977 		st->target = target;
978 	}
979 	/*
980 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
981 	 * to do the further cleanups.
982 	 */
983 	ret = cpuhp_down_callbacks(cpu, st, target);
984 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
985 		cpuhp_reset_state(st, prev_state);
986 		__cpuhp_kick_ap(st);
987 	}
988 
989 out:
990 	cpus_write_unlock();
991 	/*
992 	 * Do post unplug cleanup. This is still protected against
993 	 * concurrent CPU hotplug via cpu_add_remove_lock.
994 	 */
995 	lockup_detector_cleanup();
996 	arch_smt_update();
997 	return ret;
998 }
999 
1000 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1001 {
1002 	if (cpu_hotplug_disabled)
1003 		return -EBUSY;
1004 	return _cpu_down(cpu, 0, target);
1005 }
1006 
1007 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1008 {
1009 	int err;
1010 
1011 	cpu_maps_update_begin();
1012 	err = cpu_down_maps_locked(cpu, target);
1013 	cpu_maps_update_done();
1014 	return err;
1015 }
1016 
1017 int cpu_down(unsigned int cpu)
1018 {
1019 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1020 }
1021 EXPORT_SYMBOL(cpu_down);
1022 
1023 #else
1024 #define takedown_cpu		NULL
1025 #endif /*CONFIG_HOTPLUG_CPU*/
1026 
1027 /**
1028  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1029  * @cpu: cpu that just started
1030  *
1031  * It must be called by the arch code on the new cpu, before the new cpu
1032  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1033  */
1034 void notify_cpu_starting(unsigned int cpu)
1035 {
1036 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1037 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1038 	int ret;
1039 
1040 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1041 	st->booted_once = true;
1042 	while (st->state < target) {
1043 		st->state++;
1044 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1045 		/*
1046 		 * STARTING must not fail!
1047 		 */
1048 		WARN_ON_ONCE(ret);
1049 	}
1050 }
1051 
1052 /*
1053  * Called from the idle task. Wake up the controlling task which brings the
1054  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1055  * the rest of the online bringup to the hotplug thread.
1056  */
1057 void cpuhp_online_idle(enum cpuhp_state state)
1058 {
1059 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1060 
1061 	/* Happens for the boot cpu */
1062 	if (state != CPUHP_AP_ONLINE_IDLE)
1063 		return;
1064 
1065 	st->state = CPUHP_AP_ONLINE_IDLE;
1066 	complete_ap_thread(st, true);
1067 }
1068 
1069 /* Requires cpu_add_remove_lock to be held */
1070 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1071 {
1072 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1073 	struct task_struct *idle;
1074 	int ret = 0;
1075 
1076 	cpus_write_lock();
1077 
1078 	if (!cpu_present(cpu)) {
1079 		ret = -EINVAL;
1080 		goto out;
1081 	}
1082 
1083 	/*
1084 	 * The caller of do_cpu_up might have raced with another
1085 	 * caller. Ignore it for now.
1086 	 */
1087 	if (st->state >= target)
1088 		goto out;
1089 
1090 	if (st->state == CPUHP_OFFLINE) {
1091 		/* Let it fail before we try to bring the cpu up */
1092 		idle = idle_thread_get(cpu);
1093 		if (IS_ERR(idle)) {
1094 			ret = PTR_ERR(idle);
1095 			goto out;
1096 		}
1097 	}
1098 
1099 	cpuhp_tasks_frozen = tasks_frozen;
1100 
1101 	cpuhp_set_state(st, target);
1102 	/*
1103 	 * If the current CPU state is in the range of the AP hotplug thread,
1104 	 * then we need to kick the thread once more.
1105 	 */
1106 	if (st->state > CPUHP_BRINGUP_CPU) {
1107 		ret = cpuhp_kick_ap_work(cpu);
1108 		/*
1109 		 * The AP side has done the error rollback already. Just
1110 		 * return the error code..
1111 		 */
1112 		if (ret)
1113 			goto out;
1114 	}
1115 
1116 	/*
1117 	 * Try to reach the target state. We max out on the BP at
1118 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1119 	 * responsible for bringing it up to the target state.
