xref: /linux/kernel/cpu.c (revision ba6e0e5cb5b2c2e736e16b4aead816450a8718e6)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @cpu:	CPU number
58  * @node:	Remote CPU node; for multi-instance, do a
59  *		single entry callback for install/remove
60  * @last:	For multi-instance rollback, remember how far we got
61  * @cb_state:	The state for a single callback (install/uninstall)
62  * @result:	Result of the operation
63  * @ap_sync_state:	State for AP synchronization
64  * @done_up:	Signal completion to the issuer of the task for cpu-up
65  * @done_down:	Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68 	enum cpuhp_state	state;
69 	enum cpuhp_state	target;
70 	enum cpuhp_state	fail;
71 #ifdef CONFIG_SMP
72 	struct task_struct	*thread;
73 	bool			should_run;
74 	bool			rollback;
75 	bool			single;
76 	bool			bringup;
77 	struct hlist_node	*node;
78 	struct hlist_node	*last;
79 	enum cpuhp_state	cb_state;
80 	int			result;
81 	atomic_t		ap_sync_state;
82 	struct completion	done_up;
83 	struct completion	done_down;
84 #endif
85 };
86 
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 	.fail = CPUHP_INVALID,
89 };
90 
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94 
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100 
101 
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112 
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115 
116 #endif
117 
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:	Name of the step
121  * @startup:	Startup function of the step
122  * @teardown:	Teardown function of the step
123  * @cant_stop:	Bringup/teardown can't be stopped at this step
124  * @multi_instance:	State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127 	const char		*name;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} startup;
133 	union {
134 		int		(*single)(unsigned int cpu);
135 		int		(*multi)(unsigned int cpu,
136 					 struct hlist_node *node);
137 	} teardown;
138 	/* private: */
139 	struct hlist_head	list;
140 	/* public: */
141 	bool			cant_stop;
142 	bool			multi_instance;
143 };
144 
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147 
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 	return cpuhp_hp_states + state;
151 }
152 
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 	return bringup ? !step->startup.single : !step->teardown.single;
156 }
157 
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:	The cpu for which the callback should be invoked
161  * @state:	The state to do callbacks for
162  * @bringup:	True if the bringup callback should be invoked
163  * @node:	For multi-instance, do a single entry callback for install/remove
164  * @lastp:	For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 				 bool bringup, struct hlist_node *node,
172 				 struct hlist_node **lastp)
173 {
174 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 	struct cpuhp_step *step = cpuhp_get_step(state);
176 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 	int (*cb)(unsigned int cpu);
178 	int ret, cnt;
179 
180 	if (st->fail == state) {
181 		st->fail = CPUHP_INVALID;
182 		return -EAGAIN;
183 	}
184 
185 	if (cpuhp_step_empty(bringup, step)) {
186 		WARN_ON_ONCE(1);
187 		return 0;
188 	}
189 
190 	if (!step->multi_instance) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		cb = bringup ? step->startup.single : step->teardown.single;
193 
194 		trace_cpuhp_enter(cpu, st->target, state, cb);
195 		ret = cb(cpu);
196 		trace_cpuhp_exit(cpu, st->state, state, ret);
197 		return ret;
198 	}
199 	cbm = bringup ? step->startup.multi : step->teardown.multi;
200 
201 	/* Single invocation for instance add/remove */
202 	if (node) {
203 		WARN_ON_ONCE(lastp && *lastp);
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		return ret;
208 	}
209 
210 	/* State transition. Invoke on all instances */
211 	cnt = 0;
212 	hlist_for_each(node, &step->list) {
213 		if (lastp && node == *lastp)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		if (ret) {
220 			if (!lastp)
221 				goto err;
222 
223 			*lastp = node;
224 			return ret;
225 		}
226 		cnt++;
227 	}
228 	if (lastp)
229 		*lastp = NULL;
230 	return 0;
231 err:
232 	/* Rollback the instances if one failed */
233 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 	if (!cbm)
235 		return ret;
236 
237 	hlist_for_each(node, &step->list) {
238 		if (!cnt--)
239 			break;
240 
241 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 		ret = cbm(cpu, node);
243 		trace_cpuhp_exit(cpu, st->state, state, ret);
244 		/*
245 		 * Rollback must not fail,
246 		 */
247 		WARN_ON_ONCE(ret);
248 	}
249 	return ret;
250 }
251 
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 	/*
256 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 	 * purposes as that state is handled explicitly in cpu_down.
258 	 */
259 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261 
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 	struct completion *done = bringup ? &st->done_up : &st->done_down;
265 	wait_for_completion(done);
266 }
267 
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 	struct completion *done = bringup ? &st->done_up : &st->done_down;
271 	complete(done);
272 }
273 
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281 
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 	SYNC_STATE_DEAD,
285 	SYNC_STATE_KICKED,
286 	SYNC_STATE_SHOULD_DIE,
287 	SYNC_STATE_ALIVE,
288 	SYNC_STATE_SHOULD_ONLINE,
289 	SYNC_STATE_ONLINE,
290 };
291 
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:	The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 
304 	(void)atomic_xchg(st, state);
305 }
306 
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 				      enum cpuhp_sync_state next_state)
311 {
312 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 	ktime_t now, end, start = ktime_get();
314 	int sync;
315 
316 	end = start + 10ULL * NSEC_PER_SEC;
317 
318 	sync = atomic_read(st);
319 	while (1) {
320 		if (sync == state) {
321 			if (!atomic_try_cmpxchg(st, &sync, next_state))
322 				continue;
323 			return true;
324 		}
325 
326 		now = ktime_get();
327 		if (now > end) {
328 			/* Timeout. Leave the state unchanged */
329 			return false;
330 		} else if (now - start < NSEC_PER_MSEC) {
331 			/* Poll for one millisecond */
332 			arch_cpuhp_sync_state_poll();
333 		} else {
334 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 		}
336 		sync = atomic_read(st);
337 	}
338 	return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354 
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356 
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 	int sync = atomic_read(st);
365 
366 	do {
367 		/* CPU can have reported dead already. Don't overwrite that! */
368 		if (sync == SYNC_STATE_DEAD)
369 			break;
370 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 
372 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 		/* CPU reached dead state. Invoke the cleanup function */
374 		arch_cpuhp_cleanup_dead_cpu(cpu);
375 		return;
376 	}
377 
378 	/* No further action possible. Emit message and give up. */
379 	pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 
396 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 
398 	/* Wait for the control CPU to release it. */
399 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 		cpu_relax();
401 }
402 
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 	int sync = atomic_read(st);
407 
408 again:
409 	switch (sync) {
410 	case SYNC_STATE_DEAD:
411 		/* CPU is properly dead */
412 		break;
413 	case SYNC_STATE_KICKED:
414 		/* CPU did not come up in previous attempt */
415 		break;
416 	case SYNC_STATE_ALIVE:
417 		/* CPU is stuck cpuhp_ap_sync_alive(). */
418 		break;
419 	default:
420 		/* CPU failed to report online or dead and is in limbo state. */
421 		return false;
422 	}
423 
424 	/* Prepare for booting */
425 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 		goto again;
427 
428 	return true;
429 }
430 
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432 
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 	int ret = 0;
440 
441 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 		return 0;
443 
444 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 		pr_err("CPU%u failed to report alive state\n", cpu);
446 		ret = -EIO;
447 	}
448 
449 	/* Let the architecture cleanup the kick alive mechanics. */
450 	arch_cpuhp_cleanup_kick_cpu(cpu);
451 	return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462 
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469 	mutex_lock(&cpu_add_remove_lock);
470 }
471 
472 void cpu_maps_update_done(void)
473 {
474 	mutex_unlock(&cpu_add_remove_lock);
475 }
476 
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 
487 void cpus_read_lock(void)
488 {
489 	percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492 
493 int cpus_read_trylock(void)
494 {
495 	return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498 
499 void cpus_read_unlock(void)
500 {
501 	percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504 
505 void cpus_write_lock(void)
506 {
507 	percpu_down_write(&cpu_hotplug_lock);
508 }
509 
510 void cpus_write_unlock(void)
511 {
512 	percpu_up_write(&cpu_hotplug_lock);
513 }
514 
515 void lockdep_assert_cpus_held(void)
516 {
517 	/*
518 	 * We can't have hotplug operations before userspace starts running,
519 	 * and some init codepaths will knowingly not take the hotplug lock.
520 	 * This is all valid, so mute lockdep until it makes sense to report
521 	 * unheld locks.
522 	 */
523 	if (system_state < SYSTEM_RUNNING)
524 		return;
525 
526 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528 
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535 
536 static void lockdep_acquire_cpus_lock(void)
537 {
538 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540 
541 static void lockdep_release_cpus_lock(void)
542 {
543 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545 
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555 	cpu_maps_update_begin();
556 	cpu_hotplug_disabled++;
557 	cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560 
561 static void __cpu_hotplug_enable(void)
562 {
563 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 		return;
565 	cpu_hotplug_disabled--;
566 }
567 
568 void cpu_hotplug_enable(void)
569 {
570 	cpu_maps_update_begin();
571 	__cpu_hotplug_enable();
572 	cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575 
576 #else
577 
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581 
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585 
586 #endif	/* CONFIG_HOTPLUG_CPU */
587 
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593 
594 #ifdef CONFIG_HOTPLUG_SMT
595 
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599 
600 void __init cpu_smt_disable(bool force)
601 {
602 	if (!cpu_smt_possible())
603 		return;
604 
605 	if (force) {
606 		pr_info("SMT: Force disabled\n");
607 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608 	} else {
609 		pr_info("SMT: disabled\n");
610 		cpu_smt_control = CPU_SMT_DISABLED;
611 	}
612 	cpu_smt_num_threads = 1;
613 }
614 
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 				    unsigned int max_threads)
621 {
622 	WARN_ON(!num_threads || (num_threads > max_threads));
623 
624 	if (max_threads == 1)
625 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626 
627 	cpu_smt_max_threads = max_threads;
628 
629 	/*
630 	 * If SMT has been disabled via the kernel command line or SMT is
631 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 	 * If enabled, take the architecture requested number of threads
633 	 * to bring up into account.
634 	 */
635 	if (cpu_smt_control != CPU_SMT_ENABLED)
636 		cpu_smt_num_threads = 1;
637 	else if (num_threads < cpu_smt_num_threads)
638 		cpu_smt_num_threads = num_threads;
639 }
640 
641 static int __init smt_cmdline_disable(char *str)
642 {
643 	cpu_smt_disable(str && !strcmp(str, "force"));
644 	return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647 
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 	return topology_smt_thread_allowed(cpu);
657 #else
658 	return true;
659 #endif
660 }
661 
662 static inline bool cpu_smt_allowed(unsigned int cpu)
663 {
664 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665 		return true;
666 
667 	if (topology_is_primary_thread(cpu))
668 		return true;
669 
670 	/*
671 	 * On x86 it's required to boot all logical CPUs at least once so
672 	 * that the init code can get a chance to set CR4.MCE on each
673 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674 	 * core will shutdown the machine.
