1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/scs.h> 35 #include <linux/percpu-rwsem.h> 36 #include <linux/cpuset.h> 37 #include <linux/random.h> 38 39 #include <trace/events/power.h> 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/cpuhp.h> 42 43 #include "smpboot.h" 44 45 /** 46 * struct cpuhp_cpu_state - Per cpu hotplug state storage 47 * @state: The current cpu state 48 * @target: The target state 49 * @fail: Current CPU hotplug callback state 50 * @thread: Pointer to the hotplug thread 51 * @should_run: Thread should execute 52 * @rollback: Perform a rollback 53 * @single: Single callback invocation 54 * @bringup: Single callback bringup or teardown selector 55 * @cpu: CPU number 56 * @node: Remote CPU node; for multi-instance, do a 57 * single entry callback for install/remove 58 * @last: For multi-instance rollback, remember how far we got 59 * @cb_state: The state for a single callback (install/uninstall) 60 * @result: Result of the operation 61 * @done_up: Signal completion to the issuer of the task for cpu-up 62 * @done_down: Signal completion to the issuer of the task for cpu-down 63 */ 64 struct cpuhp_cpu_state { 65 enum cpuhp_state state; 66 enum cpuhp_state target; 67 enum cpuhp_state fail; 68 #ifdef CONFIG_SMP 69 struct task_struct *thread; 70 bool should_run; 71 bool rollback; 72 bool single; 73 bool bringup; 74 int cpu; 75 struct hlist_node *node; 76 struct hlist_node *last; 77 enum cpuhp_state cb_state; 78 int result; 79 struct completion done_up; 80 struct completion done_down; 81 #endif 82 }; 83 84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 85 .fail = CPUHP_INVALID, 86 }; 87 88 #ifdef CONFIG_SMP 89 cpumask_t cpus_booted_once_mask; 90 #endif 91 92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 93 static struct lockdep_map cpuhp_state_up_map = 94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 95 static struct lockdep_map cpuhp_state_down_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 97 98 99 static inline void cpuhp_lock_acquire(bool bringup) 100 { 101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 102 } 103 104 static inline void cpuhp_lock_release(bool bringup) 105 { 106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 107 } 108 #else 109 110 static inline void cpuhp_lock_acquire(bool bringup) { } 111 static inline void cpuhp_lock_release(bool bringup) { } 112 113 #endif 114 115 /** 116 * struct cpuhp_step - Hotplug state machine step 117 * @name: Name of the step 118 * @startup: Startup function of the step 119 * @teardown: Teardown function of the step 120 * @cant_stop: Bringup/teardown can't be stopped at this step 121 * @multi_instance: State has multiple instances which get added afterwards 122 */ 123 struct cpuhp_step { 124 const char *name; 125 union { 126 int (*single)(unsigned int cpu); 127 int (*multi)(unsigned int cpu, 128 struct hlist_node *node); 129 } startup; 130 union { 131 int (*single)(unsigned int cpu); 132 int (*multi)(unsigned int cpu, 133 struct hlist_node *node); 134 } teardown; 135 /* private: */ 136 struct hlist_head list; 137 /* public: */ 138 bool cant_stop; 139 bool multi_instance; 140 }; 141 142 static DEFINE_MUTEX(cpuhp_state_mutex); 143 static struct cpuhp_step cpuhp_hp_states[]; 144 145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 146 { 147 return cpuhp_hp_states + state; 148 } 149 150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 151 { 152 return bringup ? !step->startup.single : !step->teardown.single; 153 } 154 155 /** 156 * cpuhp_invoke_callback - Invoke the callbacks for a given state 157 * @cpu: The cpu for which the callback should be invoked 158 * @state: The state to do callbacks for 159 * @bringup: True if the bringup callback should be invoked 160 * @node: For multi-instance, do a single entry callback for install/remove 161 * @lastp: For multi-instance rollback, remember how far we got 162 * 163 * Called from cpu hotplug and from the state register machinery. 164 * 165 * Return: %0 on success or a negative errno code 166 */ 167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 168 bool bringup, struct hlist_node *node, 169 struct hlist_node **lastp) 170 { 171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 172 struct cpuhp_step *step = cpuhp_get_step(state); 173 int (*cbm)(unsigned int cpu, struct hlist_node *node); 174 int (*cb)(unsigned int cpu); 175 int ret, cnt; 176 177 if (st->fail == state) { 178 st->fail = CPUHP_INVALID; 179 return -EAGAIN; 180 } 181 182 if (cpuhp_step_empty(bringup, step)) { 183 WARN_ON_ONCE(1); 184 return 0; 185 } 186 187 if (!step->multi_instance) { 188 WARN_ON_ONCE(lastp && *lastp); 189 cb = bringup ? step->startup.single : step->teardown.single; 190 191 trace_cpuhp_enter(cpu, st->target, state, cb); 192 ret = cb(cpu); 193 trace_cpuhp_exit(cpu, st->state, state, ret); 194 return ret; 195 } 196 cbm = bringup ? step->startup.multi : step->teardown.multi; 197 198 /* Single invocation for instance add/remove */ 199 if (node) { 200 WARN_ON_ONCE(lastp && *lastp); 201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 202 ret = cbm(cpu, node); 203 trace_cpuhp_exit(cpu, st->state, state, ret); 204 return ret; 205 } 206 207 /* State transition. Invoke on all instances */ 208 cnt = 0; 209 hlist_for_each(node, &step->list) { 210 if (lastp && node == *lastp) 211 break; 212 213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 214 ret = cbm(cpu, node); 215 trace_cpuhp_exit(cpu, st->state, state, ret); 216 if (ret) { 217 if (!lastp) 218 goto err; 219 220 *lastp = node; 221 return ret; 222 } 223 cnt++; 224 } 225 if (lastp) 226 *lastp = NULL; 227 return 0; 228 err: 229 /* Rollback the instances if one failed */ 230 cbm = !bringup ? step->startup.multi : step->teardown.multi; 231 if (!cbm) 232 return ret; 233 234 hlist_for_each(node, &step->list) { 235 if (!cnt--) 236 break; 237 238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 239 ret = cbm(cpu, node); 240 trace_cpuhp_exit(cpu, st->state, state, ret); 241 /* 242 * Rollback must not fail, 243 */ 244 WARN_ON_ONCE(ret); 245 } 246 return ret; 247 } 248 249 #ifdef CONFIG_SMP 250 static bool cpuhp_is_ap_state(enum cpuhp_state state) 251 { 252 /* 253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 254 * purposes as that state is handled explicitly in cpu_down. 255 */ 256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 257 } 258 259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 260 { 261 struct completion *done = bringup ? &st->done_up : &st->done_down; 262 wait_for_completion(done); 263 } 264 265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 266 { 267 struct completion *done = bringup ? &st->done_up : &st->done_down; 268 complete(done); 269 } 270 271 /* 272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 273 */ 274 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 275 { 276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 277 } 278 279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 280 static DEFINE_MUTEX(cpu_add_remove_lock); 281 bool cpuhp_tasks_frozen; 282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 283 284 /* 285 * The following two APIs (cpu_maps_update_begin/done) must be used when 286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 287 */ 288 void cpu_maps_update_begin(void) 289 { 290 mutex_lock(&cpu_add_remove_lock); 291 } 292 293 void cpu_maps_update_done(void) 294 { 295 mutex_unlock(&cpu_add_remove_lock); 296 } 297 298 /* 299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 300 * Should always be manipulated under cpu_add_remove_lock 301 */ 302 static int cpu_hotplug_disabled; 303 304 #ifdef CONFIG_HOTPLUG_CPU 305 306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 307 308 void cpus_read_lock(void) 309 { 310 percpu_down_read(&cpu_hotplug_lock); 311 } 312 EXPORT_SYMBOL_GPL(cpus_read_lock); 313 314 int cpus_read_trylock(void) 315 { 316 return percpu_down_read_trylock(&cpu_hotplug_lock); 317 } 318 EXPORT_SYMBOL_GPL(cpus_read_trylock); 319 320 void cpus_read_unlock(void) 321 { 322 percpu_up_read(&cpu_hotplug_lock); 323 } 324 EXPORT_SYMBOL_GPL(cpus_read_unlock); 325 326 void cpus_write_lock(void) 327 { 328 percpu_down_write(&cpu_hotplug_lock); 329 } 330 331 void cpus_write_unlock(void) 332 { 333 percpu_up_write(&cpu_hotplug_lock); 334 } 335 336 void lockdep_assert_cpus_held(void) 337 { 338 /* 339 * We can't have hotplug operations before userspace starts running, 340 * and some init codepaths will knowingly not take the hotplug lock. 341 * This is all valid, so mute lockdep until it makes sense to report 342 * unheld locks. 343 */ 344 if (system_state < SYSTEM_RUNNING) 345 return; 346 347 percpu_rwsem_assert_held(&cpu_hotplug_lock); 348 } 349 350 #ifdef CONFIG_LOCKDEP 351 int lockdep_is_cpus_held(void) 352 { 353 return percpu_rwsem_is_held(&cpu_hotplug_lock); 354 } 355 #endif 356 357 static void lockdep_acquire_cpus_lock(void) 358 { 359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 360 } 361 362 static void lockdep_release_cpus_lock(void) 363 { 364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 365 } 366 367 /* 368 * Wait for currently running CPU hotplug operations to complete (if any) and 369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 371 * hotplug path before performing hotplug operations. So acquiring that lock 372 * guarantees mutual exclusion from any currently running hotplug operations. 