1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bug.h> 21 #include <linux/kthread.h> 22 #include <linux/stop_machine.h> 23 #include <linux/mutex.h> 24 #include <linux/gfp.h> 25 #include <linux/suspend.h> 26 #include <linux/lockdep.h> 27 #include <linux/tick.h> 28 #include <linux/irq.h> 29 #include <linux/nmi.h> 30 #include <linux/smpboot.h> 31 #include <linux/relay.h> 32 #include <linux/slab.h> 33 #include <linux/percpu-rwsem.h> 34 35 #include <trace/events/power.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/cpuhp.h> 38 39 #include "smpboot.h" 40 41 /** 42 * cpuhp_cpu_state - Per cpu hotplug state storage 43 * @state: The current cpu state 44 * @target: The target state 45 * @thread: Pointer to the hotplug thread 46 * @should_run: Thread should execute 47 * @rollback: Perform a rollback 48 * @single: Single callback invocation 49 * @bringup: Single callback bringup or teardown selector 50 * @cb_state: The state for a single callback (install/uninstall) 51 * @result: Result of the operation 52 * @done_up: Signal completion to the issuer of the task for cpu-up 53 * @done_down: Signal completion to the issuer of the task for cpu-down 54 */ 55 struct cpuhp_cpu_state { 56 enum cpuhp_state state; 57 enum cpuhp_state target; 58 enum cpuhp_state fail; 59 #ifdef CONFIG_SMP 60 struct task_struct *thread; 61 bool should_run; 62 bool rollback; 63 bool single; 64 bool bringup; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #ifdef CONFIG_SMP 79 cpumask_t cpus_booted_once_mask; 80 #endif 81 82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 83 static struct lockdep_map cpuhp_state_up_map = 84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 85 static struct lockdep_map cpuhp_state_down_map = 86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 87 88 89 static inline void cpuhp_lock_acquire(bool bringup) 90 { 91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 94 static inline void cpuhp_lock_release(bool bringup) 95 { 96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 97 } 98 #else 99 100 static inline void cpuhp_lock_acquire(bool bringup) { } 101 static inline void cpuhp_lock_release(bool bringup) { } 102 103 #endif 104 105 /** 106 * cpuhp_step - Hotplug state machine step 107 * @name: Name of the step 108 * @startup: Startup function of the step 109 * @teardown: Teardown function of the step 110 * @cant_stop: Bringup/teardown can't be stopped at this step 111 */ 112 struct cpuhp_step { 113 const char *name; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } startup; 119 union { 120 int (*single)(unsigned int cpu); 121 int (*multi)(unsigned int cpu, 122 struct hlist_node *node); 123 } teardown; 124 struct hlist_head list; 125 bool cant_stop; 126 bool multi_instance; 127 }; 128 129 static DEFINE_MUTEX(cpuhp_state_mutex); 130 static struct cpuhp_step cpuhp_hp_states[]; 131 132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 133 { 134 return cpuhp_hp_states + state; 135 } 136 137 /** 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 139 * @cpu: The cpu for which the callback should be invoked 140 * @state: The state to do callbacks for 141 * @bringup: True if the bringup callback should be invoked 142 * @node: For multi-instance, do a single entry callback for install/remove 143 * @lastp: For multi-instance rollback, remember how far we got 144 * 145 * Called from cpu hotplug and from the state register machinery. 146 */ 147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 148 bool bringup, struct hlist_node *node, 149 struct hlist_node **lastp) 150 { 151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 152 struct cpuhp_step *step = cpuhp_get_step(state); 153 int (*cbm)(unsigned int cpu, struct hlist_node *node); 154 int (*cb)(unsigned int cpu); 155 int ret, cnt; 156 157 if (st->fail == state) { 158 st->fail = CPUHP_INVALID; 159 160 if (!(bringup ? step->startup.single : step->teardown.single)) 161 return 0; 162 163 return -EAGAIN; 164 } 165 166 if (!step->multi_instance) { 167 WARN_ON_ONCE(lastp && *lastp); 168 cb = bringup ? step->startup.single : step->teardown.single; 169 if (!cb) 170 return 0; 171 trace_cpuhp_enter(cpu, st->target, state, cb); 172 ret = cb(cpu); 173 trace_cpuhp_exit(cpu, st->state, state, ret); 174 return ret; 175 } 176 cbm = bringup ? step->startup.multi : step->teardown.multi; 177 if (!cbm) 178 return 0; 179 180 /* Single invocation for instance add/remove */ 181 if (node) { 182 WARN_ON_ONCE(lastp && *lastp); 183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 184 ret = cbm(cpu, node); 185 trace_cpuhp_exit(cpu, st->state, state, ret); 186 return ret; 187 } 188 189 /* State transition. Invoke on all instances */ 190 cnt = 0; 191 hlist_for_each(node, &step->list) { 192 if (lastp && node == *lastp) 193 break; 194 195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 196 ret = cbm(cpu, node); 197 trace_cpuhp_exit(cpu, st->state, state, ret); 198 if (ret) { 199 if (!lastp) 200 goto err; 201 202 *lastp = node; 203 return ret; 204 } 205 cnt++; 206 } 207 if (lastp) 208 *lastp = NULL; 209 return 0; 210 err: 211 /* Rollback the instances if one failed */ 212 cbm = !bringup ? step->startup.multi : step->teardown.multi; 213 if (!cbm) 214 return ret; 215 216 hlist_for_each(node, &step->list) { 217 if (!cnt--) 218 break; 219 220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 221 ret = cbm(cpu, node); 222 trace_cpuhp_exit(cpu, st->state, state, ret); 223 /* 224 * Rollback must not fail, 225 */ 226 WARN_ON_ONCE(ret); 227 } 228 return ret; 229 } 230 231 #ifdef CONFIG_SMP 232 static bool cpuhp_is_ap_state(enum cpuhp_state state) 233 { 234 /* 235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 236 * purposes as that state is handled explicitly in cpu_down. 237 */ 238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 239 } 240 241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 242 { 243 struct completion *done = bringup ? &st->done_up : &st->done_down; 244 wait_for_completion(done); 245 } 246 247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 complete(done); 251 } 252 253 /* 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 255 */ 256 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 257 { 258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 259 } 260 261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 262 static DEFINE_MUTEX(cpu_add_remove_lock); 263 bool cpuhp_tasks_frozen; 264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 266 /* 267 * The following two APIs (cpu_maps_update_begin/done) must be used when 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 269 */ 270 void cpu_maps_update_begin(void) 271 { 272 mutex_lock(&cpu_add_remove_lock); 273 } 274 275 void cpu_maps_update_done(void) 276 { 277 mutex_unlock(&cpu_add_remove_lock); 278 } 279 280 /* 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 282 * Should always be manipulated under cpu_add_remove_lock 283 */ 284 static int cpu_hotplug_disabled; 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 290 void cpus_read_lock(void) 291 { 292 percpu_down_read(&cpu_hotplug_lock); 293 } 294 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 296 int cpus_read_trylock(void) 297 { 298 return percpu_down_read_trylock(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_trylock); 301 302 void cpus_read_unlock(void) 303 { 304 percpu_up_read(&cpu_hotplug_lock); 305 } 306 EXPORT_SYMBOL_GPL(cpus_read_unlock); 307 308 void cpus_write_lock(void) 309 { 310 percpu_down_write(&cpu_hotplug_lock); 311 } 312 313 void cpus_write_unlock(void) 314 { 315 percpu_up_write(&cpu_hotplug_lock); 316 } 317 318 void lockdep_assert_cpus_held(void) 319 { 320 /* 321 * We can't have hotplug operations before userspace starts running, 322 * and some init codepaths will knowingly not take the hotplug lock. 323 * This is all valid, so mute lockdep until it makes sense to report 324 * unheld locks. 325 */ 326 if (system_state < SYSTEM_RUNNING) 327 return; 328 329 percpu_rwsem_assert_held(&cpu_hotplug_lock); 330 } 331 332 static void lockdep_acquire_cpus_lock(void) 333 { 334 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 335 } 336 337 static void lockdep_release_cpus_lock(void) 338 { 339 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 340 } 341 342 /* 343 * Wait for currently running CPU hotplug operations to complete (if any) and 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 346 * hotplug path before performing hotplug operations. So acquiring that lock 347 * guarantees mutual exclusion from any currently running hotplug operations. 