1120 	 */
1121 	target = min((int)target, CPUHP_BRINGUP_CPU);
1122 	ret = cpuhp_up_callbacks(cpu, st, target);
1123 out:
1124 	cpus_write_unlock();
1125 	arch_smt_update();
1126 	return ret;
1127 }
1128 
1129 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1130 {
1131 	int err = 0;
1132 
1133 	if (!cpu_possible(cpu)) {
1134 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1135 		       cpu);
1136 #if defined(CONFIG_IA64)
1137 		pr_err("please check additional_cpus= boot parameter\n");
1138 #endif
1139 		return -EINVAL;
1140 	}
1141 
1142 	err = try_online_node(cpu_to_node(cpu));
1143 	if (err)
1144 		return err;
1145 
1146 	cpu_maps_update_begin();
1147 
1148 	if (cpu_hotplug_disabled) {
1149 		err = -EBUSY;
1150 		goto out;
1151 	}
1152 	if (!cpu_smt_allowed(cpu)) {
1153 		err = -EPERM;
1154 		goto out;
1155 	}
1156 
1157 	err = _cpu_up(cpu, 0, target);
1158 out:
1159 	cpu_maps_update_done();
1160 	return err;
1161 }
1162 
1163 int cpu_up(unsigned int cpu)
1164 {
1165 	return do_cpu_up(cpu, CPUHP_ONLINE);
1166 }
1167 EXPORT_SYMBOL_GPL(cpu_up);
1168 
1169 #ifdef CONFIG_PM_SLEEP_SMP
1170 static cpumask_var_t frozen_cpus;
1171 
1172 int freeze_secondary_cpus(int primary)
1173 {
1174 	int cpu, error = 0;
1175 
1176 	cpu_maps_update_begin();
1177 	if (!cpu_online(primary))
1178 		primary = cpumask_first(cpu_online_mask);
1179 	/*
1180 	 * We take down all of the non-boot CPUs in one shot to avoid races
1181 	 * with the userspace trying to use the CPU hotplug at the same time
1182 	 */
1183 	cpumask_clear(frozen_cpus);
1184 
1185 	pr_info("Disabling non-boot CPUs ...\n");
1186 	for_each_online_cpu(cpu) {
1187 		if (cpu == primary)
1188 			continue;
1189 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1190 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1191 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1192 		if (!error)
1193 			cpumask_set_cpu(cpu, frozen_cpus);
1194 		else {
1195 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (!error)
1201 		BUG_ON(num_online_cpus() > 1);
1202 	else
1203 		pr_err("Non-boot CPUs are not disabled\n");
1204 
1205 	/*
1206 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1207 	 * this even in case of failure as all disable_nonboot_cpus() users are
1208 	 * supposed to do enable_nonboot_cpus() on the failure path.
1209 	 */
1210 	cpu_hotplug_disabled++;
1211 
1212 	cpu_maps_update_done();
1213 	return error;
1214 }
1215 
1216 void __weak arch_enable_nonboot_cpus_begin(void)
1217 {
1218 }
1219 
1220 void __weak arch_enable_nonboot_cpus_end(void)
1221 {
1222 }
1223 
1224 void enable_nonboot_cpus(void)
1225 {
1226 	int cpu, error;
1227 
1228 	/* Allow everyone to use the CPU hotplug again */
1229 	cpu_maps_update_begin();
1230 	__cpu_hotplug_enable();
1231 	if (cpumask_empty(frozen_cpus))
1232 		goto out;
1233 
1234 	pr_info("Enabling non-boot CPUs ...\n");
1235 
1236 	arch_enable_nonboot_cpus_begin();
1237 
1238 	for_each_cpu(cpu, frozen_cpus) {
1239 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1240 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1241 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1242 		if (!error) {
1243 			pr_info("CPU%d is up\n", cpu);
1244 			continue;
1245 		}
1246 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1247 	}
1248 
1249 	arch_enable_nonboot_cpus_end();
1250 
1251 	cpumask_clear(frozen_cpus);
1252 out:
1253 	cpu_maps_update_done();
1254 }
1255 
1256 static int __init alloc_frozen_cpus(void)
1257 {
1258 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1259 		return -ENOMEM;
1260 	return 0;
1261 }
1262 core_initcall(alloc_frozen_cpus);
1263 
1264 /*
1265  * When callbacks for CPU hotplug notifications are being executed, we must
1266  * ensure that the state of the system with respect to the tasks being frozen
1267  * or not, as reported by the notification, remains unchanged *throughout the
1268  * duration* of the execution of the callbacks.
1269  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1270  *
1271  * This synchronization is implemented by mutually excluding regular CPU
1272  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1273  * Hibernate notifications.
1274  */
1275 static int
1276 cpu_hotplug_pm_callback(struct notifier_block *nb,
1277 			unsigned long action, void *ptr)
1278 {
1279 	switch (action) {
1280 
1281 	case PM_SUSPEND_PREPARE:
1282 	case PM_HIBERNATION_PREPARE:
1283 		cpu_hotplug_disable();
1284 		break;
1285 
1286 	case PM_POST_SUSPEND:
1287 	case PM_POST_HIBERNATION:
1288 		cpu_hotplug_enable();
1289 		break;
1290 
1291 	default:
1292 		return NOTIFY_DONE;
1293 	}
1294 
1295 	return NOTIFY_OK;
1296 }
1297 
1298 
1299 static int __init cpu_hotplug_pm_sync_init(void)
1300 {
1301 	/*
1302 	 * cpu_hotplug_pm_callback has higher priority than x86
1303 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1304 	 * to disable cpu hotplug to avoid cpu hotplug race.
