xref: /linux/kernel/cpu.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28 
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32 
33 #include "smpboot.h"
34 
35 /**
36  * cpuhp_cpu_state - Per cpu hotplug state storage
37  * @state:	The current cpu state
38  * @target:	The target state
39  * @thread:	Pointer to the hotplug thread
40  * @should_run:	Thread should execute
41  * @rollback:	Perform a rollback
42  * @single:	Single callback invocation
43  * @bringup:	Single callback bringup or teardown selector
44  * @cb_state:	The state for a single callback (install/uninstall)
45  * @result:	Result of the operation
46  * @done:	Signal completion to the issuer of the task
47  */
48 struct cpuhp_cpu_state {
49 	enum cpuhp_state	state;
50 	enum cpuhp_state	target;
51 #ifdef CONFIG_SMP
52 	struct task_struct	*thread;
53 	bool			should_run;
54 	bool			rollback;
55 	bool			single;
56 	bool			bringup;
57 	struct hlist_node	*node;
58 	enum cpuhp_state	cb_state;
59 	int			result;
60 	struct completion	done;
61 #endif
62 };
63 
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65 
66 /**
67  * cpuhp_step - Hotplug state machine step
68  * @name:	Name of the step
69  * @startup:	Startup function of the step
70  * @teardown:	Teardown function of the step
71  * @skip_onerr:	Do not invoke the functions on error rollback
72  *		Will go away once the notifiers	are gone
73  * @cant_stop:	Bringup/teardown can't be stopped at this step
74  */
75 struct cpuhp_step {
76 	const char		*name;
77 	union {
78 		int		(*single)(unsigned int cpu);
79 		int		(*multi)(unsigned int cpu,
80 					 struct hlist_node *node);
81 	} startup;
82 	union {
83 		int		(*single)(unsigned int cpu);
84 		int		(*multi)(unsigned int cpu,
85 					 struct hlist_node *node);
86 	} teardown;
87 	struct hlist_head	list;
88 	bool			skip_onerr;
89 	bool			cant_stop;
90 	bool			multi_instance;
91 };
92 
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
96 
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
98 {
99 	/*
100 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 	 * purposes as that state is handled explicitly in cpu_down.
102 	 */
103 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104 }
105 
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107 {
108 	struct cpuhp_step *sp;
109 
110 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111 	return sp + state;
112 }
113 
114 /**
115  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116  * @cpu:	The cpu for which the callback should be invoked
117  * @step:	The step in the state machine
118  * @bringup:	True if the bringup callback should be invoked
119  *
120  * Called from cpu hotplug and from the state register machinery.
121  */
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123 				 bool bringup, struct hlist_node *node)
124 {
125 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126 	struct cpuhp_step *step = cpuhp_get_step(state);
127 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
128 	int (*cb)(unsigned int cpu);
129 	int ret, cnt;
130 
131 	if (!step->multi_instance) {
132 		cb = bringup ? step->startup.single : step->teardown.single;
133 		if (!cb)
134 			return 0;
135 		trace_cpuhp_enter(cpu, st->target, state, cb);
136 		ret = cb(cpu);
137 		trace_cpuhp_exit(cpu, st->state, state, ret);
138 		return ret;
139 	}
140 	cbm = bringup ? step->startup.multi : step->teardown.multi;
141 	if (!cbm)
142 		return 0;
143 
144 	/* Single invocation for instance add/remove */
145 	if (node) {
146 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147 		ret = cbm(cpu, node);
148 		trace_cpuhp_exit(cpu, st->state, state, ret);
149 		return ret;
150 	}
151 
152 	/* State transition. Invoke on all instances */
153 	cnt = 0;
154 	hlist_for_each(node, &step->list) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		if (ret)
159 			goto err;
160 		cnt++;
161 	}
162 	return 0;
163 err:
164 	/* Rollback the instances if one failed */
165 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
166 	if (!cbm)
167 		return ret;
168 
169 	hlist_for_each(node, &step->list) {
170 		if (!cnt--)
171 			break;
172 		cbm(cpu, node);
173 	}
174 	return ret;
175 }
176 
177 #ifdef CONFIG_SMP
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182 
183 /*
184  * The following two APIs (cpu_maps_update_begin/done) must be used when
185  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
187  * hotplug callback (un)registration performed using __register_cpu_notifier()
188  * or __unregister_cpu_notifier().
189  */
190 void cpu_maps_update_begin(void)
191 {
192 	mutex_lock(&cpu_add_remove_lock);
193 }
194 EXPORT_SYMBOL(cpu_notifier_register_begin);
195 
196 void cpu_maps_update_done(void)
197 {
198 	mutex_unlock(&cpu_add_remove_lock);
199 }
200 EXPORT_SYMBOL(cpu_notifier_register_done);
201 
202 static RAW_NOTIFIER_HEAD(cpu_chain);
203 
204 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
205  * Should always be manipulated under cpu_add_remove_lock
206  */
207 static int cpu_hotplug_disabled;
208 
209 #ifdef CONFIG_HOTPLUG_CPU
210 
211 static struct {
212 	struct task_struct *active_writer;
213 	/* wait queue to wake up the active_writer */
214 	wait_queue_head_t wq;
215 	/* verifies that no writer will get active while readers are active */
216 	struct mutex lock;
217 	/*
218 	 * Also blocks the new readers during
219 	 * an ongoing cpu hotplug operation.
220 	 */
221 	atomic_t refcount;
222 
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224 	struct lockdep_map dep_map;
225 #endif
226 } cpu_hotplug = {
227 	.active_writer = NULL,
228 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
229 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
230 #ifdef CONFIG_DEBUG_LOCK_ALLOC
231 	.dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
232 #endif
233 };
234 
235 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
236 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
237 #define cpuhp_lock_acquire_tryread() \
238 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
239 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
240 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
241 
242 
243 void get_online_cpus(void)
244 {
245 	might_sleep();
246 	if (cpu_hotplug.active_writer == current)
247 		return;
248 	cpuhp_lock_acquire_read();
249 	mutex_lock(&cpu_hotplug.lock);
250 	atomic_inc(&cpu_hotplug.refcount);
251 	mutex_unlock(&cpu_hotplug.lock);
252 }
253 EXPORT_SYMBOL_GPL(get_online_cpus);
254 
255 void put_online_cpus(void)
256 {
257 	int refcount;
258 
259 	if (cpu_hotplug.active_writer == current)
260 		return;
261 
262 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
263 	if (WARN_ON(refcount < 0)) /* try to fix things up */
264 		atomic_inc(&cpu_hotplug.refcount);
265 
266 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
267 		wake_up(&cpu_hotplug.wq);
268 
269 	cpuhp_lock_release();
270 
271 }
272 EXPORT_SYMBOL_GPL(put_online_cpus);
273 
274 /*
275  * This ensures that the hotplug operation can begin only when the
276  * refcount goes to zero.
277  *
278  * Note that during a cpu-hotplug operation, the new readers, if any,
279  * will be blocked by the cpu_hotplug.lock
280  *
281  * Since cpu_hotplug_begin() is always called after invoking
282  * cpu_maps_update_begin(), we can be sure that only one writer is active.
