xref: /linux/kernel/cpu.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	bool			booted_once;
66 	struct hlist_node	*node;
67 	struct hlist_node	*last;
68 	enum cpuhp_state	cb_state;
69 	int			result;
70 	struct completion	done_up;
71 	struct completion	done_down;
72 #endif
73 };
74 
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 	.fail = CPUHP_INVALID,
77 };
78 
79 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
80 static struct lockdep_map cpuhp_state_up_map =
81 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
82 static struct lockdep_map cpuhp_state_down_map =
83 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
84 
85 
86 static inline void cpuhp_lock_acquire(bool bringup)
87 {
88 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
89 }
90 
91 static inline void cpuhp_lock_release(bool bringup)
92 {
93 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
94 }
95 #else
96 
97 static inline void cpuhp_lock_acquire(bool bringup) { }
98 static inline void cpuhp_lock_release(bool bringup) { }
99 
100 #endif
101 
102 /**
103  * cpuhp_step - Hotplug state machine step
104  * @name:	Name of the step
105  * @startup:	Startup function of the step
106  * @teardown:	Teardown function of the step
107  * @cant_stop:	Bringup/teardown can't be stopped at this step
108  */
109 struct cpuhp_step {
110 	const char		*name;
111 	union {
112 		int		(*single)(unsigned int cpu);
113 		int		(*multi)(unsigned int cpu,
114 					 struct hlist_node *node);
115 	} startup;
116 	union {
117 		int		(*single)(unsigned int cpu);
118 		int		(*multi)(unsigned int cpu,
119 					 struct hlist_node *node);
120 	} teardown;
121 	struct hlist_head	list;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_hp_states[];
128 
129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 {
131 	return cpuhp_hp_states + state;
132 }
133 
134 /**
135  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136  * @cpu:	The cpu for which the callback should be invoked
137  * @state:	The state to do callbacks for
138  * @bringup:	True if the bringup callback should be invoked
139  * @node:	For multi-instance, do a single entry callback for install/remove
140  * @lastp:	For multi-instance rollback, remember how far we got
141  *
142  * Called from cpu hotplug and from the state register machinery.
143  */
144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
145 				 bool bringup, struct hlist_node *node,
146 				 struct hlist_node **lastp)
147 {
148 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
149 	struct cpuhp_step *step = cpuhp_get_step(state);
150 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
151 	int (*cb)(unsigned int cpu);
152 	int ret, cnt;
153 
154 	if (st->fail == state) {
155 		st->fail = CPUHP_INVALID;
156 
157 		if (!(bringup ? step->startup.single : step->teardown.single))
158 			return 0;
159 
160 		return -EAGAIN;
161 	}
162 
163 	if (!step->multi_instance) {
164 		WARN_ON_ONCE(lastp && *lastp);
165 		cb = bringup ? step->startup.single : step->teardown.single;
166 		if (!cb)
167 			return 0;
168 		trace_cpuhp_enter(cpu, st->target, state, cb);
169 		ret = cb(cpu);
170 		trace_cpuhp_exit(cpu, st->state, state, ret);
171 		return ret;
172 	}
173 	cbm = bringup ? step->startup.multi : step->teardown.multi;
174 	if (!cbm)
175 		return 0;
176 
177 	/* Single invocation for instance add/remove */
178 	if (node) {
179 		WARN_ON_ONCE(lastp && *lastp);
180 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
181 		ret = cbm(cpu, node);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 
186 	/* State transition. Invoke on all instances */
187 	cnt = 0;
188 	hlist_for_each(node, &step->list) {
189 		if (lastp && node == *lastp)
190 			break;
191 
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		if (ret) {
196 			if (!lastp)
197 				goto err;
198 
199 			*lastp = node;
200 			return ret;
201 		}
202 		cnt++;
203 	}
204 	if (lastp)
205 		*lastp = NULL;
206 	return 0;
207 err:
208 	/* Rollback the instances if one failed */
209 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
210 	if (!cbm)
211 		return ret;
212 
213 	hlist_for_each(node, &step->list) {
214 		if (!cnt--)
215 			break;
216 
217 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
218 		ret = cbm(cpu, node);
219 		trace_cpuhp_exit(cpu, st->state, state, ret);
220 		/*
221 		 * Rollback must not fail,
222 		 */
223 		WARN_ON_ONCE(ret);
224 	}
225 	return ret;
226 }
227 
228 #ifdef CONFIG_SMP
229 static bool cpuhp_is_ap_state(enum cpuhp_state state)
230 {
231 	/*
232 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 	 * purposes as that state is handled explicitly in cpu_down.
234 	 */
235 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
236 }
237 
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 {
240 	struct completion *done = bringup ? &st->done_up : &st->done_down;
241 	wait_for_completion(done);
242 }
243 
244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	complete(done);
248 }
249 
250 /*
251  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252  */
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 {
255 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
256 }
257 
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock);
260 bool cpuhp_tasks_frozen;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
262 
263 /*
264  * The following two APIs (cpu_maps_update_begin/done) must be used when
265  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266  */
267 void cpu_maps_update_begin(void)
268 {
269 	mutex_lock(&cpu_add_remove_lock);
270 }
271 
272 void cpu_maps_update_done(void)
273 {
274 	mutex_unlock(&cpu_add_remove_lock);
275 }
276 
277 /*
278  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279  * Should always be manipulated under cpu_add_remove_lock
280  */
281 static int cpu_hotplug_disabled;
282 
283 #ifdef CONFIG_HOTPLUG_CPU
284 
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286 
287 void cpus_read_lock(void)
288 {
289 	percpu_down_read(&cpu_hotplug_lock);
290 }
291 EXPORT_SYMBOL_GPL(cpus_read_lock);
292 
293 int cpus_read_trylock(void)
294 {
295 	return percpu_down_read_trylock(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_trylock);
298 
299 void cpus_read_unlock(void)
300 {
301 	percpu_up_read(&cpu_hotplug_lock);
302 }
303 EXPORT_SYMBOL_GPL(cpus_read_unlock);
304 
305 void cpus_write_lock(void)
306 {
307 	percpu_down_write(&cpu_hotplug_lock);
308 }
309 
310 void cpus_write_unlock(void)
311 {
312 	percpu_up_write(&cpu_hotplug_lock);
313 }
314 
315 void lockdep_assert_cpus_held(void)
316 {
317 	/*
318 	 * We can't have hotplug operations before userspace starts running,
319 	 * and some init codepaths will knowingly not take the hotplug lock.
320 	 * This is all valid, so mute lockdep until it makes sense to report
321 	 * unheld locks.
322 	 */
323 	if (system_state < SYSTEM_RUNNING)
324 		return;
325 
326 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
327 }
328 
329 static void lockdep_acquire_cpus_lock(void)
330 {
331 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
332 }
333 
334 static void lockdep_release_cpus_lock(void)
335 {
336 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
337 }
338 
339 /*
340  * Wait for currently running CPU hotplug operations to complete (if any) and
341  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
342  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
343  * hotplug path before performing hotplug operations. So acquiring that lock
344  * guarantees mutual exclusion from any currently running hotplug operations.
345  */
346 void cpu_hotplug_disable(void)
347 {
348 	cpu_maps_update_begin();
349 	cpu_hotplug_disabled++;
350 	cpu_maps_update_done();
351 }
352 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
353 
354 static void __cpu_hotplug_enable(void)
355 {
356 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
357 		return;
358 	cpu_hotplug_disabled--;
359 }
360 
361 void cpu_hotplug_enable(void)
362 {
363 	cpu_maps_update_begin();
364 	__cpu_hotplug_enable();
365 	cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
368 
369 #else
370 
371 static void lockdep_acquire_cpus_lock(void)
372 {
373 }
374 
375 static void lockdep_release_cpus_lock(void)
376 {
377 }
378 
379 #endif	/* CONFIG_HOTPLUG_CPU */
380 
381 /*
382  * Architectures that need SMT-specific errata handling during SMT hotplug
383  * should override this.
384  */
385 void __weak arch_smt_update(void) { }
386 
387 #ifdef CONFIG_HOTPLUG_SMT
388 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
389 
390 void __init cpu_smt_disable(bool force)
391 {
392 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
393 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
394 		return;
395 
396 	if (force) {
397 		pr_info("SMT: Force disabled\n");
398 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
399 	} else {
400 		pr_info("SMT: disabled\n");
401 		cpu_smt_control = CPU_SMT_DISABLED;
402 	}
403 }
404 
405 /*
406  * The decision whether SMT is supported can only be done after the full
407  * CPU identification. Called from architecture code.