675 	 */
676 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677 }
678 
679 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
680 bool cpu_smt_possible(void)
681 {
682 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684 }
685 EXPORT_SYMBOL_GPL(cpu_smt_possible);
686 
687 #else
688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689 #endif
690 
691 static inline enum cpuhp_state
692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693 {
694 	enum cpuhp_state prev_state = st->state;
695 	bool bringup = st->state < target;
696 
697 	st->rollback = false;
698 	st->last = NULL;
699 
700 	st->target = target;
701 	st->single = false;
702 	st->bringup = bringup;
703 	if (cpu_dying(cpu) != !bringup)
704 		set_cpu_dying(cpu, !bringup);
705 
706 	return prev_state;
707 }
708 
709 static inline void
710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711 		  enum cpuhp_state prev_state)
712 {
713 	bool bringup = !st->bringup;
714 
715 	st->target = prev_state;
716 
717 	/*
718 	 * Already rolling back. No need invert the bringup value or to change
719 	 * the current state.
720 	 */
721 	if (st->rollback)
722 		return;
723 
724 	st->rollback = true;
725 
726 	/*
727 	 * If we have st->last we need to undo partial multi_instance of this
728 	 * state first. Otherwise start undo at the previous state.
729 	 */
730 	if (!st->last) {
731 		if (st->bringup)
732 			st->state--;
733 		else
734 			st->state++;
735 	}
736 
737 	st->bringup = bringup;
738 	if (cpu_dying(cpu) != !bringup)
739 		set_cpu_dying(cpu, !bringup);
740 }
741 
742 /* Regular hotplug invocation of the AP hotplug thread */
743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744 {
745 	if (!st->single && st->state == st->target)
746 		return;
747 
748 	st->result = 0;
749 	/*
750 	 * Make sure the above stores are visible before should_run becomes
751 	 * true. Paired with the mb() above in cpuhp_thread_fun()
752 	 */
753 	smp_mb();
754 	st->should_run = true;
755 	wake_up_process(st->thread);
756 	wait_for_ap_thread(st, st->bringup);
757 }
758 
759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760 			 enum cpuhp_state target)
761 {
762 	enum cpuhp_state prev_state;
763 	int ret;
764 
765 	prev_state = cpuhp_set_state(cpu, st, target);
766 	__cpuhp_kick_ap(st);
767 	if ((ret = st->result)) {
768 		cpuhp_reset_state(cpu, st, prev_state);
769 		__cpuhp_kick_ap(st);
770 	}
771 
772 	return ret;
773 }
774 
775 static int bringup_wait_for_ap_online(unsigned int cpu)
776 {
777 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778 
779 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780 	wait_for_ap_thread(st, true);
781 	if (WARN_ON_ONCE((!cpu_online(cpu))))
782 		return -ECANCELED;
783 
784 	/* Unpark the hotplug thread of the target cpu */
785 	kthread_unpark(st->thread);
786 
787 	/*
788 	 * SMT soft disabling on X86 requires to bring the CPU out of the
789 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
790 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
791 	 * cpu_smt_allowed() check will now return false if this is not the
792 	 * primary sibling.
793 	 */
794 	if (!cpu_smt_allowed(cpu))
795 		return -ECANCELED;
796 	return 0;
797 }
798 
799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800 static int cpuhp_kick_ap_alive(unsigned int cpu)
801 {
802 	if (!cpuhp_can_boot_ap(cpu))
803 		return -EAGAIN;
804 
805 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806 }
807 
808 static int cpuhp_bringup_ap(unsigned int cpu)
809 {
810 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 	int ret;
812 
813 	/*
814 	 * Some architectures have to walk the irq descriptors to
815 	 * setup the vector space for the cpu which comes online.
816 	 * Prevent irq alloc/free across the bringup.
817 	 */
818 	irq_lock_sparse();
819 
820 	ret = cpuhp_bp_sync_alive(cpu);
821 	if (ret)
822 		goto out_unlock;
823 
824 	ret = bringup_wait_for_ap_online(cpu);
825 	if (ret)
826 		goto out_unlock;
827 
828 	irq_unlock_sparse();
829 
830 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
831 		return 0;
832 
833 	return cpuhp_kick_ap(cpu, st, st->target);
834 
835 out_unlock:
836 	irq_unlock_sparse();
837 	return ret;
838 }
839 #else
840 static int bringup_cpu(unsigned int cpu)
841 {
842 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843 	struct task_struct *idle = idle_thread_get(cpu);
844 	int ret;
845 
846 	if (!cpuhp_can_boot_ap(cpu))
847 		return -EAGAIN;
848 
849 	/*
850 	 * Some architectures have to walk the irq descriptors to
851 	 * setup the vector space for the cpu which comes online.
852 	 *
853 	 * Prevent irq alloc/free across the bringup by acquiring the
854 	 * sparse irq lock. Hold it until the upcoming CPU completes the
855 	 * startup in cpuhp_online_idle() which allows to avoid
856 	 * intermediate synchronization points in the architecture code.
857 	 */
858 	irq_lock_sparse();
859 
860 	ret = __cpu_up(cpu, idle);
861 	if (ret)
862 		goto out_unlock;
863 
864 	ret = cpuhp_bp_sync_alive(cpu);
865 	if (ret)
866 		goto out_unlock;
867 
868 	ret = bringup_wait_for_ap_online(cpu);
869 	if (ret)
870 		goto out_unlock;
871 
872 	irq_unlock_sparse();
873 
874 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
875 		return 0;
876 
877 	return cpuhp_kick_ap(cpu, st, st->target);
878 
879 out_unlock:
880 	irq_unlock_sparse();
881 	return ret;
882 }
883 #endif
884 
885 static int finish_cpu(unsigned int cpu)
886 {
887 	struct task_struct *idle = idle_thread_get(cpu);
888 	struct mm_struct *mm = idle->active_mm;
889 
890 	/*
891 	 * idle_task_exit() will have switched to &init_mm, now
892 	 * clean up any remaining active_mm state.
893 	 */
894 	if (mm != &init_mm)
895 		idle->active_mm = &init_mm;
896 	mmdrop_lazy_tlb(mm);
897 	return 0;
898 }
899 
900 /*
901  * Hotplug state machine related functions
902  */
903 
904 /*
905  * Get the next state to run. Empty ones will be skipped. Returns true if a
906  * state must be run.
907  *
908  * st->state will be modified ahead of time, to match state_to_run, as if it
909  * has already ran.
910  */
911 static bool cpuhp_next_state(bool bringup,
912 			     enum cpuhp_state *state_to_run,
913 			     struct cpuhp_cpu_state *st,
914 			     enum cpuhp_state target)
915 {
916 	do {
917 		if (bringup) {
918 			if (st->state >= target)
919 				return false;
920 
921 			*state_to_run = ++st->state;
922 		} else {
923 			if (st->state <= target)
924 				return false;
925 
926 			*state_to_run = st->state--;
927 		}
928 
929 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930 			break;
931 	} while (true);
932 
933 	return true;
934 }
935 
936 static int __cpuhp_invoke_callback_range(bool bringup,
937 					 unsigned int cpu,
938 					 struct cpuhp_cpu_state *st,
939 					 enum cpuhp_state target,
940 					 bool nofail)
941 {
942 	enum cpuhp_state state;
943 	int ret = 0;
944 
945 	while (cpuhp_next_state(bringup, &state, st, target)) {
946 		int err;
947 
948 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949 		if (!err)
950 			continue;
951 
952 		if (nofail) {
953 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954 				cpu, bringup ? "UP" : "DOWN",
955 				cpuhp_get_step(st->state)->name,
956 				st->state, err);
957 			ret = -1;
958 		} else {
959 			ret = err;
960 			break;
961 		}
962 	}
963 
964 	return ret;
965 }
966 
967 static inline int cpuhp_invoke_callback_range(bool bringup,
968 					      unsigned int cpu,
969 					      struct cpuhp_cpu_state *st,
970 					      enum cpuhp_state target)
971 {
972 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973 }
974 
975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976 						      unsigned int cpu,
977 						      struct cpuhp_cpu_state *st,
978 						      enum cpuhp_state target)
979 {
980 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981 }
982 
983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984 {
985 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986 		return true;
987 	/*
988 	 * When CPU hotplug is disabled, then taking the CPU down is not
989 	 * possible because takedown_cpu() and the architecture and
990 	 * subsystem specific mechanisms are not available. So the CPU
991 	 * which would be completely unplugged again needs to stay around
992 	 * in the current state.
993 	 */
994 	return st->state <= CPUHP_BRINGUP_CPU;
995 }
996 
997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998 			      enum cpuhp_state target)
999 {
1000 	enum cpuhp_state prev_state = st->state;
1001 	int ret = 0;
1002 
1003 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004 	if (ret) {
1005 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006 			 ret, cpu, cpuhp_get_step(st->state)->name,
1007 			 st->state);
1008 
1009 		cpuhp_reset_state(cpu, st, prev_state);
1010 		if (can_rollback_cpu(st))
1011 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012 							    prev_state));
1013 	}
1014 	return ret;
1015 }
1016 
1017 /*
1018  * The cpu hotplug threads manage the bringup and teardown of the cpus
1019  */
1020 static int cpuhp_should_run(unsigned int cpu)
1021 {
1022 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023 
1024 	return st->should_run;
1025 }
1026 
1027 /*
1028  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029  * callbacks when a state gets [un]installed at runtime.
1030  *
1031  * Each invocation of this function by the smpboot thread does a single AP
1032  * state callback.
1033  *
1034  * It has 3 modes of operation:
1035  *  - single: runs st->cb_state
1036  *  - up:     runs ++st->state, while st->state < st->target
1037  *  - down:   runs st->state--, while st->state > st->target
1038  *
1039  * When complete or on error, should_run is cleared and the completion is fired.
1040  */
1041 static void cpuhp_thread_fun(unsigned int cpu)
1042 {
1043 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044 	bool bringup = st->bringup;
1045 	enum cpuhp_state state;
1046 
1047 	if (WARN_ON_ONCE(!st->should_run))
1048 		return;
1049 
1050 	/*
1051 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052 	 * that if we see ->should_run we also see the rest of the state.
1053 	 */
1054 	smp_mb();
1055 
1056 	/*
1057 	 * The BP holds the hotplug lock, but we're now running on the AP,
1058 	 * ensure that anybody asserting the lock is held, will actually find
1059 	 * it so.
1060 	 */
1061 	lockdep_acquire_cpus_lock();
1062 	cpuhp_lock_acquire(bringup);
1063 
1064 	if (st->single) {
1065 		state = st->cb_state;
1066 		st->should_run = false;
1067 	} else {
1068 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069 		if (!st->should_run)
1070 			goto end;
1071 	}
1072 
1073 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074 
1075 	if (cpuhp_is_atomic_state(state)) {
1076 		local_irq_disable();
1077 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078 		local_irq_enable();
1079 
1080 		/*
1081 		 * STARTING/DYING must not fail!
