1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 36 #include <trace/events/power.h> 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/cpuhp.h> 39 40 #include "smpboot.h" 41 42 /** 43 * cpuhp_cpu_state - Per cpu hotplug state storage 44 * @state: The current cpu state 45 * @target: The target state 46 * @thread: Pointer to the hotplug thread 47 * @should_run: Thread should execute 48 * @rollback: Perform a rollback 49 * @single: Single callback invocation 50 * @bringup: Single callback bringup or teardown selector 51 * @cb_state: The state for a single callback (install/uninstall) 52 * @result: Result of the operation 53 * @done_up: Signal completion to the issuer of the task for cpu-up 54 * @done_down: Signal completion to the issuer of the task for cpu-down 55 */ 56 struct cpuhp_cpu_state { 57 enum cpuhp_state state; 58 enum cpuhp_state target; 59 enum cpuhp_state fail; 60 #ifdef CONFIG_SMP 61 struct task_struct *thread; 62 bool should_run; 63 bool rollback; 64 bool single; 65 bool bringup; 66 struct hlist_node *node; 67 struct hlist_node *last; 68 enum cpuhp_state cb_state; 69 int result; 70 struct completion done_up; 71 struct completion done_down; 72 #endif 73 }; 74 75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 76 .fail = CPUHP_INVALID, 77 }; 78 79 #ifdef CONFIG_SMP 80 cpumask_t cpus_booted_once_mask; 81 #endif 82 83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 84 static struct lockdep_map cpuhp_state_up_map = 85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 86 static struct lockdep_map cpuhp_state_down_map = 87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 88 89 90 static inline void cpuhp_lock_acquire(bool bringup) 91 { 92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 93 } 94 95 static inline void cpuhp_lock_release(bool bringup) 96 { 97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 98 } 99 #else 100 101 static inline void cpuhp_lock_acquire(bool bringup) { } 102 static inline void cpuhp_lock_release(bool bringup) { } 103 104 #endif 105 106 /** 107 * cpuhp_step - Hotplug state machine step 108 * @name: Name of the step 109 * @startup: Startup function of the step 110 * @teardown: Teardown function of the step 111 * @cant_stop: Bringup/teardown can't be stopped at this step 112 */ 113 struct cpuhp_step { 114 const char *name; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } startup; 120 union { 121 int (*single)(unsigned int cpu); 122 int (*multi)(unsigned int cpu, 123 struct hlist_node *node); 124 } teardown; 125 struct hlist_head list; 126 bool cant_stop; 127 bool multi_instance; 128 }; 129 130 static DEFINE_MUTEX(cpuhp_state_mutex); 131 static struct cpuhp_step cpuhp_hp_states[]; 132 133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 134 { 135 return cpuhp_hp_states + state; 136 } 137 138 /** 139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 140 * @cpu: The cpu for which the callback should be invoked 141 * @state: The state to do callbacks for 142 * @bringup: True if the bringup callback should be invoked 143 * @node: For multi-instance, do a single entry callback for install/remove 144 * @lastp: For multi-instance rollback, remember how far we got 145 * 146 * Called from cpu hotplug and from the state register machinery. 147 */ 148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 149 bool bringup, struct hlist_node *node, 150 struct hlist_node **lastp) 151 { 152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 153 struct cpuhp_step *step = cpuhp_get_step(state); 154 int (*cbm)(unsigned int cpu, struct hlist_node *node); 155 int (*cb)(unsigned int cpu); 156 int ret, cnt; 157 158 if (st->fail == state) { 159 st->fail = CPUHP_INVALID; 160 161 if (!(bringup ? step->startup.single : step->teardown.single)) 162 return 0; 163 164 return -EAGAIN; 165 } 166 167 if (!step->multi_instance) { 168 WARN_ON_ONCE(lastp && *lastp); 169 cb = bringup ? step->startup.single : step->teardown.single; 170 if (!cb) 171 return 0; 172 trace_cpuhp_enter(cpu, st->target, state, cb); 173 ret = cb(cpu); 174 trace_cpuhp_exit(cpu, st->state, state, ret); 175 return ret; 176 } 177 cbm = bringup ? step->startup.multi : step->teardown.multi; 178 if (!cbm) 179 return 0; 180 181 /* Single invocation for instance add/remove */ 182 if (node) { 183 WARN_ON_ONCE(lastp && *lastp); 184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 185 ret = cbm(cpu, node); 186 trace_cpuhp_exit(cpu, st->state, state, ret); 187 return ret; 188 } 189 190 /* State transition. Invoke on all instances */ 191 cnt = 0; 192 hlist_for_each(node, &step->list) { 193 if (lastp && node == *lastp) 194 break; 195 196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 197 ret = cbm(cpu, node); 198 trace_cpuhp_exit(cpu, st->state, state, ret); 199 if (ret) { 200 if (!lastp) 201 goto err; 202 203 *lastp = node; 204 return ret; 205 } 206 cnt++; 207 } 208 if (lastp) 209 *lastp = NULL; 210 return 0; 211 err: 212 /* Rollback the instances if one failed */ 213 cbm = !bringup ? step->startup.multi : step->teardown.multi; 214 if (!cbm) 215 return ret; 216 217 hlist_for_each(node, &step->list) { 218 if (!cnt--) 219 break; 220 221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 222 ret = cbm(cpu, node); 223 trace_cpuhp_exit(cpu, st->state, state, ret); 224 /* 225 * Rollback must not fail, 226 */ 227 WARN_ON_ONCE(ret); 228 } 229 return ret; 230 } 231 232 #ifdef CONFIG_SMP 233 static bool cpuhp_is_ap_state(enum cpuhp_state state) 234 { 235 /* 236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 237 * purposes as that state is handled explicitly in cpu_down. 238 */ 239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 240 } 241 242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 243 { 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 245 wait_for_completion(done); 246 } 247 248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 249 { 250 struct completion *done = bringup ? &st->done_up : &st->done_down; 251 complete(done); 252 } 253 254 /* 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 256 */ 257 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 258 { 259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 260 } 261 262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 263 static DEFINE_MUTEX(cpu_add_remove_lock); 264 bool cpuhp_tasks_frozen; 265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 266 267 /* 268 * The following two APIs (cpu_maps_update_begin/done) must be used when 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 270 */ 271 void cpu_maps_update_begin(void) 272 { 273 mutex_lock(&cpu_add_remove_lock); 274 } 275 276 void cpu_maps_update_done(void) 277 { 278 mutex_unlock(&cpu_add_remove_lock); 279 } 280 281 /* 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 283 * Should always be manipulated under cpu_add_remove_lock 284 */ 285 static int cpu_hotplug_disabled; 286 287 #ifdef CONFIG_HOTPLUG_CPU 288 289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 290 291 void cpus_read_lock(void) 292 { 293 percpu_down_read(&cpu_hotplug_lock); 294 } 295 EXPORT_SYMBOL_GPL(cpus_read_lock); 296 297 int cpus_read_trylock(void) 298 { 299 return percpu_down_read_trylock(&cpu_hotplug_lock); 300 } 301 EXPORT_SYMBOL_GPL(cpus_read_trylock); 302 303 void cpus_read_unlock(void) 304 { 305 percpu_up_read(&cpu_hotplug_lock); 306 } 307 EXPORT_SYMBOL_GPL(cpus_read_unlock); 308 309 void cpus_write_lock(void) 310 { 311 percpu_down_write(&cpu_hotplug_lock); 312 } 313 314 void cpus_write_unlock(void) 315 { 316 percpu_up_write(&cpu_hotplug_lock); 317 } 318 319 void lockdep_assert_cpus_held(void) 320 { 321 /* 322 * We can't have hotplug operations before userspace starts running, 323 * and some init codepaths will knowingly not take the hotplug lock. 324 * This is all valid, so mute lockdep until it makes sense to report 325 * unheld locks. 326 */ 327 if (system_state < SYSTEM_RUNNING) 328 return; 329 330 percpu_rwsem_assert_held(&cpu_hotplug_lock); 331 } 332 333 static void lockdep_acquire_cpus_lock(void) 334 { 335 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 336 } 337 338 static void lockdep_release_cpus_lock(void) 339 { 340 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 341 } 342 343 /* 344 * Wait for currently running CPU hotplug operations to complete (if any) and 345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 347 * hotplug path before performing hotplug operations. So acquiring that lock 348 * guarantees mutual exclusion from any currently running hotplug operations. 