408  */
409 void __init cpu_smt_check_topology(void)
410 {
411 	if (!topology_smt_supported())
412 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
413 }
414 
415 static int __init smt_cmdline_disable(char *str)
416 {
417 	cpu_smt_disable(str && !strcmp(str, "force"));
418 	return 0;
419 }
420 early_param("nosmt", smt_cmdline_disable);
421 
422 static inline bool cpu_smt_allowed(unsigned int cpu)
423 {
424 	if (cpu_smt_control == CPU_SMT_ENABLED)
425 		return true;
426 
427 	if (topology_is_primary_thread(cpu))
428 		return true;
429 
430 	/*
431 	 * On x86 it's required to boot all logical CPUs at least once so
432 	 * that the init code can get a chance to set CR4.MCE on each
433 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
434 	 * core will shutdown the machine.
435 	 */
436 	return !per_cpu(cpuhp_state, cpu).booted_once;
437 }
438 #else
439 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
440 #endif
441 
442 static inline enum cpuhp_state
443 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
444 {
445 	enum cpuhp_state prev_state = st->state;
446 
447 	st->rollback = false;
448 	st->last = NULL;
449 
450 	st->target = target;
451 	st->single = false;
452 	st->bringup = st->state < target;
453 
454 	return prev_state;
455 }
456 
457 static inline void
458 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
459 {
460 	st->rollback = true;
461 
462 	/*
463 	 * If we have st->last we need to undo partial multi_instance of this
464 	 * state first. Otherwise start undo at the previous state.
465 	 */
466 	if (!st->last) {
467 		if (st->bringup)
468 			st->state--;
469 		else
470 			st->state++;
471 	}
472 
473 	st->target = prev_state;
474 	st->bringup = !st->bringup;
475 }
476 
477 /* Regular hotplug invocation of the AP hotplug thread */
478 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
479 {
480 	if (!st->single && st->state == st->target)
481 		return;
482 
483 	st->result = 0;
484 	/*
485 	 * Make sure the above stores are visible before should_run becomes
486 	 * true. Paired with the mb() above in cpuhp_thread_fun()
487 	 */
488 	smp_mb();
489 	st->should_run = true;
490 	wake_up_process(st->thread);
491 	wait_for_ap_thread(st, st->bringup);
492 }
493 
494 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
495 {
496 	enum cpuhp_state prev_state;
497 	int ret;
498 
499 	prev_state = cpuhp_set_state(st, target);
500 	__cpuhp_kick_ap(st);
501 	if ((ret = st->result)) {
502 		cpuhp_reset_state(st, prev_state);
503 		__cpuhp_kick_ap(st);
504 	}
505 
506 	return ret;
507 }
508 
509 static int bringup_wait_for_ap(unsigned int cpu)
510 {
511 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
512 
513 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
514 	wait_for_ap_thread(st, true);
515 	if (WARN_ON_ONCE((!cpu_online(cpu))))
516 		return -ECANCELED;
517 
518 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
519 	stop_machine_unpark(cpu);
520 	kthread_unpark(st->thread);
521 
522 	/*
523 	 * SMT soft disabling on X86 requires to bring the CPU out of the
524 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
525 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
526 	 * cpu_smt_allowed() check will now return false if this is not the
527 	 * primary sibling.
528 	 */
529 	if (!cpu_smt_allowed(cpu))
530 		return -ECANCELED;
531 
532 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
533 		return 0;
534 
535 	return cpuhp_kick_ap(st, st->target);
536 }
537 
538 static int bringup_cpu(unsigned int cpu)
539 {
540 	struct task_struct *idle = idle_thread_get(cpu);
541 	int ret;
542 
543 	/*
544 	 * Some architectures have to walk the irq descriptors to
545 	 * setup the vector space for the cpu which comes online.
546 	 * Prevent irq alloc/free across the bringup.
547 	 */
548 	irq_lock_sparse();
549 
550 	/* Arch-specific enabling code. */
551 	ret = __cpu_up(cpu, idle);
552 	irq_unlock_sparse();
553 	if (ret)
554 		return ret;
555 	return bringup_wait_for_ap(cpu);
556 }
557 
558 /*
559  * Hotplug state machine related functions
560  */
561 
562 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
563 {
564 	for (st->state--; st->state > st->target; st->state--)
565 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
566 }
567 
568 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
569 {
570 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
571 		return true;
572 	/*
573 	 * When CPU hotplug is disabled, then taking the CPU down is not
574 	 * possible because takedown_cpu() and the architecture and
575 	 * subsystem specific mechanisms are not available. So the CPU
576 	 * which would be completely unplugged again needs to stay around
577 	 * in the current state.
578 	 */
579 	return st->state <= CPUHP_BRINGUP_CPU;
580 }
581 
582 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
583 			      enum cpuhp_state target)
584 {
585 	enum cpuhp_state prev_state = st->state;
586 	int ret = 0;
587 
588 	while (st->state < target) {
589 		st->state++;
590 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
591 		if (ret) {
592 			if (can_rollback_cpu(st)) {
593 				st->target = prev_state;
594 				undo_cpu_up(cpu, st);
595 			}
596 			break;
597 		}
598 	}
599 	return ret;
600 }
601 
602 /*
603  * The cpu hotplug threads manage the bringup and teardown of the cpus
604  */
605 static void cpuhp_create(unsigned int cpu)
606 {
607 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
608 
609 	init_completion(&st->done_up);
610 	init_completion(&st->done_down);
611 }
612 
613 static int cpuhp_should_run(unsigned int cpu)
614 {
615 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
616 
617 	return st->should_run;
618 }
619 
620 /*
621  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
622  * callbacks when a state gets [un]installed at runtime.
623  *
624  * Each invocation of this function by the smpboot thread does a single AP
625  * state callback.
626  *
627  * It has 3 modes of operation:
628  *  - single: runs st->cb_state
629  *  - up:     runs ++st->state, while st->state < st->target
630  *  - down:   runs st->state--, while st->state > st->target
631  *
632  * When complete or on error, should_run is cleared and the completion is fired.
633  */
634 static void cpuhp_thread_fun(unsigned int cpu)
635 {
636 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
637 	bool bringup = st->bringup;
638 	enum cpuhp_state state;
639 
640 	if (WARN_ON_ONCE(!st->should_run))
641 		return;
642 
643 	/*
644 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
645 	 * that if we see ->should_run we also see the rest of the state.
646 	 */
647 	smp_mb();
648 
649 	/*
650 	 * The BP holds the hotplug lock, but we're now running on the AP,
651 	 * ensure that anybody asserting the lock is held, will actually find
652 	 * it so.
653 	 */
654 	lockdep_acquire_cpus_lock();
655 	cpuhp_lock_acquire(bringup);
656 
657 	if (st->single) {
658 		state = st->cb_state;
659 		st->should_run = false;
660 	} else {
661 		if (bringup) {
662 			st->state++;
663 			state = st->state;
664 			st->should_run = (st->state < st->target);
665 			WARN_ON_ONCE(st->state > st->target);
666 		} else {
667 			state = st->state;
668 			st->state--;
669 			st->should_run = (st->state > st->target);
670 			WARN_ON_ONCE(st->state < st->target);
671 		}
672 	}
673 
674 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
675 
676 	if (cpuhp_is_atomic_state(state)) {
677 		local_irq_disable();
678 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
679 		local_irq_enable();
680 
681 		/*
682 		 * STARTING/DYING must not fail!
683 		 */
684 		WARN_ON_ONCE(st->result);
685 	} else {
686 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
687 	}
688 
689 	if (st->result) {
690 		/*
691 		 * If we fail on a rollback, we're up a creek without no
692 		 * paddle, no way forward, no way back. We loose, thanks for
693 		 * playing.
