1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @cpu: CPU number 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 void cpus_read_lock(void) 488 { 489 percpu_down_read(&cpu_hotplug_lock); 490 } 491 EXPORT_SYMBOL_GPL(cpus_read_lock); 492 493 int cpus_read_trylock(void) 494 { 495 return percpu_down_read_trylock(&cpu_hotplug_lock); 496 } 497 EXPORT_SYMBOL_GPL(cpus_read_trylock); 498 499 void cpus_read_unlock(void) 500 { 501 percpu_up_read(&cpu_hotplug_lock); 502 } 503 EXPORT_SYMBOL_GPL(cpus_read_unlock); 504 505 void cpus_write_lock(void) 506 { 507 percpu_down_write(&cpu_hotplug_lock); 508 } 509 510 void cpus_write_unlock(void) 511 { 512 percpu_up_write(&cpu_hotplug_lock); 513 } 514 515 void lockdep_assert_cpus_held(void) 516 { 517 /* 518 * We can't have hotplug operations before userspace starts running, 519 * and some init codepaths will knowingly not take the hotplug lock. 520 * This is all valid, so mute lockdep until it makes sense to report 521 * unheld locks. 522 */ 523 if (system_state < SYSTEM_RUNNING) 524 return; 525 526 percpu_rwsem_assert_held(&cpu_hotplug_lock); 527 } 528 529 #ifdef CONFIG_LOCKDEP 530 int lockdep_is_cpus_held(void) 531 { 532 return percpu_rwsem_is_held(&cpu_hotplug_lock); 533 } 534 #endif 535 536 static void lockdep_acquire_cpus_lock(void) 537 { 538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 539 } 540 541 static void lockdep_release_cpus_lock(void) 542 { 543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 544 } 545 546 /* 547 * Wait for currently running CPU hotplug operations to complete (if any) and 548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 550 * hotplug path before performing hotplug operations. So acquiring that lock 551 * guarantees mutual exclusion from any currently running hotplug operations. 552 */ 553 void cpu_hotplug_disable(void) 554 { 555 cpu_maps_update_begin(); 556 cpu_hotplug_disabled++; 557 cpu_maps_update_done(); 558 } 559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 560 561 static void __cpu_hotplug_enable(void) 562 { 563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 564 return; 565 cpu_hotplug_disabled--; 566 } 567 568 void cpu_hotplug_enable(void) 569 { 570 cpu_maps_update_begin(); 571 __cpu_hotplug_enable(); 572 cpu_maps_update_done(); 573 } 574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 575 576 #else 577 578 static void lockdep_acquire_cpus_lock(void) 579 { 580 } 581 582 static void lockdep_release_cpus_lock(void) 583 { 584 } 585 586 #endif /* CONFIG_HOTPLUG_CPU */ 587 588 /* 589 * Architectures that need SMT-specific errata handling during SMT hotplug 590 * should override this. 591 */ 592 void __weak arch_smt_update(void) { } 593 594 #ifdef CONFIG_HOTPLUG_SMT 595 596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 597 static unsigned int cpu_smt_max_threads __ro_after_init; 598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 599 600 void __init cpu_smt_disable(bool force) 601 { 602 if (!cpu_smt_possible()) 603 return; 604 605 if (force) { 606 pr_info("SMT: Force disabled\n"); 607 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 608 } else { 609 pr_info("SMT: disabled\n"); 610 cpu_smt_control = CPU_SMT_DISABLED; 611 } 612 cpu_smt_num_threads = 1; 613 } 614 615 /* 616 * The decision whether SMT is supported can only be done after the full 617 * CPU identification. Called from architecture code. 618 */ 619 void __init cpu_smt_set_num_threads(unsigned int num_threads, 620 unsigned int max_threads) 621 { 622 WARN_ON(!num_threads || (num_threads > max_threads)); 623 624 if (max_threads == 1) 625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 626 627 cpu_smt_max_threads = max_threads; 628 629 /* 630 * If SMT has been disabled via the kernel command line or SMT is 631 * not supported, set cpu_smt_num_threads to 1 for consistency. 632 * If enabled, take the architecture requested number of threads 633 * to bring up into account. 634 */ 635 if (cpu_smt_control != CPU_SMT_ENABLED) 636 cpu_smt_num_threads = 1; 637 else if (num_threads < cpu_smt_num_threads) 638 cpu_smt_num_threads = num_threads; 639 } 640 641 static int __init smt_cmdline_disable(char *str) 642 { 643 cpu_smt_disable(str && !strcmp(str, "force")); 644 return 0; 645 } 646 early_param("nosmt", smt_cmdline_disable); 647 648 /* 649 * For Archicture supporting partial SMT states check if the thread is allowed. 650 * Otherwise this has already been checked through cpu_smt_max_threads when 651 * setting the SMT level. 