1082 		 */
1083 		WARN_ON_ONCE(st->result);
1084 	} else {
1085 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086 	}
1087 
1088 	if (st->result) {
1089 		/*
1090 		 * If we fail on a rollback, we're up a creek without no
1091 		 * paddle, no way forward, no way back. We loose, thanks for
1092 		 * playing.
1093 		 */
1094 		WARN_ON_ONCE(st->rollback);
1095 		st->should_run = false;
1096 	}
1097 
1098 end:
1099 	cpuhp_lock_release(bringup);
1100 	lockdep_release_cpus_lock();
1101 
1102 	if (!st->should_run)
1103 		complete_ap_thread(st, bringup);
1104 }
1105 
1106 /* Invoke a single callback on a remote cpu */
1107 static int
1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109 			 struct hlist_node *node)
1110 {
1111 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112 	int ret;
1113 
1114 	if (!cpu_online(cpu))
1115 		return 0;
1116 
1117 	cpuhp_lock_acquire(false);
1118 	cpuhp_lock_release(false);
1119 
1120 	cpuhp_lock_acquire(true);
1121 	cpuhp_lock_release(true);
1122 
1123 	/*
1124 	 * If we are up and running, use the hotplug thread. For early calls
1125 	 * we invoke the thread function directly.
1126 	 */
1127 	if (!st->thread)
1128 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129 
1130 	st->rollback = false;
1131 	st->last = NULL;
1132 
1133 	st->node = node;
1134 	st->bringup = bringup;
1135 	st->cb_state = state;
1136 	st->single = true;
1137 
1138 	__cpuhp_kick_ap(st);
1139 
1140 	/*
1141 	 * If we failed and did a partial, do a rollback.
1142 	 */
1143 	if ((ret = st->result) && st->last) {
1144 		st->rollback = true;
1145 		st->bringup = !bringup;
1146 
1147 		__cpuhp_kick_ap(st);
1148 	}
1149 
1150 	/*
1151 	 * Clean up the leftovers so the next hotplug operation wont use stale
1152 	 * data.
1153 	 */
1154 	st->node = st->last = NULL;
1155 	return ret;
1156 }
1157 
1158 static int cpuhp_kick_ap_work(unsigned int cpu)
1159 {
1160 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161 	enum cpuhp_state prev_state = st->state;
1162 	int ret;
1163 
1164 	cpuhp_lock_acquire(false);
1165 	cpuhp_lock_release(false);
1166 
1167 	cpuhp_lock_acquire(true);
1168 	cpuhp_lock_release(true);
1169 
1170 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171 	ret = cpuhp_kick_ap(cpu, st, st->target);
1172 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173 
1174 	return ret;
1175 }
1176 
1177 static struct smp_hotplug_thread cpuhp_threads = {
1178 	.store			= &cpuhp_state.thread,
1179 	.thread_should_run	= cpuhp_should_run,
1180 	.thread_fn		= cpuhp_thread_fun,
1181 	.thread_comm		= "cpuhp/%u",
1182 	.selfparking		= true,
1183 };
1184 
1185 static __init void cpuhp_init_state(void)
1186 {
1187 	struct cpuhp_cpu_state *st;
1188 	int cpu;
1189 
1190 	for_each_possible_cpu(cpu) {
1191 		st = per_cpu_ptr(&cpuhp_state, cpu);
1192 		init_completion(&st->done_up);
1193 		init_completion(&st->done_down);
1194 	}
1195 }
1196 
1197 void __init cpuhp_threads_init(void)
1198 {
1199 	cpuhp_init_state();
1200 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202 }
1203 
1204 /*
1205  *
1206  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207  * protected region.
1208  *
1209  * The operation is still serialized against concurrent CPU hotplug via
1210  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1211  * serialized against other hotplug related activity like adding or
1212  * removing of state callbacks and state instances, which invoke either the
1213  * startup or the teardown callback of the affected state.
1214  *
1215  * This is required for subsystems which are unfixable vs. CPU hotplug and
1216  * evade lock inversion problems by scheduling work which has to be
1217  * completed _before_ cpu_up()/_cpu_down() returns.
1218  *
1219  * Don't even think about adding anything to this for any new code or even
1220  * drivers. It's only purpose is to keep existing lock order trainwrecks
1221  * working.
1222  *
1223  * For cpu_down() there might be valid reasons to finish cleanups which are
1224  * not required to be done under cpu_hotplug_lock, but that's a different
1225  * story and would be not invoked via this.
1226  */
1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228 {
1229 	/*
1230 	 * cpusets delegate hotplug operations to a worker to "solve" the
1231 	 * lock order problems. Wait for the worker, but only if tasks are
1232 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1233 	 *
1234 	 * The wait is required because otherwise the hotplug operation
1235 	 * returns with inconsistent state, which could even be observed in
1236 	 * user space when a new CPU is brought up. The CPU plug uevent
1237 	 * would be delivered and user space reacting on it would fail to
1238 	 * move tasks to the newly plugged CPU up to the point where the
1239 	 * work has finished because up to that point the newly plugged CPU
1240 	 * is not assignable in cpusets/cgroups. On unplug that's not
1241 	 * necessarily a visible issue, but it is still inconsistent state,
1242 	 * which is the real problem which needs to be "fixed". This can't
1243 	 * prevent the transient state between scheduling the work and
1244 	 * returning from waiting for it.
1245 	 */
1246 	if (!tasks_frozen)
1247 		cpuset_wait_for_hotplug();
1248 }
1249 
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 #ifndef arch_clear_mm_cpumask_cpu
1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253 #endif
1254 
1255 /**
1256  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257  * @cpu: a CPU id
1258  *
1259  * This function walks all processes, finds a valid mm struct for each one and
1260  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1261  * trivial, there are various non-obvious corner cases, which this function
1262  * tries to solve in a safe manner.
1263  *
1264  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265  * be called only for an already offlined CPU.
1266  */
1267 void clear_tasks_mm_cpumask(int cpu)
1268 {
1269 	struct task_struct *p;
1270 
1271 	/*
1272 	 * This function is called after the cpu is taken down and marked
1273 	 * offline, so its not like new tasks will ever get this cpu set in
1274 	 * their mm mask. -- Peter Zijlstra
1275 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1276 	 * full-fledged tasklist_lock.
1277 	 */
1278 	WARN_ON(cpu_online(cpu));
1279 	rcu_read_lock();
1280 	for_each_process(p) {
1281 		struct task_struct *t;
1282 
1283 		/*
1284 		 * Main thread might exit, but other threads may still have
1285 		 * a valid mm. Find one.
1286 		 */
1287 		t = find_lock_task_mm(p);
1288 		if (!t)
1289 			continue;
1290 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291 		task_unlock(t);
1292 	}
1293 	rcu_read_unlock();
1294 }
1295 
1296 /* Take this CPU down. */
1297 static int take_cpu_down(void *_param)
1298 {
1299 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301 	int err, cpu = smp_processor_id();
1302 
1303 	/* Ensure this CPU doesn't handle any more interrupts. */
1304 	err = __cpu_disable();
1305 	if (err < 0)
1306 		return err;
1307 
1308 	/*
1309 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311 	 */
1312 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313 
1314 	/*
1315 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316 	 */
1317 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318 
1319 	/* Give up timekeeping duties */
1320 	tick_handover_do_timer();
1321 	/* Remove CPU from timer broadcasting */
1322 	tick_offline_cpu(cpu);
1323 	/* Park the stopper thread */
1324 	stop_machine_park(cpu);
1325 	return 0;
1326 }
1327 
1328 static int takedown_cpu(unsigned int cpu)
1329 {
1330 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 	int err;
1332 
1333 	/* Park the smpboot threads */
1334 	kthread_park(st->thread);
1335 
1336 	/*
1337 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1338 	 * interrupt affinities.
1339 	 */
1340 	irq_lock_sparse();
1341 
1342 	/*
1343 	 * So now all preempt/rcu users must observe !cpu_active().
1344 	 */
1345 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346 	if (err) {
1347 		/* CPU refused to die */
1348 		irq_unlock_sparse();
1349 		/* Unpark the hotplug thread so we can rollback there */
1350 		kthread_unpark(st->thread);
1351 		return err;
1352 	}
1353 	BUG_ON(cpu_online(cpu));
1354 
1355 	/*
1356 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357 	 * all runnable tasks from the CPU, there's only the idle task left now
1358 	 * that the migration thread is done doing the stop_machine thing.
1359 	 *
1360 	 * Wait for the stop thread to go away.
1361 	 */
1362 	wait_for_ap_thread(st, false);
1363 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364 
1365 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366 	irq_unlock_sparse();
1367 
1368 	hotplug_cpu__broadcast_tick_pull(cpu);
1369 	/* This actually kills the CPU. */
1370 	__cpu_die(cpu);
1371 
1372 	cpuhp_bp_sync_dead(cpu);
1373 
1374 	tick_cleanup_dead_cpu(cpu);
1375 	rcutree_migrate_callbacks(cpu);
1376 	return 0;
1377 }
1378 
1379 static void cpuhp_complete_idle_dead(void *arg)
1380 {
1381 	struct cpuhp_cpu_state *st = arg;
1382 
1383 	complete_ap_thread(st, false);
1384 }
1385 
1386 void cpuhp_report_idle_dead(void)
1387 {
1388 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389 
1390 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391 	rcu_report_dead(smp_processor_id());
1392 	st->state = CPUHP_AP_IDLE_DEAD;
1393 	/*
1394 	 * We cannot call complete after rcu_report_dead() so we delegate it
1395 	 * to an online cpu.
1396 	 */
1397 	smp_call_function_single(cpumask_first(cpu_online_mask),
1398 				 cpuhp_complete_idle_dead, st, 0);
1399 }
1400 
1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402 				enum cpuhp_state target)
1403 {
1404 	enum cpuhp_state prev_state = st->state;
1405 	int ret = 0;
1406 
1407 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408 	if (ret) {
1409 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410 			 ret, cpu, cpuhp_get_step(st->state)->name,
1411 			 st->state);
1412 
1413 		cpuhp_reset_state(cpu, st, prev_state);
1414 
1415 		if (st->state < prev_state)
1416 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417 							    prev_state));
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /* Requires cpu_add_remove_lock to be held */
1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425 			   enum cpuhp_state target)
1426 {
1427 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428 	int prev_state, ret = 0;
1429 
1430 	if (num_online_cpus() == 1)
1431 		return -EBUSY;
1432 
1433 	if (!cpu_present(cpu))
1434 		return -EINVAL;
1435 
1436 	cpus_write_lock();
1437 
1438 	cpuhp_tasks_frozen = tasks_frozen;
1439 
1440 	prev_state = cpuhp_set_state(cpu, st, target);
1441 	/*
1442 	 * If the current CPU state is in the range of the AP hotplug thread,
1443 	 * then we need to kick the thread.