1305 	 */
1306 	pm_notifier(cpu_hotplug_pm_callback, 0);
1307 	return 0;
1308 }
1309 core_initcall(cpu_hotplug_pm_sync_init);
1310 
1311 #endif /* CONFIG_PM_SLEEP_SMP */
1312 
1313 int __boot_cpu_id;
1314 
1315 #endif /* CONFIG_SMP */
1316 
1317 /* Boot processor state steps */
1318 static struct cpuhp_step cpuhp_hp_states[] = {
1319 	[CPUHP_OFFLINE] = {
1320 		.name			= "offline",
1321 		.startup.single		= NULL,
1322 		.teardown.single	= NULL,
1323 	},
1324 #ifdef CONFIG_SMP
1325 	[CPUHP_CREATE_THREADS]= {
1326 		.name			= "threads:prepare",
1327 		.startup.single		= smpboot_create_threads,
1328 		.teardown.single	= NULL,
1329 		.cant_stop		= true,
1330 	},
1331 	[CPUHP_PERF_PREPARE] = {
1332 		.name			= "perf:prepare",
1333 		.startup.single		= perf_event_init_cpu,
1334 		.teardown.single	= perf_event_exit_cpu,
1335 	},
1336 	[CPUHP_WORKQUEUE_PREP] = {
1337 		.name			= "workqueue:prepare",
1338 		.startup.single		= workqueue_prepare_cpu,
1339 		.teardown.single	= NULL,
1340 	},
1341 	[CPUHP_HRTIMERS_PREPARE] = {
1342 		.name			= "hrtimers:prepare",
1343 		.startup.single		= hrtimers_prepare_cpu,
1344 		.teardown.single	= hrtimers_dead_cpu,
1345 	},
1346 	[CPUHP_SMPCFD_PREPARE] = {
1347 		.name			= "smpcfd:prepare",
1348 		.startup.single		= smpcfd_prepare_cpu,
1349 		.teardown.single	= smpcfd_dead_cpu,
1350 	},
1351 	[CPUHP_RELAY_PREPARE] = {
1352 		.name			= "relay:prepare",
1353 		.startup.single		= relay_prepare_cpu,
1354 		.teardown.single	= NULL,
1355 	},
1356 	[CPUHP_SLAB_PREPARE] = {
1357 		.name			= "slab:prepare",
1358 		.startup.single		= slab_prepare_cpu,
1359 		.teardown.single	= slab_dead_cpu,
1360 	},
1361 	[CPUHP_RCUTREE_PREP] = {
1362 		.name			= "RCU/tree:prepare",
1363 		.startup.single		= rcutree_prepare_cpu,
1364 		.teardown.single	= rcutree_dead_cpu,
1365 	},
1366 	/*
1367 	 * On the tear-down path, timers_dead_cpu() must be invoked
1368 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1369 	 * otherwise a RCU stall occurs.
1370 	 */
1371 	[CPUHP_TIMERS_PREPARE] = {
1372 		.name			= "timers:prepare",
1373 		.startup.single		= timers_prepare_cpu,
1374 		.teardown.single	= timers_dead_cpu,
1375 	},
1376 	/* Kicks the plugged cpu into life */
1377 	[CPUHP_BRINGUP_CPU] = {
1378 		.name			= "cpu:bringup",
1379 		.startup.single		= bringup_cpu,
1380 		.teardown.single	= NULL,
1381 		.cant_stop		= true,
1382 	},
1383 	/* Final state before CPU kills itself */
1384 	[CPUHP_AP_IDLE_DEAD] = {
1385 		.name			= "idle:dead",
1386 	},
1387 	/*
1388 	 * Last state before CPU enters the idle loop to die. Transient state
1389 	 * for synchronization.
1390 	 */
1391 	[CPUHP_AP_OFFLINE] = {
1392 		.name			= "ap:offline",
1393 		.cant_stop		= true,
1394 	},
1395 	/* First state is scheduler control. Interrupts are disabled */
1396 	[CPUHP_AP_SCHED_STARTING] = {
1397 		.name			= "sched:starting",
1398 		.startup.single		= sched_cpu_starting,
1399 		.teardown.single	= sched_cpu_dying,
1400 	},
1401 	[CPUHP_AP_RCUTREE_DYING] = {
1402 		.name			= "RCU/tree:dying",
1403 		.startup.single		= NULL,
1404 		.teardown.single	= rcutree_dying_cpu,
1405 	},
1406 	[CPUHP_AP_SMPCFD_DYING] = {
1407 		.name			= "smpcfd:dying",
1408 		.startup.single		= NULL,
1409 		.teardown.single	= smpcfd_dying_cpu,
1410 	},
1411 	/* Entry state on starting. Interrupts enabled from here on. Transient
1412 	 * state for synchronsization */
1413 	[CPUHP_AP_ONLINE] = {
1414 		.name			= "ap:online",
1415 	},
1416 	/*
1417 	 * Handled on controll processor until the plugged processor manages
1418 	 * this itself.