373 */ 374 void cpu_hotplug_disable(void) 375 { 376 cpu_maps_update_begin(); 377 cpu_hotplug_disabled++; 378 cpu_maps_update_done(); 379 } 380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 381 382 static void __cpu_hotplug_enable(void) 383 { 384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 385 return; 386 cpu_hotplug_disabled--; 387 } 388 389 void cpu_hotplug_enable(void) 390 { 391 cpu_maps_update_begin(); 392 __cpu_hotplug_enable(); 393 cpu_maps_update_done(); 394 } 395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 396 397 #else 398 399 static void lockdep_acquire_cpus_lock(void) 400 { 401 } 402 403 static void lockdep_release_cpus_lock(void) 404 { 405 } 406 407 #endif /* CONFIG_HOTPLUG_CPU */ 408 409 /* 410 * Architectures that need SMT-specific errata handling during SMT hotplug 411 * should override this. 412 */ 413 void __weak arch_smt_update(void) { } 414 415 #ifdef CONFIG_HOTPLUG_SMT 416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 417 418 void __init cpu_smt_disable(bool force) 419 { 420 if (!cpu_smt_possible()) 421 return; 422 423 if (force) { 424 pr_info("SMT: Force disabled\n"); 425 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 426 } else { 427 pr_info("SMT: disabled\n"); 428 cpu_smt_control = CPU_SMT_DISABLED; 429 } 430 } 431 432 /* 433 * The decision whether SMT is supported can only be done after the full 434 * CPU identification. Called from architecture code. 435 */ 436 void __init cpu_smt_check_topology(void) 437 { 438 if (!topology_smt_supported()) 439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 440 } 441 442 static int __init smt_cmdline_disable(char *str) 443 { 444 cpu_smt_disable(str && !strcmp(str, "force")); 445 return 0; 446 } 447 early_param("nosmt", smt_cmdline_disable); 448 449 static inline bool cpu_smt_allowed(unsigned int cpu) 450 { 451 if (cpu_smt_control == CPU_SMT_ENABLED) 452 return true; 453 454 if (topology_is_primary_thread(cpu)) 455 return true; 456 457 /* 458 * On x86 it's required to boot all logical CPUs at least once so 459 * that the init code can get a chance to set CR4.MCE on each 460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 461 * core will shutdown the machine. 462 */ 463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 464 } 465 466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 467 bool cpu_smt_possible(void) 468 { 469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 471 } 472 EXPORT_SYMBOL_GPL(cpu_smt_possible); 473 #else 474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 475 #endif 476 477 static inline enum cpuhp_state 478 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 479 { 480 enum cpuhp_state prev_state = st->state; 481 bool bringup = st->state < target; 482 483 st->rollback = false; 484 st->last = NULL; 485 486 st->target = target; 487 st->single = false; 488 st->bringup = bringup; 489 if (cpu_dying(st->cpu) != !bringup) 490 set_cpu_dying(st->cpu, !bringup); 491 492 return prev_state; 493 } 494 495 static inline void 496 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 497 { 498 bool bringup = !st->bringup; 499 500 st->target = prev_state; 501 502 /* 503 * Already rolling back. No need invert the bringup value or to change 504 * the current state. 505 */ 506 if (st->rollback) 507 return; 508 509 st->rollback = true; 510 511 /* 512 * If we have st->last we need to undo partial multi_instance of this 513 * state first. Otherwise start undo at the previous state. 514 */ 515 if (!st->last) { 516 if (st->bringup) 517 st->state--; 518 else 519 st->state++; 520 } 521 522 st->bringup = bringup; 523 if (cpu_dying(st->cpu) != !bringup) 524 set_cpu_dying(st->cpu, !bringup); 525 } 526 527 /* Regular hotplug invocation of the AP hotplug thread */ 528 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 529 { 530 if (!st->single && st->state == st->target) 531 return; 532 533 st->result = 0; 534 /* 535 * Make sure the above stores are visible before should_run becomes 536 * true. Paired with the mb() above in cpuhp_thread_fun() 537 */ 538 smp_mb(); 539 st->should_run = true; 540 wake_up_process(st->thread); 541 wait_for_ap_thread(st, st->bringup); 542 } 543 544 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 545 { 546 enum cpuhp_state prev_state; 547 int ret; 548 549 prev_state = cpuhp_set_state(st, target); 550 __cpuhp_kick_ap(st); 551 if ((ret = st->result)) { 552 cpuhp_reset_state(st, prev_state); 553 __cpuhp_kick_ap(st); 554 } 555 556 return ret; 557 } 558 559 static int bringup_wait_for_ap(unsigned int cpu) 560 { 561 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 562 563 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 564 wait_for_ap_thread(st, true); 565 if (WARN_ON_ONCE((!cpu_online(cpu)))) 566 return -ECANCELED; 567 568 /* Unpark the hotplug thread of the target cpu */ 569 kthread_unpark(st->thread); 570 571 /* 572 * SMT soft disabling on X86 requires to bring the CPU out of the 573 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 574 * CPU marked itself as booted_once in notify_cpu_starting() so the 575 * cpu_smt_allowed() check will now return false if this is not the 576 * primary sibling. 577 */ 578 if (!cpu_smt_allowed(cpu)) 579 return -ECANCELED; 580 581 if (st->target <= CPUHP_AP_ONLINE_IDLE) 582 return 0; 583 584 return cpuhp_kick_ap(st, st->target); 585 } 586 587 static int bringup_cpu(unsigned int cpu) 588 { 589 struct task_struct *idle = idle_thread_get(cpu); 590 int ret; 591 592 /* 593 * Reset stale stack state from the last time this CPU was online. 594 */ 595 scs_task_reset(idle); 596 kasan_unpoison_task_stack(idle); 597 598 /* 599 * Some architectures have to walk the irq descriptors to 600 * setup the vector space for the cpu which comes online. 601 * Prevent irq alloc/free across the bringup. 602 */ 603 irq_lock_sparse(); 604 605 /* Arch-specific enabling code. */ 606 ret = __cpu_up(cpu, idle); 607 irq_unlock_sparse(); 608 if (ret) 609 return ret; 610 return bringup_wait_for_ap(cpu); 611 } 612 613 static int finish_cpu(unsigned int cpu) 614 { 615 struct task_struct *idle = idle_thread_get(cpu); 616 struct mm_struct *mm = idle->active_mm; 617 618 /* 619 * idle_task_exit() will have switched to &init_mm, now 620 * clean up any remaining active_mm state. 621 */ 622 if (mm != &init_mm) 623 idle->active_mm = &init_mm; 624 mmdrop(mm); 625 return 0; 626 } 627 628 /* 629 * Hotplug state machine related functions 630 */ 631 632 /* 633 * Get the next state to run. Empty ones will be skipped. Returns true if a 634 * state must be run. 635 * 636 * st->state will be modified ahead of time, to match state_to_run, as if it 637 * has already ran. 638 */ 639 static bool cpuhp_next_state(bool bringup, 640 enum cpuhp_state *state_to_run, 641 struct cpuhp_cpu_state *st, 642 enum cpuhp_state target) 643 { 644 do { 645 if (bringup) { 646 if (st->state >= target) 647 return false; 648 649 *state_to_run = ++st->state; 650 } else { 651 if (st->state <= target) 652 return false; 653 654 *state_to_run = st->state--; 655 } 656 657 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 658 break; 659 } while (true); 660 661 return true; 662 } 663 664 static int cpuhp_invoke_callback_range(bool bringup, 665 unsigned int cpu, 666 struct cpuhp_cpu_state *st, 667 enum cpuhp_state target) 668 { 669 enum cpuhp_state state; 670 int err = 0; 671 672 while (cpuhp_next_state(bringup, &state, st, target)) { 673 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 674 if (err) 675 break; 676 } 677 678 return err; 679 } 680 681 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 682 { 683 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 684 return true; 685 /* 686 * When CPU hotplug is disabled, then taking the CPU down is not 687 * possible because takedown_cpu() and the architecture and 688 * subsystem specific mechanisms are not available. So the CPU 689 * which would be completely unplugged again needs to stay around 690 * in the current state. 691 */ 692 return st->state <= CPUHP_BRINGUP_CPU; 693 } 694 695 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 696 enum cpuhp_state target) 697 { 698 enum cpuhp_state prev_state = st->state; 699 int ret = 0; 700 701 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 702 if (ret) { 703 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 704 ret, cpu, cpuhp_get_step(st->state)->name, 705 st->state); 706 707 cpuhp_reset_state(st, prev_state); 708 if (can_rollback_cpu(st)) 709 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 710 prev_state)); 711 } 712 return ret; 713 } 714 715 /* 716 * The cpu hotplug threads manage the bringup and teardown of the cpus 717 */ 718 static void cpuhp_create(unsigned int cpu) 719 { 720 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 721 722 init_completion(&st->done_up); 723 init_completion(&st->done_down); 724 st->cpu = cpu; 725 } 726 727 static int cpuhp_should_run(unsigned int cpu) 728 { 729 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 730 731 return st->should_run; 732 } 733 734 /* 735 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 736 * callbacks when a state gets [un]installed at runtime. 