xref: /linux/kernel/cpu.c (revision c2c9136b7096f0583117d7d0486600feec387865)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33 
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37 
38 #include "smpboot.h"
39 
40 /**
41  * cpuhp_cpu_state - Per cpu hotplug state storage
42  * @state:	The current cpu state
43  * @target:	The target state
44  * @thread:	Pointer to the hotplug thread
45  * @should_run:	Thread should execute
46  * @rollback:	Perform a rollback
47  * @single:	Single callback invocation
48  * @bringup:	Single callback bringup or teardown selector
49  * @cb_state:	The state for a single callback (install/uninstall)
50  * @result:	Result of the operation
51  * @done_up:	Signal completion to the issuer of the task for cpu-up
52  * @done_down:	Signal completion to the issuer of the task for cpu-down
53  */
54 struct cpuhp_cpu_state {
55 	enum cpuhp_state	state;
56 	enum cpuhp_state	target;
57 	enum cpuhp_state	fail;
58 #ifdef CONFIG_SMP
59 	struct task_struct	*thread;
60 	bool			should_run;
61 	bool			rollback;
62 	bool			single;
63 	bool			bringup;
64 	bool			booted_once;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83 
84 
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89 
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95 
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98 
99 #endif
100 
101 /**
102  * cpuhp_step - Hotplug state machine step
103  * @name:	Name of the step
104  * @startup:	Startup function of the step
105  * @teardown:	Teardown function of the step
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			cant_stop;
122 	bool			multi_instance;
123 };
124 
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127 
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 	return cpuhp_hp_states + state;
131 }
132 
133 /**
134  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135  * @cpu:	The cpu for which the callback should be invoked
136  * @state:	The state to do callbacks for
137  * @bringup:	True if the bringup callback should be invoked
138  * @node:	For multi-instance, do a single entry callback for install/remove
139  * @lastp:	For multi-instance rollback, remember how far we got
140  *
141  * Called from cpu hotplug and from the state register machinery.
142  */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 				 bool bringup, struct hlist_node *node,
145 				 struct hlist_node **lastp)
146 {
147 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 	struct cpuhp_step *step = cpuhp_get_step(state);
149 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 	int (*cb)(unsigned int cpu);
151 	int ret, cnt;
152 
153 	if (st->fail == state) {
154 		st->fail = CPUHP_INVALID;
155 
156 		if (!(bringup ? step->startup.single : step->teardown.single))
157 			return 0;
158 
159 		return -EAGAIN;
160 	}
161 
162 	if (!step->multi_instance) {
163 		WARN_ON_ONCE(lastp && *lastp);
164 		cb = bringup ? step->startup.single : step->teardown.single;
165 		if (!cb)
166 			return 0;
167 		trace_cpuhp_enter(cpu, st->target, state, cb);
168 		ret = cb(cpu);
169 		trace_cpuhp_exit(cpu, st->state, state, ret);
170 		return ret;
171 	}
172 	cbm = bringup ? step->startup.multi : step->teardown.multi;
173 	if (!cbm)
174 		return 0;
175 
176 	/* Single invocation for instance add/remove */
177 	if (node) {
178 		WARN_ON_ONCE(lastp && *lastp);
179 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 		ret = cbm(cpu, node);
181 		trace_cpuhp_exit(cpu, st->state, state, ret);
182 		return ret;
183 	}
184 
185 	/* State transition. Invoke on all instances */
186 	cnt = 0;
187 	hlist_for_each(node, &step->list) {
188 		if (lastp && node == *lastp)
189 			break;
190 
191 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 		ret = cbm(cpu, node);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		if (ret) {
195 			if (!lastp)
196 				goto err;
197 
198 			*lastp = node;
199 			return ret;
200 		}
201 		cnt++;
202 	}
203 	if (lastp)
204 		*lastp = NULL;
205 	return 0;
206 err:
207 	/* Rollback the instances if one failed */
208 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 	if (!cbm)
210 		return ret;
211 
212 	hlist_for_each(node, &step->list) {
213 		if (!cnt--)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		/*
220 		 * Rollback must not fail,
221 		 */
222 		WARN_ON_ONCE(ret);
223 	}
224 	return ret;
225 }
226 
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 	/*
231 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 	 * purposes as that state is handled explicitly in cpu_down.
233 	 */
234 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236 
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 	struct completion *done = bringup ? &st->done_up : &st->done_down;
240 	wait_for_completion(done);
241 }
242 
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 	struct completion *done = bringup ? &st->done_up : &st->done_down;
246 	complete(done);
247 }
248 
249 /*
250  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251  */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256 
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261 
262 /*
263  * The following two APIs (cpu_maps_update_begin/done) must be used when
264  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265  */
266 void cpu_maps_update_begin(void)
267 {
268 	mutex_lock(&cpu_add_remove_lock);
269 }
270 
271 void cpu_maps_update_done(void)
272 {
273 	mutex_unlock(&cpu_add_remove_lock);
274 }
275 
276 /*
277  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278  * Should always be manipulated under cpu_add_remove_lock
279  */
280 static int cpu_hotplug_disabled;
281 
282 #ifdef CONFIG_HOTPLUG_CPU
283 
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285 
286 void cpus_read_lock(void)
287 {
288 	percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291 
292 int cpus_read_trylock(void)
293 {
294 	return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297 
298 void cpus_read_unlock(void)
299 {
300 	percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303 
304 void cpus_write_lock(void)
305 {
306 	percpu_down_write(&cpu_hotplug_lock);
307 }
308 
309 void cpus_write_unlock(void)
310 {
311 	percpu_up_write(&cpu_hotplug_lock);
312 }
313 
314 void lockdep_assert_cpus_held(void)
315 {
316 	/*
317 	 * We can't have hotplug operations before userspace starts running,
318 	 * and some init codepaths will knowingly not take the hotplug lock.
319 	 * This is all valid, so mute lockdep until it makes sense to report
320 	 * unheld locks.
321 	 */
322 	if (system_state < SYSTEM_RUNNING)
323 		return;
324 
325 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
326 }
327 
328 static void lockdep_acquire_cpus_lock(void)
329 {
330 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
331 }
332 
333 static void lockdep_release_cpus_lock(void)
334 {
335 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
336 }
337 
338 /*
339  * Wait for currently running CPU hotplug operations to complete (if any) and
340  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
341  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
342  * hotplug path before performing hotplug operations. So acquiring that lock
343  * guarantees mutual exclusion from any currently running hotplug operations.
344  */
345 void cpu_hotplug_disable(void)
346 {
347 	cpu_maps_update_begin();
348 	cpu_hotplug_disabled++;
349 	cpu_maps_update_done();
350 }
351 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
352 
353 static void __cpu_hotplug_enable(void)
354 {
355 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
356 		return;
357 	cpu_hotplug_disabled--;
358 }
359 
360 void cpu_hotplug_enable(void)
361 {
362 	cpu_maps_update_begin();
363 	__cpu_hotplug_enable();
364 	cpu_maps_update_done();
365 }
366 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
367 
368 #else
369 
370 static void lockdep_acquire_cpus_lock(void)
371 {
372 }
373 
374 static void lockdep_release_cpus_lock(void)
375 {
376 }
377 
378 #endif	/* CONFIG_HOTPLUG_CPU */
379 
380 /*
381  * Architectures that need SMT-specific errata handling during SMT hotplug
382  * should override this.
383  */
384 void __weak arch_smt_update(void) { }
385 
386 #ifdef CONFIG_HOTPLUG_SMT
387 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
388 
389 void __init cpu_smt_disable(bool force)
390 {
391 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
392 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
393 		return;
394 
395 	if (force) {
396 		pr_info("SMT: Force disabled\n");
397 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
398 	} else {
399 		pr_info("SMT: disabled\n");
400 		cpu_smt_control = CPU_SMT_DISABLED;
401 	}
402 }
403 
404 /*
405  * The decision whether SMT is supported can only be done after the full
406  * CPU identification. Called from architecture code.