652 */ 653 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 654 { 655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 656 return topology_smt_thread_allowed(cpu); 657 #else 658 return true; 659 #endif 660 } 661 662 static inline bool cpu_smt_allowed(unsigned int cpu) 663 { 664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 665 return true; 666 667 if (topology_is_primary_thread(cpu)) 668 return true; 669 670 /* 671 * On x86 it's required to boot all logical CPUs at least once so 672 * that the init code can get a chance to set CR4.MCE on each 673 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 674 * core will shutdown the machine. 675 */ 676 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 677 } 678 679 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 680 bool cpu_smt_possible(void) 681 { 682 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 683 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 684 } 685 EXPORT_SYMBOL_GPL(cpu_smt_possible); 686 687 #else 688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 689 #endif 690 691 static inline enum cpuhp_state 692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 693 { 694 enum cpuhp_state prev_state = st->state; 695 bool bringup = st->state < target; 696 697 st->rollback = false; 698 st->last = NULL; 699 700 st->target = target; 701 st->single = false; 702 st->bringup = bringup; 703 if (cpu_dying(cpu) != !bringup) 704 set_cpu_dying(cpu, !bringup); 705 706 return prev_state; 707 } 708 709 static inline void 710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 711 enum cpuhp_state prev_state) 712 { 713 bool bringup = !st->bringup; 714 715 st->target = prev_state; 716 717 /* 718 * Already rolling back. No need invert the bringup value or to change 719 * the current state. 720 */ 721 if (st->rollback) 722 return; 723 724 st->rollback = true; 725 726 /* 727 * If we have st->last we need to undo partial multi_instance of this 728 * state first. Otherwise start undo at the previous state. 729 */ 730 if (!st->last) { 731 if (st->bringup) 732 st->state--; 733 else 734 st->state++; 735 } 736 737 st->bringup = bringup; 738 if (cpu_dying(cpu) != !bringup) 739 set_cpu_dying(cpu, !bringup); 740 } 741 742 /* Regular hotplug invocation of the AP hotplug thread */ 743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 744 { 745 if (!st->single && st->state == st->target) 746 return; 747 748 st->result = 0; 749 /* 750 * Make sure the above stores are visible before should_run becomes 751 * true. Paired with the mb() above in cpuhp_thread_fun() 752 */ 753 smp_mb(); 754 st->should_run = true; 755 wake_up_process(st->thread); 756 wait_for_ap_thread(st, st->bringup); 757 } 758 759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 760 enum cpuhp_state target) 761 { 762 enum cpuhp_state prev_state; 763 int ret; 764 765 prev_state = cpuhp_set_state(cpu, st, target); 766 __cpuhp_kick_ap(st); 767 if ((ret = st->result)) { 768 cpuhp_reset_state(cpu, st, prev_state); 769 __cpuhp_kick_ap(st); 770 } 771 772 return ret; 773 } 774 775 static int bringup_wait_for_ap_online(unsigned int cpu) 776 { 777 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 778 779 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 780 wait_for_ap_thread(st, true); 781 if (WARN_ON_ONCE((!cpu_online(cpu)))) 782 return -ECANCELED; 783 784 /* Unpark the hotplug thread of the target cpu */ 785 kthread_unpark(st->thread); 786 787 /* 788 * SMT soft disabling on X86 requires to bring the CPU out of the 789 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 790 * CPU marked itself as booted_once in notify_cpu_starting() so the 791 * cpu_smt_allowed() check will now return false if this is not the 792 * primary sibling. 793 */ 794 if (!cpu_smt_allowed(cpu)) 795 return -ECANCELED; 796 return 0; 797 } 798 799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 800 static int cpuhp_kick_ap_alive(unsigned int cpu) 801 { 802 if (!cpuhp_can_boot_ap(cpu)) 803 return -EAGAIN; 804 805 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 806 } 807 808 static int cpuhp_bringup_ap(unsigned int cpu) 809 { 810 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 811 int ret; 812 813 /* 814 * Some architectures have to walk the irq descriptors to 815 * setup the vector space for the cpu which comes online. 816 * Prevent irq alloc/free across the bringup. 817 */ 818 irq_lock_sparse(); 819 820 ret = cpuhp_bp_sync_alive(cpu); 821 if (ret) 822 goto out_unlock; 823 824 ret = bringup_wait_for_ap_online(cpu); 825 if (ret) 826 goto out_unlock; 827 828 irq_unlock_sparse(); 829 830 if (st->target <= CPUHP_AP_ONLINE_IDLE) 831 return 0; 832 833 return cpuhp_kick_ap(cpu, st, st->target); 834 835 out_unlock: 836 irq_unlock_sparse(); 837 return ret; 838 } 839 #else 840 static int bringup_cpu(unsigned int cpu) 841 { 842 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 843 struct task_struct *idle = idle_thread_get(cpu); 844 int ret; 845 846 if (!cpuhp_can_boot_ap(cpu)) 847 return -EAGAIN; 848 849 /* 850 * Some architectures have to walk the irq descriptors to 851 * setup the vector space for the cpu which comes online. 