737 * 738 * Each invocation of this function by the smpboot thread does a single AP 739 * state callback. 740 * 741 * It has 3 modes of operation: 742 * - single: runs st->cb_state 743 * - up: runs ++st->state, while st->state < st->target 744 * - down: runs st->state--, while st->state > st->target 745 * 746 * When complete or on error, should_run is cleared and the completion is fired. 747 */ 748 static void cpuhp_thread_fun(unsigned int cpu) 749 { 750 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 751 bool bringup = st->bringup; 752 enum cpuhp_state state; 753 754 if (WARN_ON_ONCE(!st->should_run)) 755 return; 756 757 /* 758 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 759 * that if we see ->should_run we also see the rest of the state. 760 */ 761 smp_mb(); 762 763 /* 764 * The BP holds the hotplug lock, but we're now running on the AP, 765 * ensure that anybody asserting the lock is held, will actually find 766 * it so. 767 */ 768 lockdep_acquire_cpus_lock(); 769 cpuhp_lock_acquire(bringup); 770 771 if (st->single) { 772 state = st->cb_state; 773 st->should_run = false; 774 } else { 775 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 776 if (!st->should_run) 777 goto end; 778 } 779 780 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 781 782 if (cpuhp_is_atomic_state(state)) { 783 local_irq_disable(); 784 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 785 local_irq_enable(); 786 787 /* 788 * STARTING/DYING must not fail! 789 */ 790 WARN_ON_ONCE(st->result); 791 } else { 792 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 793 } 794 795 if (st->result) { 796 /* 797 * If we fail on a rollback, we're up a creek without no 798 * paddle, no way forward, no way back. We loose, thanks for 799 * playing. 800 */ 801 WARN_ON_ONCE(st->rollback); 802 st->should_run = false; 803 } 804 805 end: 806 cpuhp_lock_release(bringup); 807 lockdep_release_cpus_lock(); 808 809 if (!st->should_run) 810 complete_ap_thread(st, bringup); 811 } 812 813 /* Invoke a single callback on a remote cpu */ 814 static int 815 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 816 struct hlist_node *node) 817 { 818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 819 int ret; 820 821 if (!cpu_online(cpu)) 822 return 0; 823 824 cpuhp_lock_acquire(false); 825 cpuhp_lock_release(false); 826 827 cpuhp_lock_acquire(true); 828 cpuhp_lock_release(true); 829 830 /* 831 * If we are up and running, use the hotplug thread. For early calls 832 * we invoke the thread function directly. 833 */ 834 if (!st->thread) 835 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 836 837 st->rollback = false; 838 st->last = NULL; 839 840 st->node = node; 841 st->bringup = bringup; 842 st->cb_state = state; 843 st->single = true; 844 845 __cpuhp_kick_ap(st); 846 847 /* 848 * If we failed and did a partial, do a rollback. 849 */ 850 if ((ret = st->result) && st->last) { 851 st->rollback = true; 852 st->bringup = !bringup; 853 854 __cpuhp_kick_ap(st); 855 } 856 857 /* 858 * Clean up the leftovers so the next hotplug operation wont use stale 859 * data. 860 */ 861 st->node = st->last = NULL; 862 return ret; 863 } 864 865 static int cpuhp_kick_ap_work(unsigned int cpu) 866 { 867 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 868 enum cpuhp_state prev_state = st->state; 869 int ret; 870 871 cpuhp_lock_acquire(false); 872 cpuhp_lock_release(false); 873 874 cpuhp_lock_acquire(true); 875 cpuhp_lock_release(true); 876 877 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 878 ret = cpuhp_kick_ap(st, st->target); 879 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 880 881 return ret; 882 } 883 884 static struct smp_hotplug_thread cpuhp_threads = { 885 .store = &cpuhp_state.thread, 886 .create = &cpuhp_create, 887 .thread_should_run = cpuhp_should_run, 888 .thread_fn = cpuhp_thread_fun, 889 .thread_comm = "cpuhp/%u", 890 .selfparking = true, 891 }; 892 893 void __init cpuhp_threads_init(void) 894 { 895 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 896 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 897 } 898 899 /* 900 * 901 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 902 * protected region. 903 * 904 * The operation is still serialized against concurrent CPU hotplug via 905 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 906 * serialized against other hotplug related activity like adding or 907 * removing of state callbacks and state instances, which invoke either the 908 * startup or the teardown callback of the affected state. 909 * 910 * This is required for subsystems which are unfixable vs. CPU hotplug and 911 * evade lock inversion problems by scheduling work which has to be 912 * completed _before_ cpu_up()/_cpu_down() returns. 913 * 914 * Don't even think about adding anything to this for any new code or even 915 * drivers. It's only purpose is to keep existing lock order trainwrecks 916 * working. 917 * 918 * For cpu_down() there might be valid reasons to finish cleanups which are 919 * not required to be done under cpu_hotplug_lock, but that's a different 920 * story and would be not invoked via this. 921 */ 922 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 923 { 924 /* 925 * cpusets delegate hotplug operations to a worker to "solve" the 926 * lock order problems. Wait for the worker, but only if tasks are 927 * _not_ frozen (suspend, hibernate) as that would wait forever. 928 * 929 * The wait is required because otherwise the hotplug operation 930 * returns with inconsistent state, which could even be observed in 931 * user space when a new CPU is brought up. The CPU plug uevent 932 * would be delivered and user space reacting on it would fail to 933 * move tasks to the newly plugged CPU up to the point where the 934 * work has finished because up to that point the newly plugged CPU 935 * is not assignable in cpusets/cgroups. On unplug that's not 936 * necessarily a visible issue, but it is still inconsistent state, 937 * which is the real problem which needs to be "fixed". This can't 938 * prevent the transient state between scheduling the work and 939 * returning from waiting for it. 940 */ 941 if (!tasks_frozen) 942 cpuset_wait_for_hotplug(); 943 } 944 945 #ifdef CONFIG_HOTPLUG_CPU 946 #ifndef arch_clear_mm_cpumask_cpu 947 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 948 #endif 949 950 /** 951 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 952 * @cpu: a CPU id 953 * 954 * This function walks all processes, finds a valid mm struct for each one and 955 * then clears a corresponding bit in mm's cpumask. While this all sounds 956 * trivial, there are various non-obvious corner cases, which this function 957 * tries to solve in a safe manner. 958 * 959 * Also note that the function uses a somewhat relaxed locking scheme, so it may 960 * be called only for an already offlined CPU. 961 */ 962 void clear_tasks_mm_cpumask(int cpu) 963 { 964 struct task_struct *p; 965 966 /* 967 * This function is called after the cpu is taken down and marked 968 * offline, so its not like new tasks will ever get this cpu set in 969 * their mm mask. -- Peter Zijlstra 970 * Thus, we may use rcu_read_lock() here, instead of grabbing 971 * full-fledged tasklist_lock. 972 */ 973 WARN_ON(cpu_online(cpu)); 974 rcu_read_lock(); 975 for_each_process(p) { 976 struct task_struct *t; 977 978 /* 979 * Main thread might exit, but other threads may still have 980 * a valid mm. Find one. 981 */ 982 t = find_lock_task_mm(p); 983 if (!t) 984 continue; 985 arch_clear_mm_cpumask_cpu(cpu, t->mm); 986 task_unlock(t); 987 } 988 rcu_read_unlock(); 989 } 990 991 /* Take this CPU down. */ 992 static int take_cpu_down(void *_param) 993 { 994 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 995 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 996 int err, cpu = smp_processor_id(); 997 int ret; 998 999 /* Ensure this CPU doesn't handle any more interrupts. */ 1000 err = __cpu_disable(); 1001 if (err < 0) 1002 return err; 1003 1004 /* 1005 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1006 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1007 */ 1008 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1009 1010 /* Invoke the former CPU_DYING callbacks */ 1011 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1012 1013 /* 1014 * DYING must not fail! 1015 */ 1016 WARN_ON_ONCE(ret); 1017 1018 /* Give up timekeeping duties */ 1019 tick_handover_do_timer(); 1020 /* Remove CPU from timer broadcasting */ 1021 tick_offline_cpu(cpu); 1022 /* Park the stopper thread */ 1023 stop_machine_park(cpu); 1024 return 0; 1025 } 1026 1027 static int takedown_cpu(unsigned int cpu) 1028 { 1029 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1030 int err; 1031 1032 /* Park the smpboot threads */ 1033 kthread_park(st->thread); 1034 1035 /* 1036 * Prevent irq alloc/free while the dying cpu reorganizes the 1037 * interrupt affinities. 1038 */ 1039 irq_lock_sparse(); 1040 1041 /* 1042 * So now all preempt/rcu users must observe !cpu_active(). 