694 		 */
695 		WARN_ON_ONCE(st->rollback);
696 		st->should_run = false;
697 	}
698 
699 	cpuhp_lock_release(bringup);
700 	lockdep_release_cpus_lock();
701 
702 	if (!st->should_run)
703 		complete_ap_thread(st, bringup);
704 }
705 
706 /* Invoke a single callback on a remote cpu */
707 static int
708 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
709 			 struct hlist_node *node)
710 {
711 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
712 	int ret;
713 
714 	if (!cpu_online(cpu))
715 		return 0;
716 
717 	cpuhp_lock_acquire(false);
718 	cpuhp_lock_release(false);
719 
720 	cpuhp_lock_acquire(true);
721 	cpuhp_lock_release(true);
722 
723 	/*
724 	 * If we are up and running, use the hotplug thread. For early calls
725 	 * we invoke the thread function directly.
726 	 */
727 	if (!st->thread)
728 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
729 
730 	st->rollback = false;
731 	st->last = NULL;
732 
733 	st->node = node;
734 	st->bringup = bringup;
735 	st->cb_state = state;
736 	st->single = true;
737 
738 	__cpuhp_kick_ap(st);
739 
740 	/*
741 	 * If we failed and did a partial, do a rollback.
742 	 */
743 	if ((ret = st->result) && st->last) {
744 		st->rollback = true;
745 		st->bringup = !bringup;
746 
747 		__cpuhp_kick_ap(st);
748 	}
749 
750 	/*
751 	 * Clean up the leftovers so the next hotplug operation wont use stale
752 	 * data.
753 	 */
754 	st->node = st->last = NULL;
755 	return ret;
756 }
757 
758 static int cpuhp_kick_ap_work(unsigned int cpu)
759 {
760 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
761 	enum cpuhp_state prev_state = st->state;
762 	int ret;
763 
764 	cpuhp_lock_acquire(false);
765 	cpuhp_lock_release(false);
766 
767 	cpuhp_lock_acquire(true);
768 	cpuhp_lock_release(true);
769 
770 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
771 	ret = cpuhp_kick_ap(st, st->target);
772 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
773 
774 	return ret;
775 }
776 
777 static struct smp_hotplug_thread cpuhp_threads = {
778 	.store			= &cpuhp_state.thread,
779 	.create			= &cpuhp_create,
780 	.thread_should_run	= cpuhp_should_run,
781 	.thread_fn		= cpuhp_thread_fun,
782 	.thread_comm		= "cpuhp/%u",
783 	.selfparking		= true,
784 };
785 
786 void __init cpuhp_threads_init(void)
787 {
788 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
789 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
790 }
791 
792 #ifdef CONFIG_HOTPLUG_CPU
793 /**
794  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
795  * @cpu: a CPU id
796  *
797  * This function walks all processes, finds a valid mm struct for each one and
798  * then clears a corresponding bit in mm's cpumask.  While this all sounds
799  * trivial, there are various non-obvious corner cases, which this function
800  * tries to solve in a safe manner.
801  *
802  * Also note that the function uses a somewhat relaxed locking scheme, so it may
803  * be called only for an already offlined CPU.
804  */
805 void clear_tasks_mm_cpumask(int cpu)
806 {
807 	struct task_struct *p;
808 
809 	/*
810 	 * This function is called after the cpu is taken down and marked
811 	 * offline, so its not like new tasks will ever get this cpu set in
812 	 * their mm mask. -- Peter Zijlstra
813 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
814 	 * full-fledged tasklist_lock.
815 	 */
816 	WARN_ON(cpu_online(cpu));
817 	rcu_read_lock();
818 	for_each_process(p) {
819 		struct task_struct *t;
820 
821 		/*
822 		 * Main thread might exit, but other threads may still have
823 		 * a valid mm. Find one.
824 		 */
825 		t = find_lock_task_mm(p);
826 		if (!t)
827 			continue;
828 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
829 		task_unlock(t);
830 	}
831 	rcu_read_unlock();
832 }
833 
834 /* Take this CPU down. */
835 static int take_cpu_down(void *_param)
836 {
837 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
838 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
839 	int err, cpu = smp_processor_id();
840 	int ret;
841 
842 	/* Ensure this CPU doesn't handle any more interrupts. */
843 	err = __cpu_disable();
844 	if (err < 0)
845 		return err;
846 
847 	/*
848 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
849 	 * do this step again.
850 	 */
851 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
852 	st->state--;
853 	/* Invoke the former CPU_DYING callbacks */
854 	for (; st->state > target; st->state--) {
855 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
856 		/*
857 		 * DYING must not fail!
858 		 */
859 		WARN_ON_ONCE(ret);
860 	}
861 
862 	/* Give up timekeeping duties */
863 	tick_handover_do_timer();
864 	/* Remove CPU from timer broadcasting */
865 	tick_offline_cpu(cpu);
866 	/* Park the stopper thread */
867 	stop_machine_park(cpu);
868 	return 0;
869 }
870 
871 static int takedown_cpu(unsigned int cpu)
872 {
873 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
874 	int err;
875 
876 	/* Park the smpboot threads */
877 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
878 
879 	/*
880 	 * Prevent irq alloc/free while the dying cpu reorganizes the
881 	 * interrupt affinities.
882 	 */
883 	irq_lock_sparse();
884 
885 	/*
886 	 * So now all preempt/rcu users must observe !cpu_active().
887 	 */
888 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
889 	if (err) {
890 		/* CPU refused to die */
891 		irq_unlock_sparse();
892 		/* Unpark the hotplug thread so we can rollback there */
893 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
894 		return err;
895 	}
896 	BUG_ON(cpu_online(cpu));
897 
898 	/*
899 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
900 	 * all runnable tasks from the CPU, there's only the idle task left now
901 	 * that the migration thread is done doing the stop_machine thing.
902 	 *
903 	 * Wait for the stop thread to go away.
904 	 */
905 	wait_for_ap_thread(st, false);
906 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
907 
908 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
909 	irq_unlock_sparse();
910 
911 	hotplug_cpu__broadcast_tick_pull(cpu);
912 	/* This actually kills the CPU. */
913 	__cpu_die(cpu);
914 
915 	tick_cleanup_dead_cpu(cpu);
916 	rcutree_migrate_callbacks(cpu);
917 	return 0;
918 }
919 
920 static void cpuhp_complete_idle_dead(void *arg)
921 {
922 	struct cpuhp_cpu_state *st = arg;
923 
924 	complete_ap_thread(st, false);
925 }
926 
927 void cpuhp_report_idle_dead(void)
928 {
929 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
930 
931 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
932 	rcu_report_dead(smp_processor_id());
933 	st->state = CPUHP_AP_IDLE_DEAD;
934 	/*
935 	 * We cannot call complete after rcu_report_dead() so we delegate it
936 	 * to an online cpu.
937 	 */
938 	smp_call_function_single(cpumask_first(cpu_online_mask),
939 				 cpuhp_complete_idle_dead, st, 0);
940 }
941 
942 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
943 {
944 	for (st->state++; st->state < st->target; st->state++)
945 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
946 }
947 
948 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
949 				enum cpuhp_state target)
950 {
951 	enum cpuhp_state prev_state = st->state;
952 	int ret = 0;
953 
954 	for (; st->state > target; st->state--) {
955 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
956 		if (ret) {
957 			st->target = prev_state;
958 			if (st->state < prev_state)
959 				undo_cpu_down(cpu, st);
960 			break;
961 		}
962 	}
963 	return ret;
964 }
965 
966 /* Requires cpu_add_remove_lock to be held */
967 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
968 			   enum cpuhp_state target)
969 {
970 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
971 	int prev_state, ret = 0;
972 
973 	if (num_online_cpus() == 1)
974 		return -EBUSY;
975 
976 	if (!cpu_present(cpu))
977 		return -EINVAL;
978 
979 	cpus_write_lock();
980 
981 	cpuhp_tasks_frozen = tasks_frozen;
982 
983 	prev_state = cpuhp_set_state(st, target);
984 	/*
985 	 * If the current CPU state is in the range of the AP hotplug thread,
986 	 * then we need to kick the thread.
987 	 */
988 	if (st->state > CPUHP_TEARDOWN_CPU) {
989 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
990 		ret = cpuhp_kick_ap_work(cpu);
991 		/*
992 		 * The AP side has done the error rollback already. Just
993 		 * return the error code..
994 		 */
995 		if (ret)
996 			goto out;
997 
998 		/*
999 		 * We might have stopped still in the range of the AP hotplug
1000 		 * thread. Nothing to do anymore.
1001 		 */
1002 		if (st->state > CPUHP_TEARDOWN_CPU)
1003 			goto out;
1004 
1005 		st->target = target;
1006 	}
1007 	/*
1008 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1009 	 * to do the further cleanups.