852 * 853 * Prevent irq alloc/free across the bringup by acquiring the 854 * sparse irq lock. Hold it until the upcoming CPU completes the 855 * startup in cpuhp_online_idle() which allows to avoid 856 * intermediate synchronization points in the architecture code. 857 */ 858 irq_lock_sparse(); 859 860 ret = __cpu_up(cpu, idle); 861 if (ret) 862 goto out_unlock; 863 864 ret = cpuhp_bp_sync_alive(cpu); 865 if (ret) 866 goto out_unlock; 867 868 ret = bringup_wait_for_ap_online(cpu); 869 if (ret) 870 goto out_unlock; 871 872 irq_unlock_sparse(); 873 874 if (st->target <= CPUHP_AP_ONLINE_IDLE) 875 return 0; 876 877 return cpuhp_kick_ap(cpu, st, st->target); 878 879 out_unlock: 880 irq_unlock_sparse(); 881 return ret; 882 } 883 #endif 884 885 static int finish_cpu(unsigned int cpu) 886 { 887 struct task_struct *idle = idle_thread_get(cpu); 888 struct mm_struct *mm = idle->active_mm; 889 890 /* 891 * idle_task_exit() will have switched to &init_mm, now 892 * clean up any remaining active_mm state. 893 */ 894 if (mm != &init_mm) 895 idle->active_mm = &init_mm; 896 mmdrop_lazy_tlb(mm); 897 return 0; 898 } 899 900 /* 901 * Hotplug state machine related functions 902 */ 903 904 /* 905 * Get the next state to run. Empty ones will be skipped. Returns true if a 906 * state must be run. 907 * 908 * st->state will be modified ahead of time, to match state_to_run, as if it 909 * has already ran. 910 */ 911 static bool cpuhp_next_state(bool bringup, 912 enum cpuhp_state *state_to_run, 913 struct cpuhp_cpu_state *st, 914 enum cpuhp_state target) 915 { 916 do { 917 if (bringup) { 918 if (st->state >= target) 919 return false; 920 921 *state_to_run = ++st->state; 922 } else { 923 if (st->state <= target) 924 return false; 925 926 *state_to_run = st->state--; 927 } 928 929 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 930 break; 931 } while (true); 932 933 return true; 934 } 935 936 static int __cpuhp_invoke_callback_range(bool bringup, 937 unsigned int cpu, 938 struct cpuhp_cpu_state *st, 939 enum cpuhp_state target, 940 bool nofail) 941 { 942 enum cpuhp_state state; 943 int ret = 0; 944 945 while (cpuhp_next_state(bringup, &state, st, target)) { 946 int err; 947 948 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 949 if (!err) 950 continue; 951 952 if (nofail) { 953 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 954 cpu, bringup ? "UP" : "DOWN", 955 cpuhp_get_step(st->state)->name, 956 st->state, err); 957 ret = -1; 958 } else { 959 ret = err; 960 break; 961 } 962 } 963 964 return ret; 965 } 966 967 static inline int cpuhp_invoke_callback_range(bool bringup, 968 unsigned int cpu, 969 struct cpuhp_cpu_state *st, 970 enum cpuhp_state target) 971 { 972 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 973 } 974 975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 976 unsigned int cpu, 977 struct cpuhp_cpu_state *st, 978 enum cpuhp_state target) 979 { 980 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 981 } 982 983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 984 { 985 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 986 return true; 987 /* 988 * When CPU hotplug is disabled, then taking the CPU down is not 989 * possible because takedown_cpu() and the architecture and 990 * subsystem specific mechanisms are not available. So the CPU 991 * which would be completely unplugged again needs to stay around 992 * in the current state. 993 */ 994 return st->state <= CPUHP_BRINGUP_CPU; 995 } 996 997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 998 enum cpuhp_state target) 999 { 1000 enum cpuhp_state prev_state = st->state; 1001 int ret = 0; 1002 1003 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1004 if (ret) { 1005 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1006 ret, cpu, cpuhp_get_step(st->state)->name, 1007 st->state); 1008 1009 cpuhp_reset_state(cpu, st, prev_state); 1010 if (can_rollback_cpu(st)) 1011 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1012 prev_state)); 1013 } 1014 return ret; 1015 } 1016 1017 /* 1018 * The cpu hotplug threads manage the bringup and teardown of the cpus 1019 */ 1020 static int cpuhp_should_run(unsigned int cpu) 1021 { 1022 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1023 1024 return st->should_run; 1025 } 1026 1027 /* 1028 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1029 * callbacks when a state gets [un]installed at runtime. 1030 * 1031 * Each invocation of this function by the smpboot thread does a single AP 1032 * state callback. 1033 * 1034 * It has 3 modes of operation: 1035 * - single: runs st->cb_state 1036 * - up: runs ++st->state, while st->state < st->target 1037 * - down: runs st->state--, while st->state > st->target 1038 * 1039 * When complete or on error, should_run is cleared and the completion is fired. 