1444 	 */
1445 	if (st->state > CPUHP_TEARDOWN_CPU) {
1446 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447 		ret = cpuhp_kick_ap_work(cpu);
1448 		/*
1449 		 * The AP side has done the error rollback already. Just
1450 		 * return the error code..
1451 		 */
1452 		if (ret)
1453 			goto out;
1454 
1455 		/*
1456 		 * We might have stopped still in the range of the AP hotplug
1457 		 * thread. Nothing to do anymore.
1458 		 */
1459 		if (st->state > CPUHP_TEARDOWN_CPU)
1460 			goto out;
1461 
1462 		st->target = target;
1463 	}
1464 	/*
1465 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466 	 * to do the further cleanups.
1467 	 */
1468 	ret = cpuhp_down_callbacks(cpu, st, target);
1469 	if (ret && st->state < prev_state) {
1470 		if (st->state == CPUHP_TEARDOWN_CPU) {
1471 			cpuhp_reset_state(cpu, st, prev_state);
1472 			__cpuhp_kick_ap(st);
1473 		} else {
1474 			WARN(1, "DEAD callback error for CPU%d", cpu);
1475 		}
1476 	}
1477 
1478 out:
1479 	cpus_write_unlock();
1480 	/*
1481 	 * Do post unplug cleanup. This is still protected against
1482 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1483 	 */
1484 	lockup_detector_cleanup();
1485 	arch_smt_update();
1486 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487 	return ret;
1488 }
1489 
1490 struct cpu_down_work {
1491 	unsigned int		cpu;
1492 	enum cpuhp_state	target;
1493 };
1494 
1495 static long __cpu_down_maps_locked(void *arg)
1496 {
1497 	struct cpu_down_work *work = arg;
1498 
1499 	return _cpu_down(work->cpu, 0, work->target);
1500 }
1501 
1502 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1503 {
1504 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1505 
1506 	/*
1507 	 * If the platform does not support hotplug, report it explicitly to
1508 	 * differentiate it from a transient offlining failure.
1509 	 */
1510 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1511 		return -EOPNOTSUPP;
1512 	if (cpu_hotplug_disabled)
1513 		return -EBUSY;
1514 
1515 	/*
1516 	 * Ensure that the control task does not run on the to be offlined
1517 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1518 	 */
1519 	cpu = cpumask_any_but(cpu_online_mask, cpu);
1520 	if (cpu >= nr_cpu_ids)
1521 		return -EBUSY;
1522 	return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1523 }
1524 
1525 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1526 {
1527 	int err;
1528 
1529 	cpu_maps_update_begin();
1530 	err = cpu_down_maps_locked(cpu, target);
1531 	cpu_maps_update_done();
1532 	return err;
1533 }
1534 
1535 /**
1536  * cpu_device_down - Bring down a cpu device
1537  * @dev: Pointer to the cpu device to offline
1538  *
1539  * This function is meant to be used by device core cpu subsystem only.
1540  *
1541  * Other subsystems should use remove_cpu() instead.
1542  *
1543  * Return: %0 on success or a negative errno code
1544  */
1545 int cpu_device_down(struct device *dev)
1546 {
1547 	return cpu_down(dev->id, CPUHP_OFFLINE);
1548 }
1549 
1550 int remove_cpu(unsigned int cpu)
1551 {
1552 	int ret;
1553 
1554 	lock_device_hotplug();
1555 	ret = device_offline(get_cpu_device(cpu));
1556 	unlock_device_hotplug();
1557 
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL_GPL(remove_cpu);
1561 
1562 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1563 {
1564 	unsigned int cpu;
1565 	int error;
1566 
1567 	cpu_maps_update_begin();
1568 
1569 	/*
1570 	 * Make certain the cpu I'm about to reboot on is online.
1571 	 *
1572 	 * This is inline to what migrate_to_reboot_cpu() already do.
1573 	 */
1574 	if (!cpu_online(primary_cpu))
1575 		primary_cpu = cpumask_first(cpu_online_mask);
1576 
1577 	for_each_online_cpu(cpu) {
1578 		if (cpu == primary_cpu)
1579 			continue;
1580 
1581 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1582 		if (error) {
1583 			pr_err("Failed to offline CPU%d - error=%d",
1584 				cpu, error);
1585 			break;
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * Ensure all but the reboot CPU are offline.
1591 	 */
1592 	BUG_ON(num_online_cpus() > 1);
1593 
1594 	/*
1595 	 * Make sure the CPUs won't be enabled by someone else after this
1596 	 * point. Kexec will reboot to a new kernel shortly resetting
1597 	 * everything along the way.
1598 	 */
1599 	cpu_hotplug_disabled++;
1600 
1601 	cpu_maps_update_done();
1602 }
1603 
1604 #else
1605 #define takedown_cpu		NULL
1606 #endif /*CONFIG_HOTPLUG_CPU*/
1607 
1608 /**
1609  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1610  * @cpu: cpu that just started
1611  *
1612  * It must be called by the arch code on the new cpu, before the new cpu
1613  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1614  */
1615 void notify_cpu_starting(unsigned int cpu)
1616 {
1617 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1618 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1619 
1620 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1621 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1622 
1623 	/*
1624 	 * STARTING must not fail!
1625 	 */
1626 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1627 }
1628 
1629 /*
1630  * Called from the idle task. Wake up the controlling task which brings the
1631  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1632  * online bringup to the hotplug thread.
1633  */
1634 void cpuhp_online_idle(enum cpuhp_state state)
1635 {
1636 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1637 
1638 	/* Happens for the boot cpu */
1639 	if (state != CPUHP_AP_ONLINE_IDLE)
1640 		return;
1641 
1642 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1643 
1644 	/*
1645 	 * Unpark the stopper thread before we start the idle loop (and start
1646 	 * scheduling); this ensures the stopper task is always available.
1647 	 */
1648 	stop_machine_unpark(smp_processor_id());
1649 
1650 	st->state = CPUHP_AP_ONLINE_IDLE;
1651 	complete_ap_thread(st, true);
1652 }
1653 
1654 /* Requires cpu_add_remove_lock to be held */
1655 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1656 {
1657 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 	struct task_struct *idle;
1659 	int ret = 0;
1660 
1661 	cpus_write_lock();
1662 
1663 	if (!cpu_present(cpu)) {
1664 		ret = -EINVAL;
1665 		goto out;
1666 	}
1667 
1668 	/*
1669 	 * The caller of cpu_up() might have raced with another
1670 	 * caller. Nothing to do.
1671 	 */
1672 	if (st->state >= target)
1673 		goto out;
1674 
1675 	if (st->state == CPUHP_OFFLINE) {
1676 		/* Let it fail before we try to bring the cpu up */
1677 		idle = idle_thread_get(cpu);
1678 		if (IS_ERR(idle)) {
1679 			ret = PTR_ERR(idle);
1680 			goto out;
1681 		}
1682 
1683 		/*
1684 		 * Reset stale stack state from the last time this CPU was online.
1685 		 */
1686 		scs_task_reset(idle);
1687 		kasan_unpoison_task_stack(idle);
1688 	}
1689 
1690 	cpuhp_tasks_frozen = tasks_frozen;
1691 
1692 	cpuhp_set_state(cpu, st, target);
1693 	/*
1694 	 * If the current CPU state is in the range of the AP hotplug thread,
1695 	 * then we need to kick the thread once more.
1696 	 */
1697 	if (st->state > CPUHP_BRINGUP_CPU) {
1698 		ret = cpuhp_kick_ap_work(cpu);
1699 		/*
1700 		 * The AP side has done the error rollback already. Just
1701 		 * return the error code..
1702 		 */
1703 		if (ret)
1704 			goto out;
1705 	}
1706 
1707 	/*
1708 	 * Try to reach the target state. We max out on the BP at
1709 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1710 	 * responsible for bringing it up to the target state.
1711 	 */
1712 	target = min((int)target, CPUHP_BRINGUP_CPU);
1713 	ret = cpuhp_up_callbacks(cpu, st, target);
1714 out:
1715 	cpus_write_unlock();
1716 	arch_smt_update();
1717 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1718 	return ret;
1719 }
1720 
1721 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1722 {
1723 	int err = 0;
1724 
1725 	if (!cpu_possible(cpu)) {
1726 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1727 		       cpu);
1728 #if defined(CONFIG_IA64)
1729 		pr_err("please check additional_cpus= boot parameter\n");
1730 #endif
1731 		return -EINVAL;
1732 	}
1733 
1734 	err = try_online_node(cpu_to_node(cpu));
1735 	if (err)
1736 		return err;
1737 
1738 	cpu_maps_update_begin();
1739 
1740 	if (cpu_hotplug_disabled) {
1741 		err = -EBUSY;
1742 		goto out;
1743 	}
1744 	if (!cpu_smt_allowed(cpu)) {
1745 		err = -EPERM;
1746 		goto out;
1747 	}
1748 
1749 	err = _cpu_up(cpu, 0, target);
1750 out:
1751 	cpu_maps_update_done();
1752 	return err;
1753 }
1754 
1755 /**
1756  * cpu_device_up - Bring up a cpu device
1757  * @dev: Pointer to the cpu device to online
1758  *
1759  * This function is meant to be used by device core cpu subsystem only.
1760  *
1761  * Other subsystems should use add_cpu() instead.
1762  *
1763  * Return: %0 on success or a negative errno code
1764  */
1765 int cpu_device_up(struct device *dev)
1766 {
1767 	return cpu_up(dev->id, CPUHP_ONLINE);
1768 }
1769 
1770 int add_cpu(unsigned int cpu)
1771 {
1772 	int ret;
1773 
1774 	lock_device_hotplug();
1775 	ret = device_online(get_cpu_device(cpu));
1776 	unlock_device_hotplug();
1777 
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL_GPL(add_cpu);
1781 
1782 /**
1783  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1784  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1785  *
1786  * On some architectures like arm64, we can hibernate on any CPU, but on
1787  * wake up the CPU we hibernated on might be offline as a side effect of
1788  * using maxcpus= for example.
1789  *
1790  * Return: %0 on success or a negative errno code
1791  */
1792 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1793 {
1794 	int ret;
1795 
1796 	if (!cpu_online(sleep_cpu)) {
1797 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1798 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1799 		if (ret) {
1800 			pr_err("Failed to bring hibernate-CPU up!\n");
1801 			return ret;
1802 		}
1803 	}
1804 	return 0;
1805 }
1806 
1807 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1808 				      enum cpuhp_state target)
1809 {
1810 	unsigned int cpu;
1811 
1812 	for_each_cpu(cpu, mask) {
1813 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 
1815 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1816 			/*
1817 			 * If this failed then cpu_up() might have only
1818 			 * rolled back to CPUHP_BP_KICK_AP for the final
1819 			 * online. Clean it up. NOOP if already rolled back.