283  *
284  * Note that theoretically, there is a possibility of a livelock:
285  * - Refcount goes to zero, last reader wakes up the sleeping
286  *   writer.
287  * - Last reader unlocks the cpu_hotplug.lock.
288  * - A new reader arrives at this moment, bumps up the refcount.
289  * - The writer acquires the cpu_hotplug.lock finds the refcount
290  *   non zero and goes to sleep again.
291  *
292  * However, this is very difficult to achieve in practice since
293  * get_online_cpus() not an api which is called all that often.
294  *
295  */
296 void cpu_hotplug_begin(void)
297 {
298 	DEFINE_WAIT(wait);
299 
300 	cpu_hotplug.active_writer = current;
301 	cpuhp_lock_acquire();
302 
303 	for (;;) {
304 		mutex_lock(&cpu_hotplug.lock);
305 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
306 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
307 				break;
308 		mutex_unlock(&cpu_hotplug.lock);
309 		schedule();
310 	}
311 	finish_wait(&cpu_hotplug.wq, &wait);
312 }
313 
314 void cpu_hotplug_done(void)
315 {
316 	cpu_hotplug.active_writer = NULL;
317 	mutex_unlock(&cpu_hotplug.lock);
318 	cpuhp_lock_release();
319 }
320 
321 /*
322  * Wait for currently running CPU hotplug operations to complete (if any) and
323  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
324  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
325  * hotplug path before performing hotplug operations. So acquiring that lock
326  * guarantees mutual exclusion from any currently running hotplug operations.
327  */
328 void cpu_hotplug_disable(void)
329 {
330 	cpu_maps_update_begin();
331 	cpu_hotplug_disabled++;
332 	cpu_maps_update_done();
333 }
334 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
335 
336 static void __cpu_hotplug_enable(void)
337 {
338 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
339 		return;
340 	cpu_hotplug_disabled--;
341 }
342 
343 void cpu_hotplug_enable(void)
344 {
345 	cpu_maps_update_begin();
346 	__cpu_hotplug_enable();
347 	cpu_maps_update_done();
348 }
349 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
350 #endif	/* CONFIG_HOTPLUG_CPU */
351 
352 /* Need to know about CPUs going up/down? */
353 int register_cpu_notifier(struct notifier_block *nb)
354 {
355 	int ret;
356 	cpu_maps_update_begin();
357 	ret = raw_notifier_chain_register(&cpu_chain, nb);
358 	cpu_maps_update_done();
359 	return ret;
360 }
361 
362 int __register_cpu_notifier(struct notifier_block *nb)
363 {
364 	return raw_notifier_chain_register(&cpu_chain, nb);
365 }
366 
367 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
368 			int *nr_calls)
369 {
370 	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
371 	void *hcpu = (void *)(long)cpu;
372 
373 	int ret;
374 
375 	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
376 					nr_calls);
377 
378 	return notifier_to_errno(ret);
379 }
380 
381 static int cpu_notify(unsigned long val, unsigned int cpu)
382 {
383 	return __cpu_notify(val, cpu, -1, NULL);
384 }
385 
386 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
387 {
388 	BUG_ON(cpu_notify(val, cpu));
389 }
390 
391 /* Notifier wrappers for transitioning to state machine */
392 static int notify_prepare(unsigned int cpu)
393 {
394 	int nr_calls = 0;
395 	int ret;
396 
397 	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
398 	if (ret) {
399 		nr_calls--;
400 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
401 				__func__, cpu);
402 		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
403 	}
404 	return ret;
405 }
406 
407 static int notify_online(unsigned int cpu)
408 {
409 	cpu_notify(CPU_ONLINE, cpu);
410 	return 0;
411 }
412 
413 static int bringup_wait_for_ap(unsigned int cpu)
414 {
415 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
416 
417 	wait_for_completion(&st->done);
418 	return st->result;
419 }
420 
421 static int bringup_cpu(unsigned int cpu)
422 {
423 	struct task_struct *idle = idle_thread_get(cpu);
424 	int ret;
425 
426 	/*
427 	 * Some architectures have to walk the irq descriptors to
428 	 * setup the vector space for the cpu which comes online.
429 	 * Prevent irq alloc/free across the bringup.
430 	 */
431 	irq_lock_sparse();
432 
433 	/* Arch-specific enabling code. */
434 	ret = __cpu_up(cpu, idle);
435 	irq_unlock_sparse();
436 	if (ret) {
437 		cpu_notify(CPU_UP_CANCELED, cpu);
438 		return ret;
439 	}
440 	ret = bringup_wait_for_ap(cpu);
441 	BUG_ON(!cpu_online(cpu));
442 	return ret;
443 }
444 
445 /*
446  * Hotplug state machine related functions
447  */
448 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
449 {
450 	for (st->state++; st->state < st->target; st->state++) {
451 		struct cpuhp_step *step = cpuhp_get_step(st->state);
452 
453 		if (!step->skip_onerr)
454 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
455 	}
456 }
457 
458 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
459 				enum cpuhp_state target)
460 {
461 	enum cpuhp_state prev_state = st->state;
462 	int ret = 0;
463 
464 	for (; st->state > target; st->state--) {
465 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
466 		if (ret) {
467 			st->target = prev_state;
468 			undo_cpu_down(cpu, st);
469 			break;
470 		}
471 	}
472 	return ret;
473 }
474 
475 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
476 {
477 	for (st->state--; st->state > st->target; st->state--) {
478 		struct cpuhp_step *step = cpuhp_get_step(st->state);
479 
480 		if (!step->skip_onerr)
481 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
482 	}
483 }
484 
485 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
486 			      enum cpuhp_state target)
487 {
488 	enum cpuhp_state prev_state = st->state;
489 	int ret = 0;
490 
491 	while (st->state < target) {
492 		st->state++;
493 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
494 		if (ret) {
495 			st->target = prev_state;
496 			undo_cpu_up(cpu, st);
497 			break;
498 		}
499 	}
500 	return ret;
501 }
502 
503 /*
504  * The cpu hotplug threads manage the bringup and teardown of the cpus
505  */
506 static void cpuhp_create(unsigned int cpu)
507 {
508 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
509 
510 	init_completion(&st->done);
511 }
512 
513 static int cpuhp_should_run(unsigned int cpu)
514 {
515 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
516 
517 	return st->should_run;
518 }
519 
520 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
521 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
522 {
523 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
524 
525 	return cpuhp_down_callbacks(cpu, st, target);
526 }
527 
528 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
529 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
530 {
531 	return cpuhp_up_callbacks(cpu, st, st->target);
532 }
533 
534 /*
535  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
536  * callbacks when a state gets [un]installed at runtime.
537  */
538 static void cpuhp_thread_fun(unsigned int cpu)
539 {
540 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
541 	int ret = 0;
542 
543 	/*
544 	 * Paired with the mb() in cpuhp_kick_ap_work and
545 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
546 	 */
547 	smp_mb();
548 	if (!st->should_run)
549 		return;
550 
551 	st->should_run = false;
552 
553 	/* Single callback invocation for [un]install ? */
554 	if (st->single) {
555 		if (st->cb_state < CPUHP_AP_ONLINE) {
556 			local_irq_disable();
557 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
558 						    st->bringup, st->node);
559 			local_irq_enable();
560 		} else {
561 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
562 						    st->bringup, st->node);
563 		}
564 	} else if (st->rollback) {
565 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
566 
567 		undo_cpu_down(cpu, st);
568 		/*
569 		 * This is a momentary workaround to keep the notifier users
570 		 * happy. Will go away once we got rid of the notifiers.