348 */ 349 void cpu_hotplug_disable(void) 350 { 351 cpu_maps_update_begin(); 352 cpu_hotplug_disabled++; 353 cpu_maps_update_done(); 354 } 355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 356 357 static void __cpu_hotplug_enable(void) 358 { 359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 360 return; 361 cpu_hotplug_disabled--; 362 } 363 364 void cpu_hotplug_enable(void) 365 { 366 cpu_maps_update_begin(); 367 __cpu_hotplug_enable(); 368 cpu_maps_update_done(); 369 } 370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 371 372 #else 373 374 static void lockdep_acquire_cpus_lock(void) 375 { 376 } 377 378 static void lockdep_release_cpus_lock(void) 379 { 380 } 381 382 #endif /* CONFIG_HOTPLUG_CPU */ 383 384 /* 385 * Architectures that need SMT-specific errata handling during SMT hotplug 386 * should override this. 387 */ 388 void __weak arch_smt_update(void) { } 389 390 #ifdef CONFIG_HOTPLUG_SMT 391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 392 393 void __init cpu_smt_disable(bool force) 394 { 395 if (!cpu_smt_possible()) 396 return; 397 398 if (force) { 399 pr_info("SMT: Force disabled\n"); 400 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 401 } else { 402 pr_info("SMT: disabled\n"); 403 cpu_smt_control = CPU_SMT_DISABLED; 404 } 405 } 406 407 /* 408 * The decision whether SMT is supported can only be done after the full 409 * CPU identification. Called from architecture code. 410 */ 411 void __init cpu_smt_check_topology(void) 412 { 413 if (!topology_smt_supported()) 414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 415 } 416 417 static int __init smt_cmdline_disable(char *str) 418 { 419 cpu_smt_disable(str && !strcmp(str, "force")); 420 return 0; 421 } 422 early_param("nosmt", smt_cmdline_disable); 423 424 static inline bool cpu_smt_allowed(unsigned int cpu) 425 { 426 if (cpu_smt_control == CPU_SMT_ENABLED) 427 return true; 428 429 if (topology_is_primary_thread(cpu)) 430 return true; 431 432 /* 433 * On x86 it's required to boot all logical CPUs at least once so 434 * that the init code can get a chance to set CR4.MCE on each 435 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 436 * core will shutdown the machine. 437 */ 438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 439 } 440 441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 442 bool cpu_smt_possible(void) 443 { 444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 446 } 447 EXPORT_SYMBOL_GPL(cpu_smt_possible); 448 #else 449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 450 #endif 451 452 static inline enum cpuhp_state 453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 454 { 455 enum cpuhp_state prev_state = st->state; 456 457 st->rollback = false; 458 st->last = NULL; 459 460 st->target = target; 461 st->single = false; 462 st->bringup = st->state < target; 463 464 return prev_state; 465 } 466 467 static inline void 468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 469 { 470 st->rollback = true; 471 472 /* 473 * If we have st->last we need to undo partial multi_instance of this 474 * state first. Otherwise start undo at the previous state. 475 */ 476 if (!st->last) { 477 if (st->bringup) 478 st->state--; 479 else 480 st->state++; 481 } 482 483 st->target = prev_state; 484 st->bringup = !st->bringup; 485 } 486 487 /* Regular hotplug invocation of the AP hotplug thread */ 488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 489 { 490 if (!st->single && st->state == st->target) 491 return; 492 493 st->result = 0; 494 /* 495 * Make sure the above stores are visible before should_run becomes 496 * true. Paired with the mb() above in cpuhp_thread_fun() 497 */ 498 smp_mb(); 499 st->should_run = true; 500 wake_up_process(st->thread); 501 wait_for_ap_thread(st, st->bringup); 502 } 503 504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 505 { 506 enum cpuhp_state prev_state; 507 int ret; 508 509 prev_state = cpuhp_set_state(st, target); 510 __cpuhp_kick_ap(st); 511 if ((ret = st->result)) { 512 cpuhp_reset_state(st, prev_state); 513 __cpuhp_kick_ap(st); 514 } 515 516 return ret; 517 } 518 519 static int bringup_wait_for_ap(unsigned int cpu) 520 { 521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 522 523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 524 wait_for_ap_thread(st, true); 525 if (WARN_ON_ONCE((!cpu_online(cpu)))) 526 return -ECANCELED; 527 528 /* Unpark the hotplug thread of the target cpu */ 529 kthread_unpark(st->thread); 530 531 /* 532 * SMT soft disabling on X86 requires to bring the CPU out of the 533 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 534 * CPU marked itself as booted_once in notify_cpu_starting() so the 535 * cpu_smt_allowed() check will now return false if this is not the 536 * primary sibling. 537 */ 538 if (!cpu_smt_allowed(cpu)) 539 return -ECANCELED; 540 541 if (st->target <= CPUHP_AP_ONLINE_IDLE) 542 return 0; 543 544 return cpuhp_kick_ap(st, st->target); 545 } 546 547 static int bringup_cpu(unsigned int cpu) 548 { 549 struct task_struct *idle = idle_thread_get(cpu); 550 int ret; 551 552 /* 553 * Some architectures have to walk the irq descriptors to 554 * setup the vector space for the cpu which comes online. 555 * Prevent irq alloc/free across the bringup. 556 */ 557 irq_lock_sparse(); 558 559 /* Arch-specific enabling code. */ 560 ret = __cpu_up(cpu, idle); 561 irq_unlock_sparse(); 562 if (ret) 563 return ret; 564 return bringup_wait_for_ap(cpu); 565 } 566 567 /* 568 * Hotplug state machine related functions 569 */ 570 571 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 572 { 573 for (st->state--; st->state > st->target; st->state--) 574 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 575 } 576 577 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 578 { 579 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 580 return true; 581 /* 582 * When CPU hotplug is disabled, then taking the CPU down is not 583 * possible because takedown_cpu() and the architecture and 584 * subsystem specific mechanisms are not available. So the CPU 585 * which would be completely unplugged again needs to stay around 586 * in the current state. 587 */ 588 return st->state <= CPUHP_BRINGUP_CPU; 589 } 590 591 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 592 enum cpuhp_state target) 593 { 594 enum cpuhp_state prev_state = st->state; 595 int ret = 0; 596 597 while (st->state < target) { 598 st->state++; 599 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 600 if (ret) { 601 if (can_rollback_cpu(st)) { 602 st->target = prev_state; 603 undo_cpu_up(cpu, st); 604 } 605 break; 606 } 607 } 608 return ret; 609 } 610 611 /* 612 * The cpu hotplug threads manage the bringup and teardown of the cpus 613 */ 614 static void cpuhp_create(unsigned int cpu) 615 { 616 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 617 618 init_completion(&st->done_up); 619 init_completion(&st->done_down); 620 } 621 622 static int cpuhp_should_run(unsigned int cpu) 623 { 624 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 625 626 return st->should_run; 627 } 628 629 /* 630 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 631 * callbacks when a state gets [un]installed at runtime. 632 * 633 * Each invocation of this function by the smpboot thread does a single AP 634 * state callback. 635 * 636 * It has 3 modes of operation: 637 * - single: runs st->cb_state 638 * - up: runs ++st->state, while st->state < st->target 639 * - down: runs st->state--, while st->state > st->target 640 * 641 * When complete or on error, should_run is cleared and the completion is fired. 642 */ 643 static void cpuhp_thread_fun(unsigned int cpu) 644 { 645 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 646 bool bringup = st->bringup; 647 enum cpuhp_state state; 648 649 if (WARN_ON_ONCE(!st->should_run)) 650 return; 651 652 /* 653 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 654 * that if we see ->should_run we also see the rest of the state. 