349 */ 350 void cpu_hotplug_disable(void) 351 { 352 cpu_maps_update_begin(); 353 cpu_hotplug_disabled++; 354 cpu_maps_update_done(); 355 } 356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 357 358 static void __cpu_hotplug_enable(void) 359 { 360 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 361 return; 362 cpu_hotplug_disabled--; 363 } 364 365 void cpu_hotplug_enable(void) 366 { 367 cpu_maps_update_begin(); 368 __cpu_hotplug_enable(); 369 cpu_maps_update_done(); 370 } 371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 372 373 #else 374 375 static void lockdep_acquire_cpus_lock(void) 376 { 377 } 378 379 static void lockdep_release_cpus_lock(void) 380 { 381 } 382 383 #endif /* CONFIG_HOTPLUG_CPU */ 384 385 /* 386 * Architectures that need SMT-specific errata handling during SMT hotplug 387 * should override this. 388 */ 389 void __weak arch_smt_update(void) { } 390 391 #ifdef CONFIG_HOTPLUG_SMT 392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 393 394 void __init cpu_smt_disable(bool force) 395 { 396 if (!cpu_smt_possible()) 397 return; 398 399 if (force) { 400 pr_info("SMT: Force disabled\n"); 401 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 402 } else { 403 pr_info("SMT: disabled\n"); 404 cpu_smt_control = CPU_SMT_DISABLED; 405 } 406 } 407 408 /* 409 * The decision whether SMT is supported can only be done after the full 410 * CPU identification. Called from architecture code. 411 */ 412 void __init cpu_smt_check_topology(void) 413 { 414 if (!topology_smt_supported()) 415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 416 } 417 418 static int __init smt_cmdline_disable(char *str) 419 { 420 cpu_smt_disable(str && !strcmp(str, "force")); 421 return 0; 422 } 423 early_param("nosmt", smt_cmdline_disable); 424 425 static inline bool cpu_smt_allowed(unsigned int cpu) 426 { 427 if (cpu_smt_control == CPU_SMT_ENABLED) 428 return true; 429 430 if (topology_is_primary_thread(cpu)) 431 return true; 432 433 /* 434 * On x86 it's required to boot all logical CPUs at least once so 435 * that the init code can get a chance to set CR4.MCE on each 436 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 437 * core will shutdown the machine. 438 */ 439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 440 } 441 442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 443 bool cpu_smt_possible(void) 444 { 445 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 446 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 447 } 448 EXPORT_SYMBOL_GPL(cpu_smt_possible); 449 #else 450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 451 #endif 452 453 static inline enum cpuhp_state 454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 455 { 456 enum cpuhp_state prev_state = st->state; 457 458 st->rollback = false; 459 st->last = NULL; 460 461 st->target = target; 462 st->single = false; 463 st->bringup = st->state < target; 464 465 return prev_state; 466 } 467 468 static inline void 469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 470 { 471 st->rollback = true; 472 473 /* 474 * If we have st->last we need to undo partial multi_instance of this 475 * state first. Otherwise start undo at the previous state. 476 */ 477 if (!st->last) { 478 if (st->bringup) 479 st->state--; 480 else 481 st->state++; 482 } 483 484 st->target = prev_state; 485 st->bringup = !st->bringup; 486 } 487 488 /* Regular hotplug invocation of the AP hotplug thread */ 489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 490 { 491 if (!st->single && st->state == st->target) 492 return; 493 494 st->result = 0; 495 /* 496 * Make sure the above stores are visible before should_run becomes 497 * true. Paired with the mb() above in cpuhp_thread_fun() 498 */ 499 smp_mb(); 500 st->should_run = true; 501 wake_up_process(st->thread); 502 wait_for_ap_thread(st, st->bringup); 503 } 504 505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 506 { 507 enum cpuhp_state prev_state; 508 int ret; 509 510 prev_state = cpuhp_set_state(st, target); 511 __cpuhp_kick_ap(st); 512 if ((ret = st->result)) { 513 cpuhp_reset_state(st, prev_state); 514 __cpuhp_kick_ap(st); 515 } 516 517 return ret; 518 } 519 520 static int bringup_wait_for_ap(unsigned int cpu) 521 { 522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 523 524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 525 wait_for_ap_thread(st, true); 526 if (WARN_ON_ONCE((!cpu_online(cpu)))) 527 return -ECANCELED; 528 529 /* Unpark the hotplug thread of the target cpu */ 530 kthread_unpark(st->thread); 531 532 /* 533 * SMT soft disabling on X86 requires to bring the CPU out of the 534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 535 * CPU marked itself as booted_once in notify_cpu_starting() so the 536 * cpu_smt_allowed() check will now return false if this is not the 537 * primary sibling. 538 */ 539 if (!cpu_smt_allowed(cpu)) 540 return -ECANCELED; 541 542 if (st->target <= CPUHP_AP_ONLINE_IDLE) 543 return 0; 544 545 return cpuhp_kick_ap(st, st->target); 546 } 547 548 static int bringup_cpu(unsigned int cpu) 549 { 550 struct task_struct *idle = idle_thread_get(cpu); 551 int ret; 552 553 /* 554 * Some architectures have to walk the irq descriptors to 555 * setup the vector space for the cpu which comes online. 556 * Prevent irq alloc/free across the bringup. 557 */ 558 irq_lock_sparse(); 559 560 /* Arch-specific enabling code. */ 561 ret = __cpu_up(cpu, idle); 562 irq_unlock_sparse(); 563 if (ret) 564 return ret; 565 return bringup_wait_for_ap(cpu); 566 } 567 568 static int finish_cpu(unsigned int cpu) 569 { 570 struct task_struct *idle = idle_thread_get(cpu); 571 struct mm_struct *mm = idle->active_mm; 572 573 /* 574 * idle_task_exit() will have switched to &init_mm, now 575 * clean up any remaining active_mm state. 576 */ 577 if (mm != &init_mm) 578 idle->active_mm = &init_mm; 579 mmdrop(mm); 580 return 0; 581 } 582 583 /* 584 * Hotplug state machine related functions 585 */ 586 587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 588 { 589 for (st->state--; st->state > st->target; st->state--) 590 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 591 } 592 593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 594 { 595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 596 return true; 597 /* 598 * When CPU hotplug is disabled, then taking the CPU down is not 599 * possible because takedown_cpu() and the architecture and 600 * subsystem specific mechanisms are not available. So the CPU 601 * which would be completely unplugged again needs to stay around 602 * in the current state. 603 */ 604 return st->state <= CPUHP_BRINGUP_CPU; 605 } 606 607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 608 enum cpuhp_state target) 609 { 610 enum cpuhp_state prev_state = st->state; 611 int ret = 0; 612 613 while (st->state < target) { 614 st->state++; 615 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 616 if (ret) { 617 if (can_rollback_cpu(st)) { 618 st->target = prev_state; 619 undo_cpu_up(cpu, st); 620 } 621 break; 622 } 623 } 624 return ret; 625 } 626 627 /* 628 * The cpu hotplug threads manage the bringup and teardown of the cpus 629 */ 630 static void cpuhp_create(unsigned int cpu) 631 { 632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 633 634 init_completion(&st->done_up); 635 init_completion(&st->done_down); 636 } 637 638 static int cpuhp_should_run(unsigned int cpu) 639 { 640 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 641 642 return st->should_run; 643 } 644 645 /* 646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 647 * callbacks when a state gets [un]installed at runtime. 648 * 649 * Each invocation of this function by the smpboot thread does a single AP 650 * state callback. 651 * 652 * It has 3 modes of operation: 653 * - single: runs st->cb_state 654 * - up: runs ++st->state, while st->state < st->target 655 * - down: runs st->state--, while st->state > st->target 656 * 657 * When complete or on error, should_run is cleared and the completion is fired. 658 */ 659 static void cpuhp_thread_fun(unsigned int cpu) 660 { 661 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 662 bool bringup = st->bringup; 663 enum cpuhp_state state; 664 665 if (WARN_ON_ONCE(!st->should_run)) 666 return; 667 668 /* 669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 670 * that if we see ->should_run we also see the rest of the state. 