1419 	 */
1420 	[CPUHP_TEARDOWN_CPU] = {
1421 		.name			= "cpu:teardown",
1422 		.startup.single		= NULL,
1423 		.teardown.single	= takedown_cpu,
1424 		.cant_stop		= true,
1425 	},
1426 	/* Handle smpboot threads park/unpark */
1427 	[CPUHP_AP_SMPBOOT_THREADS] = {
1428 		.name			= "smpboot/threads:online",
1429 		.startup.single		= smpboot_unpark_threads,
1430 		.teardown.single	= smpboot_park_threads,
1431 	},
1432 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1433 		.name			= "irq/affinity:online",
1434 		.startup.single		= irq_affinity_online_cpu,
1435 		.teardown.single	= NULL,
1436 	},
1437 	[CPUHP_AP_PERF_ONLINE] = {
1438 		.name			= "perf:online",
1439 		.startup.single		= perf_event_init_cpu,
1440 		.teardown.single	= perf_event_exit_cpu,
1441 	},
1442 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1443 		.name			= "lockup_detector:online",
1444 		.startup.single		= lockup_detector_online_cpu,
1445 		.teardown.single	= lockup_detector_offline_cpu,
1446 	},
1447 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1448 		.name			= "workqueue:online",
1449 		.startup.single		= workqueue_online_cpu,
1450 		.teardown.single	= workqueue_offline_cpu,
1451 	},
1452 	[CPUHP_AP_RCUTREE_ONLINE] = {
1453 		.name			= "RCU/tree:online",
1454 		.startup.single		= rcutree_online_cpu,
1455 		.teardown.single	= rcutree_offline_cpu,
1456 	},
1457 #endif
1458 	/*
1459 	 * The dynamically registered state space is here
1460 	 */
1461 
1462 #ifdef CONFIG_SMP
1463 	/* Last state is scheduler control setting the cpu active */
1464 	[CPUHP_AP_ACTIVE] = {
1465 		.name			= "sched:active",
1466 		.startup.single		= sched_cpu_activate,
1467 		.teardown.single	= sched_cpu_deactivate,
1468 	},
1469 #endif
1470 
1471 	/* CPU is fully up and running. */
1472 	[CPUHP_ONLINE] = {
1473 		.name			= "online",
1474 		.startup.single		= NULL,
1475 		.teardown.single	= NULL,
1476 	},
1477 };
1478 
1479 /* Sanity check for callbacks */
1480 static int cpuhp_cb_check(enum cpuhp_state state)
1481 {
1482 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1483 		return -EINVAL;
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Returns a free for dynamic slot assignment of the Online state. The states
1489  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1490  * by having no name assigned.
1491  */
1492 static int cpuhp_reserve_state(enum cpuhp_state state)
1493 {
1494 	enum cpuhp_state i, end;
1495 	struct cpuhp_step *step;
1496 
1497 	switch (state) {
1498 	case CPUHP_AP_ONLINE_DYN:
1499 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1500 		end = CPUHP_AP_ONLINE_DYN_END;
1501 		break;
1502 	case CPUHP_BP_PREPARE_DYN:
1503 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1504 		end = CPUHP_BP_PREPARE_DYN_END;
1505 		break;
1506 	default:
1507 		return -EINVAL;
1508 	}
1509 
1510 	for (i = state; i <= end; i++, step++) {
1511 		if (!step->name)
1512 			return i;
1513 	}
1514 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1515 	return -ENOSPC;
1516 }
1517 
1518 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1519 				 int (*startup)(unsigned int cpu),
1520 				 int (*teardown)(unsigned int cpu),
1521 				 bool multi_instance)
1522 {
1523 	/* (Un)Install the callbacks for further cpu hotplug operations */
1524 	struct cpuhp_step *sp;
1525 	int ret = 0;
1526 
1527 	/*
1528 	 * If name is NULL, then the state gets removed.
1529 	 *
1530 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1531 	 * the first allocation from these dynamic ranges, so the removal
1532 	 * would trigger a new allocation and clear the wrong (already
1533 	 * empty) state, leaving the callbacks of the to be cleared state
1534 	 * dangling, which causes wreckage on the next hotplug operation.
1535 	 */
1536 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1537 		     state == CPUHP_BP_PREPARE_DYN)) {
1538 		ret = cpuhp_reserve_state(state);
1539 		if (ret < 0)
1540 			return ret;
1541 		state = ret;
1542 	}
1543 	sp = cpuhp_get_step(state);
1544 	if (name && sp->name)
1545 		return -EBUSY;
1546 
1547 	sp->startup.single = startup;
1548 	sp->teardown.single = teardown;
1549 	sp->name = name;
1550 	sp->multi_instance = multi_instance;
1551 	INIT_HLIST_HEAD(&sp->list);
1552 	return ret;
1553 }
1554 
1555 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1556 {
1557 	return cpuhp_get_step(state)->teardown.single;
1558 }
1559 
1560 /*
1561  * Call the startup/teardown function for a step either on the AP or
1562  * on the current CPU.
1563  */
1564 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1565 			    struct hlist_node *node)
1566 {
1567 	struct cpuhp_step *sp = cpuhp_get_step(state);
1568 	int ret;
1569 
1570 	/*
1571 	 * If there's nothing to do, we done.
1572 	 * Relies on the union for multi_instance.
1573 	 */
1574 	if ((bringup && !sp->startup.single) ||
1575 	    (!bringup && !sp->teardown.single))
1576 		return 0;
1577 	/*
1578 	 * The non AP bound callbacks can fail on bringup. On teardown
1579 	 * e.g. module removal we crash for now.
1580 	 */
1581 #ifdef CONFIG_SMP
1582 	if (cpuhp_is_ap_state(state))
1583 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1584 	else
1585 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1586 #else
1587 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1588 #endif
1589 	BUG_ON(ret && !bringup);
1590 	return ret;
1591 }
1592 
1593 /*
1594  * Called from __cpuhp_setup_state on a recoverable failure.