655 */ 656 smp_mb(); 657 658 /* 659 * The BP holds the hotplug lock, but we're now running on the AP, 660 * ensure that anybody asserting the lock is held, will actually find 661 * it so. 662 */ 663 lockdep_acquire_cpus_lock(); 664 cpuhp_lock_acquire(bringup); 665 666 if (st->single) { 667 state = st->cb_state; 668 st->should_run = false; 669 } else { 670 if (bringup) { 671 st->state++; 672 state = st->state; 673 st->should_run = (st->state < st->target); 674 WARN_ON_ONCE(st->state > st->target); 675 } else { 676 state = st->state; 677 st->state--; 678 st->should_run = (st->state > st->target); 679 WARN_ON_ONCE(st->state < st->target); 680 } 681 } 682 683 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 684 685 if (cpuhp_is_atomic_state(state)) { 686 local_irq_disable(); 687 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 688 local_irq_enable(); 689 690 /* 691 * STARTING/DYING must not fail! 692 */ 693 WARN_ON_ONCE(st->result); 694 } else { 695 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 696 } 697 698 if (st->result) { 699 /* 700 * If we fail on a rollback, we're up a creek without no 701 * paddle, no way forward, no way back. We loose, thanks for 702 * playing. 703 */ 704 WARN_ON_ONCE(st->rollback); 705 st->should_run = false; 706 } 707 708 cpuhp_lock_release(bringup); 709 lockdep_release_cpus_lock(); 710 711 if (!st->should_run) 712 complete_ap_thread(st, bringup); 713 } 714 715 /* Invoke a single callback on a remote cpu */ 716 static int 717 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 718 struct hlist_node *node) 719 { 720 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 721 int ret; 722 723 if (!cpu_online(cpu)) 724 return 0; 725 726 cpuhp_lock_acquire(false); 727 cpuhp_lock_release(false); 728 729 cpuhp_lock_acquire(true); 730 cpuhp_lock_release(true); 731 732 /* 733 * If we are up and running, use the hotplug thread. For early calls 734 * we invoke the thread function directly. 735 */ 736 if (!st->thread) 737 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 738 739 st->rollback = false; 740 st->last = NULL; 741 742 st->node = node; 743 st->bringup = bringup; 744 st->cb_state = state; 745 st->single = true; 746 747 __cpuhp_kick_ap(st); 748 749 /* 750 * If we failed and did a partial, do a rollback. 751 */ 752 if ((ret = st->result) && st->last) { 753 st->rollback = true; 754 st->bringup = !bringup; 755 756 __cpuhp_kick_ap(st); 757 } 758 759 /* 760 * Clean up the leftovers so the next hotplug operation wont use stale 761 * data. 762 */ 763 st->node = st->last = NULL; 764 return ret; 765 } 766 767 static int cpuhp_kick_ap_work(unsigned int cpu) 768 { 769 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 770 enum cpuhp_state prev_state = st->state; 771 int ret; 772 773 cpuhp_lock_acquire(false); 774 cpuhp_lock_release(false); 775 776 cpuhp_lock_acquire(true); 777 cpuhp_lock_release(true); 778 779 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 780 ret = cpuhp_kick_ap(st, st->target); 781 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 782 783 return ret; 784 } 785 786 static struct smp_hotplug_thread cpuhp_threads = { 787 .store = &cpuhp_state.thread, 788 .create = &cpuhp_create, 789 .thread_should_run = cpuhp_should_run, 790 .thread_fn = cpuhp_thread_fun, 791 .thread_comm = "cpuhp/%u", 792 .selfparking = true, 793 }; 794 795 void __init cpuhp_threads_init(void) 796 { 797 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 798 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 799 } 800 801 #ifdef CONFIG_HOTPLUG_CPU 802 /** 803 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 804 * @cpu: a CPU id 805 * 806 * This function walks all processes, finds a valid mm struct for each one and 807 * then clears a corresponding bit in mm's cpumask. While this all sounds 808 * trivial, there are various non-obvious corner cases, which this function 809 * tries to solve in a safe manner. 810 * 811 * Also note that the function uses a somewhat relaxed locking scheme, so it may 812 * be called only for an already offlined CPU. 813 */ 814 void clear_tasks_mm_cpumask(int cpu) 815 { 816 struct task_struct *p; 817 818 /* 819 * This function is called after the cpu is taken down and marked 820 * offline, so its not like new tasks will ever get this cpu set in 821 * their mm mask. -- Peter Zijlstra 822 * Thus, we may use rcu_read_lock() here, instead of grabbing 823 * full-fledged tasklist_lock. 824 */ 825 WARN_ON(cpu_online(cpu)); 826 rcu_read_lock(); 827 for_each_process(p) { 828 struct task_struct *t; 829 830 /* 831 * Main thread might exit, but other threads may still have 832 * a valid mm. Find one. 833 */ 834 t = find_lock_task_mm(p); 835 if (!t) 836 continue; 837 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 838 task_unlock(t); 839 } 840 rcu_read_unlock(); 841 } 842 843 /* Take this CPU down. */ 844 static int take_cpu_down(void *_param) 845 { 846 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 847 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 848 int err, cpu = smp_processor_id(); 849 int ret; 850 851 /* Ensure this CPU doesn't handle any more interrupts. */ 852 err = __cpu_disable(); 853 if (err < 0) 854 return err; 855 856 /* 857 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 858 * do this step again. 859 */ 860 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 861 st->state--; 862 /* Invoke the former CPU_DYING callbacks */ 863 for (; st->state > target; st->state--) { 864 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 865 /* 866 * DYING must not fail! 867 */ 868 WARN_ON_ONCE(ret); 869 } 870 871 /* Give up timekeeping duties */ 872 tick_handover_do_timer(); 873 /* Remove CPU from timer broadcasting */ 874 tick_offline_cpu(cpu); 875 /* Park the stopper thread */ 876 stop_machine_park(cpu); 877 return 0; 878 } 879 880 static int takedown_cpu(unsigned int cpu) 881 { 882 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 883 int err; 884 885 /* Park the smpboot threads */ 886 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 887 888 /* 889 * Prevent irq alloc/free while the dying cpu reorganizes the 890 * interrupt affinities. 891 */ 892 irq_lock_sparse(); 893 894 /* 895 * So now all preempt/rcu users must observe !cpu_active(). 896 */ 897 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 898 if (err) { 899 /* CPU refused to die */ 900 irq_unlock_sparse(); 901 /* Unpark the hotplug thread so we can rollback there */ 902 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 903 return err; 904 } 905 BUG_ON(cpu_online(cpu)); 906 907 /* 908 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 909 * all runnable tasks from the CPU, there's only the idle task left now 910 * that the migration thread is done doing the stop_machine thing. 911 * 912 * Wait for the stop thread to go away. 913 */ 914 wait_for_ap_thread(st, false); 915 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 916 917 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 918 irq_unlock_sparse(); 919 920 hotplug_cpu__broadcast_tick_pull(cpu); 921 /* This actually kills the CPU. */ 922 __cpu_die(cpu); 923 924 tick_cleanup_dead_cpu(cpu); 925 rcutree_migrate_callbacks(cpu); 926 return 0; 927 } 928 929 static void cpuhp_complete_idle_dead(void *arg) 930 { 931 struct cpuhp_cpu_state *st = arg; 932 933 complete_ap_thread(st, false); 934 } 935 936 void cpuhp_report_idle_dead(void) 937 { 938 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 939 940 BUG_ON(st->state != CPUHP_AP_OFFLINE); 941 rcu_report_dead(smp_processor_id()); 942 st->state = CPUHP_AP_IDLE_DEAD; 943 /* 944 * We cannot call complete after rcu_report_dead() so we delegate it 945 * to an online cpu. 946 */ 947 smp_call_function_single(cpumask_first(cpu_online_mask), 948 cpuhp_complete_idle_dead, st, 0); 949 } 950 951 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 952 { 953 for (st->state++; st->state < st->target; st->state++) 954 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 955 } 956 957 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 958 enum cpuhp_state target) 959 { 960 enum cpuhp_state prev_state = st->state; 961 int ret = 0; 962 963 for (; st->state > target; st->state--) { 964 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 965 if (ret) { 966 st->target = prev_state; 967 if (st->state < prev_state) 968 undo_cpu_down(cpu, st); 969 break; 970 } 971 } 972 return ret; 973 } 974 975 /* Requires cpu_add_remove_lock to be held */ 976 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 977 enum cpuhp_state target) 978 { 979 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 980 int prev_state, ret = 0; 981 982 if (num_online_cpus() == 1) 983 return -EBUSY; 984 985 if (!cpu_present(cpu)) 986 return -EINVAL; 987 988 cpus_write_lock(); 989 990 cpuhp_tasks_frozen = tasks_frozen; 991 992 prev_state = cpuhp_set_state(st, target); 993 /* 994 * If the current CPU state is in the range of the AP hotplug thread, 995 * then we need to kick the thread. 