671 */ 672 smp_mb(); 673 674 /* 675 * The BP holds the hotplug lock, but we're now running on the AP, 676 * ensure that anybody asserting the lock is held, will actually find 677 * it so. 678 */ 679 lockdep_acquire_cpus_lock(); 680 cpuhp_lock_acquire(bringup); 681 682 if (st->single) { 683 state = st->cb_state; 684 st->should_run = false; 685 } else { 686 if (bringup) { 687 st->state++; 688 state = st->state; 689 st->should_run = (st->state < st->target); 690 WARN_ON_ONCE(st->state > st->target); 691 } else { 692 state = st->state; 693 st->state--; 694 st->should_run = (st->state > st->target); 695 WARN_ON_ONCE(st->state < st->target); 696 } 697 } 698 699 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 700 701 if (cpuhp_is_atomic_state(state)) { 702 local_irq_disable(); 703 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 704 local_irq_enable(); 705 706 /* 707 * STARTING/DYING must not fail! 708 */ 709 WARN_ON_ONCE(st->result); 710 } else { 711 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 712 } 713 714 if (st->result) { 715 /* 716 * If we fail on a rollback, we're up a creek without no 717 * paddle, no way forward, no way back. We loose, thanks for 718 * playing. 719 */ 720 WARN_ON_ONCE(st->rollback); 721 st->should_run = false; 722 } 723 724 cpuhp_lock_release(bringup); 725 lockdep_release_cpus_lock(); 726 727 if (!st->should_run) 728 complete_ap_thread(st, bringup); 729 } 730 731 /* Invoke a single callback on a remote cpu */ 732 static int 733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 734 struct hlist_node *node) 735 { 736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 737 int ret; 738 739 if (!cpu_online(cpu)) 740 return 0; 741 742 cpuhp_lock_acquire(false); 743 cpuhp_lock_release(false); 744 745 cpuhp_lock_acquire(true); 746 cpuhp_lock_release(true); 747 748 /* 749 * If we are up and running, use the hotplug thread. For early calls 750 * we invoke the thread function directly. 751 */ 752 if (!st->thread) 753 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 754 755 st->rollback = false; 756 st->last = NULL; 757 758 st->node = node; 759 st->bringup = bringup; 760 st->cb_state = state; 761 st->single = true; 762 763 __cpuhp_kick_ap(st); 764 765 /* 766 * If we failed and did a partial, do a rollback. 767 */ 768 if ((ret = st->result) && st->last) { 769 st->rollback = true; 770 st->bringup = !bringup; 771 772 __cpuhp_kick_ap(st); 773 } 774 775 /* 776 * Clean up the leftovers so the next hotplug operation wont use stale 777 * data. 778 */ 779 st->node = st->last = NULL; 780 return ret; 781 } 782 783 static int cpuhp_kick_ap_work(unsigned int cpu) 784 { 785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 786 enum cpuhp_state prev_state = st->state; 787 int ret; 788 789 cpuhp_lock_acquire(false); 790 cpuhp_lock_release(false); 791 792 cpuhp_lock_acquire(true); 793 cpuhp_lock_release(true); 794 795 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 796 ret = cpuhp_kick_ap(st, st->target); 797 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 798 799 return ret; 800 } 801 802 static struct smp_hotplug_thread cpuhp_threads = { 803 .store = &cpuhp_state.thread, 804 .create = &cpuhp_create, 805 .thread_should_run = cpuhp_should_run, 806 .thread_fn = cpuhp_thread_fun, 807 .thread_comm = "cpuhp/%u", 808 .selfparking = true, 809 }; 810 811 void __init cpuhp_threads_init(void) 812 { 813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 814 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 815 } 816 817 #ifdef CONFIG_HOTPLUG_CPU 818 /** 819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 820 * @cpu: a CPU id 821 * 822 * This function walks all processes, finds a valid mm struct for each one and 823 * then clears a corresponding bit in mm's cpumask. While this all sounds 824 * trivial, there are various non-obvious corner cases, which this function 825 * tries to solve in a safe manner. 826 * 827 * Also note that the function uses a somewhat relaxed locking scheme, so it may 828 * be called only for an already offlined CPU. 829 */ 830 void clear_tasks_mm_cpumask(int cpu) 831 { 832 struct task_struct *p; 833 834 /* 835 * This function is called after the cpu is taken down and marked 836 * offline, so its not like new tasks will ever get this cpu set in 837 * their mm mask. -- Peter Zijlstra 838 * Thus, we may use rcu_read_lock() here, instead of grabbing 839 * full-fledged tasklist_lock. 840 */ 841 WARN_ON(cpu_online(cpu)); 842 rcu_read_lock(); 843 for_each_process(p) { 844 struct task_struct *t; 845 846 /* 847 * Main thread might exit, but other threads may still have 848 * a valid mm. Find one. 849 */ 850 t = find_lock_task_mm(p); 851 if (!t) 852 continue; 853 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 854 task_unlock(t); 855 } 856 rcu_read_unlock(); 857 } 858 859 /* Take this CPU down. */ 860 static int take_cpu_down(void *_param) 861 { 862 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 863 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 864 int err, cpu = smp_processor_id(); 865 int ret; 866 867 /* Ensure this CPU doesn't handle any more interrupts. */ 868 err = __cpu_disable(); 869 if (err < 0) 870 return err; 871 872 /* 873 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 874 * do this step again. 875 */ 876 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 877 st->state--; 878 /* Invoke the former CPU_DYING callbacks */ 879 for (; st->state > target; st->state--) { 880 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 881 /* 882 * DYING must not fail! 883 */ 884 WARN_ON_ONCE(ret); 885 } 886 887 /* Give up timekeeping duties */ 888 tick_handover_do_timer(); 889 /* Remove CPU from timer broadcasting */ 890 tick_offline_cpu(cpu); 891 /* Park the stopper thread */ 892 stop_machine_park(cpu); 893 return 0; 894 } 895 896 static int takedown_cpu(unsigned int cpu) 897 { 898 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 899 int err; 900 901 /* Park the smpboot threads */ 902 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 903 904 /* 905 * Prevent irq alloc/free while the dying cpu reorganizes the 906 * interrupt affinities. 907 */ 908 irq_lock_sparse(); 909 910 /* 911 * So now all preempt/rcu users must observe !cpu_active(). 912 */ 913 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 914 if (err) { 915 /* CPU refused to die */ 916 irq_unlock_sparse(); 917 /* Unpark the hotplug thread so we can rollback there */ 918 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 919 return err; 920 } 921 BUG_ON(cpu_online(cpu)); 922 923 /* 924 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 925 * all runnable tasks from the CPU, there's only the idle task left now 926 * that the migration thread is done doing the stop_machine thing. 927 * 928 * Wait for the stop thread to go away. 929 */ 930 wait_for_ap_thread(st, false); 931 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 932 933 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 934 irq_unlock_sparse(); 935 936 hotplug_cpu__broadcast_tick_pull(cpu); 937 /* This actually kills the CPU. */ 938 __cpu_die(cpu); 939 940 tick_cleanup_dead_cpu(cpu); 941 rcutree_migrate_callbacks(cpu); 942 return 0; 943 } 944 945 static void cpuhp_complete_idle_dead(void *arg) 946 { 947 struct cpuhp_cpu_state *st = arg; 948 949 complete_ap_thread(st, false); 950 } 951 952 void cpuhp_report_idle_dead(void) 953 { 954 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 955 956 BUG_ON(st->state != CPUHP_AP_OFFLINE); 957 rcu_report_dead(smp_processor_id()); 958 st->state = CPUHP_AP_IDLE_DEAD; 959 /* 960 * We cannot call complete after rcu_report_dead() so we delegate it 961 * to an online cpu. 962 */ 963 smp_call_function_single(cpumask_first(cpu_online_mask), 964 cpuhp_complete_idle_dead, st, 0); 965 } 966 967 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 968 { 969 for (st->state++; st->state < st->target; st->state++) 970 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 971 } 972 973 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 974 enum cpuhp_state target) 975 { 976 enum cpuhp_state prev_state = st->state; 977 int ret = 0; 978 979 for (; st->state > target; st->state--) { 980 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 981 if (ret) { 982 st->target = prev_state; 983 if (st->state < prev_state) 984 undo_cpu_down(cpu, st); 985 break; 986 } 987 } 988 return ret; 989 } 990 991 /* Requires cpu_add_remove_lock to be held */ 992 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 993 enum cpuhp_state target) 994 { 995 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 996 int prev_state, ret = 0; 997 998 if (num_online_cpus() == 1) 999 return -EBUSY; 1000 1001 if (!cpu_present(cpu)) 1002 return -EINVAL; 1003 1004 cpus_write_lock(); 1005 1006 cpuhp_tasks_frozen = tasks_frozen; 1007 1008 prev_state = cpuhp_set_state(st, target); 1009 /* 1010 * If the current CPU state is in the range of the AP hotplug thread, 1011 * then we need to kick the thread. 