1040 */ 1041 static void cpuhp_thread_fun(unsigned int cpu) 1042 { 1043 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1044 bool bringup = st->bringup; 1045 enum cpuhp_state state; 1046 1047 if (WARN_ON_ONCE(!st->should_run)) 1048 return; 1049 1050 /* 1051 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1052 * that if we see ->should_run we also see the rest of the state. 1053 */ 1054 smp_mb(); 1055 1056 /* 1057 * The BP holds the hotplug lock, but we're now running on the AP, 1058 * ensure that anybody asserting the lock is held, will actually find 1059 * it so. 1060 */ 1061 lockdep_acquire_cpus_lock(); 1062 cpuhp_lock_acquire(bringup); 1063 1064 if (st->single) { 1065 state = st->cb_state; 1066 st->should_run = false; 1067 } else { 1068 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1069 if (!st->should_run) 1070 goto end; 1071 } 1072 1073 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1074 1075 if (cpuhp_is_atomic_state(state)) { 1076 local_irq_disable(); 1077 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1078 local_irq_enable(); 1079 1080 /* 1081 * STARTING/DYING must not fail! 1082 */ 1083 WARN_ON_ONCE(st->result); 1084 } else { 1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1086 } 1087 1088 if (st->result) { 1089 /* 1090 * If we fail on a rollback, we're up a creek without no 1091 * paddle, no way forward, no way back. We loose, thanks for 1092 * playing. 1093 */ 1094 WARN_ON_ONCE(st->rollback); 1095 st->should_run = false; 1096 } 1097 1098 end: 1099 cpuhp_lock_release(bringup); 1100 lockdep_release_cpus_lock(); 1101 1102 if (!st->should_run) 1103 complete_ap_thread(st, bringup); 1104 } 1105 1106 /* Invoke a single callback on a remote cpu */ 1107 static int 1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1109 struct hlist_node *node) 1110 { 1111 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1112 int ret; 1113 1114 if (!cpu_online(cpu)) 1115 return 0; 1116 1117 cpuhp_lock_acquire(false); 1118 cpuhp_lock_release(false); 1119 1120 cpuhp_lock_acquire(true); 1121 cpuhp_lock_release(true); 1122 1123 /* 1124 * If we are up and running, use the hotplug thread. For early calls 1125 * we invoke the thread function directly. 1126 */ 1127 if (!st->thread) 1128 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1129 1130 st->rollback = false; 1131 st->last = NULL; 1132 1133 st->node = node; 1134 st->bringup = bringup; 1135 st->cb_state = state; 1136 st->single = true; 1137 1138 __cpuhp_kick_ap(st); 1139 1140 /* 1141 * If we failed and did a partial, do a rollback. 1142 */ 1143 if ((ret = st->result) && st->last) { 1144 st->rollback = true; 1145 st->bringup = !bringup; 1146 1147 __cpuhp_kick_ap(st); 1148 } 1149 1150 /* 1151 * Clean up the leftovers so the next hotplug operation wont use stale 1152 * data. 1153 */ 1154 st->node = st->last = NULL; 1155 return ret; 1156 } 1157 1158 static int cpuhp_kick_ap_work(unsigned int cpu) 1159 { 1160 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1161 enum cpuhp_state prev_state = st->state; 1162 int ret; 1163 1164 cpuhp_lock_acquire(false); 1165 cpuhp_lock_release(false); 1166 1167 cpuhp_lock_acquire(true); 1168 cpuhp_lock_release(true); 1169 1170 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1171 ret = cpuhp_kick_ap(cpu, st, st->target); 1172 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1173 1174 return ret; 1175 } 1176 1177 static struct smp_hotplug_thread cpuhp_threads = { 1178 .store = &cpuhp_state.thread, 1179 .thread_should_run = cpuhp_should_run, 1180 .thread_fn = cpuhp_thread_fun, 1181 .thread_comm = "cpuhp/%u", 1182 .selfparking = true, 1183 }; 1184 1185 static __init void cpuhp_init_state(void) 1186 { 1187 struct cpuhp_cpu_state *st; 1188 int cpu; 1189 1190 for_each_possible_cpu(cpu) { 1191 st = per_cpu_ptr(&cpuhp_state, cpu); 1192 init_completion(&st->done_up); 1193 init_completion(&st->done_down); 1194 } 1195 } 1196 1197 void __init cpuhp_threads_init(void) 1198 { 1199 cpuhp_init_state(); 1200 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1201 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1202 } 1203 1204 /* 1205 * 1206 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 1207 * protected region. 1208 * 1209 * The operation is still serialized against concurrent CPU hotplug via 1210 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 1211 * serialized against other hotplug related activity like adding or 1212 * removing of state callbacks and state instances, which invoke either the 1213 * startup or the teardown callback of the affected state. 1214 * 1215 * This is required for subsystems which are unfixable vs. CPU hotplug and 1216 * evade lock inversion problems by scheduling work which has to be 1217 * completed _before_ cpu_up()/_cpu_down() returns. 