1010 	 */
1011 	ret = cpuhp_down_callbacks(cpu, st, target);
1012 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1013 		cpuhp_reset_state(st, prev_state);
1014 		__cpuhp_kick_ap(st);
1015 	}
1016 
1017 out:
1018 	cpus_write_unlock();
1019 	/*
1020 	 * Do post unplug cleanup. This is still protected against
1021 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1022 	 */
1023 	lockup_detector_cleanup();
1024 	arch_smt_update();
1025 	return ret;
1026 }
1027 
1028 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1029 {
1030 	if (cpu_hotplug_disabled)
1031 		return -EBUSY;
1032 	return _cpu_down(cpu, 0, target);
1033 }
1034 
1035 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1036 {
1037 	int err;
1038 
1039 	cpu_maps_update_begin();
1040 	err = cpu_down_maps_locked(cpu, target);
1041 	cpu_maps_update_done();
1042 	return err;
1043 }
1044 
1045 int cpu_down(unsigned int cpu)
1046 {
1047 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1048 }
1049 EXPORT_SYMBOL(cpu_down);
1050 
1051 #else
1052 #define takedown_cpu		NULL
1053 #endif /*CONFIG_HOTPLUG_CPU*/
1054 
1055 /**
1056  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1057  * @cpu: cpu that just started
1058  *
1059  * It must be called by the arch code on the new cpu, before the new cpu
1060  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1061  */
1062 void notify_cpu_starting(unsigned int cpu)
1063 {
1064 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1065 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1066 	int ret;
1067 
1068 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1069 	st->booted_once = true;
1070 	while (st->state < target) {
1071 		st->state++;
1072 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1073 		/*
1074 		 * STARTING must not fail!
1075 		 */
1076 		WARN_ON_ONCE(ret);
1077 	}
1078 }
1079 
1080 /*
1081  * Called from the idle task. Wake up the controlling task which brings the
1082  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1083  * the rest of the online bringup to the hotplug thread.
1084  */
1085 void cpuhp_online_idle(enum cpuhp_state state)
1086 {
1087 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1088 
1089 	/* Happens for the boot cpu */
1090 	if (state != CPUHP_AP_ONLINE_IDLE)
1091 		return;
1092 
1093 	st->state = CPUHP_AP_ONLINE_IDLE;
1094 	complete_ap_thread(st, true);
1095 }
1096 
1097 /* Requires cpu_add_remove_lock to be held */
1098 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1099 {
1100 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1101 	struct task_struct *idle;
1102 	int ret = 0;
1103 
1104 	cpus_write_lock();
1105 
1106 	if (!cpu_present(cpu)) {
1107 		ret = -EINVAL;
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * The caller of do_cpu_up might have raced with another
1113 	 * caller. Ignore it for now.
1114 	 */
1115 	if (st->state >= target)
1116 		goto out;
1117 
1118 	if (st->state == CPUHP_OFFLINE) {
1119 		/* Let it fail before we try to bring the cpu up */
1120 		idle = idle_thread_get(cpu);
1121 		if (IS_ERR(idle)) {
1122 			ret = PTR_ERR(idle);
1123 			goto out;
1124 		}
1125 	}
1126 
1127 	cpuhp_tasks_frozen = tasks_frozen;
1128 
1129 	cpuhp_set_state(st, target);
1130 	/*
1131 	 * If the current CPU state is in the range of the AP hotplug thread,
1132 	 * then we need to kick the thread once more.
1133 	 */
1134 	if (st->state > CPUHP_BRINGUP_CPU) {
1135 		ret = cpuhp_kick_ap_work(cpu);
1136 		/*
1137 		 * The AP side has done the error rollback already. Just
1138 		 * return the error code..
1139 		 */
1140 		if (ret)
1141 			goto out;
1142 	}
1143 
1144 	/*
1145 	 * Try to reach the target state. We max out on the BP at
1146 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1147 	 * responsible for bringing it up to the target state.
1148 	 */
1149 	target = min((int)target, CPUHP_BRINGUP_CPU);
1150 	ret = cpuhp_up_callbacks(cpu, st, target);
1151 out:
1152 	cpus_write_unlock();
1153 	arch_smt_update();
1154 	return ret;
1155 }
1156 
1157 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1158 {
1159 	int err = 0;
1160 
1161 	if (!cpu_possible(cpu)) {
1162 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1163 		       cpu);
1164 #if defined(CONFIG_IA64)
1165 		pr_err("please check additional_cpus= boot parameter\n");
1166 #endif
1167 		return -EINVAL;
1168 	}
1169 
1170 	err = try_online_node(cpu_to_node(cpu));
1171 	if (err)
1172 		return err;
1173 
1174 	cpu_maps_update_begin();
1175 
1176 	if (cpu_hotplug_disabled) {
1177 		err = -EBUSY;
1178 		goto out;
1179 	}
1180 	if (!cpu_smt_allowed(cpu)) {
1181 		err = -EPERM;
1182 		goto out;
1183 	}
1184 
1185 	err = _cpu_up(cpu, 0, target);
1186 out:
1187 	cpu_maps_update_done();
1188 	return err;
1189 }
1190 
1191 int cpu_up(unsigned int cpu)
1192 {
1193 	return do_cpu_up(cpu, CPUHP_ONLINE);
1194 }
1195 EXPORT_SYMBOL_GPL(cpu_up);
1196 
1197 #ifdef CONFIG_PM_SLEEP_SMP
1198 static cpumask_var_t frozen_cpus;
1199 
1200 int freeze_secondary_cpus(int primary)
1201 {
1202 	int cpu, error = 0;
1203 
1204 	cpu_maps_update_begin();
1205 	if (primary == -1) {
1206 		primary = cpumask_first(cpu_online_mask);
1207 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1208 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1209 	} else {
1210 		if (!cpu_online(primary))
1211 			primary = cpumask_first(cpu_online_mask);
1212 	}
1213 
1214 	/*
1215 	 * We take down all of the non-boot CPUs in one shot to avoid races
1216 	 * with the userspace trying to use the CPU hotplug at the same time
1217 	 */
1218 	cpumask_clear(frozen_cpus);
1219 
1220 	pr_info("Disabling non-boot CPUs ...\n");
1221 	for_each_online_cpu(cpu) {
1222 		if (cpu == primary)
1223 			continue;
1224 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1225 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1226 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1227 		if (!error)
1228 			cpumask_set_cpu(cpu, frozen_cpus);
1229 		else {
1230 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1231 			break;
1232 		}
1233 	}
1234 
1235 	if (!error)
1236 		BUG_ON(num_online_cpus() > 1);
1237 	else
1238 		pr_err("Non-boot CPUs are not disabled\n");
1239 
1240 	/*
1241 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1242 	 * this even in case of failure as all disable_nonboot_cpus() users are
1243 	 * supposed to do enable_nonboot_cpus() on the failure path.
1244 	 */
1245 	cpu_hotplug_disabled++;
1246 
1247 	cpu_maps_update_done();
1248 	return error;
1249 }
1250 
1251 void __weak arch_enable_nonboot_cpus_begin(void)
1252 {
1253 }
1254 
1255 void __weak arch_enable_nonboot_cpus_end(void)
1256 {
1257 }
1258 
1259 void enable_nonboot_cpus(void)
1260 {
1261 	int cpu, error;
1262 
1263 	/* Allow everyone to use the CPU hotplug again */
1264 	cpu_maps_update_begin();
1265 	__cpu_hotplug_enable();
1266 	if (cpumask_empty(frozen_cpus))
1267 		goto out;
1268 
1269 	pr_info("Enabling non-boot CPUs ...\n");
1270 
1271 	arch_enable_nonboot_cpus_begin();
1272 
1273 	for_each_cpu(cpu, frozen_cpus) {
1274 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1275 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1276 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1277 		if (!error) {
1278 			pr_info("CPU%d is up\n", cpu);
1279 			continue;
1280 		}
1281 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1282 	}
1283 
1284 	arch_enable_nonboot_cpus_end();
1285 
1286 	cpumask_clear(frozen_cpus);
1287 out:
1288 	cpu_maps_update_done();
1289 }
1290 
1291 static int __init alloc_frozen_cpus(void)
1292 {
1293 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1294 		return -ENOMEM;
1295 	return 0;
1296 }
1297 core_initcall(alloc_frozen_cpus);
1298 
1299 /*
1300  * When callbacks for CPU hotplug notifications are being executed, we must
1301  * ensure that the state of the system with respect to the tasks being frozen
1302  * or not, as reported by the notification, remains unchanged *throughout the
1303  * duration* of the execution of the callbacks.