1595  *
1596  * Note: The teardown callbacks for rollback are not allowed to fail!
1597  */
1598 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1599 				   struct hlist_node *node)
1600 {
1601 	int cpu;
1602 
1603 	/* Roll back the already executed steps on the other cpus */
1604 	for_each_present_cpu(cpu) {
1605 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1606 		int cpustate = st->state;
1607 
1608 		if (cpu >= failedcpu)
1609 			break;
1610 
1611 		/* Did we invoke the startup call on that cpu ? */
1612 		if (cpustate >= state)
1613 			cpuhp_issue_call(cpu, state, false, node);
1614 	}
1615 }
1616 
1617 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1618 					  struct hlist_node *node,
1619 					  bool invoke)
1620 {
1621 	struct cpuhp_step *sp;
1622 	int cpu;
1623 	int ret;
1624 
1625 	lockdep_assert_cpus_held();
1626 
1627 	sp = cpuhp_get_step(state);
1628 	if (sp->multi_instance == false)
1629 		return -EINVAL;
1630 
1631 	mutex_lock(&cpuhp_state_mutex);
1632 
1633 	if (!invoke || !sp->startup.multi)
1634 		goto add_node;
1635 
1636 	/*
1637 	 * Try to call the startup callback for each present cpu
1638 	 * depending on the hotplug state of the cpu.
1639 	 */
1640 	for_each_present_cpu(cpu) {
1641 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1642 		int cpustate = st->state;
1643 
1644 		if (cpustate < state)
1645 			continue;
1646 
1647 		ret = cpuhp_issue_call(cpu, state, true, node);
1648 		if (ret) {
1649 			if (sp->teardown.multi)
1650 				cpuhp_rollback_install(cpu, state, node);
1651 			goto unlock;
1652 		}
1653 	}
1654 add_node:
1655 	ret = 0;
1656 	hlist_add_head(node, &sp->list);
1657 unlock:
1658 	mutex_unlock(&cpuhp_state_mutex);
1659 	return ret;
1660 }
1661 
1662 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1663 			       bool invoke)
1664 {
1665 	int ret;
1666 
1667 	cpus_read_lock();
1668 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1669 	cpus_read_unlock();
1670 	return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1673 
1674 /**
1675  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1676  * @state:		The state to setup
1677  * @invoke:		If true, the startup function is invoked for cpus where
1678  *			cpu state >= @state
1679  * @startup:		startup callback function
1680  * @teardown:		teardown callback function
1681  * @multi_instance:	State is set up for multiple instances which get
1682  *			added afterwards.
1683  *
1684  * The caller needs to hold cpus read locked while calling this function.
1685  * Returns:
1686  *   On success:
1687  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1688  *      0 for all other states
1689  *   On failure: proper (negative) error code
1690  */
1691 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1692 				   const char *name, bool invoke,
1693 				   int (*startup)(unsigned int cpu),
1694 				   int (*teardown)(unsigned int cpu),
1695 				   bool multi_instance)
1696 {
1697 	int cpu, ret = 0;
1698 	bool dynstate;
1699 
1700 	lockdep_assert_cpus_held();
1701 
1702 	if (cpuhp_cb_check(state) || !name)
1703 		return -EINVAL;
1704 
1705 	mutex_lock(&cpuhp_state_mutex);
1706 
1707 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1708 				    multi_instance);
1709 
1710 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1711 	if (ret > 0 && dynstate) {
1712 		state = ret;
1713 		ret = 0;
1714 	}
1715 
1716 	if (ret || !invoke || !startup)
1717 		goto out;
1718 
1719 	/*
1720 	 * Try to call the startup callback for each present cpu
1721 	 * depending on the hotplug state of the cpu.
1722 	 */
1723 	for_each_present_cpu(cpu) {
1724 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1725 		int cpustate = st->state;
1726 
1727 		if (cpustate < state)
1728 			continue;
1729 
1730 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1731 		if (ret) {
1732 			if (teardown)
1733 				cpuhp_rollback_install(cpu, state, NULL);
1734 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1735 			goto out;
1736 		}
1737 	}
1738 out:
1739 	mutex_unlock(&cpuhp_state_mutex);
1740 	/*
1741 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1742 	 * dynamically allocated state in case of success.
1743 	 */
1744 	if (!ret && dynstate)
1745 		return state;
1746 	return ret;
1747 }
1748 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1749 
1750 int __cpuhp_setup_state(enum cpuhp_state state,
1751 			const char *name, bool invoke,
1752 			int (*startup)(unsigned int cpu),
1753 			int (*teardown)(unsigned int cpu),
1754 			bool multi_instance)
1755 {
1756 	int ret;
1757 
1758 	cpus_read_lock();
1759 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1760 					     teardown, multi_instance);
1761 	cpus_read_unlock();
1762 	return ret;
1763 }
1764 EXPORT_SYMBOL(__cpuhp_setup_state);
1765 
1766 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1767 				  struct hlist_node *node, bool invoke)
1768 {
1769 	struct cpuhp_step *sp = cpuhp_get_step(state);
1770 	int cpu;
1771 
1772 	BUG_ON(cpuhp_cb_check(state));
1773 
1774 	if (!sp->multi_instance)
1775 		return -EINVAL;
1776 
1777 	cpus_read_lock();
1778 	mutex_lock(&cpuhp_state_mutex);
1779 
1780 	if (!invoke || !cpuhp_get_teardown_cb(state))
1781 		goto remove;
1782 	/*
1783 	 * Call the teardown callback for each present cpu depending
1784 	 * on the hotplug state of the cpu. This function is not
1785 	 * allowed to fail currently!