996 */ 997 if (st->state > CPUHP_TEARDOWN_CPU) { 998 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 999 ret = cpuhp_kick_ap_work(cpu); 1000 /* 1001 * The AP side has done the error rollback already. Just 1002 * return the error code.. 1003 */ 1004 if (ret) 1005 goto out; 1006 1007 /* 1008 * We might have stopped still in the range of the AP hotplug 1009 * thread. Nothing to do anymore. 1010 */ 1011 if (st->state > CPUHP_TEARDOWN_CPU) 1012 goto out; 1013 1014 st->target = target; 1015 } 1016 /* 1017 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1018 * to do the further cleanups. 1019 */ 1020 ret = cpuhp_down_callbacks(cpu, st, target); 1021 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1022 cpuhp_reset_state(st, prev_state); 1023 __cpuhp_kick_ap(st); 1024 } 1025 1026 out: 1027 cpus_write_unlock(); 1028 /* 1029 * Do post unplug cleanup. This is still protected against 1030 * concurrent CPU hotplug via cpu_add_remove_lock. 1031 */ 1032 lockup_detector_cleanup(); 1033 arch_smt_update(); 1034 return ret; 1035 } 1036 1037 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1038 { 1039 if (cpu_hotplug_disabled) 1040 return -EBUSY; 1041 return _cpu_down(cpu, 0, target); 1042 } 1043 1044 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1045 { 1046 int err; 1047 1048 cpu_maps_update_begin(); 1049 err = cpu_down_maps_locked(cpu, target); 1050 cpu_maps_update_done(); 1051 return err; 1052 } 1053 1054 /** 1055 * cpu_device_down - Bring down a cpu device 1056 * @dev: Pointer to the cpu device to offline 1057 * 1058 * This function is meant to be used by device core cpu subsystem only. 1059 * 1060 * Other subsystems should use remove_cpu() instead. 1061 */ 1062 int cpu_device_down(struct device *dev) 1063 { 1064 return cpu_down(dev->id, CPUHP_OFFLINE); 1065 } 1066 1067 int remove_cpu(unsigned int cpu) 1068 { 1069 int ret; 1070 1071 lock_device_hotplug(); 1072 ret = device_offline(get_cpu_device(cpu)); 1073 unlock_device_hotplug(); 1074 1075 return ret; 1076 } 1077 EXPORT_SYMBOL_GPL(remove_cpu); 1078 1079 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1080 { 1081 unsigned int cpu; 1082 int error; 1083 1084 cpu_maps_update_begin(); 1085 1086 /* 1087 * Make certain the cpu I'm about to reboot on is online. 1088 * 1089 * This is inline to what migrate_to_reboot_cpu() already do. 1090 */ 1091 if (!cpu_online(primary_cpu)) 1092 primary_cpu = cpumask_first(cpu_online_mask); 1093 1094 for_each_online_cpu(cpu) { 1095 if (cpu == primary_cpu) 1096 continue; 1097 1098 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1099 if (error) { 1100 pr_err("Failed to offline CPU%d - error=%d", 1101 cpu, error); 1102 break; 1103 } 1104 } 1105 1106 /* 1107 * Ensure all but the reboot CPU are offline. 1108 */ 1109 BUG_ON(num_online_cpus() > 1); 1110 1111 /* 1112 * Make sure the CPUs won't be enabled by someone else after this 1113 * point. Kexec will reboot to a new kernel shortly resetting 1114 * everything along the way. 1115 */ 1116 cpu_hotplug_disabled++; 1117 1118 cpu_maps_update_done(); 1119 } 1120 1121 #else 1122 #define takedown_cpu NULL 1123 #endif /*CONFIG_HOTPLUG_CPU*/ 1124 1125 /** 1126 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1127 * @cpu: cpu that just started 1128 * 1129 * It must be called by the arch code on the new cpu, before the new cpu 1130 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1131 */ 1132 void notify_cpu_starting(unsigned int cpu) 1133 { 1134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1135 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1136 int ret; 1137 1138 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1139 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1140 while (st->state < target) { 1141 st->state++; 1142 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1143 /* 1144 * STARTING must not fail! 1145 */ 1146 WARN_ON_ONCE(ret); 1147 } 1148 } 1149 1150 /* 1151 * Called from the idle task. Wake up the controlling task which brings the 1152 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1153 * online bringup to the hotplug thread. 1154 */ 1155 void cpuhp_online_idle(enum cpuhp_state state) 1156 { 1157 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1158 1159 /* Happens for the boot cpu */ 1160 if (state != CPUHP_AP_ONLINE_IDLE) 1161 return; 1162 1163 /* 1164 * Unpart the stopper thread before we start the idle loop (and start 1165 * scheduling); this ensures the stopper task is always available. 1166 */ 1167 stop_machine_unpark(smp_processor_id()); 1168 1169 st->state = CPUHP_AP_ONLINE_IDLE; 1170 complete_ap_thread(st, true); 1171 } 1172 1173 /* Requires cpu_add_remove_lock to be held */ 1174 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1175 { 1176 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1177 struct task_struct *idle; 1178 int ret = 0; 1179 1180 cpus_write_lock(); 1181 1182 if (!cpu_present(cpu)) { 1183 ret = -EINVAL; 1184 goto out; 1185 } 1186 1187 /* 1188 * The caller of cpu_up() might have raced with another 1189 * caller. Nothing to do. 1190 */ 1191 if (st->state >= target) 1192 goto out; 1193 1194 if (st->state == CPUHP_OFFLINE) { 1195 /* Let it fail before we try to bring the cpu up */ 1196 idle = idle_thread_get(cpu); 1197 if (IS_ERR(idle)) { 1198 ret = PTR_ERR(idle); 1199 goto out; 1200 } 1201 } 1202 1203 cpuhp_tasks_frozen = tasks_frozen; 1204 1205 cpuhp_set_state(st, target); 1206 /* 1207 * If the current CPU state is in the range of the AP hotplug thread, 1208 * then we need to kick the thread once more. 1209 */ 1210 if (st->state > CPUHP_BRINGUP_CPU) { 1211 ret = cpuhp_kick_ap_work(cpu); 1212 /* 1213 * The AP side has done the error rollback already. Just 1214 * return the error code.. 1215 */ 1216 if (ret) 1217 goto out; 1218 } 1219 1220 /* 1221 * Try to reach the target state. We max out on the BP at 1222 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1223 * responsible for bringing it up to the target state. 1224 */ 1225 target = min((int)target, CPUHP_BRINGUP_CPU); 1226 ret = cpuhp_up_callbacks(cpu, st, target); 1227 out: 1228 cpus_write_unlock(); 1229 arch_smt_update(); 1230 return ret; 1231 } 1232 1233 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1234 { 1235 int err = 0; 1236 1237 if (!cpu_possible(cpu)) { 1238 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1239 cpu); 1240 #if defined(CONFIG_IA64) 1241 pr_err("please check additional_cpus= boot parameter\n"); 1242 #endif 1243 return -EINVAL; 1244 } 1245 1246 err = try_online_node(cpu_to_node(cpu)); 1247 if (err) 1248 return err; 1249 1250 cpu_maps_update_begin(); 1251 1252 if (cpu_hotplug_disabled) { 1253 err = -EBUSY; 1254 goto out; 1255 } 1256 if (!cpu_smt_allowed(cpu)) { 1257 err = -EPERM; 1258 goto out; 1259 } 1260 1261 err = _cpu_up(cpu, 0, target); 1262 out: 1263 cpu_maps_update_done(); 1264 return err; 1265 } 1266 1267 /** 1268 * cpu_device_up - Bring up a cpu device 1269 * @dev: Pointer to the cpu device to online 1270 * 1271 * This function is meant to be used by device core cpu subsystem only. 1272 * 1273 * Other subsystems should use add_cpu() instead. 1274 */ 1275 int cpu_device_up(struct device *dev) 1276 { 1277 return cpu_up(dev->id, CPUHP_ONLINE); 1278 } 1279 1280 int add_cpu(unsigned int cpu) 1281 { 1282 int ret; 1283 1284 lock_device_hotplug(); 1285 ret = device_online(get_cpu_device(cpu)); 1286 unlock_device_hotplug(); 1287 1288 return ret; 1289 } 1290 EXPORT_SYMBOL_GPL(add_cpu); 1291 1292 /** 1293 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1294 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1295 * 1296 * On some architectures like arm64, we can hibernate on any CPU, but on 1297 * wake up the CPU we hibernated on might be offline as a side effect of 1298 * using maxcpus= for example. 1299 */ 1300 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1301 { 1302 int ret; 1303 1304 if (!cpu_online(sleep_cpu)) { 1305 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1306 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1307 if (ret) { 1308 pr_err("Failed to bring hibernate-CPU up!