1218 * 1219 * Don't even think about adding anything to this for any new code or even 1220 * drivers. It's only purpose is to keep existing lock order trainwrecks 1221 * working. 1222 * 1223 * For cpu_down() there might be valid reasons to finish cleanups which are 1224 * not required to be done under cpu_hotplug_lock, but that's a different 1225 * story and would be not invoked via this. 1226 */ 1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 1228 { 1229 /* 1230 * cpusets delegate hotplug operations to a worker to "solve" the 1231 * lock order problems. Wait for the worker, but only if tasks are 1232 * _not_ frozen (suspend, hibernate) as that would wait forever. 1233 * 1234 * The wait is required because otherwise the hotplug operation 1235 * returns with inconsistent state, which could even be observed in 1236 * user space when a new CPU is brought up. The CPU plug uevent 1237 * would be delivered and user space reacting on it would fail to 1238 * move tasks to the newly plugged CPU up to the point where the 1239 * work has finished because up to that point the newly plugged CPU 1240 * is not assignable in cpusets/cgroups. On unplug that's not 1241 * necessarily a visible issue, but it is still inconsistent state, 1242 * which is the real problem which needs to be "fixed". This can't 1243 * prevent the transient state between scheduling the work and 1244 * returning from waiting for it. 1245 */ 1246 if (!tasks_frozen) 1247 cpuset_wait_for_hotplug(); 1248 } 1249 1250 #ifdef CONFIG_HOTPLUG_CPU 1251 #ifndef arch_clear_mm_cpumask_cpu 1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1253 #endif 1254 1255 /** 1256 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1257 * @cpu: a CPU id 1258 * 1259 * This function walks all processes, finds a valid mm struct for each one and 1260 * then clears a corresponding bit in mm's cpumask. While this all sounds 1261 * trivial, there are various non-obvious corner cases, which this function 1262 * tries to solve in a safe manner. 1263 * 1264 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1265 * be called only for an already offlined CPU. 1266 */ 1267 void clear_tasks_mm_cpumask(int cpu) 1268 { 1269 struct task_struct *p; 1270 1271 /* 1272 * This function is called after the cpu is taken down and marked 1273 * offline, so its not like new tasks will ever get this cpu set in 1274 * their mm mask. -- Peter Zijlstra 1275 * Thus, we may use rcu_read_lock() here, instead of grabbing 1276 * full-fledged tasklist_lock. 1277 */ 1278 WARN_ON(cpu_online(cpu)); 1279 rcu_read_lock(); 1280 for_each_process(p) { 1281 struct task_struct *t; 1282 1283 /* 1284 * Main thread might exit, but other threads may still have 1285 * a valid mm. Find one. 1286 */ 1287 t = find_lock_task_mm(p); 1288 if (!t) 1289 continue; 1290 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1291 task_unlock(t); 1292 } 1293 rcu_read_unlock(); 1294 } 1295 1296 /* Take this CPU down. */ 1297 static int take_cpu_down(void *_param) 1298 { 1299 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1300 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1301 int err, cpu = smp_processor_id(); 1302 1303 /* Ensure this CPU doesn't handle any more interrupts. */ 1304 err = __cpu_disable(); 1305 if (err < 0) 1306 return err; 1307 1308 /* 1309 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1310 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1311 */ 1312 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1313 1314 /* 1315 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1316 */ 1317 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1318 1319 /* Give up timekeeping duties */ 1320 tick_handover_do_timer(); 1321 /* Remove CPU from timer broadcasting */ 1322 tick_offline_cpu(cpu); 1323 /* Park the stopper thread */ 1324 stop_machine_park(cpu); 1325 return 0; 1326 } 1327 1328 static int takedown_cpu(unsigned int cpu) 1329 { 1330 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1331 int err; 1332 1333 /* Park the smpboot threads */ 1334 kthread_park(st->thread); 1335 1336 /* 1337 * Prevent irq alloc/free while the dying cpu reorganizes the 1338 * interrupt affinities. 1339 */ 1340 irq_lock_sparse(); 1341 1342 /* 1343 * So now all preempt/rcu users must observe !cpu_active(). 1344 */ 1345 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1346 if (err) { 1347 /* CPU refused to die */ 1348 irq_unlock_sparse(); 1349 /* Unpark the hotplug thread so we can rollback there */ 1350 kthread_unpark(st->thread); 1351 return err; 1352 } 1353 BUG_ON(cpu_online(cpu)); 1354 1355 /* 1356 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1357 * all runnable tasks from the CPU, there's only the idle task left now 1358 * that the migration thread is done doing the stop_machine thing. 