1786 	 */
1787 	for_each_present_cpu(cpu) {
1788 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1789 		int cpustate = st->state;
1790 
1791 		if (cpustate >= state)
1792 			cpuhp_issue_call(cpu, state, false, node);
1793 	}
1794 
1795 remove:
1796 	hlist_del(node);
1797 	mutex_unlock(&cpuhp_state_mutex);
1798 	cpus_read_unlock();
1799 
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1803 
1804 /**
1805  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1806  * @state:	The state to remove
1807  * @invoke:	If true, the teardown function is invoked for cpus where
1808  *		cpu state >= @state
1809  *
1810  * The caller needs to hold cpus read locked while calling this function.
1811  * The teardown callback is currently not allowed to fail. Think
1812  * about module removal!
1813  */
1814 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1815 {
1816 	struct cpuhp_step *sp = cpuhp_get_step(state);
1817 	int cpu;
1818 
1819 	BUG_ON(cpuhp_cb_check(state));
1820 
1821 	lockdep_assert_cpus_held();
1822 
1823 	mutex_lock(&cpuhp_state_mutex);
1824 	if (sp->multi_instance) {
1825 		WARN(!hlist_empty(&sp->list),
1826 		     "Error: Removing state %d which has instances left.\n",
1827 		     state);
1828 		goto remove;
1829 	}
1830 
1831 	if (!invoke || !cpuhp_get_teardown_cb(state))
1832 		goto remove;
1833 
1834 	/*
1835 	 * Call the teardown callback for each present cpu depending
1836 	 * on the hotplug state of the cpu. This function is not
1837 	 * allowed to fail currently!
1838 	 */
1839 	for_each_present_cpu(cpu) {
1840 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841 		int cpustate = st->state;
1842 
1843 		if (cpustate >= state)
1844 			cpuhp_issue_call(cpu, state, false, NULL);
1845 	}
1846 remove:
1847 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1848 	mutex_unlock(&cpuhp_state_mutex);
1849 }
1850 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1851 
1852 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1853 {
1854 	cpus_read_lock();
1855 	__cpuhp_remove_state_cpuslocked(state, invoke);
1856 	cpus_read_unlock();
1857 }
1858 EXPORT_SYMBOL(__cpuhp_remove_state);
1859 
1860 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1861 static ssize_t show_cpuhp_state(struct device *dev,
1862 				struct device_attribute *attr, char *buf)
1863 {
1864 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1865 
1866 	return sprintf(buf, "%d\n", st->state);
1867 }
1868 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1869 
1870 static ssize_t write_cpuhp_target(struct device *dev,
1871 				  struct device_attribute *attr,
1872 				  const char *buf, size_t count)
1873 {
1874 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1875 	struct cpuhp_step *sp;
1876 	int target, ret;
1877 
1878 	ret = kstrtoint(buf, 10, &target);
1879 	if (ret)
1880 		return ret;
1881 
1882 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1883 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1884 		return -EINVAL;
1885 #else
1886 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1887 		return -EINVAL;
1888 #endif
1889 
1890 	ret = lock_device_hotplug_sysfs();
1891 	if (ret)
1892 		return ret;
1893 
1894 	mutex_lock(&cpuhp_state_mutex);
1895 	sp = cpuhp_get_step(target);
1896 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1897 	mutex_unlock(&cpuhp_state_mutex);
1898 	if (ret)
1899 		goto out;
1900 
1901 	if (st->state < target)
1902 		ret = do_cpu_up(dev->id, target);
1903 	else
1904 		ret = do_cpu_down(dev->id, target);
1905 out:
1906 	unlock_device_hotplug();
1907 	return ret ? ret : count;
1908 }
1909 
1910 static ssize_t show_cpuhp_target(struct device *dev,
1911 				 struct device_attribute *attr, char *buf)
1912 {
1913 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1914 
1915 	return sprintf(buf, "%d\n", st->target);
1916 }
1917 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1918 
1919 
1920 static ssize_t write_cpuhp_fail(struct device *dev,
1921 				struct device_attribute *attr,
1922 				const char *buf, size_t count)
1923 {
1924 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1925 	struct cpuhp_step *sp;
1926 	int fail, ret;
1927 
1928 	ret = kstrtoint(buf, 10, &fail);
1929 	if (ret)
1930 		return ret;
1931 
1932 	/*
1933 	 * Cannot fail STARTING/DYING callbacks.
1934 	 */
1935 	if (cpuhp_is_atomic_state(fail))
1936 		return -EINVAL;
1937 
1938 	/*
1939 	 * Cannot fail anything that doesn't have callbacks.