571 		 */
572 		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
573 		st->rollback = false;
574 	} else {
575 		/* Cannot happen .... */
576 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
577 
578 		/* Regular hotplug work */
579 		if (st->state < st->target)
580 			ret = cpuhp_ap_online(cpu, st);
581 		else if (st->state > st->target)
582 			ret = cpuhp_ap_offline(cpu, st);
583 	}
584 	st->result = ret;
585 	complete(&st->done);
586 }
587 
588 /* Invoke a single callback on a remote cpu */
589 static int
590 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
591 			 struct hlist_node *node)
592 {
593 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
594 
595 	if (!cpu_online(cpu))
596 		return 0;
597 
598 	/*
599 	 * If we are up and running, use the hotplug thread. For early calls
600 	 * we invoke the thread function directly.
601 	 */
602 	if (!st->thread)
603 		return cpuhp_invoke_callback(cpu, state, bringup, node);
604 
605 	st->cb_state = state;
606 	st->single = true;
607 	st->bringup = bringup;
608 	st->node = node;
609 
610 	/*
611 	 * Make sure the above stores are visible before should_run becomes
612 	 * true. Paired with the mb() above in cpuhp_thread_fun()
613 	 */
614 	smp_mb();
615 	st->should_run = true;
616 	wake_up_process(st->thread);
617 	wait_for_completion(&st->done);
618 	return st->result;
619 }
620 
621 /* Regular hotplug invocation of the AP hotplug thread */
622 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
623 {
624 	st->result = 0;
625 	st->single = false;
626 	/*
627 	 * Make sure the above stores are visible before should_run becomes
628 	 * true. Paired with the mb() above in cpuhp_thread_fun()
629 	 */
630 	smp_mb();
631 	st->should_run = true;
632 	wake_up_process(st->thread);
633 }
634 
635 static int cpuhp_kick_ap_work(unsigned int cpu)
636 {
637 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
638 	enum cpuhp_state state = st->state;
639 
640 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
641 	__cpuhp_kick_ap_work(st);
642 	wait_for_completion(&st->done);
643 	trace_cpuhp_exit(cpu, st->state, state, st->result);
644 	return st->result;
645 }
646 
647 static struct smp_hotplug_thread cpuhp_threads = {
648 	.store			= &cpuhp_state.thread,
649 	.create			= &cpuhp_create,
650 	.thread_should_run	= cpuhp_should_run,
651 	.thread_fn		= cpuhp_thread_fun,
652 	.thread_comm		= "cpuhp/%u",
653 	.selfparking		= true,
654 };
655 
656 void __init cpuhp_threads_init(void)
657 {
658 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
659 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
660 }
661 
662 #ifdef CONFIG_HOTPLUG_CPU
663 EXPORT_SYMBOL(register_cpu_notifier);
664 EXPORT_SYMBOL(__register_cpu_notifier);
665 void unregister_cpu_notifier(struct notifier_block *nb)
666 {
667 	cpu_maps_update_begin();
668 	raw_notifier_chain_unregister(&cpu_chain, nb);
669 	cpu_maps_update_done();
670 }
671 EXPORT_SYMBOL(unregister_cpu_notifier);
672 
673 void __unregister_cpu_notifier(struct notifier_block *nb)
674 {
675 	raw_notifier_chain_unregister(&cpu_chain, nb);
676 }
677 EXPORT_SYMBOL(__unregister_cpu_notifier);
678 
679 /**
680  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
681  * @cpu: a CPU id
682  *
683  * This function walks all processes, finds a valid mm struct for each one and
684  * then clears a corresponding bit in mm's cpumask.  While this all sounds
685  * trivial, there are various non-obvious corner cases, which this function
686  * tries to solve in a safe manner.
687  *
688  * Also note that the function uses a somewhat relaxed locking scheme, so it may
689  * be called only for an already offlined CPU.
690  */
691 void clear_tasks_mm_cpumask(int cpu)
692 {
693 	struct task_struct *p;
694 
695 	/*
696 	 * This function is called after the cpu is taken down and marked
697 	 * offline, so its not like new tasks will ever get this cpu set in
698 	 * their mm mask. -- Peter Zijlstra
699 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
700 	 * full-fledged tasklist_lock.
701 	 */
702 	WARN_ON(cpu_online(cpu));
703 	rcu_read_lock();
704 	for_each_process(p) {
705 		struct task_struct *t;
706 
707 		/*
708 		 * Main thread might exit, but other threads may still have
709 		 * a valid mm. Find one.
710 		 */
711 		t = find_lock_task_mm(p);
712 		if (!t)
713 			continue;
714 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
715 		task_unlock(t);
716 	}
717 	rcu_read_unlock();
718 }
719 
720 static inline void check_for_tasks(int dead_cpu)
721 {
722 	struct task_struct *g, *p;
723 
724 	read_lock(&tasklist_lock);
725 	for_each_process_thread(g, p) {
726 		if (!p->on_rq)
727 			continue;
728 		/*
729 		 * We do the check with unlocked task_rq(p)->lock.
730 		 * Order the reading to do not warn about a task,
731 		 * which was running on this cpu in the past, and
732 		 * it's just been woken on another cpu.
733 		 */
734 		rmb();
735 		if (task_cpu(p) != dead_cpu)
736 			continue;
737 
738 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
739 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
740 	}
741 	read_unlock(&tasklist_lock);
742 }
743 
744 static int notify_down_prepare(unsigned int cpu)
745 {
746 	int err, nr_calls = 0;
747 
748 	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
749 	if (err) {
750 		nr_calls--;
751 		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
752 		pr_warn("%s: attempt to take down CPU %u failed\n",
753 				__func__, cpu);
754 	}
755 	return err;
756 }
757 
758 /* Take this CPU down. */
759 static int take_cpu_down(void *_param)
760 {
761 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
762 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
763 	int err, cpu = smp_processor_id();
764 
765 	/* Ensure this CPU doesn't handle any more interrupts. */
766 	err = __cpu_disable();
767 	if (err < 0)
768 		return err;
769 
770 	/*
771 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
772 	 * do this step again.
773 	 */
774 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
775 	st->state--;
776 	/* Invoke the former CPU_DYING callbacks */
777 	for (; st->state > target; st->state--)
778 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
779 
780 	/* Give up timekeeping duties */
781 	tick_handover_do_timer();
782 	/* Park the stopper thread */
783 	stop_machine_park(cpu);
784 	return 0;
785 }
786 
787 static int takedown_cpu(unsigned int cpu)
788 {
789 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
790 	int err;
791 
792 	/* Park the smpboot threads */
793 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
794 	smpboot_park_threads(cpu);
795 
796 	/*
797 	 * Prevent irq alloc/free while the dying cpu reorganizes the
798 	 * interrupt affinities.
799 	 */
800 	irq_lock_sparse();
801 
802 	/*
803 	 * So now all preempt/rcu users must observe !cpu_active().