1012 */ 1013 if (st->state > CPUHP_TEARDOWN_CPU) { 1014 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1015 ret = cpuhp_kick_ap_work(cpu); 1016 /* 1017 * The AP side has done the error rollback already. Just 1018 * return the error code.. 1019 */ 1020 if (ret) 1021 goto out; 1022 1023 /* 1024 * We might have stopped still in the range of the AP hotplug 1025 * thread. Nothing to do anymore. 1026 */ 1027 if (st->state > CPUHP_TEARDOWN_CPU) 1028 goto out; 1029 1030 st->target = target; 1031 } 1032 /* 1033 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1034 * to do the further cleanups. 1035 */ 1036 ret = cpuhp_down_callbacks(cpu, st, target); 1037 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1038 cpuhp_reset_state(st, prev_state); 1039 __cpuhp_kick_ap(st); 1040 } 1041 1042 out: 1043 cpus_write_unlock(); 1044 /* 1045 * Do post unplug cleanup. This is still protected against 1046 * concurrent CPU hotplug via cpu_add_remove_lock. 1047 */ 1048 lockup_detector_cleanup(); 1049 arch_smt_update(); 1050 return ret; 1051 } 1052 1053 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1054 { 1055 if (cpu_hotplug_disabled) 1056 return -EBUSY; 1057 return _cpu_down(cpu, 0, target); 1058 } 1059 1060 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1061 { 1062 int err; 1063 1064 cpu_maps_update_begin(); 1065 err = cpu_down_maps_locked(cpu, target); 1066 cpu_maps_update_done(); 1067 return err; 1068 } 1069 1070 /** 1071 * cpu_device_down - Bring down a cpu device 1072 * @dev: Pointer to the cpu device to offline 1073 * 1074 * This function is meant to be used by device core cpu subsystem only. 1075 * 1076 * Other subsystems should use remove_cpu() instead. 1077 */ 1078 int cpu_device_down(struct device *dev) 1079 { 1080 return cpu_down(dev->id, CPUHP_OFFLINE); 1081 } 1082 1083 int remove_cpu(unsigned int cpu) 1084 { 1085 int ret; 1086 1087 lock_device_hotplug(); 1088 ret = device_offline(get_cpu_device(cpu)); 1089 unlock_device_hotplug(); 1090 1091 return ret; 1092 } 1093 EXPORT_SYMBOL_GPL(remove_cpu); 1094 1095 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1096 { 1097 unsigned int cpu; 1098 int error; 1099 1100 cpu_maps_update_begin(); 1101 1102 /* 1103 * Make certain the cpu I'm about to reboot on is online. 1104 * 1105 * This is inline to what migrate_to_reboot_cpu() already do. 1106 */ 1107 if (!cpu_online(primary_cpu)) 1108 primary_cpu = cpumask_first(cpu_online_mask); 1109 1110 for_each_online_cpu(cpu) { 1111 if (cpu == primary_cpu) 1112 continue; 1113 1114 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1115 if (error) { 1116 pr_err("Failed to offline CPU%d - error=%d", 1117 cpu, error); 1118 break; 1119 } 1120 } 1121 1122 /* 1123 * Ensure all but the reboot CPU are offline. 1124 */ 1125 BUG_ON(num_online_cpus() > 1); 1126 1127 /* 1128 * Make sure the CPUs won't be enabled by someone else after this 1129 * point. Kexec will reboot to a new kernel shortly resetting 1130 * everything along the way. 1131 */ 1132 cpu_hotplug_disabled++; 1133 1134 cpu_maps_update_done(); 1135 } 1136 1137 #else 1138 #define takedown_cpu NULL 1139 #endif /*CONFIG_HOTPLUG_CPU*/ 1140 1141 /** 1142 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1143 * @cpu: cpu that just started 1144 * 1145 * It must be called by the arch code on the new cpu, before the new cpu 1146 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1147 */ 1148 void notify_cpu_starting(unsigned int cpu) 1149 { 1150 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1151 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1152 int ret; 1153 1154 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1155 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1156 while (st->state < target) { 1157 st->state++; 1158 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1159 /* 1160 * STARTING must not fail! 1161 */ 1162 WARN_ON_ONCE(ret); 1163 } 1164 } 1165 1166 /* 1167 * Called from the idle task. Wake up the controlling task which brings the 1168 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1169 * online bringup to the hotplug thread. 1170 */ 1171 void cpuhp_online_idle(enum cpuhp_state state) 1172 { 1173 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1174 1175 /* Happens for the boot cpu */ 1176 if (state != CPUHP_AP_ONLINE_IDLE) 1177 return; 1178 1179 /* 1180 * Unpart the stopper thread before we start the idle loop (and start 1181 * scheduling); this ensures the stopper task is always available. 1182 */ 1183 stop_machine_unpark(smp_processor_id()); 1184 1185 st->state = CPUHP_AP_ONLINE_IDLE; 1186 complete_ap_thread(st, true); 1187 } 1188 1189 /* Requires cpu_add_remove_lock to be held */ 1190 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1191 { 1192 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1193 struct task_struct *idle; 1194 int ret = 0; 1195 1196 cpus_write_lock(); 1197 1198 if (!cpu_present(cpu)) { 1199 ret = -EINVAL; 1200 goto out; 1201 } 1202 1203 /* 1204 * The caller of cpu_up() might have raced with another 1205 * caller. Nothing to do. 1206 */ 1207 if (st->state >= target) 1208 goto out; 1209 1210 if (st->state == CPUHP_OFFLINE) { 1211 /* Let it fail before we try to bring the cpu up */ 1212 idle = idle_thread_get(cpu); 1213 if (IS_ERR(idle)) { 1214 ret = PTR_ERR(idle); 1215 goto out; 1216 } 1217 } 1218 1219 cpuhp_tasks_frozen = tasks_frozen; 1220 1221 cpuhp_set_state(st, target); 1222 /* 1223 * If the current CPU state is in the range of the AP hotplug thread, 1224 * then we need to kick the thread once more. 1225 */ 1226 if (st->state > CPUHP_BRINGUP_CPU) { 1227 ret = cpuhp_kick_ap_work(cpu); 1228 /* 1229 * The AP side has done the error rollback already. Just 1230 * return the error code.. 1231 */ 1232 if (ret) 1233 goto out; 1234 } 1235 1236 /* 1237 * Try to reach the target state. We max out on the BP at 1238 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1239 * responsible for bringing it up to the target state. 1240 */ 1241 target = min((int)target, CPUHP_BRINGUP_CPU); 1242 ret = cpuhp_up_callbacks(cpu, st, target); 1243 out: 1244 cpus_write_unlock(); 1245 arch_smt_update(); 1246 return ret; 1247 } 1248 1249 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1250 { 1251 int err = 0; 1252 1253 if (!cpu_possible(cpu)) { 1254 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1255 cpu); 1256 #if defined(CONFIG_IA64) 1257 pr_err("please check additional_cpus= boot parameter\n"); 1258 #endif 1259 return -EINVAL; 1260 } 1261 1262 err = try_online_node(cpu_to_node(cpu)); 1263 if (err) 1264 return err; 1265 1266 cpu_maps_update_begin(); 1267 1268 if (cpu_hotplug_disabled) { 1269 err = -EBUSY; 1270 goto out; 1271 } 1272 if (!cpu_smt_allowed(cpu)) { 1273 err = -EPERM; 1274 goto out; 1275 } 1276 1277 err = _cpu_up(cpu, 0, target); 1278 out: 1279 cpu_maps_update_done(); 1280 return err; 1281 } 1282 1283 /** 1284 * cpu_device_up - Bring up a cpu device 1285 * @dev: Pointer to the cpu device to online 1286 * 1287 * This function is meant to be used by device core cpu subsystem only. 1288 * 1289 * Other subsystems should use add_cpu() instead. 1290 */ 1291 int cpu_device_up(struct device *dev) 1292 { 1293 return cpu_up(dev->id, CPUHP_ONLINE); 1294 } 1295 1296 int add_cpu(unsigned int cpu) 1297 { 1298 int ret; 1299 1300 lock_device_hotplug(); 1301 ret = device_online(get_cpu_device(cpu)); 1302 unlock_device_hotplug(); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL_GPL(add_cpu); 1307 1308 /** 1309 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1310 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1311 * 1312 * On some architectures like arm64, we can hibernate on any CPU, but on 1313 * wake up the CPU we hibernated on might be offline as a side effect of 1314 * using maxcpus= for example. 1315 */ 1316 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1317 { 1318 int ret; 1319 1320 if (!cpu_online(sleep_cpu)) { 1321 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1322 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1323 if (ret) { 1324 pr_err("Failed to bring hibernate-CPU up!