1304  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1305  *
1306  * This synchronization is implemented by mutually excluding regular CPU
1307  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1308  * Hibernate notifications.
1309  */
1310 static int
1311 cpu_hotplug_pm_callback(struct notifier_block *nb,
1312 			unsigned long action, void *ptr)
1313 {
1314 	switch (action) {
1315 
1316 	case PM_SUSPEND_PREPARE:
1317 	case PM_HIBERNATION_PREPARE:
1318 		cpu_hotplug_disable();
1319 		break;
1320 
1321 	case PM_POST_SUSPEND:
1322 	case PM_POST_HIBERNATION:
1323 		cpu_hotplug_enable();
1324 		break;
1325 
1326 	default:
1327 		return NOTIFY_DONE;
1328 	}
1329 
1330 	return NOTIFY_OK;
1331 }
1332 
1333 
1334 static int __init cpu_hotplug_pm_sync_init(void)
1335 {
1336 	/*
1337 	 * cpu_hotplug_pm_callback has higher priority than x86
1338 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1339 	 * to disable cpu hotplug to avoid cpu hotplug race.
1340 	 */
1341 	pm_notifier(cpu_hotplug_pm_callback, 0);
1342 	return 0;
1343 }
1344 core_initcall(cpu_hotplug_pm_sync_init);
1345 
1346 #endif /* CONFIG_PM_SLEEP_SMP */
1347 
1348 int __boot_cpu_id;
1349 
1350 #endif /* CONFIG_SMP */
1351 
1352 /* Boot processor state steps */
1353 static struct cpuhp_step cpuhp_hp_states[] = {
1354 	[CPUHP_OFFLINE] = {
1355 		.name			= "offline",
1356 		.startup.single		= NULL,
1357 		.teardown.single	= NULL,
1358 	},
1359 #ifdef CONFIG_SMP
1360 	[CPUHP_CREATE_THREADS]= {
1361 		.name			= "threads:prepare",
1362 		.startup.single		= smpboot_create_threads,
1363 		.teardown.single	= NULL,
1364 		.cant_stop		= true,
1365 	},
1366 	[CPUHP_PERF_PREPARE] = {
1367 		.name			= "perf:prepare",
1368 		.startup.single		= perf_event_init_cpu,
1369 		.teardown.single	= perf_event_exit_cpu,
1370 	},
1371 	[CPUHP_WORKQUEUE_PREP] = {
1372 		.name			= "workqueue:prepare",
1373 		.startup.single		= workqueue_prepare_cpu,
1374 		.teardown.single	= NULL,
1375 	},
1376 	[CPUHP_HRTIMERS_PREPARE] = {
1377 		.name			= "hrtimers:prepare",
1378 		.startup.single		= hrtimers_prepare_cpu,
1379 		.teardown.single	= hrtimers_dead_cpu,
1380 	},
1381 	[CPUHP_SMPCFD_PREPARE] = {
1382 		.name			= "smpcfd:prepare",
1383 		.startup.single		= smpcfd_prepare_cpu,
1384 		.teardown.single	= smpcfd_dead_cpu,
1385 	},
1386 	[CPUHP_RELAY_PREPARE] = {
1387 		.name			= "relay:prepare",
1388 		.startup.single		= relay_prepare_cpu,
1389 		.teardown.single	= NULL,
1390 	},
1391 	[CPUHP_SLAB_PREPARE] = {
1392 		.name			= "slab:prepare",
1393 		.startup.single		= slab_prepare_cpu,
1394 		.teardown.single	= slab_dead_cpu,
1395 	},
1396 	[CPUHP_RCUTREE_PREP] = {
1397 		.name			= "RCU/tree:prepare",
1398 		.startup.single		= rcutree_prepare_cpu,
1399 		.teardown.single	= rcutree_dead_cpu,
1400 	},
1401 	/*
1402 	 * On the tear-down path, timers_dead_cpu() must be invoked
1403 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1404 	 * otherwise a RCU stall occurs.
1405 	 */
1406 	[CPUHP_TIMERS_PREPARE] = {
1407 		.name			= "timers:prepare",
1408 		.startup.single		= timers_prepare_cpu,
1409 		.teardown.single	= timers_dead_cpu,
1410 	},
1411 	/* Kicks the plugged cpu into life */
1412 	[CPUHP_BRINGUP_CPU] = {
1413 		.name			= "cpu:bringup",
1414 		.startup.single		= bringup_cpu,
1415 		.teardown.single	= NULL,
1416 		.cant_stop		= true,
1417 	},
1418 	/* Final state before CPU kills itself */
1419 	[CPUHP_AP_IDLE_DEAD] = {
1420 		.name			= "idle:dead",
1421 	},
1422 	/*
1423 	 * Last state before CPU enters the idle loop to die. Transient state
1424 	 * for synchronization.
1425 	 */
1426 	[CPUHP_AP_OFFLINE] = {
1427 		.name			= "ap:offline",
1428 		.cant_stop		= true,
1429 	},
1430 	/* First state is scheduler control. Interrupts are disabled */
1431 	[CPUHP_AP_SCHED_STARTING] = {
1432 		.name			= "sched:starting",
1433 		.startup.single		= sched_cpu_starting,
1434 		.teardown.single	= sched_cpu_dying,
1435 	},
1436 	[CPUHP_AP_RCUTREE_DYING] = {
1437 		.name			= "RCU/tree:dying",
1438 		.startup.single		= NULL,
1439 		.teardown.single	= rcutree_dying_cpu,
1440 	},
1441 	[CPUHP_AP_SMPCFD_DYING] = {
1442 		.name			= "smpcfd:dying",
1443 		.startup.single		= NULL,
1444 		.teardown.single	= smpcfd_dying_cpu,
1445 	},
1446 	/* Entry state on starting. Interrupts enabled from here on. Transient
1447 	 * state for synchronsization */
1448 	[CPUHP_AP_ONLINE] = {
1449 		.name			= "ap:online",
1450 	},
1451 	/*
1452 	 * Handled on controll processor until the plugged processor manages
1453 	 * this itself.
1454 	 */
1455 	[CPUHP_TEARDOWN_CPU] = {
1456 		.name			= "cpu:teardown",
1457 		.startup.single		= NULL,
1458 		.teardown.single	= takedown_cpu,
1459 		.cant_stop		= true,
1460 	},
1461 	/* Handle smpboot threads park/unpark */
1462 	[CPUHP_AP_SMPBOOT_THREADS] = {
1463 		.name			= "smpboot/threads:online",
1464 		.startup.single		= smpboot_unpark_threads,
1465 		.teardown.single	= smpboot_park_threads,
1466 	},
1467 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1468 		.name			= "irq/affinity:online",
1469 		.startup.single		= irq_affinity_online_cpu,
1470 		.teardown.single	= NULL,
1471 	},
1472 	[CPUHP_AP_PERF_ONLINE] = {
1473 		.name			= "perf:online",
1474 		.startup.single		= perf_event_init_cpu,
1475 		.teardown.single	= perf_event_exit_cpu,
1476 	},
1477 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1478 		.name			= "lockup_detector:online",
1479 		.startup.single		= lockup_detector_online_cpu,
1480 		.teardown.single	= lockup_detector_offline_cpu,
1481 	},
1482 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1483 		.name			= "workqueue:online",
1484 		.startup.single		= workqueue_online_cpu,
1485 		.teardown.single	= workqueue_offline_cpu,
1486 	},
1487 	[CPUHP_AP_RCUTREE_ONLINE] = {
1488 		.name			= "RCU/tree:online",
1489 		.startup.single		= rcutree_online_cpu,
1490 		.teardown.single	= rcutree_offline_cpu,
1491 	},
1492 #endif
1493 	/*
1494 	 * The dynamically registered state space is here
1495 	 */
1496 
1497 #ifdef CONFIG_SMP
1498 	/* Last state is scheduler control setting the cpu active */
1499 	[CPUHP_AP_ACTIVE] = {
1500 		.name			= "sched:active",
1501 		.startup.single		= sched_cpu_activate,
1502 		.teardown.single	= sched_cpu_deactivate,
1503 	},
1504 #endif
1505 
1506 	/* CPU is fully up and running. */
1507 	[CPUHP_ONLINE] = {
1508 		.name			= "online",
1509 		.startup.single		= NULL,
1510 		.teardown.single	= NULL,
1511 	},
1512 };
1513 
1514 /* Sanity check for callbacks */
1515 static int cpuhp_cb_check(enum cpuhp_state state)
1516 {
1517 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1518 		return -EINVAL;
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Returns a free for dynamic slot assignment of the Online state. The states
1524  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1525  * by having no name assigned.