407  */
408 void __init cpu_smt_check_topology(void)
409 {
410 	if (!topology_smt_supported())
411 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
412 }
413 
414 static int __init smt_cmdline_disable(char *str)
415 {
416 	cpu_smt_disable(str && !strcmp(str, "force"));
417 	return 0;
418 }
419 early_param("nosmt", smt_cmdline_disable);
420 
421 static inline bool cpu_smt_allowed(unsigned int cpu)
422 {
423 	if (cpu_smt_control == CPU_SMT_ENABLED)
424 		return true;
425 
426 	if (topology_is_primary_thread(cpu))
427 		return true;
428 
429 	/*
430 	 * On x86 it's required to boot all logical CPUs at least once so
431 	 * that the init code can get a chance to set CR4.MCE on each
432 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
433 	 * core will shutdown the machine.
434 	 */
435 	return !per_cpu(cpuhp_state, cpu).booted_once;
436 }
437 #else
438 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
439 #endif
440 
441 static inline enum cpuhp_state
442 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
443 {
444 	enum cpuhp_state prev_state = st->state;
445 
446 	st->rollback = false;
447 	st->last = NULL;
448 
449 	st->target = target;
450 	st->single = false;
451 	st->bringup = st->state < target;
452 
453 	return prev_state;
454 }
455 
456 static inline void
457 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
458 {
459 	st->rollback = true;
460 
461 	/*
462 	 * If we have st->last we need to undo partial multi_instance of this
463 	 * state first. Otherwise start undo at the previous state.
464 	 */
465 	if (!st->last) {
466 		if (st->bringup)
467 			st->state--;
468 		else
469 			st->state++;
470 	}
471 
472 	st->target = prev_state;
473 	st->bringup = !st->bringup;
474 }
475 
476 /* Regular hotplug invocation of the AP hotplug thread */
477 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
478 {
479 	if (!st->single && st->state == st->target)
480 		return;
481 
482 	st->result = 0;
483 	/*
484 	 * Make sure the above stores are visible before should_run becomes
485 	 * true. Paired with the mb() above in cpuhp_thread_fun()
486 	 */
487 	smp_mb();
488 	st->should_run = true;
489 	wake_up_process(st->thread);
490 	wait_for_ap_thread(st, st->bringup);
491 }
492 
493 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
494 {
495 	enum cpuhp_state prev_state;
496 	int ret;
497 
498 	prev_state = cpuhp_set_state(st, target);
499 	__cpuhp_kick_ap(st);
500 	if ((ret = st->result)) {
501 		cpuhp_reset_state(st, prev_state);
502 		__cpuhp_kick_ap(st);
503 	}
504 
505 	return ret;
506 }
507 
508 static int bringup_wait_for_ap(unsigned int cpu)
509 {
510 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
511 
512 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
513 	wait_for_ap_thread(st, true);
514 	if (WARN_ON_ONCE((!cpu_online(cpu))))
515 		return -ECANCELED;
516 
517 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
518 	stop_machine_unpark(cpu);
519 	kthread_unpark(st->thread);
520 
521 	/*
522 	 * SMT soft disabling on X86 requires to bring the CPU out of the
523 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
524 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
525 	 * cpu_smt_allowed() check will now return false if this is not the
526 	 * primary sibling.
527 	 */
528 	if (!cpu_smt_allowed(cpu))
529 		return -ECANCELED;
530 
531 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
532 		return 0;
533 
534 	return cpuhp_kick_ap(st, st->target);
535 }
536 
537 static int bringup_cpu(unsigned int cpu)
538 {
539 	struct task_struct *idle = idle_thread_get(cpu);
540 	int ret;
541 
542 	/*
543 	 * Some architectures have to walk the irq descriptors to
544 	 * setup the vector space for the cpu which comes online.
545 	 * Prevent irq alloc/free across the bringup.
546 	 */
547 	irq_lock_sparse();
548 
549 	/* Arch-specific enabling code. */
550 	ret = __cpu_up(cpu, idle);
551 	irq_unlock_sparse();
552 	if (ret)
553 		return ret;
554 	return bringup_wait_for_ap(cpu);
555 }
556 
557 /*
558  * Hotplug state machine related functions
559  */
560 
561 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
562 {
563 	for (st->state--; st->state > st->target; st->state--)
564 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
565 }
566 
567 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
568 			      enum cpuhp_state target)
569 {
570 	enum cpuhp_state prev_state = st->state;
571 	int ret = 0;
572 
573 	while (st->state < target) {
574 		st->state++;
575 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
576 		if (ret) {
577 			st->target = prev_state;
578 			undo_cpu_up(cpu, st);
579 			break;
580 		}
581 	}
582 	return ret;
583 }
584 
585 /*
586  * The cpu hotplug threads manage the bringup and teardown of the cpus
587  */
588 static void cpuhp_create(unsigned int cpu)
589 {
590 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
591 
592 	init_completion(&st->done_up);
593 	init_completion(&st->done_down);
594 }
595 
596 static int cpuhp_should_run(unsigned int cpu)
597 {
598 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
599 
600 	return st->should_run;
601 }
602 
603 /*
604  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
605  * callbacks when a state gets [un]installed at runtime.
606  *
607  * Each invocation of this function by the smpboot thread does a single AP
608  * state callback.
609  *
610  * It has 3 modes of operation:
611  *  - single: runs st->cb_state
612  *  - up:     runs ++st->state, while st->state < st->target
613  *  - down:   runs st->state--, while st->state > st->target
614  *
615  * When complete or on error, should_run is cleared and the completion is fired.
616  */
617 static void cpuhp_thread_fun(unsigned int cpu)
618 {
619 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
620 	bool bringup = st->bringup;
621 	enum cpuhp_state state;
622 
623 	if (WARN_ON_ONCE(!st->should_run))
624 		return;
625 
626 	/*
627 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
628 	 * that if we see ->should_run we also see the rest of the state.
629 	 */
630 	smp_mb();
631 
632 	/*
633 	 * The BP holds the hotplug lock, but we're now running on the AP,
634 	 * ensure that anybody asserting the lock is held, will actually find
635 	 * it so.
636 	 */
637 	lockdep_acquire_cpus_lock();
638 	cpuhp_lock_acquire(bringup);
639 
640 	if (st->single) {
641 		state = st->cb_state;
642 		st->should_run = false;
643 	} else {
644 		if (bringup) {
645 			st->state++;
646 			state = st->state;
647 			st->should_run = (st->state < st->target);
648 			WARN_ON_ONCE(st->state > st->target);
649 		} else {
650 			state = st->state;
651 			st->state--;
652 			st->should_run = (st->state > st->target);
653 			WARN_ON_ONCE(st->state < st->target);
654 		}
655 	}
656 
657 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
658 
659 	if (cpuhp_is_atomic_state(state)) {
660 		local_irq_disable();
661 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
662 		local_irq_enable();
663 
664 		/*
665 		 * STARTING/DYING must not fail!
666 		 */
667 		WARN_ON_ONCE(st->result);
668 	} else {
669 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
670 	}
671 
672 	if (st->result) {
673 		/*
674 		 * If we fail on a rollback, we're up a creek without no
675 		 * paddle, no way forward, no way back. We loose, thanks for
676 		 * playing.
677 		 */
678 		WARN_ON_ONCE(st->rollback);
679 		st->should_run = false;
680 	}
681 
682 	cpuhp_lock_release(bringup);
683 	lockdep_release_cpus_lock();
684 
685 	if (!st->should_run)
686 		complete_ap_thread(st, bringup);
687 }
688 
689 /* Invoke a single callback on a remote cpu */
690 static int
691 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
692 			 struct hlist_node *node)
693 {
694 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
695 	int ret;
696 
697 	if (!cpu_online(cpu))
698 		return 0;
699 
700 	cpuhp_lock_acquire(false);
701 	cpuhp_lock_release(false);
702 
703 	cpuhp_lock_acquire(true);
704 	cpuhp_lock_release(true);
705 
706 	/*
707 	 * If we are up and running, use the hotplug thread. For early calls
708 	 * we invoke the thread function directly.