\n"); 1309 return ret; 1310 } 1311 } 1312 return 0; 1313 } 1314 1315 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1316 { 1317 unsigned int cpu; 1318 1319 for_each_present_cpu(cpu) { 1320 if (num_online_cpus() >= setup_max_cpus) 1321 break; 1322 if (!cpu_online(cpu)) 1323 cpu_up(cpu, CPUHP_ONLINE); 1324 } 1325 } 1326 1327 #ifdef CONFIG_PM_SLEEP_SMP 1328 static cpumask_var_t frozen_cpus; 1329 1330 int __freeze_secondary_cpus(int primary, bool suspend) 1331 { 1332 int cpu, error = 0; 1333 1334 cpu_maps_update_begin(); 1335 if (primary == -1) { 1336 primary = cpumask_first(cpu_online_mask); 1337 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1338 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1339 } else { 1340 if (!cpu_online(primary)) 1341 primary = cpumask_first(cpu_online_mask); 1342 } 1343 1344 /* 1345 * We take down all of the non-boot CPUs in one shot to avoid races 1346 * with the userspace trying to use the CPU hotplug at the same time 1347 */ 1348 cpumask_clear(frozen_cpus); 1349 1350 pr_info("Disabling non-boot CPUs ...\n"); 1351 for_each_online_cpu(cpu) { 1352 if (cpu == primary) 1353 continue; 1354 1355 if (suspend && pm_wakeup_pending()) { 1356 pr_info("Wakeup pending. Abort CPU freeze\n"); 1357 error = -EBUSY; 1358 break; 1359 } 1360 1361 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1362 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1363 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1364 if (!error) 1365 cpumask_set_cpu(cpu, frozen_cpus); 1366 else { 1367 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1368 break; 1369 } 1370 } 1371 1372 if (!error) 1373 BUG_ON(num_online_cpus() > 1); 1374 else 1375 pr_err("Non-boot CPUs are not disabled\n"); 1376 1377 /* 1378 * Make sure the CPUs won't be enabled by someone else. We need to do 1379 * this even in case of failure as all disable_nonboot_cpus() users are 1380 * supposed to do enable_nonboot_cpus() on the failure path. 1381 */ 1382 cpu_hotplug_disabled++; 1383 1384 cpu_maps_update_done(); 1385 return error; 1386 } 1387 1388 void __weak arch_enable_nonboot_cpus_begin(void) 1389 { 1390 } 1391 1392 void __weak arch_enable_nonboot_cpus_end(void) 1393 { 1394 } 1395 1396 void enable_nonboot_cpus(void) 1397 { 1398 int cpu, error; 1399 1400 /* Allow everyone to use the CPU hotplug again */ 1401 cpu_maps_update_begin(); 1402 __cpu_hotplug_enable(); 1403 if (cpumask_empty(frozen_cpus)) 1404 goto out; 1405 1406 pr_info("Enabling non-boot CPUs ...\n"); 1407 1408 arch_enable_nonboot_cpus_begin(); 1409 1410 for_each_cpu(cpu, frozen_cpus) { 1411 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1412 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1413 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1414 if (!error) { 1415 pr_info("CPU%d is up\n", cpu); 1416 continue; 1417 } 1418 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1419 } 1420 1421 arch_enable_nonboot_cpus_end(); 1422 1423 cpumask_clear(frozen_cpus); 1424 out: 1425 cpu_maps_update_done(); 1426 } 1427 1428 static int __init alloc_frozen_cpus(void) 1429 { 1430 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1431 return -ENOMEM; 1432 return 0; 1433 } 1434 core_initcall(alloc_frozen_cpus); 1435 1436 /* 1437 * When callbacks for CPU hotplug notifications are being executed, we must 1438 * ensure that the state of the system with respect to the tasks being frozen 1439 * or not, as reported by the notification, remains unchanged *throughout the 1440 * duration* of the execution of the callbacks. 1441 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1442 * 1443 * This synchronization is implemented by mutually excluding regular CPU 1444 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1445 * Hibernate notifications. 1446 */ 1447 static int 1448 cpu_hotplug_pm_callback(struct notifier_block *nb, 1449 unsigned long action, void *ptr) 1450 { 1451 switch (action) { 1452 1453 case PM_SUSPEND_PREPARE: 1454 case PM_HIBERNATION_PREPARE: 1455 cpu_hotplug_disable(); 1456 break; 1457 1458 case PM_POST_SUSPEND: 1459 case PM_POST_HIBERNATION: 1460 cpu_hotplug_enable(); 1461 break; 1462 1463 default: 1464 return NOTIFY_DONE; 1465 } 1466 1467 return NOTIFY_OK; 1468 } 1469 1470 1471 static int __init cpu_hotplug_pm_sync_init(void) 1472 { 1473 /* 1474 * cpu_hotplug_pm_callback has higher priority than x86 1475 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1476 * to disable cpu hotplug to avoid cpu hotplug race. 1477 */ 1478 pm_notifier(cpu_hotplug_pm_callback, 0); 1479 return 0; 1480 } 1481 core_initcall(cpu_hotplug_pm_sync_init); 1482 1483 #endif /* CONFIG_PM_SLEEP_SMP */ 1484 1485 int __boot_cpu_id; 1486 1487 #endif /* CONFIG_SMP */ 1488 1489 /* Boot processor state steps */ 1490 static struct cpuhp_step cpuhp_hp_states[] = { 1491 [CPUHP_OFFLINE] = { 1492 .name = "offline", 1493 .startup.single = NULL, 1494 .teardown.single = NULL, 1495 }, 1496 #ifdef CONFIG_SMP 1497 [CPUHP_CREATE_THREADS]= { 1498 .name = "threads:prepare", 1499 .startup.single = smpboot_create_threads, 1500 .teardown.single = NULL, 1501 .cant_stop = true, 1502 }, 1503 [CPUHP_PERF_PREPARE] = { 1504 .name = "perf:prepare", 1505 .startup.single = perf_event_init_cpu, 1506 .teardown.single = perf_event_exit_cpu, 1507 }, 1508 [CPUHP_WORKQUEUE_PREP] = { 1509 .name = "workqueue:prepare", 1510 .startup.single = workqueue_prepare_cpu, 1511 .teardown.single = NULL, 1512 }, 1513 [CPUHP_HRTIMERS_PREPARE] = { 1514 .name = "hrtimers:prepare", 1515 .startup.single = hrtimers_prepare_cpu, 1516 .teardown.single = hrtimers_dead_cpu, 1517 }, 1518 [CPUHP_SMPCFD_PREPARE] = { 1519 .name = "smpcfd:prepare", 1520 .startup.single = smpcfd_prepare_cpu, 1521 .teardown.single = smpcfd_dead_cpu, 1522 }, 1523 [CPUHP_RELAY_PREPARE] = { 1524 .name = "relay:prepare", 1525 .startup.single = relay_prepare_cpu, 1526 .teardown.single = NULL, 1527 }, 1528 [CPUHP_SLAB_PREPARE] = { 1529 .name = "slab:prepare", 1530 .startup.single = slab_prepare_cpu, 1531 .teardown.single = slab_dead_cpu, 1532 }, 1533 [CPUHP_RCUTREE_PREP] = { 1534 .name = "RCU/tree:prepare", 1535 .startup.single = rcutree_prepare_cpu, 1536 .teardown.single = rcutree_dead_cpu, 1537 }, 1538 /* 1539 * On the tear-down path, timers_dead_cpu() must be invoked 1540 * before blk_mq_queue_reinit_notify() from notify_dead(), 1541 * otherwise a RCU stall occurs. 1542 */ 1543 [CPUHP_TIMERS_PREPARE] = { 1544 .name = "timers:prepare", 1545 .startup.single = timers_prepare_cpu, 1546 .teardown.single = timers_dead_cpu, 1547 }, 1548 /* Kicks the plugged cpu into life */ 1549 [CPUHP_BRINGUP_CPU] = { 1550 .name = "cpu:bringup", 1551 .startup.single = bringup_cpu, 1552 .teardown.single = NULL, 1553 .cant_stop = true, 1554 }, 1555 /* Final state before CPU kills itself */ 1556 [CPUHP_AP_IDLE_DEAD] = { 1557 .name = "idle:dead", 1558 }, 1559 /* 1560 * Last state before CPU enters the idle loop to die. Transient state 1561 * for synchronization. 1562 */ 1563 [CPUHP_AP_OFFLINE] = { 1564 .name = "ap:offline", 1565 .cant_stop = true, 1566 }, 1567 /* First state is scheduler control. Interrupts are disabled */ 1568 [CPUHP_AP_SCHED_STARTING] = { 1569 .name = "sched:starting", 1570 .startup.single = sched_cpu_starting, 1571 .teardown.single = sched_cpu_dying, 1572 }, 1573 [CPUHP_AP_RCUTREE_DYING] = { 1574 .name = "RCU/tree:dying", 1575 .startup.single = NULL, 1576 .teardown.single = rcutree_dying_cpu, 1577 }, 1578 [CPUHP_AP_SMPCFD_DYING] = { 1579 .name = "smpcfd:dying", 1580 .startup.single = NULL, 1581 .teardown.single = smpcfd_dying_cpu, 1582 }, 1583 /* Entry state on starting. Interrupts enabled from here on. Transient 1584 * state for synchronsization */ 1585 [CPUHP_AP_ONLINE] = { 1586 .name = "ap:online", 1587 }, 1588 /* 1589 * Handled on controll processor until the plugged processor manages 1590 * this itself. 