1820 			 */
1821 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1822 		}
1823 
1824 		if (!--ncpus)
1825 			break;
1826 	}
1827 }
1828 
1829 #ifdef CONFIG_HOTPLUG_PARALLEL
1830 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1831 
1832 static int __init parallel_bringup_parse_param(char *arg)
1833 {
1834 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1835 }
1836 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1837 
1838 static inline bool cpuhp_smt_aware(void)
1839 {
1840 	return cpu_smt_max_threads > 1;
1841 }
1842 
1843 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1844 {
1845 	return cpu_primary_thread_mask;
1846 }
1847 
1848 /*
1849  * On architectures which have enabled parallel bringup this invokes all BP
1850  * prepare states for each of the to be onlined APs first. The last state
1851  * sends the startup IPI to the APs. The APs proceed through the low level
1852  * bringup code in parallel and then wait for the control CPU to release
1853  * them one by one for the final onlining procedure.
1854  *
1855  * This avoids waiting for each AP to respond to the startup IPI in
1856  * CPUHP_BRINGUP_CPU.
1857  */
1858 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1859 {
1860 	const struct cpumask *mask = cpu_present_mask;
1861 
1862 	if (__cpuhp_parallel_bringup)
1863 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1864 	if (!__cpuhp_parallel_bringup)
1865 		return false;
1866 
1867 	if (cpuhp_smt_aware()) {
1868 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1869 		static struct cpumask tmp_mask __initdata;
1870 
1871 		/*
1872 		 * X86 requires to prevent that SMT siblings stopped while
1873 		 * the primary thread does a microcode update for various
1874 		 * reasons. Bring the primary threads up first.
1875 		 */
1876 		cpumask_and(&tmp_mask, mask, pmask);
1877 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1878 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1879 		/* Account for the online CPUs */
1880 		ncpus -= num_online_cpus();
1881 		if (!ncpus)
1882 			return true;
1883 		/* Create the mask for secondary CPUs */
1884 		cpumask_andnot(&tmp_mask, mask, pmask);
1885 		mask = &tmp_mask;
1886 	}
1887 
1888 	/* Bring the not-yet started CPUs up */
1889 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1890 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1891 	return true;
1892 }
1893 #else
1894 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1895 #endif /* CONFIG_HOTPLUG_PARALLEL */
1896 
1897 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1898 {
1899 	/* Try parallel bringup optimization if enabled */
1900 	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1901 		return;
1902 
1903 	/* Full per CPU serialized bringup */
1904 	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1905 }
1906 
1907 #ifdef CONFIG_PM_SLEEP_SMP
1908 static cpumask_var_t frozen_cpus;
1909 
1910 int freeze_secondary_cpus(int primary)
1911 {
1912 	int cpu, error = 0;
1913 
1914 	cpu_maps_update_begin();
1915 	if (primary == -1) {
1916 		primary = cpumask_first(cpu_online_mask);
1917 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1918 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1919 	} else {
1920 		if (!cpu_online(primary))
1921 			primary = cpumask_first(cpu_online_mask);
1922 	}
1923 
1924 	/*
1925 	 * We take down all of the non-boot CPUs in one shot to avoid races
1926 	 * with the userspace trying to use the CPU hotplug at the same time
1927 	 */
1928 	cpumask_clear(frozen_cpus);
1929 
1930 	pr_info("Disabling non-boot CPUs ...\n");
1931 	for_each_online_cpu(cpu) {
1932 		if (cpu == primary)
1933 			continue;
1934 
1935 		if (pm_wakeup_pending()) {
1936 			pr_info("Wakeup pending. Abort CPU freeze\n");
1937 			error = -EBUSY;
1938 			break;
1939 		}
1940 
1941 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1942 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1943 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1944 		if (!error)
1945 			cpumask_set_cpu(cpu, frozen_cpus);
1946 		else {
1947 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1948 			break;
1949 		}
1950 	}
1951 
1952 	if (!error)
1953 		BUG_ON(num_online_cpus() > 1);
1954 	else
1955 		pr_err("Non-boot CPUs are not disabled\n");
1956 
1957 	/*
1958 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1959 	 * this even in case of failure as all freeze_secondary_cpus() users are
1960 	 * supposed to do thaw_secondary_cpus() on the failure path.
1961 	 */
1962 	cpu_hotplug_disabled++;
1963 
1964 	cpu_maps_update_done();
1965 	return error;
1966 }
1967 
1968 void __weak arch_thaw_secondary_cpus_begin(void)
1969 {
1970 }
1971 
1972 void __weak arch_thaw_secondary_cpus_end(void)
1973 {
1974 }
1975 
1976 void thaw_secondary_cpus(void)
1977 {
1978 	int cpu, error;
1979 
1980 	/* Allow everyone to use the CPU hotplug again */
1981 	cpu_maps_update_begin();
1982 	__cpu_hotplug_enable();
1983 	if (cpumask_empty(frozen_cpus))
1984 		goto out;
1985 
1986 	pr_info("Enabling non-boot CPUs ...\n");
1987 
1988 	arch_thaw_secondary_cpus_begin();
1989 
1990 	for_each_cpu(cpu, frozen_cpus) {
1991 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1992 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1993 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1994 		if (!error) {
1995 			pr_info("CPU%d is up\n", cpu);
1996 			continue;
1997 		}
1998 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1999 	}
2000 
2001 	arch_thaw_secondary_cpus_end();
2002 
2003 	cpumask_clear(frozen_cpus);
2004 out:
2005 	cpu_maps_update_done();
2006 }
2007 
2008 static int __init alloc_frozen_cpus(void)
2009 {
2010 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2011 		return -ENOMEM;
2012 	return 0;
2013 }
2014 core_initcall(alloc_frozen_cpus);
2015 
2016 /*
2017  * When callbacks for CPU hotplug notifications are being executed, we must
2018  * ensure that the state of the system with respect to the tasks being frozen
2019  * or not, as reported by the notification, remains unchanged *throughout the
2020  * duration* of the execution of the callbacks.
2021  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2022  *
2023  * This synchronization is implemented by mutually excluding regular CPU
2024  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2025  * Hibernate notifications.
2026  */
2027 static int
2028 cpu_hotplug_pm_callback(struct notifier_block *nb,
2029 			unsigned long action, void *ptr)
2030 {
2031 	switch (action) {
2032 
2033 	case PM_SUSPEND_PREPARE:
2034 	case PM_HIBERNATION_PREPARE:
2035 		cpu_hotplug_disable();
2036 		break;
2037 
2038 	case PM_POST_SUSPEND:
2039 	case PM_POST_HIBERNATION:
2040 		cpu_hotplug_enable();
2041 		break;
2042 
2043 	default:
2044 		return NOTIFY_DONE;
2045 	}
2046 
2047 	return NOTIFY_OK;
2048 }
2049 
2050 
2051 static int __init cpu_hotplug_pm_sync_init(void)
2052 {
2053 	/*
2054 	 * cpu_hotplug_pm_callback has higher priority than x86
2055 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2056 	 * to disable cpu hotplug to avoid cpu hotplug race.
2057 	 */
2058 	pm_notifier(cpu_hotplug_pm_callback, 0);
2059 	return 0;
2060 }
2061 core_initcall(cpu_hotplug_pm_sync_init);
2062 
2063 #endif /* CONFIG_PM_SLEEP_SMP */
2064 
2065 int __boot_cpu_id;
2066 
2067 #endif /* CONFIG_SMP */
2068 
2069 /* Boot processor state steps */
2070 static struct cpuhp_step cpuhp_hp_states[] = {
2071 	[CPUHP_OFFLINE] = {
2072 		.name			= "offline",
2073 		.startup.single		= NULL,
2074 		.teardown.single	= NULL,
2075 	},
2076 #ifdef CONFIG_SMP
2077 	[CPUHP_CREATE_THREADS]= {
2078 		.name			= "threads:prepare",
2079 		.startup.single		= smpboot_create_threads,
2080 		.teardown.single	= NULL,
2081 		.cant_stop		= true,
2082 	},
2083 	[CPUHP_PERF_PREPARE] = {
2084 		.name			= "perf:prepare",
2085 		.startup.single		= perf_event_init_cpu,
2086 		.teardown.single	= perf_event_exit_cpu,
2087 	},
2088 	[CPUHP_RANDOM_PREPARE] = {
2089 		.name			= "random:prepare",
2090 		.startup.single		= random_prepare_cpu,
2091 		.teardown.single	= NULL,
2092 	},
2093 	[CPUHP_WORKQUEUE_PREP] = {
2094 		.name			= "workqueue:prepare",
2095 		.startup.single		= workqueue_prepare_cpu,
2096 		.teardown.single	= NULL,
2097 	},
2098 	[CPUHP_HRTIMERS_PREPARE] = {
2099 		.name			= "hrtimers:prepare",
2100 		.startup.single		= hrtimers_prepare_cpu,
2101 		.teardown.single	= hrtimers_dead_cpu,
2102 	},
2103 	[CPUHP_SMPCFD_PREPARE] = {
2104 		.name			= "smpcfd:prepare",
2105 		.startup.single		= smpcfd_prepare_cpu,
2106 		.teardown.single	= smpcfd_dead_cpu,
2107 	},
2108 	[CPUHP_RELAY_PREPARE] = {
2109 		.name			= "relay:prepare",
2110 		.startup.single		= relay_prepare_cpu,
2111 		.teardown.single	= NULL,
2112 	},
2113 	[CPUHP_SLAB_PREPARE] = {
2114 		.name			= "slab:prepare",
2115 		.startup.single		= slab_prepare_cpu,
2116 		.teardown.single	= slab_dead_cpu,
2117 	},
2118 	[CPUHP_RCUTREE_PREP] = {
2119 		.name			= "RCU/tree:prepare",
2120 		.startup.single		= rcutree_prepare_cpu,
2121 		.teardown.single	= rcutree_dead_cpu,
2122 	},
2123 	/*
2124 	 * On the tear-down path, timers_dead_cpu() must be invoked
2125 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2126 	 * otherwise a RCU stall occurs.
2127 	 */
2128 	[CPUHP_TIMERS_PREPARE] = {
2129 		.name			= "timers:prepare",
2130 		.startup.single		= timers_prepare_cpu,
2131 		.teardown.single	= timers_dead_cpu,
2132 	},
2133 
2134 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2135 	/*
2136 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2137 	 * the next step will release it.
2138 	 */
2139 	[CPUHP_BP_KICK_AP] = {
2140 		.name			= "cpu:kick_ap",
2141 		.startup.single		= cpuhp_kick_ap_alive,
2142 	},
2143 
2144 	/*
2145 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2146 	 * releases it for the complete bringup.
2147 	 */
2148 	[CPUHP_BRINGUP_CPU] = {
2149 		.name			= "cpu:bringup",
2150 		.startup.single		= cpuhp_bringup_ap,
2151 		.teardown.single	= finish_cpu,
2152 		.cant_stop		= true,
2153 	},
2154 #else
2155 	/*
2156 	 * All-in-one CPU bringup state which includes the kick alive.