709 	 */
710 	if (!st->thread)
711 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
712 
713 	st->rollback = false;
714 	st->last = NULL;
715 
716 	st->node = node;
717 	st->bringup = bringup;
718 	st->cb_state = state;
719 	st->single = true;
720 
721 	__cpuhp_kick_ap(st);
722 
723 	/*
724 	 * If we failed and did a partial, do a rollback.
725 	 */
726 	if ((ret = st->result) && st->last) {
727 		st->rollback = true;
728 		st->bringup = !bringup;
729 
730 		__cpuhp_kick_ap(st);
731 	}
732 
733 	/*
734 	 * Clean up the leftovers so the next hotplug operation wont use stale
735 	 * data.
736 	 */
737 	st->node = st->last = NULL;
738 	return ret;
739 }
740 
741 static int cpuhp_kick_ap_work(unsigned int cpu)
742 {
743 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
744 	enum cpuhp_state prev_state = st->state;
745 	int ret;
746 
747 	cpuhp_lock_acquire(false);
748 	cpuhp_lock_release(false);
749 
750 	cpuhp_lock_acquire(true);
751 	cpuhp_lock_release(true);
752 
753 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
754 	ret = cpuhp_kick_ap(st, st->target);
755 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
756 
757 	return ret;
758 }
759 
760 static struct smp_hotplug_thread cpuhp_threads = {
761 	.store			= &cpuhp_state.thread,
762 	.create			= &cpuhp_create,
763 	.thread_should_run	= cpuhp_should_run,
764 	.thread_fn		= cpuhp_thread_fun,
765 	.thread_comm		= "cpuhp/%u",
766 	.selfparking		= true,
767 };
768 
769 void __init cpuhp_threads_init(void)
770 {
771 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
772 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
773 }
774 
775 #ifdef CONFIG_HOTPLUG_CPU
776 /**
777  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
778  * @cpu: a CPU id
779  *
780  * This function walks all processes, finds a valid mm struct for each one and
781  * then clears a corresponding bit in mm's cpumask.  While this all sounds
782  * trivial, there are various non-obvious corner cases, which this function
783  * tries to solve in a safe manner.
784  *
785  * Also note that the function uses a somewhat relaxed locking scheme, so it may
786  * be called only for an already offlined CPU.
787  */
788 void clear_tasks_mm_cpumask(int cpu)
789 {
790 	struct task_struct *p;
791 
792 	/*
793 	 * This function is called after the cpu is taken down and marked
794 	 * offline, so its not like new tasks will ever get this cpu set in
795 	 * their mm mask. -- Peter Zijlstra
796 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
797 	 * full-fledged tasklist_lock.
798 	 */
799 	WARN_ON(cpu_online(cpu));
800 	rcu_read_lock();
801 	for_each_process(p) {
802 		struct task_struct *t;
803 
804 		/*
805 		 * Main thread might exit, but other threads may still have
806 		 * a valid mm. Find one.
807 		 */
808 		t = find_lock_task_mm(p);
809 		if (!t)
810 			continue;
811 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
812 		task_unlock(t);
813 	}
814 	rcu_read_unlock();
815 }
816 
817 /* Take this CPU down. */
818 static int take_cpu_down(void *_param)
819 {
820 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
821 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
822 	int err, cpu = smp_processor_id();
823 	int ret;
824 
825 	/* Ensure this CPU doesn't handle any more interrupts. */
826 	err = __cpu_disable();
827 	if (err < 0)
828 		return err;
829 
830 	/*
831 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
832 	 * do this step again.
833 	 */
834 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
835 	st->state--;
836 	/* Invoke the former CPU_DYING callbacks */
837 	for (; st->state > target; st->state--) {
838 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
839 		/*
840 		 * DYING must not fail!
841 		 */
842 		WARN_ON_ONCE(ret);
843 	}
844 
845 	/* Give up timekeeping duties */
846 	tick_handover_do_timer();
847 	/* Remove CPU from timer broadcasting */
848 	tick_offline_cpu(cpu);
849 	/* Park the stopper thread */
850 	stop_machine_park(cpu);
851 	return 0;
852 }
853 
854 static int takedown_cpu(unsigned int cpu)
855 {
856 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
857 	int err;
858 
859 	/* Park the smpboot threads */
860 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
861 
862 	/*
863 	 * Prevent irq alloc/free while the dying cpu reorganizes the
864 	 * interrupt affinities.
865 	 */
866 	irq_lock_sparse();
867 
868 	/*
869 	 * So now all preempt/rcu users must observe !cpu_active().
870 	 */
871 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
872 	if (err) {
873 		/* CPU refused to die */
874 		irq_unlock_sparse();
875 		/* Unpark the hotplug thread so we can rollback there */
876 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
877 		return err;
878 	}
879 	BUG_ON(cpu_online(cpu));
880 
881 	/*
882 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
883 	 * all runnable tasks from the CPU, there's only the idle task left now
884 	 * that the migration thread is done doing the stop_machine thing.
885 	 *
886 	 * Wait for the stop thread to go away.
887 	 */
888 	wait_for_ap_thread(st, false);
889 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
890 
891 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
892 	irq_unlock_sparse();
893 
894 	hotplug_cpu__broadcast_tick_pull(cpu);
895 	/* This actually kills the CPU. */
896 	__cpu_die(cpu);
897 
898 	tick_cleanup_dead_cpu(cpu);
899 	rcutree_migrate_callbacks(cpu);
900 	return 0;
901 }
902 
903 static void cpuhp_complete_idle_dead(void *arg)
904 {
905 	struct cpuhp_cpu_state *st = arg;
906 
907 	complete_ap_thread(st, false);
908 }
909 
910 void cpuhp_report_idle_dead(void)
911 {
912 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
913 
914 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
915 	rcu_report_dead(smp_processor_id());
916 	st->state = CPUHP_AP_IDLE_DEAD;
917 	/*
918 	 * We cannot call complete after rcu_report_dead() so we delegate it
919 	 * to an online cpu.
920 	 */
921 	smp_call_function_single(cpumask_first(cpu_online_mask),
922 				 cpuhp_complete_idle_dead, st, 0);
923 }
924 
925 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
926 {
927 	for (st->state++; st->state < st->target; st->state++)
928 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
929 }
930 
931 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
932 				enum cpuhp_state target)
933 {
934 	enum cpuhp_state prev_state = st->state;
935 	int ret = 0;
936 
937 	for (; st->state > target; st->state--) {
938 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
939 		if (ret) {
940 			st->target = prev_state;
941 			if (st->state < prev_state)
942 				undo_cpu_down(cpu, st);
943 			break;
944 		}
945 	}
946 	return ret;
947 }
948 
949 /* Requires cpu_add_remove_lock to be held */
950 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
951 			   enum cpuhp_state target)
952 {
953 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
954 	int prev_state, ret = 0;
955 
956 	if (num_online_cpus() == 1)
957 		return -EBUSY;
958 
959 	if (!cpu_present(cpu))
960 		return -EINVAL;
961 
962 	cpus_write_lock();
963 
964 	cpuhp_tasks_frozen = tasks_frozen;
965 
966 	prev_state = cpuhp_set_state(st, target);
967 	/*
968 	 * If the current CPU state is in the range of the AP hotplug thread,
969 	 * then we need to kick the thread.
970 	 */
971 	if (st->state > CPUHP_TEARDOWN_CPU) {
972 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
973 		ret = cpuhp_kick_ap_work(cpu);
974 		/*
975 		 * The AP side has done the error rollback already. Just
976 		 * return the error code..
977 		 */
978 		if (ret)
979 			goto out;
980 
981 		/*
982 		 * We might have stopped still in the range of the AP hotplug
983 		 * thread. Nothing to do anymore.
984 		 */
985 		if (st->state > CPUHP_TEARDOWN_CPU)
986 			goto out;
987 
988 		st->target = target;
989 	}
990 	/*
991 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
992 	 * to do the further cleanups.