\n"); 1325 return ret; 1326 } 1327 } 1328 return 0; 1329 } 1330 1331 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1332 { 1333 unsigned int cpu; 1334 1335 for_each_present_cpu(cpu) { 1336 if (num_online_cpus() >= setup_max_cpus) 1337 break; 1338 if (!cpu_online(cpu)) 1339 cpu_up(cpu, CPUHP_ONLINE); 1340 } 1341 } 1342 1343 #ifdef CONFIG_PM_SLEEP_SMP 1344 static cpumask_var_t frozen_cpus; 1345 1346 int freeze_secondary_cpus(int primary) 1347 { 1348 int cpu, error = 0; 1349 1350 cpu_maps_update_begin(); 1351 if (primary == -1) { 1352 primary = cpumask_first(cpu_online_mask); 1353 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1354 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1355 } else { 1356 if (!cpu_online(primary)) 1357 primary = cpumask_first(cpu_online_mask); 1358 } 1359 1360 /* 1361 * We take down all of the non-boot CPUs in one shot to avoid races 1362 * with the userspace trying to use the CPU hotplug at the same time 1363 */ 1364 cpumask_clear(frozen_cpus); 1365 1366 pr_info("Disabling non-boot CPUs ...\n"); 1367 for_each_online_cpu(cpu) { 1368 if (cpu == primary) 1369 continue; 1370 1371 if (pm_wakeup_pending()) { 1372 pr_info("Wakeup pending. Abort CPU freeze\n"); 1373 error = -EBUSY; 1374 break; 1375 } 1376 1377 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1378 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1379 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1380 if (!error) 1381 cpumask_set_cpu(cpu, frozen_cpus); 1382 else { 1383 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1384 break; 1385 } 1386 } 1387 1388 if (!error) 1389 BUG_ON(num_online_cpus() > 1); 1390 else 1391 pr_err("Non-boot CPUs are not disabled\n"); 1392 1393 /* 1394 * Make sure the CPUs won't be enabled by someone else. We need to do 1395 * this even in case of failure as all freeze_secondary_cpus() users are 1396 * supposed to do thaw_secondary_cpus() on the failure path. 1397 */ 1398 cpu_hotplug_disabled++; 1399 1400 cpu_maps_update_done(); 1401 return error; 1402 } 1403 1404 void __weak arch_thaw_secondary_cpus_begin(void) 1405 { 1406 } 1407 1408 void __weak arch_thaw_secondary_cpus_end(void) 1409 { 1410 } 1411 1412 void thaw_secondary_cpus(void) 1413 { 1414 int cpu, error; 1415 1416 /* Allow everyone to use the CPU hotplug again */ 1417 cpu_maps_update_begin(); 1418 __cpu_hotplug_enable(); 1419 if (cpumask_empty(frozen_cpus)) 1420 goto out; 1421 1422 pr_info("Enabling non-boot CPUs ...\n"); 1423 1424 arch_thaw_secondary_cpus_begin(); 1425 1426 for_each_cpu(cpu, frozen_cpus) { 1427 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1428 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1429 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1430 if (!error) { 1431 pr_info("CPU%d is up\n", cpu); 1432 continue; 1433 } 1434 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1435 } 1436 1437 arch_thaw_secondary_cpus_end(); 1438 1439 cpumask_clear(frozen_cpus); 1440 out: 1441 cpu_maps_update_done(); 1442 } 1443 1444 static int __init alloc_frozen_cpus(void) 1445 { 1446 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1447 return -ENOMEM; 1448 return 0; 1449 } 1450 core_initcall(alloc_frozen_cpus); 1451 1452 /* 1453 * When callbacks for CPU hotplug notifications are being executed, we must 1454 * ensure that the state of the system with respect to the tasks being frozen 1455 * or not, as reported by the notification, remains unchanged *throughout the 1456 * duration* of the execution of the callbacks. 1457 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1458 * 1459 * This synchronization is implemented by mutually excluding regular CPU 1460 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1461 * Hibernate notifications. 1462 */ 1463 static int 1464 cpu_hotplug_pm_callback(struct notifier_block *nb, 1465 unsigned long action, void *ptr) 1466 { 1467 switch (action) { 1468 1469 case PM_SUSPEND_PREPARE: 1470 case PM_HIBERNATION_PREPARE: 1471 cpu_hotplug_disable(); 1472 break; 1473 1474 case PM_POST_SUSPEND: 1475 case PM_POST_HIBERNATION: 1476 cpu_hotplug_enable(); 1477 break; 1478 1479 default: 1480 return NOTIFY_DONE; 1481 } 1482 1483 return NOTIFY_OK; 1484 } 1485 1486 1487 static int __init cpu_hotplug_pm_sync_init(void) 1488 { 1489 /* 1490 * cpu_hotplug_pm_callback has higher priority than x86 1491 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1492 * to disable cpu hotplug to avoid cpu hotplug race. 1493 */ 1494 pm_notifier(cpu_hotplug_pm_callback, 0); 1495 return 0; 1496 } 1497 core_initcall(cpu_hotplug_pm_sync_init); 1498 1499 #endif /* CONFIG_PM_SLEEP_SMP */ 1500 1501 int __boot_cpu_id; 1502 1503 #endif /* CONFIG_SMP */ 1504 1505 /* Boot processor state steps */ 1506 static struct cpuhp_step cpuhp_hp_states[] = { 1507 [CPUHP_OFFLINE] = { 1508 .name = "offline", 1509 .startup.single = NULL, 1510 .teardown.single = NULL, 1511 }, 1512 #ifdef CONFIG_SMP 1513 [CPUHP_CREATE_THREADS]= { 1514 .name = "threads:prepare", 1515 .startup.single = smpboot_create_threads, 1516 .teardown.single = NULL, 1517 .cant_stop = true, 1518 }, 1519 [CPUHP_PERF_PREPARE] = { 1520 .name = "perf:prepare", 1521 .startup.single = perf_event_init_cpu, 1522 .teardown.single = perf_event_exit_cpu, 1523 }, 1524 [CPUHP_WORKQUEUE_PREP] = { 1525 .name = "workqueue:prepare", 1526 .startup.single = workqueue_prepare_cpu, 1527 .teardown.single = NULL, 1528 }, 1529 [CPUHP_HRTIMERS_PREPARE] = { 1530 .name = "hrtimers:prepare", 1531 .startup.single = hrtimers_prepare_cpu, 1532 .teardown.single = hrtimers_dead_cpu, 1533 }, 1534 [CPUHP_SMPCFD_PREPARE] = { 1535 .name = "smpcfd:prepare", 1536 .startup.single = smpcfd_prepare_cpu, 1537 .teardown.single = smpcfd_dead_cpu, 1538 }, 1539 [CPUHP_RELAY_PREPARE] = { 1540 .name = "relay:prepare", 1541 .startup.single = relay_prepare_cpu, 1542 .teardown.single = NULL, 1543 }, 1544 [CPUHP_SLAB_PREPARE] = { 1545 .name = "slab:prepare", 1546 .startup.single = slab_prepare_cpu, 1547 .teardown.single = slab_dead_cpu, 1548 }, 1549 [CPUHP_RCUTREE_PREP] = { 1550 .name = "RCU/tree:prepare", 1551 .startup.single = rcutree_prepare_cpu, 1552 .teardown.single = rcutree_dead_cpu, 1553 }, 1554 /* 1555 * On the tear-down path, timers_dead_cpu() must be invoked 1556 * before blk_mq_queue_reinit_notify() from notify_dead(), 1557 * otherwise a RCU stall occurs. 1558 */ 1559 [CPUHP_TIMERS_PREPARE] = { 1560 .name = "timers:prepare", 1561 .startup.single = timers_prepare_cpu, 1562 .teardown.single = timers_dead_cpu, 1563 }, 1564 /* Kicks the plugged cpu into life */ 1565 [CPUHP_BRINGUP_CPU] = { 1566 .name = "cpu:bringup", 1567 .startup.single = bringup_cpu, 1568 .teardown.single = finish_cpu, 1569 .cant_stop = true, 1570 }, 1571 /* Final state before CPU kills itself */ 1572 [CPUHP_AP_IDLE_DEAD] = { 1573 .name = "idle:dead", 1574 }, 1575 /* 1576 * Last state before CPU enters the idle loop to die. Transient state 1577 * for synchronization. 1578 */ 1579 [CPUHP_AP_OFFLINE] = { 1580 .name = "ap:offline", 1581 .cant_stop = true, 1582 }, 1583 /* First state is scheduler control. Interrupts are disabled */ 1584 [CPUHP_AP_SCHED_STARTING] = { 1585 .name = "sched:starting", 1586 .startup.single = sched_cpu_starting, 1587 .teardown.single = sched_cpu_dying, 1588 }, 1589 [CPUHP_AP_RCUTREE_DYING] = { 1590 .name = "RCU/tree:dying", 1591 .startup.single = NULL, 1592 .teardown.single = rcutree_dying_cpu, 1593 }, 1594 [CPUHP_AP_SMPCFD_DYING] = { 1595 .name = "smpcfd:dying", 1596 .startup.single = NULL, 1597 .teardown.single = smpcfd_dying_cpu, 1598 }, 1599 /* Entry state on starting. Interrupts enabled from here on. Transient 1600 * state for synchronsization */ 1601 [CPUHP_AP_ONLINE] = { 1602 .name = "ap:online", 1603 }, 1604 /* 1605 * Handled on controll processor until the plugged processor manages 1606 * this itself. 