804 	 */
805 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
806 	if (err) {
807 		/* CPU refused to die */
808 		irq_unlock_sparse();
809 		/* Unpark the hotplug thread so we can rollback there */
810 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
811 		return err;
812 	}
813 	BUG_ON(cpu_online(cpu));
814 
815 	/*
816 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
817 	 * runnable tasks from the cpu, there's only the idle task left now
818 	 * that the migration thread is done doing the stop_machine thing.
819 	 *
820 	 * Wait for the stop thread to go away.
821 	 */
822 	wait_for_completion(&st->done);
823 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
824 
825 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
826 	irq_unlock_sparse();
827 
828 	hotplug_cpu__broadcast_tick_pull(cpu);
829 	/* This actually kills the CPU. */
830 	__cpu_die(cpu);
831 
832 	tick_cleanup_dead_cpu(cpu);
833 	return 0;
834 }
835 
836 static int notify_dead(unsigned int cpu)
837 {
838 	cpu_notify_nofail(CPU_DEAD, cpu);
839 	check_for_tasks(cpu);
840 	return 0;
841 }
842 
843 static void cpuhp_complete_idle_dead(void *arg)
844 {
845 	struct cpuhp_cpu_state *st = arg;
846 
847 	complete(&st->done);
848 }
849 
850 void cpuhp_report_idle_dead(void)
851 {
852 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
853 
854 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
855 	rcu_report_dead(smp_processor_id());
856 	st->state = CPUHP_AP_IDLE_DEAD;
857 	/*
858 	 * We cannot call complete after rcu_report_dead() so we delegate it
859 	 * to an online cpu.
860 	 */
861 	smp_call_function_single(cpumask_first(cpu_online_mask),
862 				 cpuhp_complete_idle_dead, st, 0);
863 }
864 
865 #else
866 #define notify_down_prepare	NULL
867 #define takedown_cpu		NULL
868 #define notify_dead		NULL
869 #endif
870 
871 #ifdef CONFIG_HOTPLUG_CPU
872 
873 /* Requires cpu_add_remove_lock to be held */
874 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
875 			   enum cpuhp_state target)
876 {
877 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
878 	int prev_state, ret = 0;
879 	bool hasdied = false;
880 
881 	if (num_online_cpus() == 1)
882 		return -EBUSY;
883 
884 	if (!cpu_present(cpu))
885 		return -EINVAL;
886 
887 	cpu_hotplug_begin();
888 
889 	cpuhp_tasks_frozen = tasks_frozen;
890 
891 	prev_state = st->state;
892 	st->target = target;
893 	/*
894 	 * If the current CPU state is in the range of the AP hotplug thread,
895 	 * then we need to kick the thread.
896 	 */
897 	if (st->state > CPUHP_TEARDOWN_CPU) {
898 		ret = cpuhp_kick_ap_work(cpu);
899 		/*
900 		 * The AP side has done the error rollback already. Just
901 		 * return the error code..
902 		 */
903 		if (ret)
904 			goto out;
905 
906 		/*
907 		 * We might have stopped still in the range of the AP hotplug
908 		 * thread. Nothing to do anymore.
909 		 */
910 		if (st->state > CPUHP_TEARDOWN_CPU)
911 			goto out;
912 	}
913 	/*
914 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
915 	 * to do the further cleanups.
916 	 */
917 	ret = cpuhp_down_callbacks(cpu, st, target);
918 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
919 		st->target = prev_state;
920 		st->rollback = true;
921 		cpuhp_kick_ap_work(cpu);
922 	}
923 
924 	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
925 out:
926 	cpu_hotplug_done();
927 	/* This post dead nonsense must die */
928 	if (!ret && hasdied)
929 		cpu_notify_nofail(CPU_POST_DEAD, cpu);
930 	return ret;
931 }
932 
933 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
934 {
935 	int err;
936 
937 	cpu_maps_update_begin();
938 
939 	if (cpu_hotplug_disabled) {
940 		err = -EBUSY;
941 		goto out;
942 	}
943 
944 	err = _cpu_down(cpu, 0, target);
945 
946 out:
947 	cpu_maps_update_done();
948 	return err;
949 }
950 int cpu_down(unsigned int cpu)
951 {
952 	return do_cpu_down(cpu, CPUHP_OFFLINE);
953 }
954 EXPORT_SYMBOL(cpu_down);
955 #endif /*CONFIG_HOTPLUG_CPU*/
956 
957 /**
958  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
959  * @cpu: cpu that just started
960  *
961  * It must be called by the arch code on the new cpu, before the new cpu
962  * enables interrupts and before the "boot" cpu returns from __cpu_up().
963  */
964 void notify_cpu_starting(unsigned int cpu)
965 {
966 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
967 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
968 
969 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
970 	while (st->state < target) {
971 		st->state++;
972 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
973 	}
974 }
975 
976 /*
977  * Called from the idle task. We need to set active here, so we can kick off
978  * the stopper thread and unpark the smpboot threads. If the target state is
979  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
980  * cpu further.
981  */
982 void cpuhp_online_idle(enum cpuhp_state state)
983 {
984 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
985 	unsigned int cpu = smp_processor_id();
986 
987 	/* Happens for the boot cpu */
988 	if (state != CPUHP_AP_ONLINE_IDLE)
989 		return;
990 
991 	st->state = CPUHP_AP_ONLINE_IDLE;
992 
993 	/* Unpark the stopper thread and the hotplug thread of this cpu */
994 	stop_machine_unpark(cpu);
995 	kthread_unpark(st->thread);
996 
997 	/* Should we go further up ? */
998 	if (st->target > CPUHP_AP_ONLINE_IDLE)
999 		__cpuhp_kick_ap_work(st);
1000 	else
1001 		complete(&st->done);
1002 }
1003 
1004 /* Requires cpu_add_remove_lock to be held */
1005 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1006 {
1007 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008 	struct task_struct *idle;
1009 	int ret = 0;
1010 
1011 	cpu_hotplug_begin();
1012 
1013 	if (!cpu_present(cpu)) {
1014 		ret = -EINVAL;
1015 		goto out;
1016 	}
1017 
1018 	/*
1019 	 * The caller of do_cpu_up might have raced with another
1020 	 * caller. Ignore it for now.
1021 	 */
1022 	if (st->state >= target)
1023 		goto out;
1024 
1025 	if (st->state == CPUHP_OFFLINE) {
1026 		/* Let it fail before we try to bring the cpu up */
1027 		idle = idle_thread_get(cpu);
1028 		if (IS_ERR(idle)) {
1029 			ret = PTR_ERR(idle);
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	cpuhp_tasks_frozen = tasks_frozen;
1035 
1036 	st->target = target;
1037 	/*
1038 	 * If the current CPU state is in the range of the AP hotplug thread,
1039 	 * then we need to kick the thread once more.
1040 	 */
1041 	if (st->state > CPUHP_BRINGUP_CPU) {
1042 		ret = cpuhp_kick_ap_work(cpu);
1043 		/*
1044 		 * The AP side has done the error rollback already. Just
1045 		 * return the error code..