993 	 */
994 	ret = cpuhp_down_callbacks(cpu, st, target);
995 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
996 		cpuhp_reset_state(st, prev_state);
997 		__cpuhp_kick_ap(st);
998 	}
999 
1000 out:
1001 	cpus_write_unlock();
1002 	/*
1003 	 * Do post unplug cleanup. This is still protected against
1004 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1005 	 */
1006 	lockup_detector_cleanup();
1007 	arch_smt_update();
1008 	return ret;
1009 }
1010 
1011 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1012 {
1013 	if (cpu_hotplug_disabled)
1014 		return -EBUSY;
1015 	return _cpu_down(cpu, 0, target);
1016 }
1017 
1018 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1019 {
1020 	int err;
1021 
1022 	cpu_maps_update_begin();
1023 	err = cpu_down_maps_locked(cpu, target);
1024 	cpu_maps_update_done();
1025 	return err;
1026 }
1027 
1028 int cpu_down(unsigned int cpu)
1029 {
1030 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1031 }
1032 EXPORT_SYMBOL(cpu_down);
1033 
1034 #else
1035 #define takedown_cpu		NULL
1036 #endif /*CONFIG_HOTPLUG_CPU*/
1037 
1038 /**
1039  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1040  * @cpu: cpu that just started
1041  *
1042  * It must be called by the arch code on the new cpu, before the new cpu
1043  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1044  */
1045 void notify_cpu_starting(unsigned int cpu)
1046 {
1047 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1048 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1049 	int ret;
1050 
1051 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1052 	st->booted_once = true;
1053 	while (st->state < target) {
1054 		st->state++;
1055 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1056 		/*
1057 		 * STARTING must not fail!
1058 		 */
1059 		WARN_ON_ONCE(ret);
1060 	}
1061 }
1062 
1063 /*
1064  * Called from the idle task. Wake up the controlling task which brings the
1065  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1066  * the rest of the online bringup to the hotplug thread.
1067  */
1068 void cpuhp_online_idle(enum cpuhp_state state)
1069 {
1070 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1071 
1072 	/* Happens for the boot cpu */
1073 	if (state != CPUHP_AP_ONLINE_IDLE)
1074 		return;
1075 
1076 	st->state = CPUHP_AP_ONLINE_IDLE;
1077 	complete_ap_thread(st, true);
1078 }
1079 
1080 /* Requires cpu_add_remove_lock to be held */
1081 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1082 {
1083 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1084 	struct task_struct *idle;
1085 	int ret = 0;
1086 
1087 	cpus_write_lock();
1088 
1089 	if (!cpu_present(cpu)) {
1090 		ret = -EINVAL;
1091 		goto out;
1092 	}
1093 
1094 	/*
1095 	 * The caller of do_cpu_up might have raced with another
1096 	 * caller. Ignore it for now.
1097 	 */
1098 	if (st->state >= target)
1099 		goto out;
1100 
1101 	if (st->state == CPUHP_OFFLINE) {
1102 		/* Let it fail before we try to bring the cpu up */
1103 		idle = idle_thread_get(cpu);
1104 		if (IS_ERR(idle)) {
1105 			ret = PTR_ERR(idle);
1106 			goto out;
1107 		}
1108 	}
1109 
1110 	cpuhp_tasks_frozen = tasks_frozen;
1111 
1112 	cpuhp_set_state(st, target);
1113 	/*
1114 	 * If the current CPU state is in the range of the AP hotplug thread,
1115 	 * then we need to kick the thread once more.
1116 	 */
1117 	if (st->state > CPUHP_BRINGUP_CPU) {
1118 		ret = cpuhp_kick_ap_work(cpu);
1119 		/*
1120 		 * The AP side has done the error rollback already. Just
1121 		 * return the error code..
1122 		 */
1123 		if (ret)
1124 			goto out;
1125 	}
1126 
1127 	/*
1128 	 * Try to reach the target state. We max out on the BP at
1129 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1130 	 * responsible for bringing it up to the target state.
1131 	 */
1132 	target = min((int)target, CPUHP_BRINGUP_CPU);
1133 	ret = cpuhp_up_callbacks(cpu, st, target);
1134 out:
1135 	cpus_write_unlock();
1136 	arch_smt_update();
1137 	return ret;
1138 }
1139 
1140 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1141 {
1142 	int err = 0;
1143 
1144 	if (!cpu_possible(cpu)) {
1145 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1146 		       cpu);
1147 #if defined(CONFIG_IA64)
1148 		pr_err("please check additional_cpus= boot parameter\n");
1149 #endif
1150 		return -EINVAL;
1151 	}
1152 
1153 	err = try_online_node(cpu_to_node(cpu));
1154 	if (err)
1155 		return err;
1156 
1157 	cpu_maps_update_begin();
1158 
1159 	if (cpu_hotplug_disabled) {
1160 		err = -EBUSY;
1161 		goto out;
1162 	}
1163 	if (!cpu_smt_allowed(cpu)) {
1164 		err = -EPERM;
1165 		goto out;
1166 	}
1167 
1168 	err = _cpu_up(cpu, 0, target);
1169 out:
1170 	cpu_maps_update_done();
1171 	return err;
1172 }
1173 
1174 int cpu_up(unsigned int cpu)
1175 {
1176 	return do_cpu_up(cpu, CPUHP_ONLINE);
1177 }
1178 EXPORT_SYMBOL_GPL(cpu_up);
1179 
1180 #ifdef CONFIG_PM_SLEEP_SMP
1181 static cpumask_var_t frozen_cpus;
1182 
1183 int freeze_secondary_cpus(int primary)
1184 {
1185 	int cpu, error = 0;
1186 
1187 	cpu_maps_update_begin();
1188 	if (!cpu_online(primary))
1189 		primary = cpumask_first(cpu_online_mask);
1190 	/*
1191 	 * We take down all of the non-boot CPUs in one shot to avoid races
1192 	 * with the userspace trying to use the CPU hotplug at the same time
1193 	 */
1194 	cpumask_clear(frozen_cpus);
1195 
1196 	pr_info("Disabling non-boot CPUs ...\n");
1197 	for_each_online_cpu(cpu) {
1198 		if (cpu == primary)
1199 			continue;
1200 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1201 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1202 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1203 		if (!error)
1204 			cpumask_set_cpu(cpu, frozen_cpus);
1205 		else {
1206 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1207 			break;
1208 		}
1209 	}
1210 
1211 	if (!error)
1212 		BUG_ON(num_online_cpus() > 1);
1213 	else
1214 		pr_err("Non-boot CPUs are not disabled\n");
1215 
1216 	/*
1217 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1218 	 * this even in case of failure as all disable_nonboot_cpus() users are
1219 	 * supposed to do enable_nonboot_cpus() on the failure path.
1220 	 */
1221 	cpu_hotplug_disabled++;
1222 
1223 	cpu_maps_update_done();
1224 	return error;
1225 }
1226 
1227 void __weak arch_enable_nonboot_cpus_begin(void)
1228 {
1229 }
1230 
1231 void __weak arch_enable_nonboot_cpus_end(void)
1232 {
1233 }
1234 
1235 void enable_nonboot_cpus(void)
1236 {
1237 	int cpu, error;
1238 
1239 	/* Allow everyone to use the CPU hotplug again */
1240 	cpu_maps_update_begin();
1241 	__cpu_hotplug_enable();
1242 	if (cpumask_empty(frozen_cpus))
1243 		goto out;
1244 
1245 	pr_info("Enabling non-boot CPUs ...\n");
1246 
1247 	arch_enable_nonboot_cpus_begin();
1248 
1249 	for_each_cpu(cpu, frozen_cpus) {
1250 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1251 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1252 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1253 		if (!error) {
1254 			pr_info("CPU%d is up\n", cpu);
1255 			continue;
1256 		}
1257 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1258 	}
1259 
1260 	arch_enable_nonboot_cpus_end();
1261 
1262 	cpumask_clear(frozen_cpus);
1263 out:
1264 	cpu_maps_update_done();
1265 }
1266 
1267 static int __init alloc_frozen_cpus(void)
1268 {
1269 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1270 		return -ENOMEM;
1271 	return 0;
1272 }
1273 core_initcall(alloc_frozen_cpus);
1274 
1275 /*
1276  * When callbacks for CPU hotplug notifications are being executed, we must
1277  * ensure that the state of the system with respect to the tasks being frozen
1278  * or not, as reported by the notification, remains unchanged *throughout the
1279  * duration* of the execution of the callbacks.