1607 */ 1608 [CPUHP_TEARDOWN_CPU] = { 1609 .name = "cpu:teardown", 1610 .startup.single = NULL, 1611 .teardown.single = takedown_cpu, 1612 .cant_stop = true, 1613 }, 1614 /* Handle smpboot threads park/unpark */ 1615 [CPUHP_AP_SMPBOOT_THREADS] = { 1616 .name = "smpboot/threads:online", 1617 .startup.single = smpboot_unpark_threads, 1618 .teardown.single = smpboot_park_threads, 1619 }, 1620 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1621 .name = "irq/affinity:online", 1622 .startup.single = irq_affinity_online_cpu, 1623 .teardown.single = NULL, 1624 }, 1625 [CPUHP_AP_PERF_ONLINE] = { 1626 .name = "perf:online", 1627 .startup.single = perf_event_init_cpu, 1628 .teardown.single = perf_event_exit_cpu, 1629 }, 1630 [CPUHP_AP_WATCHDOG_ONLINE] = { 1631 .name = "lockup_detector:online", 1632 .startup.single = lockup_detector_online_cpu, 1633 .teardown.single = lockup_detector_offline_cpu, 1634 }, 1635 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1636 .name = "workqueue:online", 1637 .startup.single = workqueue_online_cpu, 1638 .teardown.single = workqueue_offline_cpu, 1639 }, 1640 [CPUHP_AP_RCUTREE_ONLINE] = { 1641 .name = "RCU/tree:online", 1642 .startup.single = rcutree_online_cpu, 1643 .teardown.single = rcutree_offline_cpu, 1644 }, 1645 #endif 1646 /* 1647 * The dynamically registered state space is here 1648 */ 1649 1650 #ifdef CONFIG_SMP 1651 /* Last state is scheduler control setting the cpu active */ 1652 [CPUHP_AP_ACTIVE] = { 1653 .name = "sched:active", 1654 .startup.single = sched_cpu_activate, 1655 .teardown.single = sched_cpu_deactivate, 1656 }, 1657 #endif 1658 1659 /* CPU is fully up and running. */ 1660 [CPUHP_ONLINE] = { 1661 .name = "online", 1662 .startup.single = NULL, 1663 .teardown.single = NULL, 1664 }, 1665 }; 1666 1667 /* Sanity check for callbacks */ 1668 static int cpuhp_cb_check(enum cpuhp_state state) 1669 { 1670 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1671 return -EINVAL; 1672 return 0; 1673 } 1674 1675 /* 1676 * Returns a free for dynamic slot assignment of the Online state. The states 1677 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1678 * by having no name assigned. 1679 */ 1680 static int cpuhp_reserve_state(enum cpuhp_state state) 1681 { 1682 enum cpuhp_state i, end; 1683 struct cpuhp_step *step; 1684 1685 switch (state) { 1686 case CPUHP_AP_ONLINE_DYN: 1687 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1688 end = CPUHP_AP_ONLINE_DYN_END; 1689 break; 1690 case CPUHP_BP_PREPARE_DYN: 1691 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1692 end = CPUHP_BP_PREPARE_DYN_END; 1693 break; 1694 default: 1695 return -EINVAL; 1696 } 1697 1698 for (i = state; i <= end; i++, step++) { 1699 if (!step->name) 1700 return i; 1701 } 1702 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1703 return -ENOSPC; 1704 } 1705 1706 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1707 int (*startup)(unsigned int cpu), 1708 int (*teardown)(unsigned int cpu), 1709 bool multi_instance) 1710 { 1711 /* (Un)Install the callbacks for further cpu hotplug operations */ 1712 struct cpuhp_step *sp; 1713 int ret = 0; 1714 1715 /* 1716 * If name is NULL, then the state gets removed. 1717 * 1718 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1719 * the first allocation from these dynamic ranges, so the removal 1720 * would trigger a new allocation and clear the wrong (already 1721 * empty) state, leaving the callbacks of the to be cleared state 1722 * dangling, which causes wreckage on the next hotplug operation. 1723 */ 1724 if (name && (state == CPUHP_AP_ONLINE_DYN || 1725 state == CPUHP_BP_PREPARE_DYN)) { 1726 ret = cpuhp_reserve_state(state); 1727 if (ret < 0) 1728 return ret; 1729 state = ret; 1730 } 1731 sp = cpuhp_get_step(state); 1732 if (name && sp->name) 1733 return -EBUSY; 1734 1735 sp->startup.single = startup; 1736 sp->teardown.single = teardown; 1737 sp->name = name; 1738 sp->multi_instance = multi_instance; 1739 INIT_HLIST_HEAD(&sp->list); 1740 return ret; 1741 } 1742 1743 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1744 { 1745 return cpuhp_get_step(state)->teardown.single; 1746 } 1747 1748 /* 1749 * Call the startup/teardown function for a step either on the AP or 1750 * on the current CPU. 1751 */ 1752 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1753 struct hlist_node *node) 1754 { 1755 struct cpuhp_step *sp = cpuhp_get_step(state); 1756 int ret; 1757 1758 /* 1759 * If there's nothing to do, we done. 1760 * Relies on the union for multi_instance. 1761 */ 1762 if ((bringup && !sp->startup.single) || 1763 (!bringup && !sp->teardown.single)) 1764 return 0; 1765 /* 1766 * The non AP bound callbacks can fail on bringup. On teardown 1767 * e.g. module removal we crash for now. 1768 */ 1769 #ifdef CONFIG_SMP 1770 if (cpuhp_is_ap_state(state)) 1771 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1772 else 1773 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1774 #else 1775 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1776 #endif 1777 BUG_ON(ret && !bringup); 1778 return ret; 1779 } 1780 1781 /* 1782 * Called from __cpuhp_setup_state on a recoverable failure. 1783 * 1784 * Note: The teardown callbacks for rollback are not allowed to fail! 1785 */ 1786 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1787 struct hlist_node *node) 1788 { 1789 int cpu; 1790 1791 /* Roll back the already executed steps on the other cpus */ 1792 for_each_present_cpu(cpu) { 1793 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1794 int cpustate = st->state; 1795 1796 if (cpu >= failedcpu) 1797 break; 1798 1799 /* Did we invoke the startup call on that cpu ? */ 1800 if (cpustate >= state) 1801 cpuhp_issue_call(cpu, state, false, node); 1802 } 1803 } 1804 1805 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1806 struct hlist_node *node, 1807 bool invoke) 1808 { 1809 struct cpuhp_step *sp; 1810 int cpu; 1811 int ret; 1812 1813 lockdep_assert_cpus_held(); 1814 1815 sp = cpuhp_get_step(state); 1816 if (sp->multi_instance == false) 1817 return -EINVAL; 1818 1819 mutex_lock(&cpuhp_state_mutex); 1820 1821 if (!invoke || !sp->startup.multi) 1822 goto add_node; 1823 1824 /* 1825 * Try to call the startup callback for each present cpu 1826 * depending on the hotplug state of the cpu. 1827 */ 1828 for_each_present_cpu(cpu) { 1829 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1830 int cpustate = st->state; 1831 1832 if (cpustate < state) 1833 continue; 1834 1835 ret = cpuhp_issue_call(cpu, state, true, node); 1836 if (ret) { 1837 if (sp->teardown.multi) 1838 cpuhp_rollback_install(cpu, state, node); 1839 goto unlock; 1840 } 1841 } 1842 add_node: 1843 ret = 0; 1844 hlist_add_head(node, &sp->list); 1845 unlock: 1846 mutex_unlock(&cpuhp_state_mutex); 1847 return ret; 1848 } 1849 1850 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1851 bool invoke) 1852 { 1853 int ret; 1854 1855 cpus_read_lock(); 1856 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1857 cpus_read_unlock(); 1858 return ret; 1859 } 1860 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1861 1862 /** 1863 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1864 * @state: The state to setup 1865 * @invoke: If true, the startup function is invoked for cpus where 1866 * cpu state >= @state 1867 * @startup: startup callback function 1868 * @teardown: teardown callback function 1869 * @multi_instance: State is set up for multiple instances which get 1870 * added afterwards. 1871 * 1872 * The caller needs to hold cpus read locked while calling this function. 1873 * Returns: 1874 * On success: 1875 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1876 * 0 for all other states 1877 * On failure: proper (negative) error code 1878 */ 1879 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1880 const char *name, bool invoke, 1881 int (*startup)(unsigned int cpu), 1882 int (*teardown)(unsigned int cpu), 1883 bool multi_instance) 1884 { 1885 int cpu, ret = 0; 1886 bool dynstate; 1887 1888 lockdep_assert_cpus_held(); 1889 1890 if (cpuhp_cb_check(state) || !name) 1891 return -EINVAL; 1892 1893 mutex_lock(&cpuhp_state_mutex); 1894 1895 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1896 multi_instance); 1897 1898 dynstate = state == CPUHP_AP_ONLINE_DYN; 1899 if (ret > 0 && dynstate) { 1900 state = ret; 1901 ret = 0; 1902 } 1903 1904 if (ret || !invoke || !startup) 1905 goto out; 1906 1907 /* 1908 * Try to call the startup callback for each present cpu 1909 * depending on the hotplug state of the cpu. 1910 */ 1911 for_each_present_cpu(cpu) { 1912 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1913 int cpustate = st->state; 1914 1915 if (cpustate < state) 1916 continue; 1917 1918 ret = cpuhp_issue_call(cpu, state, true, NULL); 1919 if (ret) { 1920 if (teardown) 1921 cpuhp_rollback_install(cpu, state, NULL); 1922 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1923 goto out; 1924 } 1925 } 1926 out: 1927 mutex_unlock(&cpuhp_state_mutex); 1928 /* 1929 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1930 * dynamically allocated state in case of success. 