1940 	 */
1941 	mutex_lock(&cpuhp_state_mutex);
1942 	sp = cpuhp_get_step(fail);
1943 	if (!sp->startup.single && !sp->teardown.single)
1944 		ret = -EINVAL;
1945 	mutex_unlock(&cpuhp_state_mutex);
1946 	if (ret)
1947 		return ret;
1948 
1949 	st->fail = fail;
1950 
1951 	return count;
1952 }
1953 
1954 static ssize_t show_cpuhp_fail(struct device *dev,
1955 			       struct device_attribute *attr, char *buf)
1956 {
1957 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1958 
1959 	return sprintf(buf, "%d\n", st->fail);
1960 }
1961 
1962 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1963 
1964 static struct attribute *cpuhp_cpu_attrs[] = {
1965 	&dev_attr_state.attr,
1966 	&dev_attr_target.attr,
1967 	&dev_attr_fail.attr,
1968 	NULL
1969 };
1970 
1971 static const struct attribute_group cpuhp_cpu_attr_group = {
1972 	.attrs = cpuhp_cpu_attrs,
1973 	.name = "hotplug",
1974 	NULL
1975 };
1976 
1977 static ssize_t show_cpuhp_states(struct device *dev,
1978 				 struct device_attribute *attr, char *buf)
1979 {
1980 	ssize_t cur, res = 0;
1981 	int i;
1982 
1983 	mutex_lock(&cpuhp_state_mutex);
1984 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1985 		struct cpuhp_step *sp = cpuhp_get_step(i);
1986 
1987 		if (sp->name) {
1988 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1989 			buf += cur;
1990 			res += cur;
1991 		}
1992 	}
1993 	mutex_unlock(&cpuhp_state_mutex);
1994 	return res;
1995 }
1996 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1997 
1998 static struct attribute *cpuhp_cpu_root_attrs[] = {
1999 	&dev_attr_states.attr,
2000 	NULL
2001 };
2002 
2003 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2004 	.attrs = cpuhp_cpu_root_attrs,
2005 	.name = "hotplug",
2006 	NULL
2007 };
2008 
2009 #ifdef CONFIG_HOTPLUG_SMT
2010 
2011 static const char *smt_states[] = {
2012 	[CPU_SMT_ENABLED]		= "on",
2013 	[CPU_SMT_DISABLED]		= "off",
2014 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2015 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2016 };
2017 
2018 static ssize_t
2019 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2020 {
2021 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2022 }
2023 
2024 static void cpuhp_offline_cpu_device(unsigned int cpu)
2025 {
2026 	struct device *dev = get_cpu_device(cpu);
2027 
2028 	dev->offline = true;
2029 	/* Tell user space about the state change */
2030 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2031 }
2032 
2033 static void cpuhp_online_cpu_device(unsigned int cpu)
2034 {
2035 	struct device *dev = get_cpu_device(cpu);
2036 
2037 	dev->offline = false;
2038 	/* Tell user space about the state change */
2039 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2040 }
2041 
2042 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2043 {
2044 	int cpu, ret = 0;
2045 
2046 	cpu_maps_update_begin();
2047 	for_each_online_cpu(cpu) {
2048 		if (topology_is_primary_thread(cpu))
2049 			continue;
2050 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2051 		if (ret)
2052 			break;
2053 		/*
2054 		 * As this needs to hold the cpu maps lock it's impossible
2055 		 * to call device_offline() because that ends up calling
2056 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2057 		 * needs to be held as this might race against in kernel
2058 		 * abusers of the hotplug machinery (thermal management).
2059 		 *
2060 		 * So nothing would update device:offline state. That would
2061 		 * leave the sysfs entry stale and prevent onlining after
2062 		 * smt control has been changed to 'off' again. This is
2063 		 * called under the sysfs hotplug lock, so it is properly
2064 		 * serialized against the regular offline usage.