1280  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1281  *
1282  * This synchronization is implemented by mutually excluding regular CPU
1283  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1284  * Hibernate notifications.
1285  */
1286 static int
1287 cpu_hotplug_pm_callback(struct notifier_block *nb,
1288 			unsigned long action, void *ptr)
1289 {
1290 	switch (action) {
1291 
1292 	case PM_SUSPEND_PREPARE:
1293 	case PM_HIBERNATION_PREPARE:
1294 		cpu_hotplug_disable();
1295 		break;
1296 
1297 	case PM_POST_SUSPEND:
1298 	case PM_POST_HIBERNATION:
1299 		cpu_hotplug_enable();
1300 		break;
1301 
1302 	default:
1303 		return NOTIFY_DONE;
1304 	}
1305 
1306 	return NOTIFY_OK;
1307 }
1308 
1309 
1310 static int __init cpu_hotplug_pm_sync_init(void)
1311 {
1312 	/*
1313 	 * cpu_hotplug_pm_callback has higher priority than x86
1314 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1315 	 * to disable cpu hotplug to avoid cpu hotplug race.
1316 	 */
1317 	pm_notifier(cpu_hotplug_pm_callback, 0);
1318 	return 0;
1319 }
1320 core_initcall(cpu_hotplug_pm_sync_init);
1321 
1322 #endif /* CONFIG_PM_SLEEP_SMP */
1323 
1324 int __boot_cpu_id;
1325 
1326 #endif /* CONFIG_SMP */
1327 
1328 /* Boot processor state steps */
1329 static struct cpuhp_step cpuhp_hp_states[] = {
1330 	[CPUHP_OFFLINE] = {
1331 		.name			= "offline",
1332 		.startup.single		= NULL,
1333 		.teardown.single	= NULL,
1334 	},
1335 #ifdef CONFIG_SMP
1336 	[CPUHP_CREATE_THREADS]= {
1337 		.name			= "threads:prepare",
1338 		.startup.single		= smpboot_create_threads,
1339 		.teardown.single	= NULL,
1340 		.cant_stop		= true,
1341 	},
1342 	[CPUHP_PERF_PREPARE] = {
1343 		.name			= "perf:prepare",
1344 		.startup.single		= perf_event_init_cpu,
1345 		.teardown.single	= perf_event_exit_cpu,
1346 	},
1347 	[CPUHP_WORKQUEUE_PREP] = {
1348 		.name			= "workqueue:prepare",
1349 		.startup.single		= workqueue_prepare_cpu,
1350 		.teardown.single	= NULL,
1351 	},
1352 	[CPUHP_HRTIMERS_PREPARE] = {
1353 		.name			= "hrtimers:prepare",
1354 		.startup.single		= hrtimers_prepare_cpu,
1355 		.teardown.single	= hrtimers_dead_cpu,
1356 	},
1357 	[CPUHP_SMPCFD_PREPARE] = {
1358 		.name			= "smpcfd:prepare",
1359 		.startup.single		= smpcfd_prepare_cpu,
1360 		.teardown.single	= smpcfd_dead_cpu,
1361 	},
1362 	[CPUHP_RELAY_PREPARE] = {
1363 		.name			= "relay:prepare",
1364 		.startup.single		= relay_prepare_cpu,
1365 		.teardown.single	= NULL,
1366 	},
1367 	[CPUHP_SLAB_PREPARE] = {
1368 		.name			= "slab:prepare",
1369 		.startup.single		= slab_prepare_cpu,
1370 		.teardown.single	= slab_dead_cpu,
1371 	},
1372 	[CPUHP_RCUTREE_PREP] = {
1373 		.name			= "RCU/tree:prepare",
1374 		.startup.single		= rcutree_prepare_cpu,
1375 		.teardown.single	= rcutree_dead_cpu,
1376 	},
1377 	/*
1378 	 * On the tear-down path, timers_dead_cpu() must be invoked
1379 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1380 	 * otherwise a RCU stall occurs.
1381 	 */
1382 	[CPUHP_TIMERS_PREPARE] = {
1383 		.name			= "timers:prepare",
1384 		.startup.single		= timers_prepare_cpu,
1385 		.teardown.single	= timers_dead_cpu,
1386 	},
1387 	/* Kicks the plugged cpu into life */
1388 	[CPUHP_BRINGUP_CPU] = {
1389 		.name			= "cpu:bringup",
1390 		.startup.single		= bringup_cpu,
1391 		.teardown.single	= NULL,
1392 		.cant_stop		= true,
1393 	},
1394 	/* Final state before CPU kills itself */
1395 	[CPUHP_AP_IDLE_DEAD] = {
1396 		.name			= "idle:dead",
1397 	},
1398 	/*
1399 	 * Last state before CPU enters the idle loop to die. Transient state
1400 	 * for synchronization.
1401 	 */
1402 	[CPUHP_AP_OFFLINE] = {
1403 		.name			= "ap:offline",
1404 		.cant_stop		= true,
1405 	},
1406 	/* First state is scheduler control. Interrupts are disabled */
1407 	[CPUHP_AP_SCHED_STARTING] = {
1408 		.name			= "sched:starting",
1409 		.startup.single		= sched_cpu_starting,
1410 		.teardown.single	= sched_cpu_dying,
1411 	},
1412 	[CPUHP_AP_RCUTREE_DYING] = {
1413 		.name			= "RCU/tree:dying",
1414 		.startup.single		= NULL,
1415 		.teardown.single	= rcutree_dying_cpu,
1416 	},
1417 	[CPUHP_AP_SMPCFD_DYING] = {
1418 		.name			= "smpcfd:dying",
1419 		.startup.single		= NULL,
1420 		.teardown.single	= smpcfd_dying_cpu,
1421 	},
1422 	/* Entry state on starting. Interrupts enabled from here on. Transient
1423 	 * state for synchronsization */
1424 	[CPUHP_AP_ONLINE] = {
1425 		.name			= "ap:online",
1426 	},
1427 	/*
1428 	 * Handled on controll processor until the plugged processor manages
1429 	 * this itself.
1430 	 */
1431 	[CPUHP_TEARDOWN_CPU] = {
1432 		.name			= "cpu:teardown",
1433 		.startup.single		= NULL,
1434 		.teardown.single	= takedown_cpu,
1435 		.cant_stop		= true,
1436 	},
1437 	/* Handle smpboot threads park/unpark */
1438 	[CPUHP_AP_SMPBOOT_THREADS] = {
1439 		.name			= "smpboot/threads:online",
1440 		.startup.single		= smpboot_unpark_threads,
1441 		.teardown.single	= smpboot_park_threads,
1442 	},
1443 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1444 		.name			= "irq/affinity:online",
1445 		.startup.single		= irq_affinity_online_cpu,
1446 		.teardown.single	= NULL,
1447 	},
1448 	[CPUHP_AP_PERF_ONLINE] = {
1449 		.name			= "perf:online",
1450 		.startup.single		= perf_event_init_cpu,
1451 		.teardown.single	= perf_event_exit_cpu,
1452 	},
1453 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1454 		.name			= "lockup_detector:online",
1455 		.startup.single		= lockup_detector_online_cpu,
1456 		.teardown.single	= lockup_detector_offline_cpu,
1457 	},
1458 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1459 		.name			= "workqueue:online",
1460 		.startup.single		= workqueue_online_cpu,
1461 		.teardown.single	= workqueue_offline_cpu,
1462 	},
1463 	[CPUHP_AP_RCUTREE_ONLINE] = {
1464 		.name			= "RCU/tree:online",
1465 		.startup.single		= rcutree_online_cpu,
1466 		.teardown.single	= rcutree_offline_cpu,
1467 	},
1468 #endif
1469 	/*
1470 	 * The dynamically registered state space is here
1471 	 */
1472 
1473 #ifdef CONFIG_SMP
1474 	/* Last state is scheduler control setting the cpu active */
1475 	[CPUHP_AP_ACTIVE] = {
1476 		.name			= "sched:active",
1477 		.startup.single		= sched_cpu_activate,
1478 		.teardown.single	= sched_cpu_deactivate,
1479 	},
1480 #endif
1481 
1482 	/* CPU is fully up and running. */
1483 	[CPUHP_ONLINE] = {
1484 		.name			= "online",
1485 		.startup.single		= NULL,
1486 		.teardown.single	= NULL,
1487 	},
1488 };
1489 
1490 /* Sanity check for callbacks */
1491 static int cpuhp_cb_check(enum cpuhp_state state)
1492 {
1493 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1494 		return -EINVAL;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Returns a free for dynamic slot assignment of the Online state. The states
1500  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1501  * by having no name assigned.