1931 */ 1932 if (!ret && dynstate) 1933 return state; 1934 return ret; 1935 } 1936 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1937 1938 int __cpuhp_setup_state(enum cpuhp_state state, 1939 const char *name, bool invoke, 1940 int (*startup)(unsigned int cpu), 1941 int (*teardown)(unsigned int cpu), 1942 bool multi_instance) 1943 { 1944 int ret; 1945 1946 cpus_read_lock(); 1947 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1948 teardown, multi_instance); 1949 cpus_read_unlock(); 1950 return ret; 1951 } 1952 EXPORT_SYMBOL(__cpuhp_setup_state); 1953 1954 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1955 struct hlist_node *node, bool invoke) 1956 { 1957 struct cpuhp_step *sp = cpuhp_get_step(state); 1958 int cpu; 1959 1960 BUG_ON(cpuhp_cb_check(state)); 1961 1962 if (!sp->multi_instance) 1963 return -EINVAL; 1964 1965 cpus_read_lock(); 1966 mutex_lock(&cpuhp_state_mutex); 1967 1968 if (!invoke || !cpuhp_get_teardown_cb(state)) 1969 goto remove; 1970 /* 1971 * Call the teardown callback for each present cpu depending 1972 * on the hotplug state of the cpu. This function is not 1973 * allowed to fail currently! 1974 */ 1975 for_each_present_cpu(cpu) { 1976 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1977 int cpustate = st->state; 1978 1979 if (cpustate >= state) 1980 cpuhp_issue_call(cpu, state, false, node); 1981 } 1982 1983 remove: 1984 hlist_del(node); 1985 mutex_unlock(&cpuhp_state_mutex); 1986 cpus_read_unlock(); 1987 1988 return 0; 1989 } 1990 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1991 1992 /** 1993 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1994 * @state: The state to remove 1995 * @invoke: If true, the teardown function is invoked for cpus where 1996 * cpu state >= @state 1997 * 1998 * The caller needs to hold cpus read locked while calling this function. 1999 * The teardown callback is currently not allowed to fail. Think 2000 * about module removal! 2001 */ 2002 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2003 { 2004 struct cpuhp_step *sp = cpuhp_get_step(state); 2005 int cpu; 2006 2007 BUG_ON(cpuhp_cb_check(state)); 2008 2009 lockdep_assert_cpus_held(); 2010 2011 mutex_lock(&cpuhp_state_mutex); 2012 if (sp->multi_instance) { 2013 WARN(!hlist_empty(&sp->list), 2014 "Error: Removing state %d which has instances left.\n", 2015 state); 2016 goto remove; 2017 } 2018 2019 if (!invoke || !cpuhp_get_teardown_cb(state)) 2020 goto remove; 2021 2022 /* 2023 * Call the teardown callback for each present cpu depending 2024 * on the hotplug state of the cpu. This function is not 2025 * allowed to fail currently! 2026 */ 2027 for_each_present_cpu(cpu) { 2028 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2029 int cpustate = st->state; 2030 2031 if (cpustate >= state) 2032 cpuhp_issue_call(cpu, state, false, NULL); 2033 } 2034 remove: 2035 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2036 mutex_unlock(&cpuhp_state_mutex); 2037 } 2038 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2039 2040 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2041 { 2042 cpus_read_lock(); 2043 __cpuhp_remove_state_cpuslocked(state, invoke); 2044 cpus_read_unlock(); 2045 } 2046 EXPORT_SYMBOL(__cpuhp_remove_state); 2047 2048 #ifdef CONFIG_HOTPLUG_SMT 2049 static void cpuhp_offline_cpu_device(unsigned int cpu) 2050 { 2051 struct device *dev = get_cpu_device(cpu); 2052 2053 dev->offline = true; 2054 /* Tell user space about the state change */ 2055 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2056 } 2057 2058 static void cpuhp_online_cpu_device(unsigned int cpu) 2059 { 2060 struct device *dev = get_cpu_device(cpu); 2061 2062 dev->offline = false; 2063 /* Tell user space about the state change */ 2064 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2065 } 2066 2067 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2068 { 2069 int cpu, ret = 0; 2070 2071 cpu_maps_update_begin(); 2072 for_each_online_cpu(cpu) { 2073 if (topology_is_primary_thread(cpu)) 2074 continue; 2075 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2076 if (ret) 2077 break; 2078 /* 2079 * As this needs to hold the cpu maps lock it's impossible 2080 * to call device_offline() because that ends up calling 2081 * cpu_down() which takes cpu maps lock. cpu maps lock 2082 * needs to be held as this might race against in kernel 2083 * abusers of the hotplug machinery (thermal management). 2084 * 2085 * So nothing would update device:offline state. That would 2086 * leave the sysfs entry stale and prevent onlining after 2087 * smt control has been changed to 'off' again. This is 2088 * called under the sysfs hotplug lock, so it is properly 2089 * serialized against the regular offline usage. 2090 */ 2091 cpuhp_offline_cpu_device(cpu); 2092 } 2093 if (!ret) 2094 cpu_smt_control = ctrlval; 2095 cpu_maps_update_done(); 2096 return ret; 2097 } 2098 2099 int cpuhp_smt_enable(void) 2100 { 2101 int cpu, ret = 0; 2102 2103 cpu_maps_update_begin(); 2104 cpu_smt_control = CPU_SMT_ENABLED; 2105 for_each_present_cpu(cpu) { 2106 /* Skip online CPUs and CPUs on offline nodes */ 2107 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2108 continue; 2109 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2110 if (ret) 2111 break; 2112 /* See comment in cpuhp_smt_disable() */ 2113 cpuhp_online_cpu_device(cpu); 2114 } 2115 cpu_maps_update_done(); 2116 return ret; 2117 } 2118 #endif 2119 2120 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2121 static ssize_t show_cpuhp_state(struct device *dev, 2122 struct device_attribute *attr, char *buf) 2123 { 2124 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2125 2126 return sprintf(buf, "%d\n", st->state); 2127 } 2128 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2129 2130 static ssize_t write_cpuhp_target(struct device *dev, 2131 struct device_attribute *attr, 2132 const char *buf, size_t count) 2133 { 2134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2135 struct cpuhp_step *sp; 2136 int target, ret; 2137 2138 ret = kstrtoint(buf, 10, &target); 2139 if (ret) 2140 return ret; 2141 2142 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2143 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2144 return -EINVAL; 2145 #else 2146 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2147 return -EINVAL; 2148 #endif 2149 2150 ret = lock_device_hotplug_sysfs(); 2151 if (ret) 2152 return ret; 2153 2154 mutex_lock(&cpuhp_state_mutex); 2155 sp = cpuhp_get_step(target); 2156 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2157 mutex_unlock(&cpuhp_state_mutex); 2158 if (ret) 2159 goto out; 2160 2161 if (st->state < target) 2162 ret = cpu_up(dev->id, target); 2163 else 2164 ret = cpu_down(dev->id, target); 2165 out: 2166 unlock_device_hotplug(); 2167 return ret ? ret : count; 2168 } 2169 2170 static ssize_t show_cpuhp_target(struct device *dev, 2171 struct device_attribute *attr, char *buf) 2172 { 2173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2174 2175 return sprintf(buf, "%d\n", st->target); 2176 } 2177 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2178 2179 2180 static ssize_t write_cpuhp_fail(struct device *dev, 2181 struct device_attribute *attr, 2182 const char *buf, size_t count) 2183 { 2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2185 struct cpuhp_step *sp; 2186 int fail, ret; 2187 2188 ret = kstrtoint(buf, 10, &fail); 2189 if (ret) 2190 return ret; 2191 2192 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2193 return -EINVAL; 2194 2195 /* 2196 * Cannot fail STARTING/DYING callbacks. 2197 */ 2198 if (cpuhp_is_atomic_state(fail)) 2199 return -EINVAL; 2200 2201 /* 2202 * Cannot fail anything that doesn't have callbacks. 