1043 */ 1044 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1045 if (err) { 1046 /* CPU refused to die */ 1047 irq_unlock_sparse(); 1048 /* Unpark the hotplug thread so we can rollback there */ 1049 kthread_unpark(st->thread); 1050 return err; 1051 } 1052 BUG_ON(cpu_online(cpu)); 1053 1054 /* 1055 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1056 * all runnable tasks from the CPU, there's only the idle task left now 1057 * that the migration thread is done doing the stop_machine thing. 1058 * 1059 * Wait for the stop thread to go away. 1060 */ 1061 wait_for_ap_thread(st, false); 1062 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1063 1064 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1065 irq_unlock_sparse(); 1066 1067 hotplug_cpu__broadcast_tick_pull(cpu); 1068 /* This actually kills the CPU. */ 1069 __cpu_die(cpu); 1070 1071 tick_cleanup_dead_cpu(cpu); 1072 rcutree_migrate_callbacks(cpu); 1073 return 0; 1074 } 1075 1076 static void cpuhp_complete_idle_dead(void *arg) 1077 { 1078 struct cpuhp_cpu_state *st = arg; 1079 1080 complete_ap_thread(st, false); 1081 } 1082 1083 void cpuhp_report_idle_dead(void) 1084 { 1085 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1086 1087 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1088 rcu_report_dead(smp_processor_id()); 1089 st->state = CPUHP_AP_IDLE_DEAD; 1090 /* 1091 * We cannot call complete after rcu_report_dead() so we delegate it 1092 * to an online cpu. 1093 */ 1094 smp_call_function_single(cpumask_first(cpu_online_mask), 1095 cpuhp_complete_idle_dead, st, 0); 1096 } 1097 1098 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1099 enum cpuhp_state target) 1100 { 1101 enum cpuhp_state prev_state = st->state; 1102 int ret = 0; 1103 1104 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1105 if (ret) { 1106 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1107 ret, cpu, cpuhp_get_step(st->state)->name, 1108 st->state); 1109 1110 cpuhp_reset_state(st, prev_state); 1111 1112 if (st->state < prev_state) 1113 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1114 prev_state)); 1115 } 1116 1117 return ret; 1118 } 1119 1120 /* Requires cpu_add_remove_lock to be held */ 1121 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1122 enum cpuhp_state target) 1123 { 1124 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1125 int prev_state, ret = 0; 1126 1127 if (num_online_cpus() == 1) 1128 return -EBUSY; 1129 1130 if (!cpu_present(cpu)) 1131 return -EINVAL; 1132 1133 cpus_write_lock(); 1134 1135 cpuhp_tasks_frozen = tasks_frozen; 1136 1137 prev_state = cpuhp_set_state(st, target); 1138 /* 1139 * If the current CPU state is in the range of the AP hotplug thread, 1140 * then we need to kick the thread. 1141 */ 1142 if (st->state > CPUHP_TEARDOWN_CPU) { 1143 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1144 ret = cpuhp_kick_ap_work(cpu); 1145 /* 1146 * The AP side has done the error rollback already. Just 1147 * return the error code.. 1148 */ 1149 if (ret) 1150 goto out; 1151 1152 /* 1153 * We might have stopped still in the range of the AP hotplug 1154 * thread. Nothing to do anymore. 1155 */ 1156 if (st->state > CPUHP_TEARDOWN_CPU) 1157 goto out; 1158 1159 st->target = target; 1160 } 1161 /* 1162 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1163 * to do the further cleanups. 1164 */ 1165 ret = cpuhp_down_callbacks(cpu, st, target); 1166 if (ret && st->state < prev_state) { 1167 if (st->state == CPUHP_TEARDOWN_CPU) { 1168 cpuhp_reset_state(st, prev_state); 1169 __cpuhp_kick_ap(st); 1170 } else { 1171 WARN(1, "DEAD callback error for CPU%d", cpu); 1172 } 1173 } 1174 1175 out: 1176 cpus_write_unlock(); 1177 /* 1178 * Do post unplug cleanup. This is still protected against 1179 * concurrent CPU hotplug via cpu_add_remove_lock. 1180 */ 1181 lockup_detector_cleanup(); 1182 arch_smt_update(); 1183 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1184 return ret; 1185 } 1186 1187 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1188 { 1189 if (cpu_hotplug_disabled) 1190 return -EBUSY; 1191 return _cpu_down(cpu, 0, target); 1192 } 1193 1194 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1195 { 1196 int err; 1197 1198 cpu_maps_update_begin(); 1199 err = cpu_down_maps_locked(cpu, target); 1200 cpu_maps_update_done(); 1201 return err; 1202 } 1203 1204 /** 1205 * cpu_device_down - Bring down a cpu device 1206 * @dev: Pointer to the cpu device to offline 1207 * 1208 * This function is meant to be used by device core cpu subsystem only. 1209 * 1210 * Other subsystems should use remove_cpu() instead. 1211 * 1212 * Return: %0 on success or a negative errno code 1213 */ 1214 int cpu_device_down(struct device *dev) 1215 { 1216 return cpu_down(dev->id, CPUHP_OFFLINE); 1217 } 1218 1219 int remove_cpu(unsigned int cpu) 1220 { 1221 int ret; 1222 1223 lock_device_hotplug(); 1224 ret = device_offline(get_cpu_device(cpu)); 1225 unlock_device_hotplug(); 1226 1227 return ret; 1228 } 1229 EXPORT_SYMBOL_GPL(remove_cpu); 1230 1231 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1232 { 1233 unsigned int cpu; 1234 int error; 1235 1236 cpu_maps_update_begin(); 1237 1238 /* 1239 * Make certain the cpu I'm about to reboot on is online. 1240 * 1241 * This is inline to what migrate_to_reboot_cpu() already do. 1242 */ 1243 if (!cpu_online(primary_cpu)) 1244 primary_cpu = cpumask_first(cpu_online_mask); 1245 1246 for_each_online_cpu(cpu) { 1247 if (cpu == primary_cpu) 1248 continue; 1249 1250 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1251 if (error) { 1252 pr_err("Failed to offline CPU%d - error=%d", 1253 cpu, error); 1254 break; 1255 } 1256 } 1257 1258 /* 1259 * Ensure all but the reboot CPU are offline. 1260 */ 1261 BUG_ON(num_online_cpus() > 1); 1262 1263 /* 1264 * Make sure the CPUs won't be enabled by someone else after this 1265 * point. Kexec will reboot to a new kernel shortly resetting 1266 * everything along the way. 1267 */ 1268 cpu_hotplug_disabled++; 1269 1270 cpu_maps_update_done(); 1271 } 1272 1273 #else 1274 #define takedown_cpu NULL 1275 #endif /*CONFIG_HOTPLUG_CPU*/ 1276 1277 /** 1278 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1279 * @cpu: cpu that just started 1280 * 1281 * It must be called by the arch code on the new cpu, before the new cpu 1282 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1283 */ 1284 void notify_cpu_starting(unsigned int cpu) 1285 { 1286 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1287 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1288 int ret; 1289 1290 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1291 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1292 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1293 1294 /* 1295 * STARTING must not fail! 1296 */ 1297 WARN_ON_ONCE(ret); 1298 } 1299 1300 /* 1301 * Called from the idle task. Wake up the controlling task which brings the 1302 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1303 * online bringup to the hotplug thread. 1304 */ 1305 void cpuhp_online_idle(enum cpuhp_state state) 1306 { 1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1308 1309 /* Happens for the boot cpu */ 1310 if (state != CPUHP_AP_ONLINE_IDLE) 1311 return; 1312 1313 /* 1314 * Unpart the stopper thread before we start the idle loop (and start 1315 * scheduling); this ensures the stopper task is always available. 1316 */ 1317 stop_machine_unpark(smp_processor_id()); 1318 1319 st->state = CPUHP_AP_ONLINE_IDLE; 1320 complete_ap_thread(st, true); 1321 } 1322 1323 /* Requires cpu_add_remove_lock to be held */ 1324 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1325 { 1326 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1327 struct task_struct *idle; 1328 int ret = 0; 1329 1330 cpus_write_lock(); 1331 1332 if (!cpu_present(cpu)) { 1333 ret = -EINVAL; 1334 goto out; 1335 } 1336 1337 /* 1338 * The caller of cpu_up() might have raced with another 1339 * caller. Nothing to do. 1340 */ 1341 if (st->state >= target) 1342 goto out; 1343 1344 if (st->state == CPUHP_OFFLINE) { 1345 /* Let it fail before we try to bring the cpu up */ 1346 idle = idle_thread_get(cpu); 1347 if (IS_ERR(idle)) { 1348 ret = PTR_ERR(idle); 1349 goto out; 1350 } 1351 } 1352 1353 cpuhp_tasks_frozen = tasks_frozen; 1354 1355 cpuhp_set_state(st, target); 1356 /* 1357 * If the current CPU state is in the range of the AP hotplug thread, 1358 * then we need to kick the thread once more. 1359 */ 1360 if (st->state > CPUHP_BRINGUP_CPU) { 1361 ret = cpuhp_kick_ap_work(cpu); 1362 /* 1363 * The AP side has done the error rollback already. Just 1364 * return the error code.. 1365 */ 1366 if (ret) 1367 goto out; 1368 } 1369 1370 /* 1371 * Try to reach the target state. We max out on the BP at 1372 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1373 * responsible for bringing it up to the target state. 