1591 */ 1592 [CPUHP_TEARDOWN_CPU] = { 1593 .name = "cpu:teardown", 1594 .startup.single = NULL, 1595 .teardown.single = takedown_cpu, 1596 .cant_stop = true, 1597 }, 1598 /* Handle smpboot threads park/unpark */ 1599 [CPUHP_AP_SMPBOOT_THREADS] = { 1600 .name = "smpboot/threads:online", 1601 .startup.single = smpboot_unpark_threads, 1602 .teardown.single = smpboot_park_threads, 1603 }, 1604 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1605 .name = "irq/affinity:online", 1606 .startup.single = irq_affinity_online_cpu, 1607 .teardown.single = NULL, 1608 }, 1609 [CPUHP_AP_PERF_ONLINE] = { 1610 .name = "perf:online", 1611 .startup.single = perf_event_init_cpu, 1612 .teardown.single = perf_event_exit_cpu, 1613 }, 1614 [CPUHP_AP_WATCHDOG_ONLINE] = { 1615 .name = "lockup_detector:online", 1616 .startup.single = lockup_detector_online_cpu, 1617 .teardown.single = lockup_detector_offline_cpu, 1618 }, 1619 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1620 .name = "workqueue:online", 1621 .startup.single = workqueue_online_cpu, 1622 .teardown.single = workqueue_offline_cpu, 1623 }, 1624 [CPUHP_AP_RCUTREE_ONLINE] = { 1625 .name = "RCU/tree:online", 1626 .startup.single = rcutree_online_cpu, 1627 .teardown.single = rcutree_offline_cpu, 1628 }, 1629 #endif 1630 /* 1631 * The dynamically registered state space is here 1632 */ 1633 1634 #ifdef CONFIG_SMP 1635 /* Last state is scheduler control setting the cpu active */ 1636 [CPUHP_AP_ACTIVE] = { 1637 .name = "sched:active", 1638 .startup.single = sched_cpu_activate, 1639 .teardown.single = sched_cpu_deactivate, 1640 }, 1641 #endif 1642 1643 /* CPU is fully up and running. */ 1644 [CPUHP_ONLINE] = { 1645 .name = "online", 1646 .startup.single = NULL, 1647 .teardown.single = NULL, 1648 }, 1649 }; 1650 1651 /* Sanity check for callbacks */ 1652 static int cpuhp_cb_check(enum cpuhp_state state) 1653 { 1654 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1655 return -EINVAL; 1656 return 0; 1657 } 1658 1659 /* 1660 * Returns a free for dynamic slot assignment of the Online state. The states 1661 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1662 * by having no name assigned. 1663 */ 1664 static int cpuhp_reserve_state(enum cpuhp_state state) 1665 { 1666 enum cpuhp_state i, end; 1667 struct cpuhp_step *step; 1668 1669 switch (state) { 1670 case CPUHP_AP_ONLINE_DYN: 1671 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1672 end = CPUHP_AP_ONLINE_DYN_END; 1673 break; 1674 case CPUHP_BP_PREPARE_DYN: 1675 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1676 end = CPUHP_BP_PREPARE_DYN_END; 1677 break; 1678 default: 1679 return -EINVAL; 1680 } 1681 1682 for (i = state; i <= end; i++, step++) { 1683 if (!step->name) 1684 return i; 1685 } 1686 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1687 return -ENOSPC; 1688 } 1689 1690 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1691 int (*startup)(unsigned int cpu), 1692 int (*teardown)(unsigned int cpu), 1693 bool multi_instance) 1694 { 1695 /* (Un)Install the callbacks for further cpu hotplug operations */ 1696 struct cpuhp_step *sp; 1697 int ret = 0; 1698 1699 /* 1700 * If name is NULL, then the state gets removed. 1701 * 1702 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1703 * the first allocation from these dynamic ranges, so the removal 1704 * would trigger a new allocation and clear the wrong (already 1705 * empty) state, leaving the callbacks of the to be cleared state 1706 * dangling, which causes wreckage on the next hotplug operation. 1707 */ 1708 if (name && (state == CPUHP_AP_ONLINE_DYN || 1709 state == CPUHP_BP_PREPARE_DYN)) { 1710 ret = cpuhp_reserve_state(state); 1711 if (ret < 0) 1712 return ret; 1713 state = ret; 1714 } 1715 sp = cpuhp_get_step(state); 1716 if (name && sp->name) 1717 return -EBUSY; 1718 1719 sp->startup.single = startup; 1720 sp->teardown.single = teardown; 1721 sp->name = name; 1722 sp->multi_instance = multi_instance; 1723 INIT_HLIST_HEAD(&sp->list); 1724 return ret; 1725 } 1726 1727 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1728 { 1729 return cpuhp_get_step(state)->teardown.single; 1730 } 1731 1732 /* 1733 * Call the startup/teardown function for a step either on the AP or 1734 * on the current CPU. 1735 */ 1736 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1737 struct hlist_node *node) 1738 { 1739 struct cpuhp_step *sp = cpuhp_get_step(state); 1740 int ret; 1741 1742 /* 1743 * If there's nothing to do, we done. 1744 * Relies on the union for multi_instance. 1745 */ 1746 if ((bringup && !sp->startup.single) || 1747 (!bringup && !sp->teardown.single)) 1748 return 0; 1749 /* 1750 * The non AP bound callbacks can fail on bringup. On teardown 1751 * e.g. module removal we crash for now. 1752 */ 1753 #ifdef CONFIG_SMP 1754 if (cpuhp_is_ap_state(state)) 1755 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1756 else 1757 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1758 #else 1759 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1760 #endif 1761 BUG_ON(ret && !bringup); 1762 return ret; 1763 } 1764 1765 /* 1766 * Called from __cpuhp_setup_state on a recoverable failure. 1767 * 1768 * Note: The teardown callbacks for rollback are not allowed to fail! 1769 */ 1770 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1771 struct hlist_node *node) 1772 { 1773 int cpu; 1774 1775 /* Roll back the already executed steps on the other cpus */ 1776 for_each_present_cpu(cpu) { 1777 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1778 int cpustate = st->state; 1779 1780 if (cpu >= failedcpu) 1781 break; 1782 1783 /* Did we invoke the startup call on that cpu ? */ 1784 if (cpustate >= state) 1785 cpuhp_issue_call(cpu, state, false, node); 1786 } 1787 } 1788 1789 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1790 struct hlist_node *node, 1791 bool invoke) 1792 { 1793 struct cpuhp_step *sp; 1794 int cpu; 1795 int ret; 1796 1797 lockdep_assert_cpus_held(); 1798 1799 sp = cpuhp_get_step(state); 1800 if (sp->multi_instance == false) 1801 return -EINVAL; 1802 1803 mutex_lock(&cpuhp_state_mutex); 1804 1805 if (!invoke || !sp->startup.multi) 1806 goto add_node; 1807 1808 /* 1809 * Try to call the startup callback for each present cpu 1810 * depending on the hotplug state of the cpu. 1811 */ 1812 for_each_present_cpu(cpu) { 1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1814 int cpustate = st->state; 1815 1816 if (cpustate < state) 1817 continue; 1818 1819 ret = cpuhp_issue_call(cpu, state, true, node); 1820 if (ret) { 1821 if (sp->teardown.multi) 1822 cpuhp_rollback_install(cpu, state, node); 1823 goto unlock; 1824 } 1825 } 1826 add_node: 1827 ret = 0; 1828 hlist_add_head(node, &sp->list); 1829 unlock: 1830 mutex_unlock(&cpuhp_state_mutex); 1831 return ret; 1832 } 1833 1834 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1835 bool invoke) 1836 { 1837 int ret; 1838 1839 cpus_read_lock(); 1840 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1841 cpus_read_unlock(); 1842 return ret; 1843 } 1844 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1845 1846 /** 1847 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1848 * @state: The state to setup 1849 * @invoke: If true, the startup function is invoked for cpus where 1850 * cpu state >= @state 1851 * @startup: startup callback function 1852 * @teardown: teardown callback function 1853 * @multi_instance: State is set up for multiple instances which get 1854 * added afterwards. 1855 * 1856 * The caller needs to hold cpus read locked while calling this function. 1857 * Returns: 1858 * On success: 1859 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1860 * 0 for all other states 1861 * On failure: proper (negative) error code 1862 */ 1863 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1864 const char *name, bool invoke, 1865 int (*startup)(unsigned int cpu), 1866 int (*teardown)(unsigned int cpu), 1867 bool multi_instance) 1868 { 1869 int cpu, ret = 0; 1870 bool dynstate; 1871 1872 lockdep_assert_cpus_held(); 1873 1874 if (cpuhp_cb_check(state) || !name) 1875 return -EINVAL; 1876 1877 mutex_lock(&cpuhp_state_mutex); 1878 1879 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1880 multi_instance); 1881 1882 dynstate = state == CPUHP_AP_ONLINE_DYN; 1883 if (ret > 0 && dynstate) { 1884 state = ret; 1885 ret = 0; 1886 } 1887 1888 if (ret || !invoke || !startup) 1889 goto out; 1890 1891 /* 1892 * Try to call the startup callback for each present cpu 1893 * depending on the hotplug state of the cpu. 1894 */ 1895 for_each_present_cpu(cpu) { 1896 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1897 int cpustate = st->state; 1898 1899 if (cpustate < state) 1900 continue; 1901 1902 ret = cpuhp_issue_call(cpu, state, true, NULL); 1903 if (ret) { 1904 if (teardown) 1905 cpuhp_rollback_install(cpu, state, NULL); 1906 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1907 goto out; 1908 } 1909 } 1910 out: 1911 mutex_unlock(&cpuhp_state_mutex); 1912 /* 1913 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1914 * dynamically allocated state in case of success. 