1502  */
1503 static int cpuhp_reserve_state(enum cpuhp_state state)
1504 {
1505 	enum cpuhp_state i, end;
1506 	struct cpuhp_step *step;
1507 
1508 	switch (state) {
1509 	case CPUHP_AP_ONLINE_DYN:
1510 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1511 		end = CPUHP_AP_ONLINE_DYN_END;
1512 		break;
1513 	case CPUHP_BP_PREPARE_DYN:
1514 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1515 		end = CPUHP_BP_PREPARE_DYN_END;
1516 		break;
1517 	default:
1518 		return -EINVAL;
1519 	}
1520 
1521 	for (i = state; i <= end; i++, step++) {
1522 		if (!step->name)
1523 			return i;
1524 	}
1525 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1526 	return -ENOSPC;
1527 }
1528 
1529 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1530 				 int (*startup)(unsigned int cpu),
1531 				 int (*teardown)(unsigned int cpu),
1532 				 bool multi_instance)
1533 {
1534 	/* (Un)Install the callbacks for further cpu hotplug operations */
1535 	struct cpuhp_step *sp;
1536 	int ret = 0;
1537 
1538 	/*
1539 	 * If name is NULL, then the state gets removed.
1540 	 *
1541 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1542 	 * the first allocation from these dynamic ranges, so the removal
1543 	 * would trigger a new allocation and clear the wrong (already
1544 	 * empty) state, leaving the callbacks of the to be cleared state
1545 	 * dangling, which causes wreckage on the next hotplug operation.
1546 	 */
1547 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1548 		     state == CPUHP_BP_PREPARE_DYN)) {
1549 		ret = cpuhp_reserve_state(state);
1550 		if (ret < 0)
1551 			return ret;
1552 		state = ret;
1553 	}
1554 	sp = cpuhp_get_step(state);
1555 	if (name && sp->name)
1556 		return -EBUSY;
1557 
1558 	sp->startup.single = startup;
1559 	sp->teardown.single = teardown;
1560 	sp->name = name;
1561 	sp->multi_instance = multi_instance;
1562 	INIT_HLIST_HEAD(&sp->list);
1563 	return ret;
1564 }
1565 
1566 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1567 {
1568 	return cpuhp_get_step(state)->teardown.single;
1569 }
1570 
1571 /*
1572  * Call the startup/teardown function for a step either on the AP or
1573  * on the current CPU.
1574  */
1575 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1576 			    struct hlist_node *node)
1577 {
1578 	struct cpuhp_step *sp = cpuhp_get_step(state);
1579 	int ret;
1580 
1581 	/*
1582 	 * If there's nothing to do, we done.
1583 	 * Relies on the union for multi_instance.
1584 	 */
1585 	if ((bringup && !sp->startup.single) ||
1586 	    (!bringup && !sp->teardown.single))
1587 		return 0;
1588 	/*
1589 	 * The non AP bound callbacks can fail on bringup. On teardown
1590 	 * e.g. module removal we crash for now.
1591 	 */
1592 #ifdef CONFIG_SMP
1593 	if (cpuhp_is_ap_state(state))
1594 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1595 	else
1596 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1597 #else
1598 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1599 #endif
1600 	BUG_ON(ret && !bringup);
1601 	return ret;
1602 }
1603 
1604 /*
1605  * Called from __cpuhp_setup_state on a recoverable failure.
1606  *
1607  * Note: The teardown callbacks for rollback are not allowed to fail!
1608  */
1609 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1610 				   struct hlist_node *node)
1611 {
1612 	int cpu;
1613 
1614 	/* Roll back the already executed steps on the other cpus */
1615 	for_each_present_cpu(cpu) {
1616 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1617 		int cpustate = st->state;
1618 
1619 		if (cpu >= failedcpu)
1620 			break;
1621 
1622 		/* Did we invoke the startup call on that cpu ? */
1623 		if (cpustate >= state)
1624 			cpuhp_issue_call(cpu, state, false, node);
1625 	}
1626 }
1627 
1628 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1629 					  struct hlist_node *node,
1630 					  bool invoke)
1631 {
1632 	struct cpuhp_step *sp;
1633 	int cpu;
1634 	int ret;
1635 
1636 	lockdep_assert_cpus_held();
1637 
1638 	sp = cpuhp_get_step(state);
1639 	if (sp->multi_instance == false)
1640 		return -EINVAL;
1641 
1642 	mutex_lock(&cpuhp_state_mutex);
1643 
1644 	if (!invoke || !sp->startup.multi)
1645 		goto add_node;
1646 
1647 	/*
1648 	 * Try to call the startup callback for each present cpu
1649 	 * depending on the hotplug state of the cpu.
1650 	 */
1651 	for_each_present_cpu(cpu) {
1652 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1653 		int cpustate = st->state;
1654 
1655 		if (cpustate < state)
1656 			continue;
1657 
1658 		ret = cpuhp_issue_call(cpu, state, true, node);
1659 		if (ret) {
1660 			if (sp->teardown.multi)
1661 				cpuhp_rollback_install(cpu, state, node);
1662 			goto unlock;
1663 		}
1664 	}
1665 add_node:
1666 	ret = 0;
1667 	hlist_add_head(node, &sp->list);
1668 unlock:
1669 	mutex_unlock(&cpuhp_state_mutex);
1670 	return ret;
1671 }
1672 
1673 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1674 			       bool invoke)
1675 {
1676 	int ret;
1677 
1678 	cpus_read_lock();
1679 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1680 	cpus_read_unlock();
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1684 
1685 /**
1686  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1687  * @state:		The state to setup
1688  * @invoke:		If true, the startup function is invoked for cpus where
1689  *			cpu state >= @state
1690  * @startup:		startup callback function
1691  * @teardown:		teardown callback function
1692  * @multi_instance:	State is set up for multiple instances which get
1693  *			added afterwards.
1694  *
1695  * The caller needs to hold cpus read locked while calling this function.
1696  * Returns:
1697  *   On success:
1698  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1699  *      0 for all other states
1700  *   On failure: proper (negative) error code
1701  */
1702 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1703 				   const char *name, bool invoke,
1704 				   int (*startup)(unsigned int cpu),
1705 				   int (*teardown)(unsigned int cpu),
1706 				   bool multi_instance)
1707 {
1708 	int cpu, ret = 0;
1709 	bool dynstate;
1710 
1711 	lockdep_assert_cpus_held();
1712 
1713 	if (cpuhp_cb_check(state) || !name)
1714 		return -EINVAL;
1715 
1716 	mutex_lock(&cpuhp_state_mutex);
1717 
1718 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1719 				    multi_instance);
1720 
1721 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1722 	if (ret > 0 && dynstate) {
1723 		state = ret;
1724 		ret = 0;
1725 	}
1726 
1727 	if (ret || !invoke || !startup)
1728 		goto out;
1729 
1730 	/*
1731 	 * Try to call the startup callback for each present cpu
1732 	 * depending on the hotplug state of the cpu.
1733 	 */
1734 	for_each_present_cpu(cpu) {
1735 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1736 		int cpustate = st->state;
1737 
1738 		if (cpustate < state)
1739 			continue;
1740 
1741 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1742 		if (ret) {
1743 			if (teardown)
1744 				cpuhp_rollback_install(cpu, state, NULL);
1745 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1746 			goto out;
1747 		}
1748 	}
1749 out:
1750 	mutex_unlock(&cpuhp_state_mutex);
1751 	/*
1752 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1753 	 * dynamically allocated state in case of success.