2157 	 */
2158 	[CPUHP_BRINGUP_CPU] = {
2159 		.name			= "cpu:bringup",
2160 		.startup.single		= bringup_cpu,
2161 		.teardown.single	= finish_cpu,
2162 		.cant_stop		= true,
2163 	},
2164 #endif
2165 	/* Final state before CPU kills itself */
2166 	[CPUHP_AP_IDLE_DEAD] = {
2167 		.name			= "idle:dead",
2168 	},
2169 	/*
2170 	 * Last state before CPU enters the idle loop to die. Transient state
2171 	 * for synchronization.
2172 	 */
2173 	[CPUHP_AP_OFFLINE] = {
2174 		.name			= "ap:offline",
2175 		.cant_stop		= true,
2176 	},
2177 	/* First state is scheduler control. Interrupts are disabled */
2178 	[CPUHP_AP_SCHED_STARTING] = {
2179 		.name			= "sched:starting",
2180 		.startup.single		= sched_cpu_starting,
2181 		.teardown.single	= sched_cpu_dying,
2182 	},
2183 	[CPUHP_AP_RCUTREE_DYING] = {
2184 		.name			= "RCU/tree:dying",
2185 		.startup.single		= NULL,
2186 		.teardown.single	= rcutree_dying_cpu,
2187 	},
2188 	[CPUHP_AP_SMPCFD_DYING] = {
2189 		.name			= "smpcfd:dying",
2190 		.startup.single		= NULL,
2191 		.teardown.single	= smpcfd_dying_cpu,
2192 	},
2193 	/* Entry state on starting. Interrupts enabled from here on. Transient
2194 	 * state for synchronsization */
2195 	[CPUHP_AP_ONLINE] = {
2196 		.name			= "ap:online",
2197 	},
2198 	/*
2199 	 * Handled on control processor until the plugged processor manages
2200 	 * this itself.
2201 	 */
2202 	[CPUHP_TEARDOWN_CPU] = {
2203 		.name			= "cpu:teardown",
2204 		.startup.single		= NULL,
2205 		.teardown.single	= takedown_cpu,
2206 		.cant_stop		= true,
2207 	},
2208 
2209 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2210 		.name			= "sched:waitempty",
2211 		.startup.single		= NULL,
2212 		.teardown.single	= sched_cpu_wait_empty,
2213 	},
2214 
2215 	/* Handle smpboot threads park/unpark */
2216 	[CPUHP_AP_SMPBOOT_THREADS] = {
2217 		.name			= "smpboot/threads:online",
2218 		.startup.single		= smpboot_unpark_threads,
2219 		.teardown.single	= smpboot_park_threads,
2220 	},
2221 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2222 		.name			= "irq/affinity:online",
2223 		.startup.single		= irq_affinity_online_cpu,
2224 		.teardown.single	= NULL,
2225 	},
2226 	[CPUHP_AP_PERF_ONLINE] = {
2227 		.name			= "perf:online",
2228 		.startup.single		= perf_event_init_cpu,
2229 		.teardown.single	= perf_event_exit_cpu,
2230 	},
2231 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2232 		.name			= "lockup_detector:online",
2233 		.startup.single		= lockup_detector_online_cpu,
2234 		.teardown.single	= lockup_detector_offline_cpu,
2235 	},
2236 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2237 		.name			= "workqueue:online",
2238 		.startup.single		= workqueue_online_cpu,
2239 		.teardown.single	= workqueue_offline_cpu,
2240 	},
2241 	[CPUHP_AP_RANDOM_ONLINE] = {
2242 		.name			= "random:online",
2243 		.startup.single		= random_online_cpu,
2244 		.teardown.single	= NULL,
2245 	},
2246 	[CPUHP_AP_RCUTREE_ONLINE] = {
2247 		.name			= "RCU/tree:online",
2248 		.startup.single		= rcutree_online_cpu,
2249 		.teardown.single	= rcutree_offline_cpu,
2250 	},
2251 #endif
2252 	/*
2253 	 * The dynamically registered state space is here
2254 	 */
2255 
2256 #ifdef CONFIG_SMP
2257 	/* Last state is scheduler control setting the cpu active */
2258 	[CPUHP_AP_ACTIVE] = {
2259 		.name			= "sched:active",
2260 		.startup.single		= sched_cpu_activate,
2261 		.teardown.single	= sched_cpu_deactivate,
2262 	},
2263 #endif
2264 
2265 	/* CPU is fully up and running. */
2266 	[CPUHP_ONLINE] = {
2267 		.name			= "online",
2268 		.startup.single		= NULL,
2269 		.teardown.single	= NULL,
2270 	},
2271 };
2272 
2273 /* Sanity check for callbacks */
2274 static int cpuhp_cb_check(enum cpuhp_state state)
2275 {
2276 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2277 		return -EINVAL;
2278 	return 0;
2279 }
2280 
2281 /*
2282  * Returns a free for dynamic slot assignment of the Online state. The states
2283  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2284  * by having no name assigned.
2285  */
2286 static int cpuhp_reserve_state(enum cpuhp_state state)
2287 {
2288 	enum cpuhp_state i, end;
2289 	struct cpuhp_step *step;
2290 
2291 	switch (state) {
2292 	case CPUHP_AP_ONLINE_DYN:
2293 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2294 		end = CPUHP_AP_ONLINE_DYN_END;
2295 		break;
2296 	case CPUHP_BP_PREPARE_DYN:
2297 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2298 		end = CPUHP_BP_PREPARE_DYN_END;
2299 		break;
2300 	default:
2301 		return -EINVAL;
2302 	}
2303 
2304 	for (i = state; i <= end; i++, step++) {
2305 		if (!step->name)
2306 			return i;
2307 	}
2308 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2309 	return -ENOSPC;
2310 }
2311 
2312 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2313 				 int (*startup)(unsigned int cpu),
2314 				 int (*teardown)(unsigned int cpu),
2315 				 bool multi_instance)
2316 {
2317 	/* (Un)Install the callbacks for further cpu hotplug operations */
2318 	struct cpuhp_step *sp;
2319 	int ret = 0;
2320 
2321 	/*
2322 	 * If name is NULL, then the state gets removed.
2323 	 *
2324 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2325 	 * the first allocation from these dynamic ranges, so the removal
2326 	 * would trigger a new allocation and clear the wrong (already
2327 	 * empty) state, leaving the callbacks of the to be cleared state
2328 	 * dangling, which causes wreckage on the next hotplug operation.
2329 	 */
2330 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2331 		     state == CPUHP_BP_PREPARE_DYN)) {
2332 		ret = cpuhp_reserve_state(state);
2333 		if (ret < 0)
2334 			return ret;
2335 		state = ret;
2336 	}
2337 	sp = cpuhp_get_step(state);
2338 	if (name && sp->name)
2339 		return -EBUSY;
2340 
2341 	sp->startup.single = startup;
2342 	sp->teardown.single = teardown;
2343 	sp->name = name;
2344 	sp->multi_instance = multi_instance;
2345 	INIT_HLIST_HEAD(&sp->list);
2346 	return ret;
2347 }
2348 
2349 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2350 {
2351 	return cpuhp_get_step(state)->teardown.single;
2352 }
2353 
2354 /*
2355  * Call the startup/teardown function for a step either on the AP or
2356  * on the current CPU.
2357  */
2358 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2359 			    struct hlist_node *node)
2360 {
2361 	struct cpuhp_step *sp = cpuhp_get_step(state);
2362 	int ret;
2363 
2364 	/*
2365 	 * If there's nothing to do, we done.
2366 	 * Relies on the union for multi_instance.
2367 	 */
2368 	if (cpuhp_step_empty(bringup, sp))
2369 		return 0;
2370 	/*
2371 	 * The non AP bound callbacks can fail on bringup. On teardown
2372 	 * e.g. module removal we crash for now.
2373 	 */
2374 #ifdef CONFIG_SMP
2375 	if (cpuhp_is_ap_state(state))
2376 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2377 	else
2378 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2379 #else
2380 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2381 #endif
2382 	BUG_ON(ret && !bringup);
2383 	return ret;
2384 }
2385 
2386 /*
2387  * Called from __cpuhp_setup_state on a recoverable failure.
2388  *
2389  * Note: The teardown callbacks for rollback are not allowed to fail!
2390  */
2391 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2392 				   struct hlist_node *node)
2393 {
2394 	int cpu;
2395 
2396 	/* Roll back the already executed steps on the other cpus */
2397 	for_each_present_cpu(cpu) {
2398 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2399 		int cpustate = st->state;
2400 
2401 		if (cpu >= failedcpu)
2402 			break;
2403 
2404 		/* Did we invoke the startup call on that cpu ? */
2405 		if (cpustate >= state)
2406 			cpuhp_issue_call(cpu, state, false, node);
2407 	}
2408 }
2409 
2410 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2411 					  struct hlist_node *node,
2412 					  bool invoke)
2413 {
2414 	struct cpuhp_step *sp;
2415 	int cpu;
2416 	int ret;
2417 
2418 	lockdep_assert_cpus_held();
2419 
2420 	sp = cpuhp_get_step(state);
2421 	if (sp->multi_instance == false)
2422 		return -EINVAL;
2423 
2424 	mutex_lock(&cpuhp_state_mutex);
2425 
2426 	if (!invoke || !sp->startup.multi)
2427 		goto add_node;
2428 
2429 	/*
2430 	 * Try to call the startup callback for each present cpu
2431 	 * depending on the hotplug state of the cpu.
2432 	 */
2433 	for_each_present_cpu(cpu) {
2434 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2435 		int cpustate = st->state;
2436 
2437 		if (cpustate < state)
2438 			continue;
2439 
2440 		ret = cpuhp_issue_call(cpu, state, true, node);
2441 		if (ret) {
2442 			if (sp->teardown.multi)
2443 				cpuhp_rollback_install(cpu, state, node);
2444 			goto unlock;
2445 		}
2446 	}
2447 add_node:
2448 	ret = 0;
2449 	hlist_add_head(node, &sp->list);
2450 unlock:
2451 	mutex_unlock(&cpuhp_state_mutex);
2452 	return ret;
2453 }
2454 
2455 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2456 			       bool invoke)
2457 {
2458 	int ret;
2459 
2460 	cpus_read_lock();
2461 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2462 	cpus_read_unlock();
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2466 
2467 /**
2468  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2469  * @state:		The state to setup
2470  * @name:		Name of the step
2471  * @invoke:		If true, the startup function is invoked for cpus where
2472  *			cpu state >= @state
2473  * @startup:		startup callback function
2474  * @teardown:		teardown callback function
2475  * @multi_instance:	State is set up for multiple instances which get
2476  *			added afterwards.
2477  *
2478  * The caller needs to hold cpus read locked while calling this function.