1915 */ 1916 if (!ret && dynstate) 1917 return state; 1918 return ret; 1919 } 1920 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1921 1922 int __cpuhp_setup_state(enum cpuhp_state state, 1923 const char *name, bool invoke, 1924 int (*startup)(unsigned int cpu), 1925 int (*teardown)(unsigned int cpu), 1926 bool multi_instance) 1927 { 1928 int ret; 1929 1930 cpus_read_lock(); 1931 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1932 teardown, multi_instance); 1933 cpus_read_unlock(); 1934 return ret; 1935 } 1936 EXPORT_SYMBOL(__cpuhp_setup_state); 1937 1938 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1939 struct hlist_node *node, bool invoke) 1940 { 1941 struct cpuhp_step *sp = cpuhp_get_step(state); 1942 int cpu; 1943 1944 BUG_ON(cpuhp_cb_check(state)); 1945 1946 if (!sp->multi_instance) 1947 return -EINVAL; 1948 1949 cpus_read_lock(); 1950 mutex_lock(&cpuhp_state_mutex); 1951 1952 if (!invoke || !cpuhp_get_teardown_cb(state)) 1953 goto remove; 1954 /* 1955 * Call the teardown callback for each present cpu depending 1956 * on the hotplug state of the cpu. This function is not 1957 * allowed to fail currently! 1958 */ 1959 for_each_present_cpu(cpu) { 1960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1961 int cpustate = st->state; 1962 1963 if (cpustate >= state) 1964 cpuhp_issue_call(cpu, state, false, node); 1965 } 1966 1967 remove: 1968 hlist_del(node); 1969 mutex_unlock(&cpuhp_state_mutex); 1970 cpus_read_unlock(); 1971 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1975 1976 /** 1977 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1978 * @state: The state to remove 1979 * @invoke: If true, the teardown function is invoked for cpus where 1980 * cpu state >= @state 1981 * 1982 * The caller needs to hold cpus read locked while calling this function. 1983 * The teardown callback is currently not allowed to fail. Think 1984 * about module removal! 1985 */ 1986 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1987 { 1988 struct cpuhp_step *sp = cpuhp_get_step(state); 1989 int cpu; 1990 1991 BUG_ON(cpuhp_cb_check(state)); 1992 1993 lockdep_assert_cpus_held(); 1994 1995 mutex_lock(&cpuhp_state_mutex); 1996 if (sp->multi_instance) { 1997 WARN(!hlist_empty(&sp->list), 1998 "Error: Removing state %d which has instances left.\n", 1999 state); 2000 goto remove; 2001 } 2002 2003 if (!invoke || !cpuhp_get_teardown_cb(state)) 2004 goto remove; 2005 2006 /* 2007 * Call the teardown callback for each present cpu depending 2008 * on the hotplug state of the cpu. This function is not 2009 * allowed to fail currently! 2010 */ 2011 for_each_present_cpu(cpu) { 2012 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2013 int cpustate = st->state; 2014 2015 if (cpustate >= state) 2016 cpuhp_issue_call(cpu, state, false, NULL); 2017 } 2018 remove: 2019 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2020 mutex_unlock(&cpuhp_state_mutex); 2021 } 2022 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2023 2024 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2025 { 2026 cpus_read_lock(); 2027 __cpuhp_remove_state_cpuslocked(state, invoke); 2028 cpus_read_unlock(); 2029 } 2030 EXPORT_SYMBOL(__cpuhp_remove_state); 2031 2032 #ifdef CONFIG_HOTPLUG_SMT 2033 static void cpuhp_offline_cpu_device(unsigned int cpu) 2034 { 2035 struct device *dev = get_cpu_device(cpu); 2036 2037 dev->offline = true; 2038 /* Tell user space about the state change */ 2039 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2040 } 2041 2042 static void cpuhp_online_cpu_device(unsigned int cpu) 2043 { 2044 struct device *dev = get_cpu_device(cpu); 2045 2046 dev->offline = false; 2047 /* Tell user space about the state change */ 2048 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2049 } 2050 2051 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2052 { 2053 int cpu, ret = 0; 2054 2055 cpu_maps_update_begin(); 2056 for_each_online_cpu(cpu) { 2057 if (topology_is_primary_thread(cpu)) 2058 continue; 2059 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2060 if (ret) 2061 break; 2062 /* 2063 * As this needs to hold the cpu maps lock it's impossible 2064 * to call device_offline() because that ends up calling 2065 * cpu_down() which takes cpu maps lock. cpu maps lock 2066 * needs to be held as this might race against in kernel 2067 * abusers of the hotplug machinery (thermal management). 2068 * 2069 * So nothing would update device:offline state. That would 2070 * leave the sysfs entry stale and prevent onlining after 2071 * smt control has been changed to 'off' again. This is 2072 * called under the sysfs hotplug lock, so it is properly 2073 * serialized against the regular offline usage. 2074 */ 2075 cpuhp_offline_cpu_device(cpu); 2076 } 2077 if (!ret) 2078 cpu_smt_control = ctrlval; 2079 cpu_maps_update_done(); 2080 return ret; 2081 } 2082 2083 int cpuhp_smt_enable(void) 2084 { 2085 int cpu, ret = 0; 2086 2087 cpu_maps_update_begin(); 2088 cpu_smt_control = CPU_SMT_ENABLED; 2089 for_each_present_cpu(cpu) { 2090 /* Skip online CPUs and CPUs on offline nodes */ 2091 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2092 continue; 2093 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2094 if (ret) 2095 break; 2096 /* See comment in cpuhp_smt_disable() */ 2097 cpuhp_online_cpu_device(cpu); 2098 } 2099 cpu_maps_update_done(); 2100 return ret; 2101 } 2102 #endif 2103 2104 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2105 static ssize_t show_cpuhp_state(struct device *dev, 2106 struct device_attribute *attr, char *buf) 2107 { 2108 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2109 2110 return sprintf(buf, "%d\n", st->state); 2111 } 2112 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2113 2114 static ssize_t write_cpuhp_target(struct device *dev, 2115 struct device_attribute *attr, 2116 const char *buf, size_t count) 2117 { 2118 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2119 struct cpuhp_step *sp; 2120 int target, ret; 2121 2122 ret = kstrtoint(buf, 10, &target); 2123 if (ret) 2124 return ret; 2125 2126 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2127 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2128 return -EINVAL; 2129 #else 2130 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2131 return -EINVAL; 2132 #endif 2133 2134 ret = lock_device_hotplug_sysfs(); 2135 if (ret) 2136 return ret; 2137 2138 mutex_lock(&cpuhp_state_mutex); 2139 sp = cpuhp_get_step(target); 2140 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2141 mutex_unlock(&cpuhp_state_mutex); 2142 if (ret) 2143 goto out; 2144 2145 if (st->state < target) 2146 ret = cpu_up(dev->id, target); 2147 else 2148 ret = cpu_down(dev->id, target); 2149 out: 2150 unlock_device_hotplug(); 2151 return ret ? ret : count; 2152 } 2153 2154 static ssize_t show_cpuhp_target(struct device *dev, 2155 struct device_attribute *attr, char *buf) 2156 { 2157 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2158 2159 return sprintf(buf, "%d\n", st->target); 2160 } 2161 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2162 2163 2164 static ssize_t write_cpuhp_fail(struct device *dev, 2165 struct device_attribute *attr, 2166 const char *buf, size_t count) 2167 { 2168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2169 struct cpuhp_step *sp; 2170 int fail, ret; 2171 2172 ret = kstrtoint(buf, 10, &fail); 2173 if (ret) 2174 return ret; 2175 2176 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2177 return -EINVAL; 2178 2179 /* 2180 * Cannot fail STARTING/DYING callbacks. 2181 */ 2182 if (cpuhp_is_atomic_state(fail)) 2183 return -EINVAL; 2184 2185 /* 2186 * Cannot fail anything that doesn't have callbacks. 