1359 * 1360 * Wait for the stop thread to go away. 1361 */ 1362 wait_for_ap_thread(st, false); 1363 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1364 1365 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1366 irq_unlock_sparse(); 1367 1368 hotplug_cpu__broadcast_tick_pull(cpu); 1369 /* This actually kills the CPU. */ 1370 __cpu_die(cpu); 1371 1372 cpuhp_bp_sync_dead(cpu); 1373 1374 tick_cleanup_dead_cpu(cpu); 1375 rcutree_migrate_callbacks(cpu); 1376 return 0; 1377 } 1378 1379 static void cpuhp_complete_idle_dead(void *arg) 1380 { 1381 struct cpuhp_cpu_state *st = arg; 1382 1383 complete_ap_thread(st, false); 1384 } 1385 1386 void cpuhp_report_idle_dead(void) 1387 { 1388 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1389 1390 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1391 rcu_report_dead(smp_processor_id()); 1392 st->state = CPUHP_AP_IDLE_DEAD; 1393 /* 1394 * We cannot call complete after rcu_report_dead() so we delegate it 1395 * to an online cpu. 1396 */ 1397 smp_call_function_single(cpumask_first(cpu_online_mask), 1398 cpuhp_complete_idle_dead, st, 0); 1399 } 1400 1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1402 enum cpuhp_state target) 1403 { 1404 enum cpuhp_state prev_state = st->state; 1405 int ret = 0; 1406 1407 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1408 if (ret) { 1409 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1410 ret, cpu, cpuhp_get_step(st->state)->name, 1411 st->state); 1412 1413 cpuhp_reset_state(cpu, st, prev_state); 1414 1415 if (st->state < prev_state) 1416 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1417 prev_state)); 1418 } 1419 1420 return ret; 1421 } 1422 1423 /* Requires cpu_add_remove_lock to be held */ 1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1425 enum cpuhp_state target) 1426 { 1427 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1428 int prev_state, ret = 0; 1429 1430 if (num_online_cpus() == 1) 1431 return -EBUSY; 1432 1433 if (!cpu_present(cpu)) 1434 return -EINVAL; 1435 1436 cpus_write_lock(); 1437 1438 cpuhp_tasks_frozen = tasks_frozen; 1439 1440 prev_state = cpuhp_set_state(cpu, st, target); 1441 /* 1442 * If the current CPU state is in the range of the AP hotplug thread, 1443 * then we need to kick the thread. 1444 */ 1445 if (st->state > CPUHP_TEARDOWN_CPU) { 1446 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1447 ret = cpuhp_kick_ap_work(cpu); 1448 /* 1449 * The AP side has done the error rollback already. Just 1450 * return the error code.. 1451 */ 1452 if (ret) 1453 goto out; 1454 1455 /* 1456 * We might have stopped still in the range of the AP hotplug 1457 * thread. Nothing to do anymore. 1458 */ 1459 if (st->state > CPUHP_TEARDOWN_CPU) 1460 goto out; 1461 1462 st->target = target; 1463 } 1464 /* 1465 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1466 * to do the further cleanups. 1467 */ 1468 ret = cpuhp_down_callbacks(cpu, st, target); 1469 if (ret && st->state < prev_state) { 1470 if (st->state == CPUHP_TEARDOWN_CPU) { 1471 cpuhp_reset_state(cpu, st, prev_state); 1472 __cpuhp_kick_ap(st); 1473 } else { 1474 WARN(1, "DEAD callback error for CPU%d", cpu); 1475 } 1476 } 1477 1478 out: 1479 cpus_write_unlock(); 1480 /* 1481 * Do post unplug cleanup. This is still protected against 1482 * concurrent CPU hotplug via cpu_add_remove_lock. 1483 */ 1484 lockup_detector_cleanup(); 1485 arch_smt_update(); 1486 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1487 return ret; 1488 } 1489 1490 struct cpu_down_work { 1491 unsigned int cpu; 1492 enum cpuhp_state target; 1493 }; 1494 1495 static long __cpu_down_maps_locked(void *arg) 1496 { 1497 struct cpu_down_work *work = arg; 1498 1499 return _cpu_down(work->cpu, 0, work->target); 1500 } 1501 1502 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1503 { 1504 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1505 1506 /* 1507 * If the platform does not support hotplug, report it explicitly to 1508 * differentiate it from a transient offlining failure. 1509 */ 1510 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1511 return -EOPNOTSUPP; 1512 if (cpu_hotplug_disabled) 1513 return -EBUSY; 1514 1515 /* 1516 * Ensure that the control task does not run on the to be offlined 1517 * CPU to prevent a deadlock against cfs_b->period_timer. 1518 */ 1519 cpu = cpumask_any_but(cpu_online_mask, cpu); 1520 if (cpu >= nr_cpu_ids) 1521 return -EBUSY; 1522 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1523 } 1524 1525 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1526 { 1527 int err; 1528 1529 cpu_maps_update_begin(); 1530 err = cpu_down_maps_locked(cpu, target); 1531 cpu_maps_update_done(); 1532 return err; 1533 } 1534 1535 /** 1536 * cpu_device_down - Bring down a cpu device 1537 * @dev: Pointer to the cpu device to offline 1538 * 1539 * This function is meant to be used by device core cpu subsystem only. 1540 * 1541 * Other subsystems should use remove_cpu() instead. 