1526  */
1527 static int cpuhp_reserve_state(enum cpuhp_state state)
1528 {
1529 	enum cpuhp_state i, end;
1530 	struct cpuhp_step *step;
1531 
1532 	switch (state) {
1533 	case CPUHP_AP_ONLINE_DYN:
1534 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1535 		end = CPUHP_AP_ONLINE_DYN_END;
1536 		break;
1537 	case CPUHP_BP_PREPARE_DYN:
1538 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1539 		end = CPUHP_BP_PREPARE_DYN_END;
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	for (i = state; i <= end; i++, step++) {
1546 		if (!step->name)
1547 			return i;
1548 	}
1549 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1550 	return -ENOSPC;
1551 }
1552 
1553 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1554 				 int (*startup)(unsigned int cpu),
1555 				 int (*teardown)(unsigned int cpu),
1556 				 bool multi_instance)
1557 {
1558 	/* (Un)Install the callbacks for further cpu hotplug operations */
1559 	struct cpuhp_step *sp;
1560 	int ret = 0;
1561 
1562 	/*
1563 	 * If name is NULL, then the state gets removed.
1564 	 *
1565 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1566 	 * the first allocation from these dynamic ranges, so the removal
1567 	 * would trigger a new allocation and clear the wrong (already
1568 	 * empty) state, leaving the callbacks of the to be cleared state
1569 	 * dangling, which causes wreckage on the next hotplug operation.
1570 	 */
1571 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1572 		     state == CPUHP_BP_PREPARE_DYN)) {
1573 		ret = cpuhp_reserve_state(state);
1574 		if (ret < 0)
1575 			return ret;
1576 		state = ret;
1577 	}
1578 	sp = cpuhp_get_step(state);
1579 	if (name && sp->name)
1580 		return -EBUSY;
1581 
1582 	sp->startup.single = startup;
1583 	sp->teardown.single = teardown;
1584 	sp->name = name;
1585 	sp->multi_instance = multi_instance;
1586 	INIT_HLIST_HEAD(&sp->list);
1587 	return ret;
1588 }
1589 
1590 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1591 {
1592 	return cpuhp_get_step(state)->teardown.single;
1593 }
1594 
1595 /*
1596  * Call the startup/teardown function for a step either on the AP or
1597  * on the current CPU.
1598  */
1599 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1600 			    struct hlist_node *node)
1601 {
1602 	struct cpuhp_step *sp = cpuhp_get_step(state);
1603 	int ret;
1604 
1605 	/*
1606 	 * If there's nothing to do, we done.
1607 	 * Relies on the union for multi_instance.
1608 	 */
1609 	if ((bringup && !sp->startup.single) ||
1610 	    (!bringup && !sp->teardown.single))
1611 		return 0;
1612 	/*
1613 	 * The non AP bound callbacks can fail on bringup. On teardown
1614 	 * e.g. module removal we crash for now.
1615 	 */
1616 #ifdef CONFIG_SMP
1617 	if (cpuhp_is_ap_state(state))
1618 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1619 	else
1620 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1621 #else
1622 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1623 #endif
1624 	BUG_ON(ret && !bringup);
1625 	return ret;
1626 }
1627 
1628 /*
1629  * Called from __cpuhp_setup_state on a recoverable failure.
1630  *
1631  * Note: The teardown callbacks for rollback are not allowed to fail!
1632  */
1633 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1634 				   struct hlist_node *node)
1635 {
1636 	int cpu;
1637 
1638 	/* Roll back the already executed steps on the other cpus */
1639 	for_each_present_cpu(cpu) {
1640 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1641 		int cpustate = st->state;
1642 
1643 		if (cpu >= failedcpu)
1644 			break;
1645 
1646 		/* Did we invoke the startup call on that cpu ? */
1647 		if (cpustate >= state)
1648 			cpuhp_issue_call(cpu, state, false, node);
1649 	}
1650 }
1651 
1652 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1653 					  struct hlist_node *node,
1654 					  bool invoke)
1655 {
1656 	struct cpuhp_step *sp;
1657 	int cpu;
1658 	int ret;
1659 
1660 	lockdep_assert_cpus_held();
1661 
1662 	sp = cpuhp_get_step(state);
1663 	if (sp->multi_instance == false)
1664 		return -EINVAL;
1665 
1666 	mutex_lock(&cpuhp_state_mutex);
1667 
1668 	if (!invoke || !sp->startup.multi)
1669 		goto add_node;
1670 
1671 	/*
1672 	 * Try to call the startup callback for each present cpu
1673 	 * depending on the hotplug state of the cpu.
1674 	 */
1675 	for_each_present_cpu(cpu) {
1676 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1677 		int cpustate = st->state;
1678 
1679 		if (cpustate < state)
1680 			continue;
1681 
1682 		ret = cpuhp_issue_call(cpu, state, true, node);
1683 		if (ret) {
1684 			if (sp->teardown.multi)
1685 				cpuhp_rollback_install(cpu, state, node);
1686 			goto unlock;
1687 		}
1688 	}
1689 add_node:
1690 	ret = 0;
1691 	hlist_add_head(node, &sp->list);
1692 unlock:
1693 	mutex_unlock(&cpuhp_state_mutex);
1694 	return ret;
1695 }
1696 
1697 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1698 			       bool invoke)
1699 {
1700 	int ret;
1701 
1702 	cpus_read_lock();
1703 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1704 	cpus_read_unlock();
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1708 
1709 /**
1710  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1711  * @state:		The state to setup
1712  * @invoke:		If true, the startup function is invoked for cpus where
1713  *			cpu state >= @state
1714  * @startup:		startup callback function
1715  * @teardown:		teardown callback function
1716  * @multi_instance:	State is set up for multiple instances which get
1717  *			added afterwards.
1718  *
1719  * The caller needs to hold cpus read locked while calling this function.
1720  * Returns:
1721  *   On success:
1722  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1723  *      0 for all other states
1724  *   On failure: proper (negative) error code
1725  */
1726 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1727 				   const char *name, bool invoke,
1728 				   int (*startup)(unsigned int cpu),
1729 				   int (*teardown)(unsigned int cpu),
1730 				   bool multi_instance)
1731 {
1732 	int cpu, ret = 0;
1733 	bool dynstate;
1734 
1735 	lockdep_assert_cpus_held();
1736 
1737 	if (cpuhp_cb_check(state) || !name)
1738 		return -EINVAL;
1739 
1740 	mutex_lock(&cpuhp_state_mutex);
1741 
1742 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1743 				    multi_instance);
1744 
1745 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1746 	if (ret > 0 && dynstate) {
1747 		state = ret;
1748 		ret = 0;
1749 	}
1750 
1751 	if (ret || !invoke || !startup)
1752 		goto out;
1753 
1754 	/*
1755 	 * Try to call the startup callback for each present cpu
1756 	 * depending on the hotplug state of the cpu.
1757 	 */
1758 	for_each_present_cpu(cpu) {
1759 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1760 		int cpustate = st->state;
1761 
1762 		if (cpustate < state)
1763 			continue;
1764 
1765 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1766 		if (ret) {
1767 			if (teardown)
1768 				cpuhp_rollback_install(cpu, state, NULL);
1769 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1770 			goto out;
1771 		}
1772 	}
1773 out:
1774 	mutex_unlock(&cpuhp_state_mutex);
1775 	/*
1776 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1777 	 * dynamically allocated state in case of success.