2065 		 */
2066 		cpuhp_offline_cpu_device(cpu);
2067 	}
2068 	if (!ret)
2069 		cpu_smt_control = ctrlval;
2070 	cpu_maps_update_done();
2071 	return ret;
2072 }
2073 
2074 static int cpuhp_smt_enable(void)
2075 {
2076 	int cpu, ret = 0;
2077 
2078 	cpu_maps_update_begin();
2079 	cpu_smt_control = CPU_SMT_ENABLED;
2080 	for_each_present_cpu(cpu) {
2081 		/* Skip online CPUs and CPUs on offline nodes */
2082 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2083 			continue;
2084 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2085 		if (ret)
2086 			break;
2087 		/* See comment in cpuhp_smt_disable() */
2088 		cpuhp_online_cpu_device(cpu);
2089 	}
2090 	cpu_maps_update_done();
2091 	return ret;
2092 }
2093 
2094 static ssize_t
2095 store_smt_control(struct device *dev, struct device_attribute *attr,
2096 		  const char *buf, size_t count)
2097 {
2098 	int ctrlval, ret;
2099 
2100 	if (sysfs_streq(buf, "on"))
2101 		ctrlval = CPU_SMT_ENABLED;
2102 	else if (sysfs_streq(buf, "off"))
2103 		ctrlval = CPU_SMT_DISABLED;
2104 	else if (sysfs_streq(buf, "forceoff"))
2105 		ctrlval = CPU_SMT_FORCE_DISABLED;
2106 	else
2107 		return -EINVAL;
2108 
2109 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2110 		return -EPERM;
2111 
2112 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2113 		return -ENODEV;
2114 
2115 	ret = lock_device_hotplug_sysfs();
2116 	if (ret)
2117 		return ret;
2118 
2119 	if (ctrlval != cpu_smt_control) {
2120 		switch (ctrlval) {
2121 		case CPU_SMT_ENABLED:
2122 			ret = cpuhp_smt_enable();
2123 			break;
2124 		case CPU_SMT_DISABLED:
2125 		case CPU_SMT_FORCE_DISABLED:
2126 			ret = cpuhp_smt_disable(ctrlval);
2127 			break;
2128 		}
2129 	}
2130 
2131 	unlock_device_hotplug();
2132 	return ret ? ret : count;
2133 }
2134 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2135 
2136 static ssize_t
2137 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2138 {
2139 	bool active = topology_max_smt_threads() > 1;
2140 
2141 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2142 }
2143 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2144 
2145 static struct attribute *cpuhp_smt_attrs[] = {
2146 	&dev_attr_control.attr,
2147 	&dev_attr_active.attr,
2148 	NULL
2149 };
2150 
2151 static const struct attribute_group cpuhp_smt_attr_group = {
2152 	.attrs = cpuhp_smt_attrs,
2153 	.name = "smt",
2154 	NULL
2155 };
2156 
2157 static int __init cpu_smt_state_init(void)
2158 {
2159 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2160 				  &cpuhp_smt_attr_group);
2161 }
2162 
2163 #else
2164 static inline int cpu_smt_state_init(void) { return 0; }
2165 #endif
2166 
2167 static int __init cpuhp_sysfs_init(void)
2168 {
2169 	int cpu, ret;
2170 
2171 	ret = cpu_smt_state_init();
2172 	if (ret)
2173 		return ret;
2174 
2175 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2176 				 &cpuhp_cpu_root_attr_group);
2177 	if (ret)
2178 		return ret;
2179 
2180 	for_each_possible_cpu(cpu) {
2181 		struct device *dev = get_cpu_device(cpu);
2182 
2183 		if (!dev)
2184 			continue;
2185 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2186 		if (ret)
2187 			return ret;
2188 	}
2189 	return 0;
2190 }
2191 device_initcall(cpuhp_sysfs_init);
2192 #endif
2193 
2194 /*
2195  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2196  * represents all NR_CPUS bits binary values of 1<<nr.
2197  *
2198  * It is used by cpumask_of() to get a constant address to a CPU
2199  * mask value that has a single bit set only.
2200  */
2201 
2202 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2203 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2204 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2205 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2206 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2207 
2208 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2209 
2210 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2211 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2212 #if BITS_PER_LONG > 32
2213 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2214 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2215 #endif
2216 };
2217 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2218 
2219 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2220 EXPORT_SYMBOL(cpu_all_bits);
2221 
2222 #ifdef CONFIG_INIT_ALL_POSSIBLE
2223 struct cpumask __cpu_possible_mask __read_mostly
2224 	= {CPU_BITS_ALL};
2225 #else
2226 struct cpumask __cpu_possible_mask __read_mostly;
2227 #endif
2228 EXPORT_SYMBOL(__cpu_possible_mask);
2229 
2230 struct cpumask __cpu_online_mask __read_mostly;
2231 EXPORT_SYMBOL(__cpu_online_mask);
2232 
2233 struct cpumask __cpu_present_mask __read_mostly;
2234 EXPORT_SYMBOL(__cpu_present_mask);
2235 
2236 struct cpumask __cpu_active_mask __read_mostly;
2237 EXPORT_SYMBOL(__cpu_active_mask);
2238 
2239 void init_cpu_present(const struct cpumask *src)
2240 {
2241 	cpumask_copy(&__cpu_present_mask, src);
2242 }
2243 
2244 void init_cpu_possible(const struct cpumask *src)
2245 {
2246 	cpumask_copy(&__cpu_possible_mask, src);
2247 }
2248 
2249 void init_cpu_online(const struct cpumask *src)
2250 {
2251 	cpumask_copy(&__cpu_online_mask, src);
2252 }
2253 
2254 /*
2255  * Activate the first processor.
2256  */
2257 void __init boot_cpu_init(void)
2258 {
2259 	int cpu = smp_processor_id();
2260 
2261 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2262 	set_cpu_online(cpu, true);
2263 	set_cpu_active(cpu, true);
2264 	set_cpu_present(cpu, true);
2265 	set_cpu_possible(cpu, true);
2266 
2267 #ifdef CONFIG_SMP
2268 	__boot_cpu_id = cpu;
2269 #endif
2270 }
2271 
2272 /*
2273  * Must be called _AFTER_ setting up the per_cpu areas
2274  */
2275 void __init boot_cpu_hotplug_init(void)
2276 {
2277 #ifdef CONFIG_SMP
2278 	this_cpu_write(cpuhp_state.booted_once, true);
2279 #endif
2280 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2281 }
2282