2479  * Return:
2480  *   On success:
2481  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2482  *      0 for all other states
2483  *   On failure: proper (negative) error code
2484  */
2485 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2486 				   const char *name, bool invoke,
2487 				   int (*startup)(unsigned int cpu),
2488 				   int (*teardown)(unsigned int cpu),
2489 				   bool multi_instance)
2490 {
2491 	int cpu, ret = 0;
2492 	bool dynstate;
2493 
2494 	lockdep_assert_cpus_held();
2495 
2496 	if (cpuhp_cb_check(state) || !name)
2497 		return -EINVAL;
2498 
2499 	mutex_lock(&cpuhp_state_mutex);
2500 
2501 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2502 				    multi_instance);
2503 
2504 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2505 	if (ret > 0 && dynstate) {
2506 		state = ret;
2507 		ret = 0;
2508 	}
2509 
2510 	if (ret || !invoke || !startup)
2511 		goto out;
2512 
2513 	/*
2514 	 * Try to call the startup callback for each present cpu
2515 	 * depending on the hotplug state of the cpu.
2516 	 */
2517 	for_each_present_cpu(cpu) {
2518 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2519 		int cpustate = st->state;
2520 
2521 		if (cpustate < state)
2522 			continue;
2523 
2524 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2525 		if (ret) {
2526 			if (teardown)
2527 				cpuhp_rollback_install(cpu, state, NULL);
2528 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2529 			goto out;
2530 		}
2531 	}
2532 out:
2533 	mutex_unlock(&cpuhp_state_mutex);
2534 	/*
2535 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2536 	 * dynamically allocated state in case of success.
2537 	 */
2538 	if (!ret && dynstate)
2539 		return state;
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2543 
2544 int __cpuhp_setup_state(enum cpuhp_state state,
2545 			const char *name, bool invoke,
2546 			int (*startup)(unsigned int cpu),
2547 			int (*teardown)(unsigned int cpu),
2548 			bool multi_instance)
2549 {
2550 	int ret;
2551 
2552 	cpus_read_lock();
2553 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2554 					     teardown, multi_instance);
2555 	cpus_read_unlock();
2556 	return ret;
2557 }
2558 EXPORT_SYMBOL(__cpuhp_setup_state);
2559 
2560 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2561 				  struct hlist_node *node, bool invoke)
2562 {
2563 	struct cpuhp_step *sp = cpuhp_get_step(state);
2564 	int cpu;
2565 
2566 	BUG_ON(cpuhp_cb_check(state));
2567 
2568 	if (!sp->multi_instance)
2569 		return -EINVAL;
2570 
2571 	cpus_read_lock();
2572 	mutex_lock(&cpuhp_state_mutex);
2573 
2574 	if (!invoke || !cpuhp_get_teardown_cb(state))
2575 		goto remove;
2576 	/*
2577 	 * Call the teardown callback for each present cpu depending
2578 	 * on the hotplug state of the cpu. This function is not
2579 	 * allowed to fail currently!
2580 	 */
2581 	for_each_present_cpu(cpu) {
2582 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583 		int cpustate = st->state;
2584 
2585 		if (cpustate >= state)
2586 			cpuhp_issue_call(cpu, state, false, node);
2587 	}
2588 
2589 remove:
2590 	hlist_del(node);
2591 	mutex_unlock(&cpuhp_state_mutex);
2592 	cpus_read_unlock();
2593 
2594 	return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2597 
2598 /**
2599  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2600  * @state:	The state to remove
2601  * @invoke:	If true, the teardown function is invoked for cpus where
2602  *		cpu state >= @state
2603  *
2604  * The caller needs to hold cpus read locked while calling this function.
2605  * The teardown callback is currently not allowed to fail. Think
2606  * about module removal!
2607  */
2608 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2609 {
2610 	struct cpuhp_step *sp = cpuhp_get_step(state);
2611 	int cpu;
2612 
2613 	BUG_ON(cpuhp_cb_check(state));
2614 
2615 	lockdep_assert_cpus_held();
2616 
2617 	mutex_lock(&cpuhp_state_mutex);
2618 	if (sp->multi_instance) {
2619 		WARN(!hlist_empty(&sp->list),
2620 		     "Error: Removing state %d which has instances left.\n",
2621 		     state);
2622 		goto remove;
2623 	}
2624 
2625 	if (!invoke || !cpuhp_get_teardown_cb(state))
2626 		goto remove;
2627 
2628 	/*
2629 	 * Call the teardown callback for each present cpu depending
2630 	 * on the hotplug state of the cpu. This function is not
2631 	 * allowed to fail currently!
2632 	 */
2633 	for_each_present_cpu(cpu) {
2634 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2635 		int cpustate = st->state;
2636 
2637 		if (cpustate >= state)
2638 			cpuhp_issue_call(cpu, state, false, NULL);
2639 	}
2640 remove:
2641 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2642 	mutex_unlock(&cpuhp_state_mutex);
2643 }
2644 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2645 
2646 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2647 {
2648 	cpus_read_lock();
2649 	__cpuhp_remove_state_cpuslocked(state, invoke);
2650 	cpus_read_unlock();
2651 }
2652 EXPORT_SYMBOL(__cpuhp_remove_state);
2653 
2654 #ifdef CONFIG_HOTPLUG_SMT
2655 static void cpuhp_offline_cpu_device(unsigned int cpu)
2656 {
2657 	struct device *dev = get_cpu_device(cpu);
2658 
2659 	dev->offline = true;
2660 	/* Tell user space about the state change */
2661 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2662 }
2663 
2664 static void cpuhp_online_cpu_device(unsigned int cpu)
2665 {
2666 	struct device *dev = get_cpu_device(cpu);
2667 
2668 	dev->offline = false;
2669 	/* Tell user space about the state change */
2670 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2671 }
2672 
2673 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2674 {
2675 	int cpu, ret = 0;
2676 
2677 	cpu_maps_update_begin();
2678 	for_each_online_cpu(cpu) {
2679 		if (topology_is_primary_thread(cpu))
2680 			continue;
2681 		/*
2682 		 * Disable can be called with CPU_SMT_ENABLED when changing
2683 		 * from a higher to lower number of SMT threads per core.
2684 		 */
2685 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2686 			continue;
2687 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2688 		if (ret)
2689 			break;
2690 		/*
2691 		 * As this needs to hold the cpu maps lock it's impossible
2692 		 * to call device_offline() because that ends up calling
2693 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2694 		 * needs to be held as this might race against in kernel
2695 		 * abusers of the hotplug machinery (thermal management).
2696 		 *
2697 		 * So nothing would update device:offline state. That would
2698 		 * leave the sysfs entry stale and prevent onlining after
2699 		 * smt control has been changed to 'off' again. This is
2700 		 * called under the sysfs hotplug lock, so it is properly
2701 		 * serialized against the regular offline usage.
2702 		 */
2703 		cpuhp_offline_cpu_device(cpu);
2704 	}
2705 	if (!ret)
2706 		cpu_smt_control = ctrlval;
2707 	cpu_maps_update_done();
2708 	return ret;
2709 }
2710 
2711 int cpuhp_smt_enable(void)
2712 {
2713 	int cpu, ret = 0;
2714 
2715 	cpu_maps_update_begin();
2716 	cpu_smt_control = CPU_SMT_ENABLED;
2717 	for_each_present_cpu(cpu) {
2718 		/* Skip online CPUs and CPUs on offline nodes */
2719 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2720 			continue;
2721 		if (!cpu_smt_thread_allowed(cpu))
2722 			continue;
2723 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2724 		if (ret)
2725 			break;
2726 		/* See comment in cpuhp_smt_disable() */
2727 		cpuhp_online_cpu_device(cpu);
2728 	}
2729 	cpu_maps_update_done();
2730 	return ret;
2731 }
2732 #endif
2733 
2734 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2735 static ssize_t state_show(struct device *dev,
2736 			  struct device_attribute *attr, char *buf)
2737 {
2738 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2739 
2740 	return sprintf(buf, "%d\n", st->state);
2741 }
2742 static DEVICE_ATTR_RO(state);
2743 
2744 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2745 			    const char *buf, size_t count)
2746 {
2747 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2748 	struct cpuhp_step *sp;
2749 	int target, ret;
2750 
2751 	ret = kstrtoint(buf, 10, &target);
2752 	if (ret)
2753 		return ret;
2754 
2755 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2756 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2757 		return -EINVAL;
2758 #else
2759 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2760 		return -EINVAL;
2761 #endif
2762 
2763 	ret = lock_device_hotplug_sysfs();
2764 	if (ret)
2765 		return ret;
2766 
2767 	mutex_lock(&cpuhp_state_mutex);
2768 	sp = cpuhp_get_step(target);
2769 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2770 	mutex_unlock(&cpuhp_state_mutex);
2771 	if (ret)
2772 		goto out;
2773 
2774 	if (st->state < target)
2775 		ret = cpu_up(dev->id, target);
2776 	else if (st->state > target)
2777 		ret = cpu_down(dev->id, target);
2778 	else if (WARN_ON(st->target != target))
2779 		st->target = target;
2780 out:
2781 	unlock_device_hotplug();
2782 	return ret ? ret : count;
2783 }
2784 
2785 static ssize_t target_show(struct device *dev,
2786 			   struct device_attribute *attr, char *buf)
2787 {
2788 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789 
2790 	return sprintf(buf, "%d\n", st->target);
2791 }
2792 static DEVICE_ATTR_RW(target);
2793 
2794 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2795 			  const char *buf, size_t count)
2796 {
2797 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2798 	struct cpuhp_step *sp;
2799 	int fail, ret;
2800 
2801 	ret = kstrtoint(buf, 10, &fail);
2802 	if (ret)
2803 		return ret;
2804 
2805 	if (fail == CPUHP_INVALID) {
2806 		st->fail = fail;
2807 		return count;
2808 	}
2809 
2810 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2811 		return -EINVAL;
2812 
2813 	/*
2814 	 * Cannot fail STARTING/DYING callbacks.
2815 	 */
2816 	if (cpuhp_is_atomic_state(fail))
2817 		return -EINVAL;
2818 
2819 	/*
2820 	 * DEAD callbacks cannot fail...
2821 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2822 	 * triggering STARTING callbacks, a failure in this state would
2823 	 * hinder rollback.
2824 	 */
2825 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2826 		return -EINVAL;
2827 
2828 	/*
2829 	 * Cannot fail anything that doesn't have callbacks.