1046 		 */
1047 		if (ret)
1048 			goto out;
1049 	}
1050 
1051 	/*
1052 	 * Try to reach the target state. We max out on the BP at
1053 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1054 	 * responsible for bringing it up to the target state.
1055 	 */
1056 	target = min((int)target, CPUHP_BRINGUP_CPU);
1057 	ret = cpuhp_up_callbacks(cpu, st, target);
1058 out:
1059 	cpu_hotplug_done();
1060 	return ret;
1061 }
1062 
1063 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1064 {
1065 	int err = 0;
1066 
1067 	if (!cpu_possible(cpu)) {
1068 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1069 		       cpu);
1070 #if defined(CONFIG_IA64)
1071 		pr_err("please check additional_cpus= boot parameter\n");
1072 #endif
1073 		return -EINVAL;
1074 	}
1075 
1076 	err = try_online_node(cpu_to_node(cpu));
1077 	if (err)
1078 		return err;
1079 
1080 	cpu_maps_update_begin();
1081 
1082 	if (cpu_hotplug_disabled) {
1083 		err = -EBUSY;
1084 		goto out;
1085 	}
1086 
1087 	err = _cpu_up(cpu, 0, target);
1088 out:
1089 	cpu_maps_update_done();
1090 	return err;
1091 }
1092 
1093 int cpu_up(unsigned int cpu)
1094 {
1095 	return do_cpu_up(cpu, CPUHP_ONLINE);
1096 }
1097 EXPORT_SYMBOL_GPL(cpu_up);
1098 
1099 #ifdef CONFIG_PM_SLEEP_SMP
1100 static cpumask_var_t frozen_cpus;
1101 
1102 int freeze_secondary_cpus(int primary)
1103 {
1104 	int cpu, error = 0;
1105 
1106 	cpu_maps_update_begin();
1107 	if (!cpu_online(primary))
1108 		primary = cpumask_first(cpu_online_mask);
1109 	/*
1110 	 * We take down all of the non-boot CPUs in one shot to avoid races
1111 	 * with the userspace trying to use the CPU hotplug at the same time
1112 	 */
1113 	cpumask_clear(frozen_cpus);
1114 
1115 	pr_info("Disabling non-boot CPUs ...\n");
1116 	for_each_online_cpu(cpu) {
1117 		if (cpu == primary)
1118 			continue;
1119 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1120 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1121 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1122 		if (!error)
1123 			cpumask_set_cpu(cpu, frozen_cpus);
1124 		else {
1125 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1126 			break;
1127 		}
1128 	}
1129 
1130 	if (!error)
1131 		BUG_ON(num_online_cpus() > 1);
1132 	else
1133 		pr_err("Non-boot CPUs are not disabled\n");
1134 
1135 	/*
1136 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1137 	 * this even in case of failure as all disable_nonboot_cpus() users are
1138 	 * supposed to do enable_nonboot_cpus() on the failure path.
1139 	 */
1140 	cpu_hotplug_disabled++;
1141 
1142 	cpu_maps_update_done();
1143 	return error;
1144 }
1145 
1146 void __weak arch_enable_nonboot_cpus_begin(void)
1147 {
1148 }
1149 
1150 void __weak arch_enable_nonboot_cpus_end(void)
1151 {
1152 }
1153 
1154 void enable_nonboot_cpus(void)
1155 {
1156 	int cpu, error;
1157 
1158 	/* Allow everyone to use the CPU hotplug again */
1159 	cpu_maps_update_begin();
1160 	__cpu_hotplug_enable();
1161 	if (cpumask_empty(frozen_cpus))
1162 		goto out;
1163 
1164 	pr_info("Enabling non-boot CPUs ...\n");
1165 
1166 	arch_enable_nonboot_cpus_begin();
1167 
1168 	for_each_cpu(cpu, frozen_cpus) {
1169 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1170 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1171 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1172 		if (!error) {
1173 			pr_info("CPU%d is up\n", cpu);
1174 			continue;
1175 		}
1176 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1177 	}
1178 
1179 	arch_enable_nonboot_cpus_end();
1180 
1181 	cpumask_clear(frozen_cpus);
1182 out:
1183 	cpu_maps_update_done();
1184 }
1185 
1186 static int __init alloc_frozen_cpus(void)
1187 {
1188 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1189 		return -ENOMEM;
1190 	return 0;
1191 }
1192 core_initcall(alloc_frozen_cpus);
1193 
1194 /*
1195  * When callbacks for CPU hotplug notifications are being executed, we must
1196  * ensure that the state of the system with respect to the tasks being frozen
1197  * or not, as reported by the notification, remains unchanged *throughout the
1198  * duration* of the execution of the callbacks.
1199  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1200  *
1201  * This synchronization is implemented by mutually excluding regular CPU
1202  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1203  * Hibernate notifications.
1204  */
1205 static int
1206 cpu_hotplug_pm_callback(struct notifier_block *nb,
1207 			unsigned long action, void *ptr)
1208 {
1209 	switch (action) {
1210 
1211 	case PM_SUSPEND_PREPARE:
1212 	case PM_HIBERNATION_PREPARE:
1213 		cpu_hotplug_disable();
1214 		break;
1215 
1216 	case PM_POST_SUSPEND:
1217 	case PM_POST_HIBERNATION:
1218 		cpu_hotplug_enable();
1219 		break;
1220 
1221 	default:
1222 		return NOTIFY_DONE;
1223 	}
1224 
1225 	return NOTIFY_OK;
1226 }
1227 
1228 
1229 static int __init cpu_hotplug_pm_sync_init(void)
1230 {
1231 	/*
1232 	 * cpu_hotplug_pm_callback has higher priority than x86
1233 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1234 	 * to disable cpu hotplug to avoid cpu hotplug race.
1235 	 */
1236 	pm_notifier(cpu_hotplug_pm_callback, 0);
1237 	return 0;
1238 }
1239 core_initcall(cpu_hotplug_pm_sync_init);
1240 
1241 #endif /* CONFIG_PM_SLEEP_SMP */
1242 
1243 #endif /* CONFIG_SMP */
1244 
1245 /* Boot processor state steps */
1246 static struct cpuhp_step cpuhp_bp_states[] = {
1247 	[CPUHP_OFFLINE] = {
1248 		.name			= "offline",
1249 		.startup.single		= NULL,
1250 		.teardown.single	= NULL,
1251 	},
1252 #ifdef CONFIG_SMP
1253 	[CPUHP_CREATE_THREADS]= {
1254 		.name			= "threads:prepare",
1255 		.startup.single		= smpboot_create_threads,
1256 		.teardown.single	= NULL,
1257 		.cant_stop		= true,
1258 	},
1259 	[CPUHP_PERF_PREPARE] = {
1260 		.name			= "perf:prepare",
1261 		.startup.single		= perf_event_init_cpu,
1262 		.teardown.single	= perf_event_exit_cpu,
1263 	},
1264 	[CPUHP_WORKQUEUE_PREP] = {
1265 		.name			= "workqueue:prepare",
1266 		.startup.single		= workqueue_prepare_cpu,
1267 		.teardown.single	= NULL,
1268 	},
1269 	[CPUHP_HRTIMERS_PREPARE] = {
1270 		.name			= "hrtimers:prepare",
1271 		.startup.single		= hrtimers_prepare_cpu,
1272 		.teardown.single	= hrtimers_dead_cpu,
1273 	},
1274 	[CPUHP_SMPCFD_PREPARE] = {
1275 		.name			= "smpcfd:prepare",
1276 		.startup.single		= smpcfd_prepare_cpu,
1277 		.teardown.single	= smpcfd_dead_cpu,
1278 	},
1279 	[CPUHP_RELAY_PREPARE] = {
1280 		.name			= "relay:prepare",
1281 		.startup.single		= relay_prepare_cpu,
1282 		.teardown.single	= NULL,
1283 	},
1284 	[CPUHP_SLAB_PREPARE] = {
1285 		.name			= "slab:prepare",
1286 		.startup.single		= slab_prepare_cpu,
1287 		.teardown.single	= slab_dead_cpu,
1288 	},
1289 	[CPUHP_RCUTREE_PREP] = {
1290 		.name			= "RCU/tree:prepare",
1291 		.startup.single		= rcutree_prepare_cpu,
1292 		.teardown.single	= rcutree_dead_cpu,
1293 	},
1294 	/*
1295 	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1296 	 * are converted to states.