2187 */ 2188 mutex_lock(&cpuhp_state_mutex); 2189 sp = cpuhp_get_step(fail); 2190 if (!sp->startup.single && !sp->teardown.single) 2191 ret = -EINVAL; 2192 mutex_unlock(&cpuhp_state_mutex); 2193 if (ret) 2194 return ret; 2195 2196 st->fail = fail; 2197 2198 return count; 2199 } 2200 2201 static ssize_t show_cpuhp_fail(struct device *dev, 2202 struct device_attribute *attr, char *buf) 2203 { 2204 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2205 2206 return sprintf(buf, "%d\n", st->fail); 2207 } 2208 2209 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2210 2211 static struct attribute *cpuhp_cpu_attrs[] = { 2212 &dev_attr_state.attr, 2213 &dev_attr_target.attr, 2214 &dev_attr_fail.attr, 2215 NULL 2216 }; 2217 2218 static const struct attribute_group cpuhp_cpu_attr_group = { 2219 .attrs = cpuhp_cpu_attrs, 2220 .name = "hotplug", 2221 NULL 2222 }; 2223 2224 static ssize_t show_cpuhp_states(struct device *dev, 2225 struct device_attribute *attr, char *buf) 2226 { 2227 ssize_t cur, res = 0; 2228 int i; 2229 2230 mutex_lock(&cpuhp_state_mutex); 2231 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2232 struct cpuhp_step *sp = cpuhp_get_step(i); 2233 2234 if (sp->name) { 2235 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2236 buf += cur; 2237 res += cur; 2238 } 2239 } 2240 mutex_unlock(&cpuhp_state_mutex); 2241 return res; 2242 } 2243 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2244 2245 static struct attribute *cpuhp_cpu_root_attrs[] = { 2246 &dev_attr_states.attr, 2247 NULL 2248 }; 2249 2250 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2251 .attrs = cpuhp_cpu_root_attrs, 2252 .name = "hotplug", 2253 NULL 2254 }; 2255 2256 #ifdef CONFIG_HOTPLUG_SMT 2257 2258 static ssize_t 2259 __store_smt_control(struct device *dev, struct device_attribute *attr, 2260 const char *buf, size_t count) 2261 { 2262 int ctrlval, ret; 2263 2264 if (sysfs_streq(buf, "on")) 2265 ctrlval = CPU_SMT_ENABLED; 2266 else if (sysfs_streq(buf, "off")) 2267 ctrlval = CPU_SMT_DISABLED; 2268 else if (sysfs_streq(buf, "forceoff")) 2269 ctrlval = CPU_SMT_FORCE_DISABLED; 2270 else 2271 return -EINVAL; 2272 2273 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2274 return -EPERM; 2275 2276 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2277 return -ENODEV; 2278 2279 ret = lock_device_hotplug_sysfs(); 2280 if (ret) 2281 return ret; 2282 2283 if (ctrlval != cpu_smt_control) { 2284 switch (ctrlval) { 2285 case CPU_SMT_ENABLED: 2286 ret = cpuhp_smt_enable(); 2287 break; 2288 case CPU_SMT_DISABLED: 2289 case CPU_SMT_FORCE_DISABLED: 2290 ret = cpuhp_smt_disable(ctrlval); 2291 break; 2292 } 2293 } 2294 2295 unlock_device_hotplug(); 2296 return ret ? ret : count; 2297 } 2298 2299 #else /* !CONFIG_HOTPLUG_SMT */ 2300 static ssize_t 2301 __store_smt_control(struct device *dev, struct device_attribute *attr, 2302 const char *buf, size_t count) 2303 { 2304 return -ENODEV; 2305 } 2306 #endif /* CONFIG_HOTPLUG_SMT */ 2307 2308 static const char *smt_states[] = { 2309 [CPU_SMT_ENABLED] = "on", 2310 [CPU_SMT_DISABLED] = "off", 2311 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2312 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2313 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2314 }; 2315 2316 static ssize_t 2317 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2318 { 2319 const char *state = smt_states[cpu_smt_control]; 2320 2321 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2322 } 2323 2324 static ssize_t 2325 store_smt_control(struct device *dev, struct device_attribute *attr, 2326 const char *buf, size_t count) 2327 { 2328 return __store_smt_control(dev, attr, buf, count); 2329 } 2330 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2331 2332 static ssize_t 2333 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2334 { 2335 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2336 } 2337 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2338 2339 static struct attribute *cpuhp_smt_attrs[] = { 2340 &dev_attr_control.attr, 2341 &dev_attr_active.attr, 2342 NULL 2343 }; 2344 2345 static const struct attribute_group cpuhp_smt_attr_group = { 2346 .attrs = cpuhp_smt_attrs, 2347 .name = "smt", 2348 NULL 2349 }; 2350 2351 static int __init cpu_smt_sysfs_init(void) 2352 { 2353 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2354 &cpuhp_smt_attr_group); 2355 } 2356 2357 static int __init cpuhp_sysfs_init(void) 2358 { 2359 int cpu, ret; 2360 2361 ret = cpu_smt_sysfs_init(); 2362 if (ret) 2363 return ret; 2364 2365 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2366 &cpuhp_cpu_root_attr_group); 2367 if (ret) 2368 return ret; 2369 2370 for_each_possible_cpu(cpu) { 2371 struct device *dev = get_cpu_device(cpu); 2372 2373 if (!dev) 2374 continue; 2375 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2376 if (ret) 2377 return ret; 2378 } 2379 return 0; 2380 } 2381 device_initcall(cpuhp_sysfs_init); 2382 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2383 2384 /* 2385 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2386 * represents all NR_CPUS bits binary values of 1<<nr. 2387 * 2388 * It is used by cpumask_of() to get a constant address to a CPU 2389 * mask value that has a single bit set only. 2390 */ 2391 2392 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2393 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2394 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2395 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2396 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2397 2398 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2399 2400 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2401 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2402 #if BITS_PER_LONG > 32 2403 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2404 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2405 #endif 2406 }; 2407 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2408 2409 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2410 EXPORT_SYMBOL(cpu_all_bits); 2411 2412 #ifdef CONFIG_INIT_ALL_POSSIBLE 2413 struct cpumask __cpu_possible_mask __read_mostly 2414 = {CPU_BITS_ALL}; 2415 #else 2416 struct cpumask __cpu_possible_mask __read_mostly; 2417 #endif 2418 EXPORT_SYMBOL(__cpu_possible_mask); 2419 2420 struct cpumask __cpu_online_mask __read_mostly; 2421 EXPORT_SYMBOL(__cpu_online_mask); 2422 2423 struct cpumask __cpu_present_mask __read_mostly; 2424 EXPORT_SYMBOL(__cpu_present_mask); 2425 2426 struct cpumask __cpu_active_mask __read_mostly; 2427 EXPORT_SYMBOL(__cpu_active_mask); 2428 2429 atomic_t __num_online_cpus __read_mostly; 2430 EXPORT_SYMBOL(__num_online_cpus); 2431 2432 void init_cpu_present(const struct cpumask *src) 2433 { 2434 cpumask_copy(&__cpu_present_mask, src); 2435 } 2436 2437 void init_cpu_possible(const struct cpumask *src) 2438 { 2439 cpumask_copy(&__cpu_possible_mask, src); 2440 } 2441 2442 void init_cpu_online(const struct cpumask *src) 2443 { 2444 cpumask_copy(&__cpu_online_mask, src); 2445 } 2446 2447 void set_cpu_online(unsigned int cpu, bool online) 2448 { 2449 /* 2450 * atomic_inc/dec() is required to handle the horrid abuse of this 2451 * function by the reboot and kexec code which invoke it from 2452 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2453 * regular CPU hotplug is properly serialized. 2454 * 2455 * Note, that the fact that __num_online_cpus is of type atomic_t 2456 * does not protect readers which are not serialized against 2457 * concurrent hotplug operations. 2458 */ 2459 if (online) { 2460 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2461 atomic_inc(&__num_online_cpus); 2462 } else { 2463 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2464 atomic_dec(&__num_online_cpus); 2465 } 2466 } 2467 2468 /* 2469 * Activate the first processor. 2470 */ 2471 void __init boot_cpu_init(void) 2472 { 2473 int cpu = smp_processor_id(); 2474 2475 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2476 set_cpu_online(cpu, true); 2477 set_cpu_active(cpu, true); 2478 set_cpu_present(cpu, true); 2479 set_cpu_possible(cpu, true); 2480 2481 #ifdef CONFIG_SMP 2482 __boot_cpu_id = cpu; 2483 #endif 2484 } 2485 2486 /* 2487 * Must be called _AFTER_ setting up the per_cpu areas 2488 */ 2489 void __init boot_cpu_hotplug_init(void) 2490 { 2491 #ifdef CONFIG_SMP 2492 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2493 #endif 2494 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2495 } 2496 2497 /* 2498 * These are used for a global "mitigations=" cmdline option for toggling 2499 * optional CPU mitigations. 2500 */ 2501 enum cpu_mitigations { 2502 CPU_MITIGATIONS_OFF, 2503 CPU_MITIGATIONS_AUTO, 2504 CPU_MITIGATIONS_AUTO_NOSMT, 2505 }; 2506 2507 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2508 CPU_MITIGATIONS_AUTO; 2509 2510 static int __init mitigations_parse_cmdline(char *arg) 2511 { 2512 if (!strcmp(arg, "off")) 2513 cpu_mitigations = CPU_MITIGATIONS_OFF; 2514 else if (!strcmp(arg, "auto")) 2515 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2516 else if (!strcmp(arg, "auto,nosmt")) 2517 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2518 else 2519 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2520 arg); 2521 2522 return 0; 2523 } 2524 early_param("mitigations", mitigations_parse_cmdline); 2525 2526 /* mitigations=off */ 2527 bool cpu_mitigations_off(void) 2528 { 2529 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2530 } 2531 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2532 2533 /* mitigations=auto,nosmt */ 2534 bool cpu_mitigations_auto_nosmt(void) 2535 { 2536 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2537 } 2538 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2539