1374 */ 1375 target = min((int)target, CPUHP_BRINGUP_CPU); 1376 ret = cpuhp_up_callbacks(cpu, st, target); 1377 out: 1378 cpus_write_unlock(); 1379 arch_smt_update(); 1380 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1381 return ret; 1382 } 1383 1384 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1385 { 1386 int err = 0; 1387 1388 if (!cpu_possible(cpu)) { 1389 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1390 cpu); 1391 #if defined(CONFIG_IA64) 1392 pr_err("please check additional_cpus= boot parameter\n"); 1393 #endif 1394 return -EINVAL; 1395 } 1396 1397 err = try_online_node(cpu_to_node(cpu)); 1398 if (err) 1399 return err; 1400 1401 cpu_maps_update_begin(); 1402 1403 if (cpu_hotplug_disabled) { 1404 err = -EBUSY; 1405 goto out; 1406 } 1407 if (!cpu_smt_allowed(cpu)) { 1408 err = -EPERM; 1409 goto out; 1410 } 1411 1412 err = _cpu_up(cpu, 0, target); 1413 out: 1414 cpu_maps_update_done(); 1415 return err; 1416 } 1417 1418 /** 1419 * cpu_device_up - Bring up a cpu device 1420 * @dev: Pointer to the cpu device to online 1421 * 1422 * This function is meant to be used by device core cpu subsystem only. 1423 * 1424 * Other subsystems should use add_cpu() instead. 1425 * 1426 * Return: %0 on success or a negative errno code 1427 */ 1428 int cpu_device_up(struct device *dev) 1429 { 1430 return cpu_up(dev->id, CPUHP_ONLINE); 1431 } 1432 1433 int add_cpu(unsigned int cpu) 1434 { 1435 int ret; 1436 1437 lock_device_hotplug(); 1438 ret = device_online(get_cpu_device(cpu)); 1439 unlock_device_hotplug(); 1440 1441 return ret; 1442 } 1443 EXPORT_SYMBOL_GPL(add_cpu); 1444 1445 /** 1446 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1447 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1448 * 1449 * On some architectures like arm64, we can hibernate on any CPU, but on 1450 * wake up the CPU we hibernated on might be offline as a side effect of 1451 * using maxcpus= for example. 1452 * 1453 * Return: %0 on success or a negative errno code 1454 */ 1455 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1456 { 1457 int ret; 1458 1459 if (!cpu_online(sleep_cpu)) { 1460 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1461 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1462 if (ret) { 1463 pr_err("Failed to bring hibernate-CPU up!\n"); 1464 return ret; 1465 } 1466 } 1467 return 0; 1468 } 1469 1470 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1471 { 1472 unsigned int cpu; 1473 1474 for_each_present_cpu(cpu) { 1475 if (num_online_cpus() >= setup_max_cpus) 1476 break; 1477 if (!cpu_online(cpu)) 1478 cpu_up(cpu, CPUHP_ONLINE); 1479 } 1480 } 1481 1482 #ifdef CONFIG_PM_SLEEP_SMP 1483 static cpumask_var_t frozen_cpus; 1484 1485 int freeze_secondary_cpus(int primary) 1486 { 1487 int cpu, error = 0; 1488 1489 cpu_maps_update_begin(); 1490 if (primary == -1) { 1491 primary = cpumask_first(cpu_online_mask); 1492 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1493 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1494 } else { 1495 if (!cpu_online(primary)) 1496 primary = cpumask_first(cpu_online_mask); 1497 } 1498 1499 /* 1500 * We take down all of the non-boot CPUs in one shot to avoid races 1501 * with the userspace trying to use the CPU hotplug at the same time 1502 */ 1503 cpumask_clear(frozen_cpus); 1504 1505 pr_info("Disabling non-boot CPUs ...\n"); 1506 for_each_online_cpu(cpu) { 1507 if (cpu == primary) 1508 continue; 1509 1510 if (pm_wakeup_pending()) { 1511 pr_info("Wakeup pending. Abort CPU freeze\n"); 1512 error = -EBUSY; 1513 break; 1514 } 1515 1516 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1517 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1518 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1519 if (!error) 1520 cpumask_set_cpu(cpu, frozen_cpus); 1521 else { 1522 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1523 break; 1524 } 1525 } 1526 1527 if (!error) 1528 BUG_ON(num_online_cpus() > 1); 1529 else 1530 pr_err("Non-boot CPUs are not disabled\n"); 1531 1532 /* 1533 * Make sure the CPUs won't be enabled by someone else. We need to do 1534 * this even in case of failure as all freeze_secondary_cpus() users are 1535 * supposed to do thaw_secondary_cpus() on the failure path. 1536 */ 1537 cpu_hotplug_disabled++; 1538 1539 cpu_maps_update_done(); 1540 return error; 1541 } 1542 1543 void __weak arch_thaw_secondary_cpus_begin(void) 1544 { 1545 } 1546 1547 void __weak arch_thaw_secondary_cpus_end(void) 1548 { 1549 } 1550 1551 void thaw_secondary_cpus(void) 1552 { 1553 int cpu, error; 1554 1555 /* Allow everyone to use the CPU hotplug again */ 1556 cpu_maps_update_begin(); 1557 __cpu_hotplug_enable(); 1558 if (cpumask_empty(frozen_cpus)) 1559 goto out; 1560 1561 pr_info("Enabling non-boot CPUs ...\n"); 1562 1563 arch_thaw_secondary_cpus_begin(); 1564 1565 for_each_cpu(cpu, frozen_cpus) { 1566 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1567 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1568 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1569 if (!error) { 1570 pr_info("CPU%d is up\n", cpu); 1571 continue; 1572 } 1573 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1574 } 1575 1576 arch_thaw_secondary_cpus_end(); 1577 1578 cpumask_clear(frozen_cpus); 1579 out: 1580 cpu_maps_update_done(); 1581 } 1582 1583 static int __init alloc_frozen_cpus(void) 1584 { 1585 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1586 return -ENOMEM; 1587 return 0; 1588 } 1589 core_initcall(alloc_frozen_cpus); 1590 1591 /* 1592 * When callbacks for CPU hotplug notifications are being executed, we must 1593 * ensure that the state of the system with respect to the tasks being frozen 1594 * or not, as reported by the notification, remains unchanged *throughout the 1595 * duration* of the execution of the callbacks. 1596 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1597 * 1598 * This synchronization is implemented by mutually excluding regular CPU 1599 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1600 * Hibernate notifications. 1601 */ 1602 static int 1603 cpu_hotplug_pm_callback(struct notifier_block *nb, 1604 unsigned long action, void *ptr) 1605 { 1606 switch (action) { 1607 1608 case PM_SUSPEND_PREPARE: 1609 case PM_HIBERNATION_PREPARE: 1610 cpu_hotplug_disable(); 1611 break; 1612 1613 case PM_POST_SUSPEND: 1614 case PM_POST_HIBERNATION: 1615 cpu_hotplug_enable(); 1616 break; 1617 1618 default: 1619 return NOTIFY_DONE; 1620 } 1621 1622 return NOTIFY_OK; 1623 } 1624 1625 1626 static int __init cpu_hotplug_pm_sync_init(void) 1627 { 1628 /* 1629 * cpu_hotplug_pm_callback has higher priority than x86 1630 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1631 * to disable cpu hotplug to avoid cpu hotplug race. 1632 */ 1633 pm_notifier(cpu_hotplug_pm_callback, 0); 1634 return 0; 1635 } 1636 core_initcall(cpu_hotplug_pm_sync_init); 1637 1638 #endif /* CONFIG_PM_SLEEP_SMP */ 1639 1640 int __boot_cpu_id; 1641 1642 #endif /* CONFIG_SMP */ 1643 1644 /* Boot processor state steps */ 1645 static struct cpuhp_step cpuhp_hp_states[] = { 1646 [CPUHP_OFFLINE] = { 1647 .name = "offline", 1648 .startup.single = NULL, 1649 .teardown.single = NULL, 1650 }, 1651 #ifdef CONFIG_SMP 1652 [CPUHP_CREATE_THREADS]= { 1653 .name = "threads:prepare", 1654 .startup.single = smpboot_create_threads, 1655 .teardown.single = NULL, 1656 .cant_stop = true, 1657 }, 1658 [CPUHP_PERF_PREPARE] = { 1659 .name = "perf:prepare", 1660 .startup.single = perf_event_init_cpu, 1661 .teardown.single = perf_event_exit_cpu, 1662 }, 1663 [CPUHP_RANDOM_PREPARE] = { 1664 .name = "random:prepare", 1665 .startup.single = random_prepare_cpu, 1666 .teardown.single = NULL, 1667 }, 1668 [CPUHP_WORKQUEUE_PREP] = { 1669 .name = "workqueue:prepare", 1670 .startup.single = workqueue_prepare_cpu, 1671 .teardown.single = NULL, 1672 }, 1673 [CPUHP_HRTIMERS_PREPARE] = { 1674 .name = "hrtimers:prepare", 1675 .startup.single = hrtimers_prepare_cpu, 1676 .teardown.single = hrtimers_dead_cpu, 1677 }, 1678 [CPUHP_SMPCFD_PREPARE] = { 1679 .name = "smpcfd:prepare", 1680 .startup.single = smpcfd_prepare_cpu, 1681 .teardown.single = smpcfd_dead_cpu, 1682 }, 1683 [CPUHP_RELAY_PREPARE] = { 1684 .name = "relay:prepare", 1685 .startup.single = relay_prepare_cpu, 1686 .teardown.single = NULL, 1687 }, 1688 [CPUHP_SLAB_PREPARE] = { 1689 .name = "slab:prepare", 1690 .startup.single = slab_prepare_cpu, 1691 .teardown.single = slab_dead_cpu, 1692 }, 1693 [CPUHP_RCUTREE_PREP] = { 1694 .name = "RCU/tree:prepare", 1695 .startup.single = rcutree_prepare_cpu, 1696 .teardown.single = rcutree_dead_cpu, 1697 }, 1698 /* 1699 * On the tear-down path, timers_dead_cpu() must be invoked 1700 * before blk_mq_queue_reinit_notify() from notify_dead(), 1701 * otherwise a RCU stall occurs. 1702 */ 1703 [CPUHP_TIMERS_PREPARE] = { 1704 .name = "timers:prepare", 1705 .startup.single = timers_prepare_cpu, 1706 .teardown.single = timers_dead_cpu, 1707 }, 1708 /* Kicks the plugged cpu into life */ 1709 [CPUHP_BRINGUP_CPU] = { 1710 .name = "cpu:bringup", 1711 .startup.single = bringup_cpu, 1712 .teardown.single = finish_cpu, 1713 .cant_stop = true, 1714 }, 1715 /* Final state before CPU kills itself */ 1716 [CPUHP_AP_IDLE_DEAD] = { 1717 .name = "idle:dead", 1718 }, 1719 /* 1720 * Last state before CPU enters the idle loop to die. Transient state 1721 * for synchronization. 