1778 	 */
1779 	if (!ret && dynstate)
1780 		return state;
1781 	return ret;
1782 }
1783 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1784 
1785 int __cpuhp_setup_state(enum cpuhp_state state,
1786 			const char *name, bool invoke,
1787 			int (*startup)(unsigned int cpu),
1788 			int (*teardown)(unsigned int cpu),
1789 			bool multi_instance)
1790 {
1791 	int ret;
1792 
1793 	cpus_read_lock();
1794 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1795 					     teardown, multi_instance);
1796 	cpus_read_unlock();
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL(__cpuhp_setup_state);
1800 
1801 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1802 				  struct hlist_node *node, bool invoke)
1803 {
1804 	struct cpuhp_step *sp = cpuhp_get_step(state);
1805 	int cpu;
1806 
1807 	BUG_ON(cpuhp_cb_check(state));
1808 
1809 	if (!sp->multi_instance)
1810 		return -EINVAL;
1811 
1812 	cpus_read_lock();
1813 	mutex_lock(&cpuhp_state_mutex);
1814 
1815 	if (!invoke || !cpuhp_get_teardown_cb(state))
1816 		goto remove;
1817 	/*
1818 	 * Call the teardown callback for each present cpu depending
1819 	 * on the hotplug state of the cpu. This function is not
1820 	 * allowed to fail currently!
1821 	 */
1822 	for_each_present_cpu(cpu) {
1823 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1824 		int cpustate = st->state;
1825 
1826 		if (cpustate >= state)
1827 			cpuhp_issue_call(cpu, state, false, node);
1828 	}
1829 
1830 remove:
1831 	hlist_del(node);
1832 	mutex_unlock(&cpuhp_state_mutex);
1833 	cpus_read_unlock();
1834 
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1838 
1839 /**
1840  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1841  * @state:	The state to remove
1842  * @invoke:	If true, the teardown function is invoked for cpus where
1843  *		cpu state >= @state
1844  *
1845  * The caller needs to hold cpus read locked while calling this function.
1846  * The teardown callback is currently not allowed to fail. Think
1847  * about module removal!
1848  */
1849 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1850 {
1851 	struct cpuhp_step *sp = cpuhp_get_step(state);
1852 	int cpu;
1853 
1854 	BUG_ON(cpuhp_cb_check(state));
1855 
1856 	lockdep_assert_cpus_held();
1857 
1858 	mutex_lock(&cpuhp_state_mutex);
1859 	if (sp->multi_instance) {
1860 		WARN(!hlist_empty(&sp->list),
1861 		     "Error: Removing state %d which has instances left.\n",
1862 		     state);
1863 		goto remove;
1864 	}
1865 
1866 	if (!invoke || !cpuhp_get_teardown_cb(state))
1867 		goto remove;
1868 
1869 	/*
1870 	 * Call the teardown callback for each present cpu depending
1871 	 * on the hotplug state of the cpu. This function is not
1872 	 * allowed to fail currently!
1873 	 */
1874 	for_each_present_cpu(cpu) {
1875 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1876 		int cpustate = st->state;
1877 
1878 		if (cpustate >= state)
1879 			cpuhp_issue_call(cpu, state, false, NULL);
1880 	}
1881 remove:
1882 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1883 	mutex_unlock(&cpuhp_state_mutex);
1884 }
1885 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1886 
1887 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1888 {
1889 	cpus_read_lock();
1890 	__cpuhp_remove_state_cpuslocked(state, invoke);
1891 	cpus_read_unlock();
1892 }
1893 EXPORT_SYMBOL(__cpuhp_remove_state);
1894 
1895 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1896 static ssize_t show_cpuhp_state(struct device *dev,
1897 				struct device_attribute *attr, char *buf)
1898 {
1899 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1900 
1901 	return sprintf(buf, "%d\n", st->state);
1902 }
1903 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1904 
1905 static ssize_t write_cpuhp_target(struct device *dev,
1906 				  struct device_attribute *attr,
1907 				  const char *buf, size_t count)
1908 {
1909 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1910 	struct cpuhp_step *sp;
1911 	int target, ret;
1912 
1913 	ret = kstrtoint(buf, 10, &target);
1914 	if (ret)
1915 		return ret;
1916 
1917 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1918 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1919 		return -EINVAL;
1920 #else
1921 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1922 		return -EINVAL;
1923 #endif
1924 
1925 	ret = lock_device_hotplug_sysfs();
1926 	if (ret)
1927 		return ret;
1928 
1929 	mutex_lock(&cpuhp_state_mutex);
1930 	sp = cpuhp_get_step(target);
1931 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1932 	mutex_unlock(&cpuhp_state_mutex);
1933 	if (ret)
1934 		goto out;
1935 
1936 	if (st->state < target)
1937 		ret = do_cpu_up(dev->id, target);
1938 	else
1939 		ret = do_cpu_down(dev->id, target);
1940 out:
1941 	unlock_device_hotplug();
1942 	return ret ? ret : count;
1943 }
1944 
1945 static ssize_t show_cpuhp_target(struct device *dev,
1946 				 struct device_attribute *attr, char *buf)
1947 {
1948 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1949 
1950 	return sprintf(buf, "%d\n", st->target);
1951 }
1952 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1953 
1954 
1955 static ssize_t write_cpuhp_fail(struct device *dev,
1956 				struct device_attribute *attr,
1957 				const char *buf, size_t count)
1958 {
1959 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1960 	struct cpuhp_step *sp;
1961 	int fail, ret;
1962 
1963 	ret = kstrtoint(buf, 10, &fail);
1964 	if (ret)
1965 		return ret;
1966 
1967 	/*
1968 	 * Cannot fail STARTING/DYING callbacks.
1969 	 */
1970 	if (cpuhp_is_atomic_state(fail))
1971 		return -EINVAL;
1972 
1973 	/*
1974 	 * Cannot fail anything that doesn't have callbacks.
1975 	 */
1976 	mutex_lock(&cpuhp_state_mutex);
1977 	sp = cpuhp_get_step(fail);
1978 	if (!sp->startup.single && !sp->teardown.single)
1979 		ret = -EINVAL;
1980 	mutex_unlock(&cpuhp_state_mutex);
1981 	if (ret)
1982 		return ret;
1983 
1984 	st->fail = fail;
1985 
1986 	return count;
1987 }
1988 
1989 static ssize_t show_cpuhp_fail(struct device *dev,
1990 			       struct device_attribute *attr, char *buf)
1991 {
1992 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1993 
1994 	return sprintf(buf, "%d\n", st->fail);
1995 }
1996 
1997 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1998 
1999 static struct attribute *cpuhp_cpu_attrs[] = {
2000 	&dev_attr_state.attr,
2001 	&dev_attr_target.attr,
2002 	&dev_attr_fail.attr,
2003 	NULL
2004 };
2005 
2006 static const struct attribute_group cpuhp_cpu_attr_group = {
2007 	.attrs = cpuhp_cpu_attrs,
2008 	.name = "hotplug",
2009 	NULL
2010 };
2011 
2012 static ssize_t show_cpuhp_states(struct device *dev,
2013 				 struct device_attribute *attr, char *buf)
2014 {
2015 	ssize_t cur, res = 0;
2016 	int i;
2017 
2018 	mutex_lock(&cpuhp_state_mutex);
2019 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2020 		struct cpuhp_step *sp = cpuhp_get_step(i);
2021 
2022 		if (sp->name) {
2023 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2024 			buf += cur;
2025 			res += cur;
2026 		}
2027 	}
2028 	mutex_unlock(&cpuhp_state_mutex);
2029 	return res;
2030 }
2031 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2032 
2033 static struct attribute *cpuhp_cpu_root_attrs[] = {
2034 	&dev_attr_states.attr,
2035 	NULL
2036 };
2037 
2038 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2039 	.attrs = cpuhp_cpu_root_attrs,
2040 	.name = "hotplug",
2041 	NULL
2042 };
2043 
2044 #ifdef CONFIG_HOTPLUG_SMT
2045 
2046 static void cpuhp_offline_cpu_device(unsigned int cpu)
2047 {
2048 	struct device *dev = get_cpu_device(cpu);
2049 
2050 	dev->offline = true;
2051 	/* Tell user space about the state change */
2052 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2053 }
2054 
2055 static void cpuhp_online_cpu_device(unsigned int cpu)
2056 {
2057 	struct device *dev = get_cpu_device(cpu);
2058 
2059 	dev->offline = false;
2060 	/* Tell user space about the state change */
2061 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2062 }
2063 
2064 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2065 {
2066 	int cpu, ret = 0;
2067 
2068 	cpu_maps_update_begin();
2069 	for_each_online_cpu(cpu) {
2070 		if (topology_is_primary_thread(cpu))
2071 			continue;
2072 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2073 		if (ret)
2074 			break;
2075 		/*
2076 		 * As this needs to hold the cpu maps lock it's impossible
2077 		 * to call device_offline() because that ends up calling
2078 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2079 		 * needs to be held as this might race against in kernel
2080 		 * abusers of the hotplug machinery (thermal management).