1542 * 1543 * Return: %0 on success or a negative errno code 1544 */ 1545 int cpu_device_down(struct device *dev) 1546 { 1547 return cpu_down(dev->id, CPUHP_OFFLINE); 1548 } 1549 1550 int remove_cpu(unsigned int cpu) 1551 { 1552 int ret; 1553 1554 lock_device_hotplug(); 1555 ret = device_offline(get_cpu_device(cpu)); 1556 unlock_device_hotplug(); 1557 1558 return ret; 1559 } 1560 EXPORT_SYMBOL_GPL(remove_cpu); 1561 1562 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1563 { 1564 unsigned int cpu; 1565 int error; 1566 1567 cpu_maps_update_begin(); 1568 1569 /* 1570 * Make certain the cpu I'm about to reboot on is online. 1571 * 1572 * This is inline to what migrate_to_reboot_cpu() already do. 1573 */ 1574 if (!cpu_online(primary_cpu)) 1575 primary_cpu = cpumask_first(cpu_online_mask); 1576 1577 for_each_online_cpu(cpu) { 1578 if (cpu == primary_cpu) 1579 continue; 1580 1581 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1582 if (error) { 1583 pr_err("Failed to offline CPU%d - error=%d", 1584 cpu, error); 1585 break; 1586 } 1587 } 1588 1589 /* 1590 * Ensure all but the reboot CPU are offline. 1591 */ 1592 BUG_ON(num_online_cpus() > 1); 1593 1594 /* 1595 * Make sure the CPUs won't be enabled by someone else after this 1596 * point. Kexec will reboot to a new kernel shortly resetting 1597 * everything along the way. 1598 */ 1599 cpu_hotplug_disabled++; 1600 1601 cpu_maps_update_done(); 1602 } 1603 1604 #else 1605 #define takedown_cpu NULL 1606 #endif /*CONFIG_HOTPLUG_CPU*/ 1607 1608 /** 1609 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1610 * @cpu: cpu that just started 1611 * 1612 * It must be called by the arch code on the new cpu, before the new cpu 1613 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1614 */ 1615 void notify_cpu_starting(unsigned int cpu) 1616 { 1617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1618 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1619 1620 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1621 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1622 1623 /* 1624 * STARTING must not fail! 1625 */ 1626 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1627 } 1628 1629 /* 1630 * Called from the idle task. Wake up the controlling task which brings the 1631 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1632 * online bringup to the hotplug thread. 1633 */ 1634 void cpuhp_online_idle(enum cpuhp_state state) 1635 { 1636 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1637 1638 /* Happens for the boot cpu */ 1639 if (state != CPUHP_AP_ONLINE_IDLE) 1640 return; 1641 1642 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1643 1644 /* 1645 * Unpark the stopper thread before we start the idle loop (and start 1646 * scheduling); this ensures the stopper task is always available. 1647 */ 1648 stop_machine_unpark(smp_processor_id()); 1649 1650 st->state = CPUHP_AP_ONLINE_IDLE; 1651 complete_ap_thread(st, true); 1652 } 1653 1654 /* Requires cpu_add_remove_lock to be held */ 1655 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1656 { 1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1658 struct task_struct *idle; 1659 int ret = 0; 1660 1661 cpus_write_lock(); 1662 1663 if (!cpu_present(cpu)) { 1664 ret = -EINVAL; 1665 goto out; 1666 } 1667 1668 /* 1669 * The caller of cpu_up() might have raced with another 1670 * caller. Nothing to do. 1671 */ 1672 if (st->state >= target) 1673 goto out; 1674 1675 if (st->state == CPUHP_OFFLINE) { 1676 /* Let it fail before we try to bring the cpu up */ 1677 idle = idle_thread_get(cpu); 1678 if (IS_ERR(idle)) { 1679 ret = PTR_ERR(idle); 1680 goto out; 1681 } 1682 1683 /* 1684 * Reset stale stack state from the last time this CPU was online. 1685 */ 1686 scs_task_reset(idle); 1687 kasan_unpoison_task_stack(idle); 1688 } 1689 1690 cpuhp_tasks_frozen = tasks_frozen; 1691 1692 cpuhp_set_state(cpu, st, target); 1693 /* 1694 * If the current CPU state is in the range of the AP hotplug thread, 1695 * then we need to kick the thread once more. 1696 */ 1697 if (st->state > CPUHP_BRINGUP_CPU) { 1698 ret = cpuhp_kick_ap_work(cpu); 1699 /* 1700 * The AP side has done the error rollback already. Just 1701 * return the error code.. 1702 */ 1703 if (ret) 1704 goto out; 1705 } 1706 1707 /* 1708 * Try to reach the target state. We max out on the BP at 1709 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1710 * responsible for bringing it up to the target state. 