1297 	 */
1298 	[CPUHP_NOTIFY_PREPARE] = {
1299 		.name			= "notify:prepare",
1300 		.startup.single		= notify_prepare,
1301 		.teardown.single	= notify_dead,
1302 		.skip_onerr		= true,
1303 		.cant_stop		= true,
1304 	},
1305 	/*
1306 	 * On the tear-down path, timers_dead_cpu() must be invoked
1307 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1308 	 * otherwise a RCU stall occurs.
1309 	 */
1310 	[CPUHP_TIMERS_DEAD] = {
1311 		.name			= "timers:dead",
1312 		.startup.single		= NULL,
1313 		.teardown.single	= timers_dead_cpu,
1314 	},
1315 	/* Kicks the plugged cpu into life */
1316 	[CPUHP_BRINGUP_CPU] = {
1317 		.name			= "cpu:bringup",
1318 		.startup.single		= bringup_cpu,
1319 		.teardown.single	= NULL,
1320 		.cant_stop		= true,
1321 	},
1322 	[CPUHP_AP_SMPCFD_DYING] = {
1323 		.name			= "smpcfd:dying",
1324 		.startup.single		= NULL,
1325 		.teardown.single	= smpcfd_dying_cpu,
1326 	},
1327 	/*
1328 	 * Handled on controll processor until the plugged processor manages
1329 	 * this itself.
1330 	 */
1331 	[CPUHP_TEARDOWN_CPU] = {
1332 		.name			= "cpu:teardown",
1333 		.startup.single		= NULL,
1334 		.teardown.single	= takedown_cpu,
1335 		.cant_stop		= true,
1336 	},
1337 #else
1338 	[CPUHP_BRINGUP_CPU] = { },
1339 #endif
1340 };
1341 
1342 /* Application processor state steps */
1343 static struct cpuhp_step cpuhp_ap_states[] = {
1344 #ifdef CONFIG_SMP
1345 	/* Final state before CPU kills itself */
1346 	[CPUHP_AP_IDLE_DEAD] = {
1347 		.name			= "idle:dead",
1348 	},
1349 	/*
1350 	 * Last state before CPU enters the idle loop to die. Transient state
1351 	 * for synchronization.
1352 	 */
1353 	[CPUHP_AP_OFFLINE] = {
1354 		.name			= "ap:offline",
1355 		.cant_stop		= true,
1356 	},
1357 	/* First state is scheduler control. Interrupts are disabled */
1358 	[CPUHP_AP_SCHED_STARTING] = {
1359 		.name			= "sched:starting",
1360 		.startup.single		= sched_cpu_starting,
1361 		.teardown.single	= sched_cpu_dying,
1362 	},
1363 	[CPUHP_AP_RCUTREE_DYING] = {
1364 		.name			= "RCU/tree:dying",
1365 		.startup.single		= NULL,
1366 		.teardown.single	= rcutree_dying_cpu,
1367 	},
1368 	/* Entry state on starting. Interrupts enabled from here on. Transient
1369 	 * state for synchronsization */
1370 	[CPUHP_AP_ONLINE] = {
1371 		.name			= "ap:online",
1372 	},
1373 	/* Handle smpboot threads park/unpark */
1374 	[CPUHP_AP_SMPBOOT_THREADS] = {
1375 		.name			= "smpboot/threads:online",
1376 		.startup.single		= smpboot_unpark_threads,
1377 		.teardown.single	= NULL,
1378 	},
1379 	[CPUHP_AP_PERF_ONLINE] = {
1380 		.name			= "perf:online",
1381 		.startup.single		= perf_event_init_cpu,
1382 		.teardown.single	= perf_event_exit_cpu,
1383 	},
1384 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1385 		.name			= "workqueue:online",
1386 		.startup.single		= workqueue_online_cpu,
1387 		.teardown.single	= workqueue_offline_cpu,
1388 	},
1389 	[CPUHP_AP_RCUTREE_ONLINE] = {
1390 		.name			= "RCU/tree:online",
1391 		.startup.single		= rcutree_online_cpu,
1392 		.teardown.single	= rcutree_offline_cpu,
1393 	},
1394 
1395 	/*
1396 	 * Online/down_prepare notifiers. Will be removed once the notifiers
1397 	 * are converted to states.
1398 	 */
1399 	[CPUHP_AP_NOTIFY_ONLINE] = {
1400 		.name			= "notify:online",
1401 		.startup.single		= notify_online,
1402 		.teardown.single	= notify_down_prepare,
1403 		.skip_onerr		= true,
1404 	},
1405 #endif
1406 	/*
1407 	 * The dynamically registered state space is here
1408 	 */
1409 
1410 #ifdef CONFIG_SMP
1411 	/* Last state is scheduler control setting the cpu active */
1412 	[CPUHP_AP_ACTIVE] = {
1413 		.name			= "sched:active",
1414 		.startup.single		= sched_cpu_activate,
1415 		.teardown.single	= sched_cpu_deactivate,
1416 	},
1417 #endif
1418 
1419 	/* CPU is fully up and running. */
1420 	[CPUHP_ONLINE] = {
1421 		.name			= "online",
1422 		.startup.single		= NULL,
1423 		.teardown.single	= NULL,
1424 	},
1425 };
1426 
1427 /* Sanity check for callbacks */
1428 static int cpuhp_cb_check(enum cpuhp_state state)
1429 {
1430 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1431 		return -EINVAL;
1432 	return 0;
1433 }
1434 
1435 static void cpuhp_store_callbacks(enum cpuhp_state state,
1436 				  const char *name,
1437 				  int (*startup)(unsigned int cpu),
1438 				  int (*teardown)(unsigned int cpu),
1439 				  bool multi_instance)
1440 {
1441 	/* (Un)Install the callbacks for further cpu hotplug operations */
1442 	struct cpuhp_step *sp;
1443 
1444 	mutex_lock(&cpuhp_state_mutex);
1445 	sp = cpuhp_get_step(state);
1446 	sp->startup.single = startup;
1447 	sp->teardown.single = teardown;
1448 	sp->name = name;
1449 	sp->multi_instance = multi_instance;
1450 	INIT_HLIST_HEAD(&sp->list);
1451 	mutex_unlock(&cpuhp_state_mutex);
1452 }
1453 
1454 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1455 {
1456 	return cpuhp_get_step(state)->teardown.single;
1457 }
1458 
1459 /*
1460  * Call the startup/teardown function for a step either on the AP or
1461  * on the current CPU.