1722 */ 1723 [CPUHP_AP_OFFLINE] = { 1724 .name = "ap:offline", 1725 .cant_stop = true, 1726 }, 1727 /* First state is scheduler control. Interrupts are disabled */ 1728 [CPUHP_AP_SCHED_STARTING] = { 1729 .name = "sched:starting", 1730 .startup.single = sched_cpu_starting, 1731 .teardown.single = sched_cpu_dying, 1732 }, 1733 [CPUHP_AP_RCUTREE_DYING] = { 1734 .name = "RCU/tree:dying", 1735 .startup.single = NULL, 1736 .teardown.single = rcutree_dying_cpu, 1737 }, 1738 [CPUHP_AP_SMPCFD_DYING] = { 1739 .name = "smpcfd:dying", 1740 .startup.single = NULL, 1741 .teardown.single = smpcfd_dying_cpu, 1742 }, 1743 /* Entry state on starting. Interrupts enabled from here on. Transient 1744 * state for synchronsization */ 1745 [CPUHP_AP_ONLINE] = { 1746 .name = "ap:online", 1747 }, 1748 /* 1749 * Handled on control processor until the plugged processor manages 1750 * this itself. 1751 */ 1752 [CPUHP_TEARDOWN_CPU] = { 1753 .name = "cpu:teardown", 1754 .startup.single = NULL, 1755 .teardown.single = takedown_cpu, 1756 .cant_stop = true, 1757 }, 1758 1759 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1760 .name = "sched:waitempty", 1761 .startup.single = NULL, 1762 .teardown.single = sched_cpu_wait_empty, 1763 }, 1764 1765 /* Handle smpboot threads park/unpark */ 1766 [CPUHP_AP_SMPBOOT_THREADS] = { 1767 .name = "smpboot/threads:online", 1768 .startup.single = smpboot_unpark_threads, 1769 .teardown.single = smpboot_park_threads, 1770 }, 1771 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1772 .name = "irq/affinity:online", 1773 .startup.single = irq_affinity_online_cpu, 1774 .teardown.single = NULL, 1775 }, 1776 [CPUHP_AP_PERF_ONLINE] = { 1777 .name = "perf:online", 1778 .startup.single = perf_event_init_cpu, 1779 .teardown.single = perf_event_exit_cpu, 1780 }, 1781 [CPUHP_AP_WATCHDOG_ONLINE] = { 1782 .name = "lockup_detector:online", 1783 .startup.single = lockup_detector_online_cpu, 1784 .teardown.single = lockup_detector_offline_cpu, 1785 }, 1786 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1787 .name = "workqueue:online", 1788 .startup.single = workqueue_online_cpu, 1789 .teardown.single = workqueue_offline_cpu, 1790 }, 1791 [CPUHP_AP_RANDOM_ONLINE] = { 1792 .name = "random:online", 1793 .startup.single = random_online_cpu, 1794 .teardown.single = NULL, 1795 }, 1796 [CPUHP_AP_RCUTREE_ONLINE] = { 1797 .name = "RCU/tree:online", 1798 .startup.single = rcutree_online_cpu, 1799 .teardown.single = rcutree_offline_cpu, 1800 }, 1801 #endif 1802 /* 1803 * The dynamically registered state space is here 1804 */ 1805 1806 #ifdef CONFIG_SMP 1807 /* Last state is scheduler control setting the cpu active */ 1808 [CPUHP_AP_ACTIVE] = { 1809 .name = "sched:active", 1810 .startup.single = sched_cpu_activate, 1811 .teardown.single = sched_cpu_deactivate, 1812 }, 1813 #endif 1814 1815 /* CPU is fully up and running. */ 1816 [CPUHP_ONLINE] = { 1817 .name = "online", 1818 .startup.single = NULL, 1819 .teardown.single = NULL, 1820 }, 1821 }; 1822 1823 /* Sanity check for callbacks */ 1824 static int cpuhp_cb_check(enum cpuhp_state state) 1825 { 1826 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1827 return -EINVAL; 1828 return 0; 1829 } 1830 1831 /* 1832 * Returns a free for dynamic slot assignment of the Online state. The states 1833 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1834 * by having no name assigned. 1835 */ 1836 static int cpuhp_reserve_state(enum cpuhp_state state) 1837 { 1838 enum cpuhp_state i, end; 1839 struct cpuhp_step *step; 1840 1841 switch (state) { 1842 case CPUHP_AP_ONLINE_DYN: 1843 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1844 end = CPUHP_AP_ONLINE_DYN_END; 1845 break; 1846 case CPUHP_BP_PREPARE_DYN: 1847 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1848 end = CPUHP_BP_PREPARE_DYN_END; 1849 break; 1850 default: 1851 return -EINVAL; 1852 } 1853 1854 for (i = state; i <= end; i++, step++) { 1855 if (!step->name) 1856 return i; 1857 } 1858 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1859 return -ENOSPC; 1860 } 1861 1862 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1863 int (*startup)(unsigned int cpu), 1864 int (*teardown)(unsigned int cpu), 1865 bool multi_instance) 1866 { 1867 /* (Un)Install the callbacks for further cpu hotplug operations */ 1868 struct cpuhp_step *sp; 1869 int ret = 0; 1870 1871 /* 1872 * If name is NULL, then the state gets removed. 1873 * 1874 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1875 * the first allocation from these dynamic ranges, so the removal 1876 * would trigger a new allocation and clear the wrong (already 1877 * empty) state, leaving the callbacks of the to be cleared state 1878 * dangling, which causes wreckage on the next hotplug operation. 1879 */ 1880 if (name && (state == CPUHP_AP_ONLINE_DYN || 1881 state == CPUHP_BP_PREPARE_DYN)) { 1882 ret = cpuhp_reserve_state(state); 1883 if (ret < 0) 1884 return ret; 1885 state = ret; 1886 } 1887 sp = cpuhp_get_step(state); 1888 if (name && sp->name) 1889 return -EBUSY; 1890 1891 sp->startup.single = startup; 1892 sp->teardown.single = teardown; 1893 sp->name = name; 1894 sp->multi_instance = multi_instance; 1895 INIT_HLIST_HEAD(&sp->list); 1896 return ret; 1897 } 1898 1899 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1900 { 1901 return cpuhp_get_step(state)->teardown.single; 1902 } 1903 1904 /* 1905 * Call the startup/teardown function for a step either on the AP or 1906 * on the current CPU. 1907 */ 1908 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1909 struct hlist_node *node) 1910 { 1911 struct cpuhp_step *sp = cpuhp_get_step(state); 1912 int ret; 1913 1914 /* 1915 * If there's nothing to do, we done. 1916 * Relies on the union for multi_instance. 1917 */ 1918 if (cpuhp_step_empty(bringup, sp)) 1919 return 0; 1920 /* 1921 * The non AP bound callbacks can fail on bringup. On teardown 1922 * e.g. module removal we crash for now. 1923 */ 1924 #ifdef CONFIG_SMP 1925 if (cpuhp_is_ap_state(state)) 1926 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1927 else 1928 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1929 #else 1930 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1931 #endif 1932 BUG_ON(ret && !bringup); 1933 return ret; 1934 } 1935 1936 /* 1937 * Called from __cpuhp_setup_state on a recoverable failure. 1938 * 1939 * Note: The teardown callbacks for rollback are not allowed to fail! 1940 */ 1941 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1942 struct hlist_node *node) 1943 { 1944 int cpu; 1945 1946 /* Roll back the already executed steps on the other cpus */ 1947 for_each_present_cpu(cpu) { 1948 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1949 int cpustate = st->state; 1950 1951 if (cpu >= failedcpu) 1952 break; 1953 1954 /* Did we invoke the startup call on that cpu ? */ 1955 if (cpustate >= state) 1956 cpuhp_issue_call(cpu, state, false, node); 1957 } 1958 } 1959 1960 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1961 struct hlist_node *node, 1962 bool invoke) 1963 { 1964 struct cpuhp_step *sp; 1965 int cpu; 1966 int ret; 1967 1968 lockdep_assert_cpus_held(); 1969 1970 sp = cpuhp_get_step(state); 1971 if (sp->multi_instance == false) 1972 return -EINVAL; 1973 1974 mutex_lock(&cpuhp_state_mutex); 1975 1976 if (!invoke || !sp->startup.multi) 1977 goto add_node; 1978 1979 /* 1980 * Try to call the startup callback for each present cpu 1981 * depending on the hotplug state of the cpu. 1982 */ 1983 for_each_present_cpu(cpu) { 1984 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1985 int cpustate = st->state; 1986 1987 if (cpustate < state) 1988 continue; 1989 1990 ret = cpuhp_issue_call(cpu, state, true, node); 1991 if (ret) { 1992 if (sp->teardown.multi) 1993 cpuhp_rollback_install(cpu, state, node); 1994 goto unlock; 1995 } 1996 } 1997 add_node: 1998 ret = 0; 1999 hlist_add_head(node, &sp->list); 2000 unlock: 2001 mutex_unlock(&cpuhp_state_mutex); 2002 return ret; 2003 } 2004 2005 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2006 bool invoke) 2007 { 2008 int ret; 2009 2010 cpus_read_lock(); 2011 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2012 cpus_read_unlock(); 2013 return ret; 2014 } 2015 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2016 2017 /** 2018 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2019 * @state: The state to setup 2020 * @name: Name of the step 2021 * @invoke: If true, the startup function is invoked for cpus where 2022 * cpu state >= @state 2023 * @startup: startup callback function 2024 * @teardown: teardown callback function 2025 * @multi_instance: State is set up for multiple instances which get 2026 * added afterwards. 2027 * 2028 * The caller needs to hold cpus read locked while calling this function. 2029 * Return: 2030 * On success: 2031 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2032 * 0 for all other states 2033 * On failure: proper (negative) error code 2034 */ 2035 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2036 const char *name, bool invoke, 2037 int (*startup)(unsigned int cpu), 2038 int (*teardown)(unsigned int cpu), 2039 bool multi_instance) 2040 { 2041 int cpu, ret = 0; 2042 bool dynstate; 2043 2044 lockdep_assert_cpus_held(); 2045 2046 if (cpuhp_cb_check(state) || !name) 2047 return -EINVAL; 2048 2049 mutex_lock(&cpuhp_state_mutex); 2050 2051 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2052 multi_instance); 2053 2054 dynstate = state == CPUHP_AP_ONLINE_DYN; 2055 if (ret > 0 && dynstate) { 2056 state = ret; 2057 ret = 0; 2058 } 2059 2060 if (ret || !invoke || !startup) 2061 goto out; 2062 2063 /* 2064 * Try to call the startup callback for each present cpu 2065 * depending on the hotplug state of the cpu. 2066 */ 2067 for_each_present_cpu(cpu) { 2068 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2069 int cpustate = st->state; 2070 2071 if (cpustate < state) 2072 continue; 2073 2074 ret = cpuhp_issue_call(cpu, state, true, NULL); 2075 if (ret) { 2076 if (teardown) 2077 cpuhp_rollback_install(cpu, state, NULL); 2078 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2079 goto out; 2080 } 2081 } 2082 out: 2083 mutex_unlock(&cpuhp_state_mutex); 2084 /* 2085 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2086 * dynamically allocated state in case of success. 