2830 	 */
2831 	mutex_lock(&cpuhp_state_mutex);
2832 	sp = cpuhp_get_step(fail);
2833 	if (!sp->startup.single && !sp->teardown.single)
2834 		ret = -EINVAL;
2835 	mutex_unlock(&cpuhp_state_mutex);
2836 	if (ret)
2837 		return ret;
2838 
2839 	st->fail = fail;
2840 
2841 	return count;
2842 }
2843 
2844 static ssize_t fail_show(struct device *dev,
2845 			 struct device_attribute *attr, char *buf)
2846 {
2847 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2848 
2849 	return sprintf(buf, "%d\n", st->fail);
2850 }
2851 
2852 static DEVICE_ATTR_RW(fail);
2853 
2854 static struct attribute *cpuhp_cpu_attrs[] = {
2855 	&dev_attr_state.attr,
2856 	&dev_attr_target.attr,
2857 	&dev_attr_fail.attr,
2858 	NULL
2859 };
2860 
2861 static const struct attribute_group cpuhp_cpu_attr_group = {
2862 	.attrs = cpuhp_cpu_attrs,
2863 	.name = "hotplug",
2864 	NULL
2865 };
2866 
2867 static ssize_t states_show(struct device *dev,
2868 				 struct device_attribute *attr, char *buf)
2869 {
2870 	ssize_t cur, res = 0;
2871 	int i;
2872 
2873 	mutex_lock(&cpuhp_state_mutex);
2874 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2875 		struct cpuhp_step *sp = cpuhp_get_step(i);
2876 
2877 		if (sp->name) {
2878 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2879 			buf += cur;
2880 			res += cur;
2881 		}
2882 	}
2883 	mutex_unlock(&cpuhp_state_mutex);
2884 	return res;
2885 }
2886 static DEVICE_ATTR_RO(states);
2887 
2888 static struct attribute *cpuhp_cpu_root_attrs[] = {
2889 	&dev_attr_states.attr,
2890 	NULL
2891 };
2892 
2893 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2894 	.attrs = cpuhp_cpu_root_attrs,
2895 	.name = "hotplug",
2896 	NULL
2897 };
2898 
2899 #ifdef CONFIG_HOTPLUG_SMT
2900 
2901 static bool cpu_smt_num_threads_valid(unsigned int threads)
2902 {
2903 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2904 		return threads >= 1 && threads <= cpu_smt_max_threads;
2905 	return threads == 1 || threads == cpu_smt_max_threads;
2906 }
2907 
2908 static ssize_t
2909 __store_smt_control(struct device *dev, struct device_attribute *attr,
2910 		    const char *buf, size_t count)
2911 {
2912 	int ctrlval, ret, num_threads, orig_threads;
2913 	bool force_off;
2914 
2915 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2916 		return -EPERM;
2917 
2918 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2919 		return -ENODEV;
2920 
2921 	if (sysfs_streq(buf, "on")) {
2922 		ctrlval = CPU_SMT_ENABLED;
2923 		num_threads = cpu_smt_max_threads;
2924 	} else if (sysfs_streq(buf, "off")) {
2925 		ctrlval = CPU_SMT_DISABLED;
2926 		num_threads = 1;
2927 	} else if (sysfs_streq(buf, "forceoff")) {
2928 		ctrlval = CPU_SMT_FORCE_DISABLED;
2929 		num_threads = 1;
2930 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2931 		if (num_threads == 1)
2932 			ctrlval = CPU_SMT_DISABLED;
2933 		else if (cpu_smt_num_threads_valid(num_threads))
2934 			ctrlval = CPU_SMT_ENABLED;
2935 		else
2936 			return -EINVAL;
2937 	} else {
2938 		return -EINVAL;
2939 	}
2940 
2941 	ret = lock_device_hotplug_sysfs();
2942 	if (ret)
2943 		return ret;
2944 
2945 	orig_threads = cpu_smt_num_threads;
2946 	cpu_smt_num_threads = num_threads;
2947 
2948 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2949 
2950 	if (num_threads > orig_threads)
2951 		ret = cpuhp_smt_enable();
2952 	else if (num_threads < orig_threads || force_off)
2953 		ret = cpuhp_smt_disable(ctrlval);
2954 
2955 	unlock_device_hotplug();
2956 	return ret ? ret : count;
2957 }
2958 
2959 #else /* !CONFIG_HOTPLUG_SMT */
2960 static ssize_t
2961 __store_smt_control(struct device *dev, struct device_attribute *attr,
2962 		    const char *buf, size_t count)
2963 {
2964 	return -ENODEV;
2965 }
2966 #endif /* CONFIG_HOTPLUG_SMT */
2967 
2968 static const char *smt_states[] = {
2969 	[CPU_SMT_ENABLED]		= "on",
2970 	[CPU_SMT_DISABLED]		= "off",
2971 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2972 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2973 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2974 };
2975 
2976 static ssize_t control_show(struct device *dev,
2977 			    struct device_attribute *attr, char *buf)
2978 {
2979 	const char *state = smt_states[cpu_smt_control];
2980 
2981 #ifdef CONFIG_HOTPLUG_SMT
2982 	/*
2983 	 * If SMT is enabled but not all threads are enabled then show the
2984 	 * number of threads. If all threads are enabled show "on". Otherwise
2985 	 * show the state name.
2986 	 */
2987 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2988 	    cpu_smt_num_threads != cpu_smt_max_threads)
2989 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2990 #endif
2991 
2992 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2993 }
2994 
2995 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2996 			     const char *buf, size_t count)
2997 {
2998 	return __store_smt_control(dev, attr, buf, count);
2999 }
3000 static DEVICE_ATTR_RW(control);
3001 
3002 static ssize_t active_show(struct device *dev,
3003 			   struct device_attribute *attr, char *buf)
3004 {
3005 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3006 }
3007 static DEVICE_ATTR_RO(active);
3008 
3009 static struct attribute *cpuhp_smt_attrs[] = {
3010 	&dev_attr_control.attr,
3011 	&dev_attr_active.attr,
3012 	NULL
3013 };
3014 
3015 static const struct attribute_group cpuhp_smt_attr_group = {
3016 	.attrs = cpuhp_smt_attrs,
3017 	.name = "smt",
3018 	NULL
3019 };
3020 
3021 static int __init cpu_smt_sysfs_init(void)
3022 {
3023 	struct device *dev_root;
3024 	int ret = -ENODEV;
3025 
3026 	dev_root = bus_get_dev_root(&cpu_subsys);
3027 	if (dev_root) {
3028 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3029 		put_device(dev_root);
3030 	}
3031 	return ret;
3032 }
3033 
3034 static int __init cpuhp_sysfs_init(void)
3035 {
3036 	struct device *dev_root;
3037 	int cpu, ret;
3038 
3039 	ret = cpu_smt_sysfs_init();
3040 	if (ret)
3041 		return ret;
3042 
3043 	dev_root = bus_get_dev_root(&cpu_subsys);
3044 	if (dev_root) {
3045 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3046 		put_device(dev_root);
3047 		if (ret)
3048 			return ret;
3049 	}
3050 
3051 	for_each_possible_cpu(cpu) {
3052 		struct device *dev = get_cpu_device(cpu);
3053 
3054 		if (!dev)
3055 			continue;
3056 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 	return 0;
3061 }
3062 device_initcall(cpuhp_sysfs_init);
3063 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3064 
3065 /*
3066  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3067  * represents all NR_CPUS bits binary values of 1<<nr.
3068  *
3069  * It is used by cpumask_of() to get a constant address to a CPU
3070  * mask value that has a single bit set only.
3071  */
3072 
3073 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3074 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3075 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3076 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3077 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3078 
3079 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3080 
3081 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3082 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3083 #if BITS_PER_LONG > 32
3084 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3085 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3086 #endif
3087 };
3088 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3089 
3090 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3091 EXPORT_SYMBOL(cpu_all_bits);
3092 
3093 #ifdef CONFIG_INIT_ALL_POSSIBLE
3094 struct cpumask __cpu_possible_mask __read_mostly
3095 	= {CPU_BITS_ALL};
3096 #else
3097 struct cpumask __cpu_possible_mask __read_mostly;
3098 #endif
3099 EXPORT_SYMBOL(__cpu_possible_mask);
3100 
3101 struct cpumask __cpu_online_mask __read_mostly;
3102 EXPORT_SYMBOL(__cpu_online_mask);
3103 
3104 struct cpumask __cpu_present_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_present_mask);
3106 
3107 struct cpumask __cpu_active_mask __read_mostly;
3108 EXPORT_SYMBOL(__cpu_active_mask);
3109 
3110 struct cpumask __cpu_dying_mask __read_mostly;
3111 EXPORT_SYMBOL(__cpu_dying_mask);
3112 
3113 atomic_t __num_online_cpus __read_mostly;
3114 EXPORT_SYMBOL(__num_online_cpus);
3115 
3116 void init_cpu_present(const struct cpumask *src)
3117 {
3118 	cpumask_copy(&__cpu_present_mask, src);
3119 }
3120 
3121 void init_cpu_possible(const struct cpumask *src)
3122 {
3123 	cpumask_copy(&__cpu_possible_mask, src);
3124 }
3125 
3126 void init_cpu_online(const struct cpumask *src)
3127 {
3128 	cpumask_copy(&__cpu_online_mask, src);
3129 }
3130 
3131 void set_cpu_online(unsigned int cpu, bool online)
3132 {
3133 	/*
3134 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3135 	 * function by the reboot and kexec code which invoke it from
3136 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3137 	 * regular CPU hotplug is properly serialized.
3138 	 *
3139 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3140 	 * does not protect readers which are not serialized against
3141 	 * concurrent hotplug operations.
3142 	 */
3143 	if (online) {
3144 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3145 			atomic_inc(&__num_online_cpus);
3146 	} else {
3147 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3148 			atomic_dec(&__num_online_cpus);
3149 	}
3150 }
3151 
3152 /*
3153  * Activate the first processor.
3154  */
3155 void __init boot_cpu_init(void)
3156 {
3157 	int cpu = smp_processor_id();
3158 
3159 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3160 	set_cpu_online(cpu, true);
3161 	set_cpu_active(cpu, true);
3162 	set_cpu_present(cpu, true);
3163 	set_cpu_possible(cpu, true);
3164 
3165 #ifdef CONFIG_SMP
3166 	__boot_cpu_id = cpu;
3167 #endif
3168 }
3169 
3170 /*
3171  * Must be called _AFTER_ setting up the per_cpu areas
3172  */
3173 void __init boot_cpu_hotplug_init(void)
3174 {
3175 #ifdef CONFIG_SMP
3176 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3177 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3178 #endif
3179 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3180 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3181 }
3182 
3183 /*
3184  * These are used for a global "mitigations=" cmdline option for toggling
3185  * optional CPU mitigations.
3186  */
3187 enum cpu_mitigations {
3188 	CPU_MITIGATIONS_OFF,
3189 	CPU_MITIGATIONS_AUTO,
3190 	CPU_MITIGATIONS_AUTO_NOSMT,
3191 };
3192 
3193 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3194 	CPU_MITIGATIONS_AUTO;
3195 
3196 static int __init mitigations_parse_cmdline(char *arg)
3197 {
3198 	if (!strcmp(arg, "off"))
3199 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3200 	else if (!strcmp(arg, "auto"))
3201 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3202 	else if (!strcmp(arg, "auto,nosmt"))
3203 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3204 	else
3205 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3206 			arg);
3207 
3208 	return 0;
3209 }
3210 early_param("mitigations", mitigations_parse_cmdline);
3211 
3212 /* mitigations=off */
3213 bool cpu_mitigations_off(void)
3214 {
3215 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3216 }
3217 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3218 
3219 /* mitigations=auto,nosmt */
3220 bool cpu_mitigations_auto_nosmt(void)
3221 {
3222 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3223 }
3224 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3225