1462  */
1463 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1464 			    struct hlist_node *node)
1465 {
1466 	struct cpuhp_step *sp = cpuhp_get_step(state);
1467 	int ret;
1468 
1469 	if ((bringup && !sp->startup.single) ||
1470 	    (!bringup && !sp->teardown.single))
1471 		return 0;
1472 	/*
1473 	 * The non AP bound callbacks can fail on bringup. On teardown
1474 	 * e.g. module removal we crash for now.
1475 	 */
1476 #ifdef CONFIG_SMP
1477 	if (cpuhp_is_ap_state(state))
1478 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1479 	else
1480 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1481 #else
1482 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1483 #endif
1484 	BUG_ON(ret && !bringup);
1485 	return ret;
1486 }
1487 
1488 /*
1489  * Called from __cpuhp_setup_state on a recoverable failure.
1490  *
1491  * Note: The teardown callbacks for rollback are not allowed to fail!
1492  */
1493 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1494 				   struct hlist_node *node)
1495 {
1496 	int cpu;
1497 
1498 	/* Roll back the already executed steps on the other cpus */
1499 	for_each_present_cpu(cpu) {
1500 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501 		int cpustate = st->state;
1502 
1503 		if (cpu >= failedcpu)
1504 			break;
1505 
1506 		/* Did we invoke the startup call on that cpu ? */
1507 		if (cpustate >= state)
1508 			cpuhp_issue_call(cpu, state, false, node);
1509 	}
1510 }
1511 
1512 /*
1513  * Returns a free for dynamic slot assignment of the Online state. The states
1514  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515  * by having no name assigned.
1516  */
1517 static int cpuhp_reserve_state(enum cpuhp_state state)
1518 {
1519 	enum cpuhp_state i;
1520 
1521 	mutex_lock(&cpuhp_state_mutex);
1522 	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1523 		if (cpuhp_ap_states[i].name)
1524 			continue;
1525 
1526 		cpuhp_ap_states[i].name = "Reserved";
1527 		mutex_unlock(&cpuhp_state_mutex);
1528 		return i;
1529 	}
1530 	mutex_unlock(&cpuhp_state_mutex);
1531 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1532 	return -ENOSPC;
1533 }
1534 
1535 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1536 			       bool invoke)
1537 {
1538 	struct cpuhp_step *sp;
1539 	int cpu;
1540 	int ret;
1541 
1542 	sp = cpuhp_get_step(state);
1543 	if (sp->multi_instance == false)
1544 		return -EINVAL;
1545 
1546 	get_online_cpus();
1547 
1548 	if (!invoke || !sp->startup.multi)
1549 		goto add_node;
1550 
1551 	/*
1552 	 * Try to call the startup callback for each present cpu
1553 	 * depending on the hotplug state of the cpu.
1554 	 */
1555 	for_each_present_cpu(cpu) {
1556 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557 		int cpustate = st->state;
1558 
1559 		if (cpustate < state)
1560 			continue;
1561 
1562 		ret = cpuhp_issue_call(cpu, state, true, node);
1563 		if (ret) {
1564 			if (sp->teardown.multi)
1565 				cpuhp_rollback_install(cpu, state, node);
1566 			goto err;
1567 		}
1568 	}
1569 add_node:
1570 	ret = 0;
1571 	mutex_lock(&cpuhp_state_mutex);
1572 	hlist_add_head(node, &sp->list);
1573 	mutex_unlock(&cpuhp_state_mutex);
1574 
1575 err:
1576 	put_online_cpus();
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1580 
1581 /**
1582  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1583  * @state:	The state to setup
1584  * @invoke:	If true, the startup function is invoked for cpus where
1585  *		cpu state >= @state
1586  * @startup:	startup callback function
1587  * @teardown:	teardown callback function
1588  *
1589  * Returns 0 if successful, otherwise a proper error code
1590  */
1591 int __cpuhp_setup_state(enum cpuhp_state state,
1592 			const char *name, bool invoke,
1593 			int (*startup)(unsigned int cpu),
1594 			int (*teardown)(unsigned int cpu),
1595 			bool multi_instance)
1596 {
1597 	int cpu, ret = 0;
1598 	int dyn_state = 0;
1599 
1600 	if (cpuhp_cb_check(state) || !name)
1601 		return -EINVAL;
1602 
1603 	get_online_cpus();
1604 
1605 	/* currently assignments for the ONLINE state are possible */
1606 	if (state == CPUHP_AP_ONLINE_DYN) {
1607 		dyn_state = 1;
1608 		ret = cpuhp_reserve_state(state);
1609 		if (ret < 0)
1610 			goto out;
1611 		state = ret;
1612 	}
1613 
1614 	cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
1615 
1616 	if (!invoke || !startup)
1617 		goto out;
1618 
1619 	/*
1620 	 * Try to call the startup callback for each present cpu
1621 	 * depending on the hotplug state of the cpu.
1622 	 */
1623 	for_each_present_cpu(cpu) {
1624 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625 		int cpustate = st->state;
1626 
1627 		if (cpustate < state)
1628 			continue;
1629 
1630 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1631 		if (ret) {
1632 			if (teardown)
1633 				cpuhp_rollback_install(cpu, state, NULL);
1634 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635 			goto out;
1636 		}
1637 	}
1638 out:
1639 	put_online_cpus();
1640 	if (!ret && dyn_state)
1641 		return state;
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL(__cpuhp_setup_state);
1645 
1646 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1647 				  struct hlist_node *node, bool invoke)
1648 {
1649 	struct cpuhp_step *sp = cpuhp_get_step(state);
1650 	int cpu;
1651 
1652 	BUG_ON(cpuhp_cb_check(state));
1653 
1654 	if (!sp->multi_instance)
1655 		return -EINVAL;
1656 
1657 	get_online_cpus();
1658 	if (!invoke || !cpuhp_get_teardown_cb(state))
1659 		goto remove;
1660 	/*
1661 	 * Call the teardown callback for each present cpu depending
1662 	 * on the hotplug state of the cpu. This function is not
1663 	 * allowed to fail currently!
1664 	 */
1665 	for_each_present_cpu(cpu) {
1666 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667 		int cpustate = st->state;
1668 
1669 		if (cpustate >= state)
1670 			cpuhp_issue_call(cpu, state, false, node);
1671 	}
1672 
1673 remove:
1674 	mutex_lock(&cpuhp_state_mutex);
1675 	hlist_del(node);
1676 	mutex_unlock(&cpuhp_state_mutex);
1677 	put_online_cpus();
1678 
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1682 /**
1683  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1684  * @state:	The state to remove
1685  * @invoke:	If true, the teardown function is invoked for cpus where
1686  *		cpu state >= @state
1687  *
1688  * The teardown callback is currently not allowed to fail. Think
1689  * about module removal!