2087 */ 2088 if (!ret && dynstate) 2089 return state; 2090 return ret; 2091 } 2092 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2093 2094 int __cpuhp_setup_state(enum cpuhp_state state, 2095 const char *name, bool invoke, 2096 int (*startup)(unsigned int cpu), 2097 int (*teardown)(unsigned int cpu), 2098 bool multi_instance) 2099 { 2100 int ret; 2101 2102 cpus_read_lock(); 2103 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2104 teardown, multi_instance); 2105 cpus_read_unlock(); 2106 return ret; 2107 } 2108 EXPORT_SYMBOL(__cpuhp_setup_state); 2109 2110 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2111 struct hlist_node *node, bool invoke) 2112 { 2113 struct cpuhp_step *sp = cpuhp_get_step(state); 2114 int cpu; 2115 2116 BUG_ON(cpuhp_cb_check(state)); 2117 2118 if (!sp->multi_instance) 2119 return -EINVAL; 2120 2121 cpus_read_lock(); 2122 mutex_lock(&cpuhp_state_mutex); 2123 2124 if (!invoke || !cpuhp_get_teardown_cb(state)) 2125 goto remove; 2126 /* 2127 * Call the teardown callback for each present cpu depending 2128 * on the hotplug state of the cpu. This function is not 2129 * allowed to fail currently! 2130 */ 2131 for_each_present_cpu(cpu) { 2132 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2133 int cpustate = st->state; 2134 2135 if (cpustate >= state) 2136 cpuhp_issue_call(cpu, state, false, node); 2137 } 2138 2139 remove: 2140 hlist_del(node); 2141 mutex_unlock(&cpuhp_state_mutex); 2142 cpus_read_unlock(); 2143 2144 return 0; 2145 } 2146 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2147 2148 /** 2149 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2150 * @state: The state to remove 2151 * @invoke: If true, the teardown function is invoked for cpus where 2152 * cpu state >= @state 2153 * 2154 * The caller needs to hold cpus read locked while calling this function. 2155 * The teardown callback is currently not allowed to fail. Think 2156 * about module removal! 2157 */ 2158 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2159 { 2160 struct cpuhp_step *sp = cpuhp_get_step(state); 2161 int cpu; 2162 2163 BUG_ON(cpuhp_cb_check(state)); 2164 2165 lockdep_assert_cpus_held(); 2166 2167 mutex_lock(&cpuhp_state_mutex); 2168 if (sp->multi_instance) { 2169 WARN(!hlist_empty(&sp->list), 2170 "Error: Removing state %d which has instances left.\n", 2171 state); 2172 goto remove; 2173 } 2174 2175 if (!invoke || !cpuhp_get_teardown_cb(state)) 2176 goto remove; 2177 2178 /* 2179 * Call the teardown callback for each present cpu depending 2180 * on the hotplug state of the cpu. This function is not 2181 * allowed to fail currently! 2182 */ 2183 for_each_present_cpu(cpu) { 2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2185 int cpustate = st->state; 2186 2187 if (cpustate >= state) 2188 cpuhp_issue_call(cpu, state, false, NULL); 2189 } 2190 remove: 2191 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2192 mutex_unlock(&cpuhp_state_mutex); 2193 } 2194 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2195 2196 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2197 { 2198 cpus_read_lock(); 2199 __cpuhp_remove_state_cpuslocked(state, invoke); 2200 cpus_read_unlock(); 2201 } 2202 EXPORT_SYMBOL(__cpuhp_remove_state); 2203 2204 #ifdef CONFIG_HOTPLUG_SMT 2205 static void cpuhp_offline_cpu_device(unsigned int cpu) 2206 { 2207 struct device *dev = get_cpu_device(cpu); 2208 2209 dev->offline = true; 2210 /* Tell user space about the state change */ 2211 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2212 } 2213 2214 static void cpuhp_online_cpu_device(unsigned int cpu) 2215 { 2216 struct device *dev = get_cpu_device(cpu); 2217 2218 dev->offline = false; 2219 /* Tell user space about the state change */ 2220 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2221 } 2222 2223 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2224 { 2225 int cpu, ret = 0; 2226 2227 cpu_maps_update_begin(); 2228 for_each_online_cpu(cpu) { 2229 if (topology_is_primary_thread(cpu)) 2230 continue; 2231 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2232 if (ret) 2233 break; 2234 /* 2235 * As this needs to hold the cpu maps lock it's impossible 2236 * to call device_offline() because that ends up calling 2237 * cpu_down() which takes cpu maps lock. cpu maps lock 2238 * needs to be held as this might race against in kernel 2239 * abusers of the hotplug machinery (thermal management). 2240 * 2241 * So nothing would update device:offline state. That would 2242 * leave the sysfs entry stale and prevent onlining after 2243 * smt control has been changed to 'off' again. This is 2244 * called under the sysfs hotplug lock, so it is properly 2245 * serialized against the regular offline usage. 2246 */ 2247 cpuhp_offline_cpu_device(cpu); 2248 } 2249 if (!ret) 2250 cpu_smt_control = ctrlval; 2251 cpu_maps_update_done(); 2252 return ret; 2253 } 2254 2255 int cpuhp_smt_enable(void) 2256 { 2257 int cpu, ret = 0; 2258 2259 cpu_maps_update_begin(); 2260 cpu_smt_control = CPU_SMT_ENABLED; 2261 for_each_present_cpu(cpu) { 2262 /* Skip online CPUs and CPUs on offline nodes */ 2263 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2264 continue; 2265 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2266 if (ret) 2267 break; 2268 /* See comment in cpuhp_smt_disable() */ 2269 cpuhp_online_cpu_device(cpu); 2270 } 2271 cpu_maps_update_done(); 2272 return ret; 2273 } 2274 #endif 2275 2276 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2277 static ssize_t state_show(struct device *dev, 2278 struct device_attribute *attr, char *buf) 2279 { 2280 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2281 2282 return sprintf(buf, "%d\n", st->state); 2283 } 2284 static DEVICE_ATTR_RO(state); 2285 2286 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2287 const char *buf, size_t count) 2288 { 2289 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2290 struct cpuhp_step *sp; 2291 int target, ret; 2292 2293 ret = kstrtoint(buf, 10, &target); 2294 if (ret) 2295 return ret; 2296 2297 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2298 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2299 return -EINVAL; 2300 #else 2301 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2302 return -EINVAL; 2303 #endif 2304 2305 ret = lock_device_hotplug_sysfs(); 2306 if (ret) 2307 return ret; 2308 2309 mutex_lock(&cpuhp_state_mutex); 2310 sp = cpuhp_get_step(target); 2311 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2312 mutex_unlock(&cpuhp_state_mutex); 2313 if (ret) 2314 goto out; 2315 2316 if (st->state < target) 2317 ret = cpu_up(dev->id, target); 2318 else 2319 ret = cpu_down(dev->id, target); 2320 out: 2321 unlock_device_hotplug(); 2322 return ret ? ret : count; 2323 } 2324 2325 static ssize_t target_show(struct device *dev, 2326 struct device_attribute *attr, char *buf) 2327 { 2328 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2329 2330 return sprintf(buf, "%d\n", st->target); 2331 } 2332 static DEVICE_ATTR_RW(target); 2333 2334 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2335 const char *buf, size_t count) 2336 { 2337 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2338 struct cpuhp_step *sp; 2339 int fail, ret; 2340 2341 ret = kstrtoint(buf, 10, &fail); 2342 if (ret) 2343 return ret; 2344 2345 if (fail == CPUHP_INVALID) { 2346 st->fail = fail; 2347 return count; 2348 } 2349 2350 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2351 return -EINVAL; 2352 2353 /* 2354 * Cannot fail STARTING/DYING callbacks. 2355 */ 2356 if (cpuhp_is_atomic_state(fail)) 2357 return -EINVAL; 2358 2359 /* 2360 * DEAD callbacks cannot fail... 2361 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2362 * triggering STARTING callbacks, a failure in this state would 2363 * hinder rollback. 2364 */ 2365 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2366 return -EINVAL; 2367 2368 /* 2369 * Cannot fail anything that doesn't have callbacks. 