2081 		 *
2082 		 * So nothing would update device:offline state. That would
2083 		 * leave the sysfs entry stale and prevent onlining after
2084 		 * smt control has been changed to 'off' again. This is
2085 		 * called under the sysfs hotplug lock, so it is properly
2086 		 * serialized against the regular offline usage.
2087 		 */
2088 		cpuhp_offline_cpu_device(cpu);
2089 	}
2090 	if (!ret)
2091 		cpu_smt_control = ctrlval;
2092 	cpu_maps_update_done();
2093 	return ret;
2094 }
2095 
2096 int cpuhp_smt_enable(void)
2097 {
2098 	int cpu, ret = 0;
2099 
2100 	cpu_maps_update_begin();
2101 	cpu_smt_control = CPU_SMT_ENABLED;
2102 	for_each_present_cpu(cpu) {
2103 		/* Skip online CPUs and CPUs on offline nodes */
2104 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2105 			continue;
2106 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2107 		if (ret)
2108 			break;
2109 		/* See comment in cpuhp_smt_disable() */
2110 		cpuhp_online_cpu_device(cpu);
2111 	}
2112 	cpu_maps_update_done();
2113 	return ret;
2114 }
2115 
2116 
2117 static ssize_t
2118 __store_smt_control(struct device *dev, struct device_attribute *attr,
2119 		    const char *buf, size_t count)
2120 {
2121 	int ctrlval, ret;
2122 
2123 	if (sysfs_streq(buf, "on"))
2124 		ctrlval = CPU_SMT_ENABLED;
2125 	else if (sysfs_streq(buf, "off"))
2126 		ctrlval = CPU_SMT_DISABLED;
2127 	else if (sysfs_streq(buf, "forceoff"))
2128 		ctrlval = CPU_SMT_FORCE_DISABLED;
2129 	else
2130 		return -EINVAL;
2131 
2132 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2133 		return -EPERM;
2134 
2135 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2136 		return -ENODEV;
2137 
2138 	ret = lock_device_hotplug_sysfs();
2139 	if (ret)
2140 		return ret;
2141 
2142 	if (ctrlval != cpu_smt_control) {
2143 		switch (ctrlval) {
2144 		case CPU_SMT_ENABLED:
2145 			ret = cpuhp_smt_enable();
2146 			break;
2147 		case CPU_SMT_DISABLED:
2148 		case CPU_SMT_FORCE_DISABLED:
2149 			ret = cpuhp_smt_disable(ctrlval);
2150 			break;
2151 		}
2152 	}
2153 
2154 	unlock_device_hotplug();
2155 	return ret ? ret : count;
2156 }
2157 
2158 #else /* !CONFIG_HOTPLUG_SMT */
2159 static ssize_t
2160 __store_smt_control(struct device *dev, struct device_attribute *attr,
2161 		    const char *buf, size_t count)
2162 {
2163 	return -ENODEV;
2164 }
2165 #endif /* CONFIG_HOTPLUG_SMT */
2166 
2167 static const char *smt_states[] = {
2168 	[CPU_SMT_ENABLED]		= "on",
2169 	[CPU_SMT_DISABLED]		= "off",
2170 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2171 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2172 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2173 };
2174 
2175 static ssize_t
2176 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2177 {
2178 	const char *state = smt_states[cpu_smt_control];
2179 
2180 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2181 }
2182 
2183 static ssize_t
2184 store_smt_control(struct device *dev, struct device_attribute *attr,
2185 		  const char *buf, size_t count)
2186 {
2187 	return __store_smt_control(dev, attr, buf, count);
2188 }
2189 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2190 
2191 static ssize_t
2192 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2193 {
2194 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2195 }
2196 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2197 
2198 static struct attribute *cpuhp_smt_attrs[] = {
2199 	&dev_attr_control.attr,
2200 	&dev_attr_active.attr,
2201 	NULL
2202 };
2203 
2204 static const struct attribute_group cpuhp_smt_attr_group = {
2205 	.attrs = cpuhp_smt_attrs,
2206 	.name = "smt",
2207 	NULL
2208 };
2209 
2210 static int __init cpu_smt_sysfs_init(void)
2211 {
2212 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2213 				  &cpuhp_smt_attr_group);
2214 }
2215 
2216 static int __init cpuhp_sysfs_init(void)
2217 {
2218 	int cpu, ret;
2219 
2220 	ret = cpu_smt_sysfs_init();
2221 	if (ret)
2222 		return ret;
2223 
2224 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2225 				 &cpuhp_cpu_root_attr_group);
2226 	if (ret)
2227 		return ret;
2228 
2229 	for_each_possible_cpu(cpu) {
2230 		struct device *dev = get_cpu_device(cpu);
2231 
2232 		if (!dev)
2233 			continue;
2234 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2235 		if (ret)
2236 			return ret;
2237 	}
2238 	return 0;
2239 }
2240 device_initcall(cpuhp_sysfs_init);
2241 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2242 
2243 /*
2244  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2245  * represents all NR_CPUS bits binary values of 1<<nr.
2246  *
2247  * It is used by cpumask_of() to get a constant address to a CPU
2248  * mask value that has a single bit set only.
2249  */
2250 
2251 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2252 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2253 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2254 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2255 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2256 
2257 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2258 
2259 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2260 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2261 #if BITS_PER_LONG > 32
2262 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2263 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2264 #endif
2265 };
2266 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2267 
2268 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2269 EXPORT_SYMBOL(cpu_all_bits);
2270 
2271 #ifdef CONFIG_INIT_ALL_POSSIBLE
2272 struct cpumask __cpu_possible_mask __read_mostly
2273 	= {CPU_BITS_ALL};
2274 #else
2275 struct cpumask __cpu_possible_mask __read_mostly;
2276 #endif
2277 EXPORT_SYMBOL(__cpu_possible_mask);
2278 
2279 struct cpumask __cpu_online_mask __read_mostly;
2280 EXPORT_SYMBOL(__cpu_online_mask);
2281 
2282 struct cpumask __cpu_present_mask __read_mostly;
2283 EXPORT_SYMBOL(__cpu_present_mask);
2284 
2285 struct cpumask __cpu_active_mask __read_mostly;
2286 EXPORT_SYMBOL(__cpu_active_mask);
2287 
2288 void init_cpu_present(const struct cpumask *src)
2289 {
2290 	cpumask_copy(&__cpu_present_mask, src);
2291 }
2292 
2293 void init_cpu_possible(const struct cpumask *src)
2294 {
2295 	cpumask_copy(&__cpu_possible_mask, src);
2296 }
2297 
2298 void init_cpu_online(const struct cpumask *src)
2299 {
2300 	cpumask_copy(&__cpu_online_mask, src);
2301 }
2302 
2303 /*
2304  * Activate the first processor.
2305  */
2306 void __init boot_cpu_init(void)
2307 {
2308 	int cpu = smp_processor_id();
2309 
2310 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2311 	set_cpu_online(cpu, true);
2312 	set_cpu_active(cpu, true);
2313 	set_cpu_present(cpu, true);
2314 	set_cpu_possible(cpu, true);
2315 
2316 #ifdef CONFIG_SMP
2317 	__boot_cpu_id = cpu;
2318 #endif
2319 }
2320 
2321 /*
2322  * Must be called _AFTER_ setting up the per_cpu areas
2323  */
2324 void __init boot_cpu_hotplug_init(void)
2325 {
2326 #ifdef CONFIG_SMP
2327 	this_cpu_write(cpuhp_state.booted_once, true);
2328 #endif
2329 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2330 }
2331 
2332 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
2333 
2334 static int __init mitigations_parse_cmdline(char *arg)
2335 {
2336 	if (!strcmp(arg, "off"))
2337 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2338 	else if (!strcmp(arg, "auto"))
2339 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2340 	else if (!strcmp(arg, "auto,nosmt"))
2341 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2342 
2343 	return 0;
2344 }
2345 early_param("mitigations", mitigations_parse_cmdline);
2346