1690  */
1691 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1692 {
1693 	struct cpuhp_step *sp = cpuhp_get_step(state);
1694 	int cpu;
1695 
1696 	BUG_ON(cpuhp_cb_check(state));
1697 
1698 	get_online_cpus();
1699 
1700 	if (sp->multi_instance) {
1701 		WARN(!hlist_empty(&sp->list),
1702 		     "Error: Removing state %d which has instances left.\n",
1703 		     state);
1704 		goto remove;
1705 	}
1706 
1707 	if (!invoke || !cpuhp_get_teardown_cb(state))
1708 		goto remove;
1709 
1710 	/*
1711 	 * Call the teardown callback for each present cpu depending
1712 	 * on the hotplug state of the cpu. This function is not
1713 	 * allowed to fail currently!
1714 	 */
1715 	for_each_present_cpu(cpu) {
1716 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1717 		int cpustate = st->state;
1718 
1719 		if (cpustate >= state)
1720 			cpuhp_issue_call(cpu, state, false, NULL);
1721 	}
1722 remove:
1723 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1724 	put_online_cpus();
1725 }
1726 EXPORT_SYMBOL(__cpuhp_remove_state);
1727 
1728 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1729 static ssize_t show_cpuhp_state(struct device *dev,
1730 				struct device_attribute *attr, char *buf)
1731 {
1732 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1733 
1734 	return sprintf(buf, "%d\n", st->state);
1735 }
1736 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1737 
1738 static ssize_t write_cpuhp_target(struct device *dev,
1739 				  struct device_attribute *attr,
1740 				  const char *buf, size_t count)
1741 {
1742 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1743 	struct cpuhp_step *sp;
1744 	int target, ret;
1745 
1746 	ret = kstrtoint(buf, 10, &target);
1747 	if (ret)
1748 		return ret;
1749 
1750 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1751 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1752 		return -EINVAL;
1753 #else
1754 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1755 		return -EINVAL;
1756 #endif
1757 
1758 	ret = lock_device_hotplug_sysfs();
1759 	if (ret)
1760 		return ret;
1761 
1762 	mutex_lock(&cpuhp_state_mutex);
1763 	sp = cpuhp_get_step(target);
1764 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1765 	mutex_unlock(&cpuhp_state_mutex);
1766 	if (ret)
1767 		return ret;
1768 
1769 	if (st->state < target)
1770 		ret = do_cpu_up(dev->id, target);
1771 	else
1772 		ret = do_cpu_down(dev->id, target);
1773 
1774 	unlock_device_hotplug();
1775 	return ret ? ret : count;
1776 }
1777 
1778 static ssize_t show_cpuhp_target(struct device *dev,
1779 				 struct device_attribute *attr, char *buf)
1780 {
1781 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1782 
1783 	return sprintf(buf, "%d\n", st->target);
1784 }
1785 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1786 
1787 static struct attribute *cpuhp_cpu_attrs[] = {
1788 	&dev_attr_state.attr,
1789 	&dev_attr_target.attr,
1790 	NULL
1791 };
1792 
1793 static struct attribute_group cpuhp_cpu_attr_group = {
1794 	.attrs = cpuhp_cpu_attrs,
1795 	.name = "hotplug",
1796 	NULL
1797 };
1798 
1799 static ssize_t show_cpuhp_states(struct device *dev,
1800 				 struct device_attribute *attr, char *buf)
1801 {
1802 	ssize_t cur, res = 0;
1803 	int i;
1804 
1805 	mutex_lock(&cpuhp_state_mutex);
1806 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1807 		struct cpuhp_step *sp = cpuhp_get_step(i);
1808 
1809 		if (sp->name) {
1810 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1811 			buf += cur;
1812 			res += cur;
1813 		}
1814 	}
1815 	mutex_unlock(&cpuhp_state_mutex);
1816 	return res;
1817 }
1818 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1819 
1820 static struct attribute *cpuhp_cpu_root_attrs[] = {
1821 	&dev_attr_states.attr,
1822 	NULL
1823 };
1824 
1825 static struct attribute_group cpuhp_cpu_root_attr_group = {
1826 	.attrs = cpuhp_cpu_root_attrs,
1827 	.name = "hotplug",
1828 	NULL
1829 };
1830 
1831 static int __init cpuhp_sysfs_init(void)
1832 {
1833 	int cpu, ret;
1834 
1835 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1836 				 &cpuhp_cpu_root_attr_group);
1837 	if (ret)
1838 		return ret;
1839 
1840 	for_each_possible_cpu(cpu) {
1841 		struct device *dev = get_cpu_device(cpu);
1842 
1843 		if (!dev)
1844 			continue;
1845 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1846 		if (ret)
1847 			return ret;
1848 	}
1849 	return 0;
1850 }
1851 device_initcall(cpuhp_sysfs_init);
1852 #endif
1853 
1854 /*
1855  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1856  * represents all NR_CPUS bits binary values of 1<<nr.
1857  *
1858  * It is used by cpumask_of() to get a constant address to a CPU
1859  * mask value that has a single bit set only.
1860  */
1861 
1862 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1863 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1864 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1865 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1866 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1867 
1868 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1869 
1870 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1871 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1872 #if BITS_PER_LONG > 32
1873 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1874 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1875 #endif
1876 };
1877 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1878 
1879 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1880 EXPORT_SYMBOL(cpu_all_bits);
1881 
1882 #ifdef CONFIG_INIT_ALL_POSSIBLE
1883 struct cpumask __cpu_possible_mask __read_mostly
1884 	= {CPU_BITS_ALL};
1885 #else
1886 struct cpumask __cpu_possible_mask __read_mostly;
1887 #endif
1888 EXPORT_SYMBOL(__cpu_possible_mask);
1889 
1890 struct cpumask __cpu_online_mask __read_mostly;
1891 EXPORT_SYMBOL(__cpu_online_mask);
1892 
1893 struct cpumask __cpu_present_mask __read_mostly;
1894 EXPORT_SYMBOL(__cpu_present_mask);
1895 
1896 struct cpumask __cpu_active_mask __read_mostly;
1897 EXPORT_SYMBOL(__cpu_active_mask);
1898 
1899 void init_cpu_present(const struct cpumask *src)
1900 {
1901 	cpumask_copy(&__cpu_present_mask, src);
1902 }
1903 
1904 void init_cpu_possible(const struct cpumask *src)
1905 {
1906 	cpumask_copy(&__cpu_possible_mask, src);
1907 }
1908 
1909 void init_cpu_online(const struct cpumask *src)
1910 {
1911 	cpumask_copy(&__cpu_online_mask, src);
1912 }
1913 
1914 /*
1915  * Activate the first processor.
1916  */
1917 void __init boot_cpu_init(void)
1918 {
1919 	int cpu = smp_processor_id();
1920 
1921 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1922 	set_cpu_online(cpu, true);
1923 	set_cpu_active(cpu, true);
1924 	set_cpu_present(cpu, true);
1925 	set_cpu_possible(cpu, true);
1926 }
1927 
1928 /*
1929  * Must be called _AFTER_ setting up the per_cpu areas
1930  */
1931 void __init boot_cpu_state_init(void)
1932 {
1933 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1934 }
1935