2370 */ 2371 mutex_lock(&cpuhp_state_mutex); 2372 sp = cpuhp_get_step(fail); 2373 if (!sp->startup.single && !sp->teardown.single) 2374 ret = -EINVAL; 2375 mutex_unlock(&cpuhp_state_mutex); 2376 if (ret) 2377 return ret; 2378 2379 st->fail = fail; 2380 2381 return count; 2382 } 2383 2384 static ssize_t fail_show(struct device *dev, 2385 struct device_attribute *attr, char *buf) 2386 { 2387 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2388 2389 return sprintf(buf, "%d\n", st->fail); 2390 } 2391 2392 static DEVICE_ATTR_RW(fail); 2393 2394 static struct attribute *cpuhp_cpu_attrs[] = { 2395 &dev_attr_state.attr, 2396 &dev_attr_target.attr, 2397 &dev_attr_fail.attr, 2398 NULL 2399 }; 2400 2401 static const struct attribute_group cpuhp_cpu_attr_group = { 2402 .attrs = cpuhp_cpu_attrs, 2403 .name = "hotplug", 2404 NULL 2405 }; 2406 2407 static ssize_t states_show(struct device *dev, 2408 struct device_attribute *attr, char *buf) 2409 { 2410 ssize_t cur, res = 0; 2411 int i; 2412 2413 mutex_lock(&cpuhp_state_mutex); 2414 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2415 struct cpuhp_step *sp = cpuhp_get_step(i); 2416 2417 if (sp->name) { 2418 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2419 buf += cur; 2420 res += cur; 2421 } 2422 } 2423 mutex_unlock(&cpuhp_state_mutex); 2424 return res; 2425 } 2426 static DEVICE_ATTR_RO(states); 2427 2428 static struct attribute *cpuhp_cpu_root_attrs[] = { 2429 &dev_attr_states.attr, 2430 NULL 2431 }; 2432 2433 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2434 .attrs = cpuhp_cpu_root_attrs, 2435 .name = "hotplug", 2436 NULL 2437 }; 2438 2439 #ifdef CONFIG_HOTPLUG_SMT 2440 2441 static ssize_t 2442 __store_smt_control(struct device *dev, struct device_attribute *attr, 2443 const char *buf, size_t count) 2444 { 2445 int ctrlval, ret; 2446 2447 if (sysfs_streq(buf, "on")) 2448 ctrlval = CPU_SMT_ENABLED; 2449 else if (sysfs_streq(buf, "off")) 2450 ctrlval = CPU_SMT_DISABLED; 2451 else if (sysfs_streq(buf, "forceoff")) 2452 ctrlval = CPU_SMT_FORCE_DISABLED; 2453 else 2454 return -EINVAL; 2455 2456 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2457 return -EPERM; 2458 2459 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2460 return -ENODEV; 2461 2462 ret = lock_device_hotplug_sysfs(); 2463 if (ret) 2464 return ret; 2465 2466 if (ctrlval != cpu_smt_control) { 2467 switch (ctrlval) { 2468 case CPU_SMT_ENABLED: 2469 ret = cpuhp_smt_enable(); 2470 break; 2471 case CPU_SMT_DISABLED: 2472 case CPU_SMT_FORCE_DISABLED: 2473 ret = cpuhp_smt_disable(ctrlval); 2474 break; 2475 } 2476 } 2477 2478 unlock_device_hotplug(); 2479 return ret ? ret : count; 2480 } 2481 2482 #else /* !CONFIG_HOTPLUG_SMT */ 2483 static ssize_t 2484 __store_smt_control(struct device *dev, struct device_attribute *attr, 2485 const char *buf, size_t count) 2486 { 2487 return -ENODEV; 2488 } 2489 #endif /* CONFIG_HOTPLUG_SMT */ 2490 2491 static const char *smt_states[] = { 2492 [CPU_SMT_ENABLED] = "on", 2493 [CPU_SMT_DISABLED] = "off", 2494 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2495 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2496 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2497 }; 2498 2499 static ssize_t control_show(struct device *dev, 2500 struct device_attribute *attr, char *buf) 2501 { 2502 const char *state = smt_states[cpu_smt_control]; 2503 2504 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2505 } 2506 2507 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2508 const char *buf, size_t count) 2509 { 2510 return __store_smt_control(dev, attr, buf, count); 2511 } 2512 static DEVICE_ATTR_RW(control); 2513 2514 static ssize_t active_show(struct device *dev, 2515 struct device_attribute *attr, char *buf) 2516 { 2517 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2518 } 2519 static DEVICE_ATTR_RO(active); 2520 2521 static struct attribute *cpuhp_smt_attrs[] = { 2522 &dev_attr_control.attr, 2523 &dev_attr_active.attr, 2524 NULL 2525 }; 2526 2527 static const struct attribute_group cpuhp_smt_attr_group = { 2528 .attrs = cpuhp_smt_attrs, 2529 .name = "smt", 2530 NULL 2531 }; 2532 2533 static int __init cpu_smt_sysfs_init(void) 2534 { 2535 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2536 &cpuhp_smt_attr_group); 2537 } 2538 2539 static int __init cpuhp_sysfs_init(void) 2540 { 2541 int cpu, ret; 2542 2543 ret = cpu_smt_sysfs_init(); 2544 if (ret) 2545 return ret; 2546 2547 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2548 &cpuhp_cpu_root_attr_group); 2549 if (ret) 2550 return ret; 2551 2552 for_each_possible_cpu(cpu) { 2553 struct device *dev = get_cpu_device(cpu); 2554 2555 if (!dev) 2556 continue; 2557 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2558 if (ret) 2559 return ret; 2560 } 2561 return 0; 2562 } 2563 device_initcall(cpuhp_sysfs_init); 2564 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2565 2566 /* 2567 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2568 * represents all NR_CPUS bits binary values of 1<<nr. 2569 * 2570 * It is used by cpumask_of() to get a constant address to a CPU 2571 * mask value that has a single bit set only. 2572 */ 2573 2574 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2575 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2576 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2577 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2578 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2579 2580 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2581 2582 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2583 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2584 #if BITS_PER_LONG > 32 2585 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2586 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2587 #endif 2588 }; 2589 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2590 2591 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2592 EXPORT_SYMBOL(cpu_all_bits); 2593 2594 #ifdef CONFIG_INIT_ALL_POSSIBLE 2595 struct cpumask __cpu_possible_mask __read_mostly 2596 = {CPU_BITS_ALL}; 2597 #else 2598 struct cpumask __cpu_possible_mask __read_mostly; 2599 #endif 2600 EXPORT_SYMBOL(__cpu_possible_mask); 2601 2602 struct cpumask __cpu_online_mask __read_mostly; 2603 EXPORT_SYMBOL(__cpu_online_mask); 2604 2605 struct cpumask __cpu_present_mask __read_mostly; 2606 EXPORT_SYMBOL(__cpu_present_mask); 2607 2608 struct cpumask __cpu_active_mask __read_mostly; 2609 EXPORT_SYMBOL(__cpu_active_mask); 2610 2611 struct cpumask __cpu_dying_mask __read_mostly; 2612 EXPORT_SYMBOL(__cpu_dying_mask); 2613 2614 atomic_t __num_online_cpus __read_mostly; 2615 EXPORT_SYMBOL(__num_online_cpus); 2616 2617 void init_cpu_present(const struct cpumask *src) 2618 { 2619 cpumask_copy(&__cpu_present_mask, src); 2620 } 2621 2622 void init_cpu_possible(const struct cpumask *src) 2623 { 2624 cpumask_copy(&__cpu_possible_mask, src); 2625 } 2626 2627 void init_cpu_online(const struct cpumask *src) 2628 { 2629 cpumask_copy(&__cpu_online_mask, src); 2630 } 2631 2632 void set_cpu_online(unsigned int cpu, bool online) 2633 { 2634 /* 2635 * atomic_inc/dec() is required to handle the horrid abuse of this 2636 * function by the reboot and kexec code which invoke it from 2637 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2638 * regular CPU hotplug is properly serialized. 2639 * 2640 * Note, that the fact that __num_online_cpus is of type atomic_t 2641 * does not protect readers which are not serialized against 2642 * concurrent hotplug operations. 2643 */ 2644 if (online) { 2645 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2646 atomic_inc(&__num_online_cpus); 2647 } else { 2648 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2649 atomic_dec(&__num_online_cpus); 2650 } 2651 } 2652 2653 /* 2654 * Activate the first processor. 2655 */ 2656 void __init boot_cpu_init(void) 2657 { 2658 int cpu = smp_processor_id(); 2659 2660 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2661 set_cpu_online(cpu, true); 2662 set_cpu_active(cpu, true); 2663 set_cpu_present(cpu, true); 2664 set_cpu_possible(cpu, true); 2665 2666 #ifdef CONFIG_SMP 2667 __boot_cpu_id = cpu; 2668 #endif 2669 } 2670 2671 /* 2672 * Must be called _AFTER_ setting up the per_cpu areas 2673 */ 2674 void __init boot_cpu_hotplug_init(void) 2675 { 2676 #ifdef CONFIG_SMP 2677 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2678 #endif 2679 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2680 } 2681 2682 /* 2683 * These are used for a global "mitigations=" cmdline option for toggling 2684 * optional CPU mitigations. 2685 */ 2686 enum cpu_mitigations { 2687 CPU_MITIGATIONS_OFF, 2688 CPU_MITIGATIONS_AUTO, 2689 CPU_MITIGATIONS_AUTO_NOSMT, 2690 }; 2691 2692 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2693 CPU_MITIGATIONS_AUTO; 2694 2695 static int __init mitigations_parse_cmdline(char *arg) 2696 { 2697 if (!strcmp(arg, "off")) 2698 cpu_mitigations = CPU_MITIGATIONS_OFF; 2699 else if (!strcmp(arg, "auto")) 2700 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2701 else if (!strcmp(arg, "auto,nosmt")) 2702 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2703 else 2704 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2705 arg); 2706 2707 return 0; 2708 } 2709 early_param("mitigations", mitigations_parse_cmdline); 2710 2711 /* mitigations=off */ 2712 bool cpu_mitigations_off(void) 2713 { 2714 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2715 } 2716 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2717 2718 /* mitigations=auto,nosmt */ 2719 bool cpu_mitigations_auto_nosmt(void) 2720 { 2721 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2722 } 2723 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2724