1754 	 */
1755 	if (!ret && dynstate)
1756 		return state;
1757 	return ret;
1758 }
1759 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1760 
1761 int __cpuhp_setup_state(enum cpuhp_state state,
1762 			const char *name, bool invoke,
1763 			int (*startup)(unsigned int cpu),
1764 			int (*teardown)(unsigned int cpu),
1765 			bool multi_instance)
1766 {
1767 	int ret;
1768 
1769 	cpus_read_lock();
1770 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1771 					     teardown, multi_instance);
1772 	cpus_read_unlock();
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL(__cpuhp_setup_state);
1776 
1777 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1778 				  struct hlist_node *node, bool invoke)
1779 {
1780 	struct cpuhp_step *sp = cpuhp_get_step(state);
1781 	int cpu;
1782 
1783 	BUG_ON(cpuhp_cb_check(state));
1784 
1785 	if (!sp->multi_instance)
1786 		return -EINVAL;
1787 
1788 	cpus_read_lock();
1789 	mutex_lock(&cpuhp_state_mutex);
1790 
1791 	if (!invoke || !cpuhp_get_teardown_cb(state))
1792 		goto remove;
1793 	/*
1794 	 * Call the teardown callback for each present cpu depending
1795 	 * on the hotplug state of the cpu. This function is not
1796 	 * allowed to fail currently!
1797 	 */
1798 	for_each_present_cpu(cpu) {
1799 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1800 		int cpustate = st->state;
1801 
1802 		if (cpustate >= state)
1803 			cpuhp_issue_call(cpu, state, false, node);
1804 	}
1805 
1806 remove:
1807 	hlist_del(node);
1808 	mutex_unlock(&cpuhp_state_mutex);
1809 	cpus_read_unlock();
1810 
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1814 
1815 /**
1816  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1817  * @state:	The state to remove
1818  * @invoke:	If true, the teardown function is invoked for cpus where
1819  *		cpu state >= @state
1820  *
1821  * The caller needs to hold cpus read locked while calling this function.
1822  * The teardown callback is currently not allowed to fail. Think
1823  * about module removal!
1824  */
1825 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1826 {
1827 	struct cpuhp_step *sp = cpuhp_get_step(state);
1828 	int cpu;
1829 
1830 	BUG_ON(cpuhp_cb_check(state));
1831 
1832 	lockdep_assert_cpus_held();
1833 
1834 	mutex_lock(&cpuhp_state_mutex);
1835 	if (sp->multi_instance) {
1836 		WARN(!hlist_empty(&sp->list),
1837 		     "Error: Removing state %d which has instances left.\n",
1838 		     state);
1839 		goto remove;
1840 	}
1841 
1842 	if (!invoke || !cpuhp_get_teardown_cb(state))
1843 		goto remove;
1844 
1845 	/*
1846 	 * Call the teardown callback for each present cpu depending
1847 	 * on the hotplug state of the cpu. This function is not
1848 	 * allowed to fail currently!
1849 	 */
1850 	for_each_present_cpu(cpu) {
1851 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1852 		int cpustate = st->state;
1853 
1854 		if (cpustate >= state)
1855 			cpuhp_issue_call(cpu, state, false, NULL);
1856 	}
1857 remove:
1858 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1859 	mutex_unlock(&cpuhp_state_mutex);
1860 }
1861 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1862 
1863 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1864 {
1865 	cpus_read_lock();
1866 	__cpuhp_remove_state_cpuslocked(state, invoke);
1867 	cpus_read_unlock();
1868 }
1869 EXPORT_SYMBOL(__cpuhp_remove_state);
1870 
1871 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1872 static ssize_t show_cpuhp_state(struct device *dev,
1873 				struct device_attribute *attr, char *buf)
1874 {
1875 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1876 
1877 	return sprintf(buf, "%d\n", st->state);
1878 }
1879 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1880 
1881 static ssize_t write_cpuhp_target(struct device *dev,
1882 				  struct device_attribute *attr,
1883 				  const char *buf, size_t count)
1884 {
1885 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1886 	struct cpuhp_step *sp;
1887 	int target, ret;
1888 
1889 	ret = kstrtoint(buf, 10, &target);
1890 	if (ret)
1891 		return ret;
1892 
1893 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1894 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1895 		return -EINVAL;
1896 #else
1897 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1898 		return -EINVAL;
1899 #endif
1900 
1901 	ret = lock_device_hotplug_sysfs();
1902 	if (ret)
1903 		return ret;
1904 
1905 	mutex_lock(&cpuhp_state_mutex);
1906 	sp = cpuhp_get_step(target);
1907 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1908 	mutex_unlock(&cpuhp_state_mutex);
1909 	if (ret)
1910 		goto out;
1911 
1912 	if (st->state < target)
1913 		ret = do_cpu_up(dev->id, target);
1914 	else
1915 		ret = do_cpu_down(dev->id, target);
1916 out:
1917 	unlock_device_hotplug();
1918 	return ret ? ret : count;
1919 }
1920 
1921 static ssize_t show_cpuhp_target(struct device *dev,
1922 				 struct device_attribute *attr, char *buf)
1923 {
1924 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1925 
1926 	return sprintf(buf, "%d\n", st->target);
1927 }
1928 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1929 
1930 
1931 static ssize_t write_cpuhp_fail(struct device *dev,
1932 				struct device_attribute *attr,
1933 				const char *buf, size_t count)
1934 {
1935 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1936 	struct cpuhp_step *sp;
1937 	int fail, ret;
1938 
1939 	ret = kstrtoint(buf, 10, &fail);
1940 	if (ret)
1941 		return ret;
1942 
1943 	/*
1944 	 * Cannot fail STARTING/DYING callbacks.
1945 	 */
1946 	if (cpuhp_is_atomic_state(fail))
1947 		return -EINVAL;
1948 
1949 	/*
1950 	 * Cannot fail anything that doesn't have callbacks.
1951 	 */
1952 	mutex_lock(&cpuhp_state_mutex);
1953 	sp = cpuhp_get_step(fail);
1954 	if (!sp->startup.single && !sp->teardown.single)
1955 		ret = -EINVAL;
1956 	mutex_unlock(&cpuhp_state_mutex);
1957 	if (ret)
1958 		return ret;
1959 
1960 	st->fail = fail;
1961 
1962 	return count;
1963 }
1964 
1965 static ssize_t show_cpuhp_fail(struct device *dev,
1966 			       struct device_attribute *attr, char *buf)
1967 {
1968 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1969 
1970 	return sprintf(buf, "%d\n", st->fail);
1971 }
1972 
1973 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1974 
1975 static struct attribute *cpuhp_cpu_attrs[] = {
1976 	&dev_attr_state.attr,
1977 	&dev_attr_target.attr,
1978 	&dev_attr_fail.attr,
1979 	NULL
1980 };
1981 
1982 static const struct attribute_group cpuhp_cpu_attr_group = {
1983 	.attrs = cpuhp_cpu_attrs,
1984 	.name = "hotplug",
1985 	NULL
1986 };
1987 
1988 static ssize_t show_cpuhp_states(struct device *dev,
1989 				 struct device_attribute *attr, char *buf)
1990 {
1991 	ssize_t cur, res = 0;
1992 	int i;
1993 
1994 	mutex_lock(&cpuhp_state_mutex);
1995 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1996 		struct cpuhp_step *sp = cpuhp_get_step(i);
1997 
1998 		if (sp->name) {
1999 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2000 			buf += cur;
2001 			res += cur;
2002 		}
2003 	}
2004 	mutex_unlock(&cpuhp_state_mutex);
2005 	return res;
2006 }
2007 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2008 
2009 static struct attribute *cpuhp_cpu_root_attrs[] = {
2010 	&dev_attr_states.attr,
2011 	NULL
2012 };
2013 
2014 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2015 	.attrs = cpuhp_cpu_root_attrs,
2016 	.name = "hotplug",
2017 	NULL
2018 };
2019 
2020 #ifdef CONFIG_HOTPLUG_SMT
2021 
2022 static const char *smt_states[] = {
2023 	[CPU_SMT_ENABLED]		= "on",
2024 	[CPU_SMT_DISABLED]		= "off",
2025 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2026 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2027 };
2028 
2029 static ssize_t
2030 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2031 {
2032 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2033 }
2034 
2035 static void cpuhp_offline_cpu_device(unsigned int cpu)
2036 {
2037 	struct device *dev = get_cpu_device(cpu);
2038 
2039 	dev->offline = true;
2040 	/* Tell user space about the state change */
2041 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2042 }
2043 
2044 static void cpuhp_online_cpu_device(unsigned int cpu)
2045 {
2046 	struct device *dev = get_cpu_device(cpu);
2047 
2048 	dev->offline = false;
2049 	/* Tell user space about the state change */
2050 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2051 }
2052 
2053 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2054 {
2055 	int cpu, ret = 0;
2056 
2057 	cpu_maps_update_begin();
2058 	for_each_online_cpu(cpu) {
2059 		if (topology_is_primary_thread(cpu))
2060 			continue;
2061 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2062 		if (ret)
2063 			break;
2064 		/*
2065 		 * As this needs to hold the cpu maps lock it's impossible
2066 		 * to call device_offline() because that ends up calling
2067 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2068 		 * needs to be held as this might race against in kernel
2069 		 * abusers of the hotplug machinery (thermal management).