2203 */ 2204 mutex_lock(&cpuhp_state_mutex); 2205 sp = cpuhp_get_step(fail); 2206 if (!sp->startup.single && !sp->teardown.single) 2207 ret = -EINVAL; 2208 mutex_unlock(&cpuhp_state_mutex); 2209 if (ret) 2210 return ret; 2211 2212 st->fail = fail; 2213 2214 return count; 2215 } 2216 2217 static ssize_t show_cpuhp_fail(struct device *dev, 2218 struct device_attribute *attr, char *buf) 2219 { 2220 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2221 2222 return sprintf(buf, "%d\n", st->fail); 2223 } 2224 2225 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2226 2227 static struct attribute *cpuhp_cpu_attrs[] = { 2228 &dev_attr_state.attr, 2229 &dev_attr_target.attr, 2230 &dev_attr_fail.attr, 2231 NULL 2232 }; 2233 2234 static const struct attribute_group cpuhp_cpu_attr_group = { 2235 .attrs = cpuhp_cpu_attrs, 2236 .name = "hotplug", 2237 NULL 2238 }; 2239 2240 static ssize_t show_cpuhp_states(struct device *dev, 2241 struct device_attribute *attr, char *buf) 2242 { 2243 ssize_t cur, res = 0; 2244 int i; 2245 2246 mutex_lock(&cpuhp_state_mutex); 2247 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2248 struct cpuhp_step *sp = cpuhp_get_step(i); 2249 2250 if (sp->name) { 2251 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2252 buf += cur; 2253 res += cur; 2254 } 2255 } 2256 mutex_unlock(&cpuhp_state_mutex); 2257 return res; 2258 } 2259 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2260 2261 static struct attribute *cpuhp_cpu_root_attrs[] = { 2262 &dev_attr_states.attr, 2263 NULL 2264 }; 2265 2266 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2267 .attrs = cpuhp_cpu_root_attrs, 2268 .name = "hotplug", 2269 NULL 2270 }; 2271 2272 #ifdef CONFIG_HOTPLUG_SMT 2273 2274 static ssize_t 2275 __store_smt_control(struct device *dev, struct device_attribute *attr, 2276 const char *buf, size_t count) 2277 { 2278 int ctrlval, ret; 2279 2280 if (sysfs_streq(buf, "on")) 2281 ctrlval = CPU_SMT_ENABLED; 2282 else if (sysfs_streq(buf, "off")) 2283 ctrlval = CPU_SMT_DISABLED; 2284 else if (sysfs_streq(buf, "forceoff")) 2285 ctrlval = CPU_SMT_FORCE_DISABLED; 2286 else 2287 return -EINVAL; 2288 2289 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2290 return -EPERM; 2291 2292 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2293 return -ENODEV; 2294 2295 ret = lock_device_hotplug_sysfs(); 2296 if (ret) 2297 return ret; 2298 2299 if (ctrlval != cpu_smt_control) { 2300 switch (ctrlval) { 2301 case CPU_SMT_ENABLED: 2302 ret = cpuhp_smt_enable(); 2303 break; 2304 case CPU_SMT_DISABLED: 2305 case CPU_SMT_FORCE_DISABLED: 2306 ret = cpuhp_smt_disable(ctrlval); 2307 break; 2308 } 2309 } 2310 2311 unlock_device_hotplug(); 2312 return ret ? ret : count; 2313 } 2314 2315 #else /* !CONFIG_HOTPLUG_SMT */ 2316 static ssize_t 2317 __store_smt_control(struct device *dev, struct device_attribute *attr, 2318 const char *buf, size_t count) 2319 { 2320 return -ENODEV; 2321 } 2322 #endif /* CONFIG_HOTPLUG_SMT */ 2323 2324 static const char *smt_states[] = { 2325 [CPU_SMT_ENABLED] = "on", 2326 [CPU_SMT_DISABLED] = "off", 2327 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2328 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2329 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2330 }; 2331 2332 static ssize_t 2333 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2334 { 2335 const char *state = smt_states[cpu_smt_control]; 2336 2337 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2338 } 2339 2340 static ssize_t 2341 store_smt_control(struct device *dev, struct device_attribute *attr, 2342 const char *buf, size_t count) 2343 { 2344 return __store_smt_control(dev, attr, buf, count); 2345 } 2346 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2347 2348 static ssize_t 2349 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2350 { 2351 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2352 } 2353 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2354 2355 static struct attribute *cpuhp_smt_attrs[] = { 2356 &dev_attr_control.attr, 2357 &dev_attr_active.attr, 2358 NULL 2359 }; 2360 2361 static const struct attribute_group cpuhp_smt_attr_group = { 2362 .attrs = cpuhp_smt_attrs, 2363 .name = "smt", 2364 NULL 2365 }; 2366 2367 static int __init cpu_smt_sysfs_init(void) 2368 { 2369 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2370 &cpuhp_smt_attr_group); 2371 } 2372 2373 static int __init cpuhp_sysfs_init(void) 2374 { 2375 int cpu, ret; 2376 2377 ret = cpu_smt_sysfs_init(); 2378 if (ret) 2379 return ret; 2380 2381 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2382 &cpuhp_cpu_root_attr_group); 2383 if (ret) 2384 return ret; 2385 2386 for_each_possible_cpu(cpu) { 2387 struct device *dev = get_cpu_device(cpu); 2388 2389 if (!dev) 2390 continue; 2391 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2392 if (ret) 2393 return ret; 2394 } 2395 return 0; 2396 } 2397 device_initcall(cpuhp_sysfs_init); 2398 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2399 2400 /* 2401 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2402 * represents all NR_CPUS bits binary values of 1<<nr. 2403 * 2404 * It is used by cpumask_of() to get a constant address to a CPU 2405 * mask value that has a single bit set only. 2406 */ 2407 2408 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2409 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2410 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2411 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2412 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2413 2414 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2415 2416 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2417 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2418 #if BITS_PER_LONG > 32 2419 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2420 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2421 #endif 2422 }; 2423 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2424 2425 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2426 EXPORT_SYMBOL(cpu_all_bits); 2427 2428 #ifdef CONFIG_INIT_ALL_POSSIBLE 2429 struct cpumask __cpu_possible_mask __read_mostly 2430 = {CPU_BITS_ALL}; 2431 #else 2432 struct cpumask __cpu_possible_mask __read_mostly; 2433 #endif 2434 EXPORT_SYMBOL(__cpu_possible_mask); 2435 2436 struct cpumask __cpu_online_mask __read_mostly; 2437 EXPORT_SYMBOL(__cpu_online_mask); 2438 2439 struct cpumask __cpu_present_mask __read_mostly; 2440 EXPORT_SYMBOL(__cpu_present_mask); 2441 2442 struct cpumask __cpu_active_mask __read_mostly; 2443 EXPORT_SYMBOL(__cpu_active_mask); 2444 2445 atomic_t __num_online_cpus __read_mostly; 2446 EXPORT_SYMBOL(__num_online_cpus); 2447 2448 void init_cpu_present(const struct cpumask *src) 2449 { 2450 cpumask_copy(&__cpu_present_mask, src); 2451 } 2452 2453 void init_cpu_possible(const struct cpumask *src) 2454 { 2455 cpumask_copy(&__cpu_possible_mask, src); 2456 } 2457 2458 void init_cpu_online(const struct cpumask *src) 2459 { 2460 cpumask_copy(&__cpu_online_mask, src); 2461 } 2462 2463 void set_cpu_online(unsigned int cpu, bool online) 2464 { 2465 /* 2466 * atomic_inc/dec() is required to handle the horrid abuse of this 2467 * function by the reboot and kexec code which invoke it from 2468 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2469 * regular CPU hotplug is properly serialized. 2470 * 2471 * Note, that the fact that __num_online_cpus is of type atomic_t 2472 * does not protect readers which are not serialized against 2473 * concurrent hotplug operations. 2474 */ 2475 if (online) { 2476 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2477 atomic_inc(&__num_online_cpus); 2478 } else { 2479 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2480 atomic_dec(&__num_online_cpus); 2481 } 2482 } 2483 2484 /* 2485 * Activate the first processor. 2486 */ 2487 void __init boot_cpu_init(void) 2488 { 2489 int cpu = smp_processor_id(); 2490 2491 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2492 set_cpu_online(cpu, true); 2493 set_cpu_active(cpu, true); 2494 set_cpu_present(cpu, true); 2495 set_cpu_possible(cpu, true); 2496 2497 #ifdef CONFIG_SMP 2498 __boot_cpu_id = cpu; 2499 #endif 2500 } 2501 2502 /* 2503 * Must be called _AFTER_ setting up the per_cpu areas 2504 */ 2505 void __init boot_cpu_hotplug_init(void) 2506 { 2507 #ifdef CONFIG_SMP 2508 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2509 #endif 2510 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2511 } 2512 2513 /* 2514 * These are used for a global "mitigations=" cmdline option for toggling 2515 * optional CPU mitigations. 2516 */ 2517 enum cpu_mitigations { 2518 CPU_MITIGATIONS_OFF, 2519 CPU_MITIGATIONS_AUTO, 2520 CPU_MITIGATIONS_AUTO_NOSMT, 2521 }; 2522 2523 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2524 CPU_MITIGATIONS_AUTO; 2525 2526 static int __init mitigations_parse_cmdline(char *arg) 2527 { 2528 if (!strcmp(arg, "off")) 2529 cpu_mitigations = CPU_MITIGATIONS_OFF; 2530 else if (!strcmp(arg, "auto")) 2531 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2532 else if (!strcmp(arg, "auto,nosmt")) 2533 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2534 else 2535 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2536 arg); 2537 2538 return 0; 2539 } 2540 early_param("mitigations", mitigations_parse_cmdline); 2541 2542 /* mitigations=off */ 2543 bool cpu_mitigations_off(void) 2544 { 2545 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2546 } 2547 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2548 2549 /* mitigations=auto,nosmt */ 2550 bool cpu_mitigations_auto_nosmt(void) 2551 { 2552 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2553 } 2554 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2555