2070 		 *
2071 		 * So nothing would update device:offline state. That would
2072 		 * leave the sysfs entry stale and prevent onlining after
2073 		 * smt control has been changed to 'off' again. This is
2074 		 * called under the sysfs hotplug lock, so it is properly
2075 		 * serialized against the regular offline usage.
2076 		 */
2077 		cpuhp_offline_cpu_device(cpu);
2078 	}
2079 	if (!ret)
2080 		cpu_smt_control = ctrlval;
2081 	cpu_maps_update_done();
2082 	return ret;
2083 }
2084 
2085 static int cpuhp_smt_enable(void)
2086 {
2087 	int cpu, ret = 0;
2088 
2089 	cpu_maps_update_begin();
2090 	cpu_smt_control = CPU_SMT_ENABLED;
2091 	for_each_present_cpu(cpu) {
2092 		/* Skip online CPUs and CPUs on offline nodes */
2093 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2094 			continue;
2095 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2096 		if (ret)
2097 			break;
2098 		/* See comment in cpuhp_smt_disable() */
2099 		cpuhp_online_cpu_device(cpu);
2100 	}
2101 	cpu_maps_update_done();
2102 	return ret;
2103 }
2104 
2105 static ssize_t
2106 store_smt_control(struct device *dev, struct device_attribute *attr,
2107 		  const char *buf, size_t count)
2108 {
2109 	int ctrlval, ret;
2110 
2111 	if (sysfs_streq(buf, "on"))
2112 		ctrlval = CPU_SMT_ENABLED;
2113 	else if (sysfs_streq(buf, "off"))
2114 		ctrlval = CPU_SMT_DISABLED;
2115 	else if (sysfs_streq(buf, "forceoff"))
2116 		ctrlval = CPU_SMT_FORCE_DISABLED;
2117 	else
2118 		return -EINVAL;
2119 
2120 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2121 		return -EPERM;
2122 
2123 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2124 		return -ENODEV;
2125 
2126 	ret = lock_device_hotplug_sysfs();
2127 	if (ret)
2128 		return ret;
2129 
2130 	if (ctrlval != cpu_smt_control) {
2131 		switch (ctrlval) {
2132 		case CPU_SMT_ENABLED:
2133 			ret = cpuhp_smt_enable();
2134 			break;
2135 		case CPU_SMT_DISABLED:
2136 		case CPU_SMT_FORCE_DISABLED:
2137 			ret = cpuhp_smt_disable(ctrlval);
2138 			break;
2139 		}
2140 	}
2141 
2142 	unlock_device_hotplug();
2143 	return ret ? ret : count;
2144 }
2145 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2146 
2147 static ssize_t
2148 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2149 {
2150 	bool active = topology_max_smt_threads() > 1;
2151 
2152 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2153 }
2154 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2155 
2156 static struct attribute *cpuhp_smt_attrs[] = {
2157 	&dev_attr_control.attr,
2158 	&dev_attr_active.attr,
2159 	NULL
2160 };
2161 
2162 static const struct attribute_group cpuhp_smt_attr_group = {
2163 	.attrs = cpuhp_smt_attrs,
2164 	.name = "smt",
2165 	NULL
2166 };
2167 
2168 static int __init cpu_smt_state_init(void)
2169 {
2170 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2171 				  &cpuhp_smt_attr_group);
2172 }
2173 
2174 #else
2175 static inline int cpu_smt_state_init(void) { return 0; }
2176 #endif
2177 
2178 static int __init cpuhp_sysfs_init(void)
2179 {
2180 	int cpu, ret;
2181 
2182 	ret = cpu_smt_state_init();
2183 	if (ret)
2184 		return ret;
2185 
2186 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2187 				 &cpuhp_cpu_root_attr_group);
2188 	if (ret)
2189 		return ret;
2190 
2191 	for_each_possible_cpu(cpu) {
2192 		struct device *dev = get_cpu_device(cpu);
2193 
2194 		if (!dev)
2195 			continue;
2196 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2197 		if (ret)
2198 			return ret;
2199 	}
2200 	return 0;
2201 }
2202 device_initcall(cpuhp_sysfs_init);
2203 #endif
2204 
2205 /*
2206  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2207  * represents all NR_CPUS bits binary values of 1<<nr.
2208  *
2209  * It is used by cpumask_of() to get a constant address to a CPU
2210  * mask value that has a single bit set only.
2211  */
2212 
2213 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2214 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2215 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2216 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2217 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2218 
2219 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2220 
2221 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2222 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2223 #if BITS_PER_LONG > 32
2224 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2225 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2226 #endif
2227 };
2228 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2229 
2230 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2231 EXPORT_SYMBOL(cpu_all_bits);
2232 
2233 #ifdef CONFIG_INIT_ALL_POSSIBLE
2234 struct cpumask __cpu_possible_mask __read_mostly
2235 	= {CPU_BITS_ALL};
2236 #else
2237 struct cpumask __cpu_possible_mask __read_mostly;
2238 #endif
2239 EXPORT_SYMBOL(__cpu_possible_mask);
2240 
2241 struct cpumask __cpu_online_mask __read_mostly;
2242 EXPORT_SYMBOL(__cpu_online_mask);
2243 
2244 struct cpumask __cpu_present_mask __read_mostly;
2245 EXPORT_SYMBOL(__cpu_present_mask);
2246 
2247 struct cpumask __cpu_active_mask __read_mostly;
2248 EXPORT_SYMBOL(__cpu_active_mask);
2249 
2250 void init_cpu_present(const struct cpumask *src)
2251 {
2252 	cpumask_copy(&__cpu_present_mask, src);
2253 }
2254 
2255 void init_cpu_possible(const struct cpumask *src)
2256 {
2257 	cpumask_copy(&__cpu_possible_mask, src);
2258 }
2259 
2260 void init_cpu_online(const struct cpumask *src)
2261 {
2262 	cpumask_copy(&__cpu_online_mask, src);
2263 }
2264 
2265 /*
2266  * Activate the first processor.
2267  */
2268 void __init boot_cpu_init(void)
2269 {
2270 	int cpu = smp_processor_id();
2271 
2272 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2273 	set_cpu_online(cpu, true);
2274 	set_cpu_active(cpu, true);
2275 	set_cpu_present(cpu, true);
2276 	set_cpu_possible(cpu, true);
2277 
2278 #ifdef CONFIG_SMP
2279 	__boot_cpu_id = cpu;
2280 #endif
2281 }
2282 
2283 /*
2284  * Must be called _AFTER_ setting up the per_cpu areas
2285  */
2286 void __init boot_cpu_hotplug_init(void)
2287 {
2288 #ifdef CONFIG_SMP
2289 	this_cpu_write(cpuhp_state.booted_once, true);
2290 #endif
2291 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2292 }
2293