1711 */ 1712 target = min((int)target, CPUHP_BRINGUP_CPU); 1713 ret = cpuhp_up_callbacks(cpu, st, target); 1714 out: 1715 cpus_write_unlock(); 1716 arch_smt_update(); 1717 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1718 return ret; 1719 } 1720 1721 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1722 { 1723 int err = 0; 1724 1725 if (!cpu_possible(cpu)) { 1726 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1727 cpu); 1728 #if defined(CONFIG_IA64) 1729 pr_err("please check additional_cpus= boot parameter\n"); 1730 #endif 1731 return -EINVAL; 1732 } 1733 1734 err = try_online_node(cpu_to_node(cpu)); 1735 if (err) 1736 return err; 1737 1738 cpu_maps_update_begin(); 1739 1740 if (cpu_hotplug_disabled) { 1741 err = -EBUSY; 1742 goto out; 1743 } 1744 if (!cpu_smt_allowed(cpu)) { 1745 err = -EPERM; 1746 goto out; 1747 } 1748 1749 err = _cpu_up(cpu, 0, target); 1750 out: 1751 cpu_maps_update_done(); 1752 return err; 1753 } 1754 1755 /** 1756 * cpu_device_up - Bring up a cpu device 1757 * @dev: Pointer to the cpu device to online 1758 * 1759 * This function is meant to be used by device core cpu subsystem only. 1760 * 1761 * Other subsystems should use add_cpu() instead. 1762 * 1763 * Return: %0 on success or a negative errno code 1764 */ 1765 int cpu_device_up(struct device *dev) 1766 { 1767 return cpu_up(dev->id, CPUHP_ONLINE); 1768 } 1769 1770 int add_cpu(unsigned int cpu) 1771 { 1772 int ret; 1773 1774 lock_device_hotplug(); 1775 ret = device_online(get_cpu_device(cpu)); 1776 unlock_device_hotplug(); 1777 1778 return ret; 1779 } 1780 EXPORT_SYMBOL_GPL(add_cpu); 1781 1782 /** 1783 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1784 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1785 * 1786 * On some architectures like arm64, we can hibernate on any CPU, but on 1787 * wake up the CPU we hibernated on might be offline as a side effect of 1788 * using maxcpus= for example. 1789 * 1790 * Return: %0 on success or a negative errno code 1791 */ 1792 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1793 { 1794 int ret; 1795 1796 if (!cpu_online(sleep_cpu)) { 1797 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1798 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1799 if (ret) { 1800 pr_err("Failed to bring hibernate-CPU up!\n"); 1801 return ret; 1802 } 1803 } 1804 return 0; 1805 } 1806 1807 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1808 enum cpuhp_state target) 1809 { 1810 unsigned int cpu; 1811 1812 for_each_cpu(cpu, mask) { 1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1814 1815 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1816 /* 1817 * If this failed then cpu_up() might have only 1818 * rolled back to CPUHP_BP_KICK_AP for the final 1819 * online. Clean it up. NOOP if already rolled back. 1820 */ 1821 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1822 } 1823 1824 if (!--ncpus) 1825 break; 1826 } 1827 } 1828 1829 #ifdef CONFIG_HOTPLUG_PARALLEL 1830 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1831 1832 static int __init parallel_bringup_parse_param(char *arg) 1833 { 1834 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1835 } 1836 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1837 1838 static inline bool cpuhp_smt_aware(void) 1839 { 1840 return cpu_smt_max_threads > 1; 1841 } 1842 1843 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1844 { 1845 return cpu_primary_thread_mask; 1846 } 1847 1848 /* 1849 * On architectures which have enabled parallel bringup this invokes all BP 1850 * prepare states for each of the to be onlined APs first. The last state 1851 * sends the startup IPI to the APs. The APs proceed through the low level 1852 * bringup code in parallel and then wait for the control CPU to release 1853 * them one by one for the final onlining procedure. 1854 * 1855 * This avoids waiting for each AP to respond to the startup IPI in 1856 * CPUHP_BRINGUP_CPU. 1857 */ 1858 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1859 { 1860 const struct cpumask *mask = cpu_present_mask; 1861 1862 if (__cpuhp_parallel_bringup) 1863 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1864 if (!__cpuhp_parallel_bringup) 1865 return false; 1866 1867 if (cpuhp_smt_aware()) { 1868 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1869 static struct cpumask tmp_mask __initdata; 1870 1871 /* 1872 * X86 requires to prevent that SMT siblings stopped while 1873 * the primary thread does a microcode update for various 1874 * reasons. Bring the primary threads up first. 1875 */ 1876 cpumask_and(&tmp_mask, mask, pmask); 1877 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1878 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1879 /* Account for the online CPUs */ 1880 ncpus -= num_online_cpus(); 1881 if (!ncpus) 1882 return true; 1883 /* Create the mask for secondary CPUs */ 1884 cpumask_andnot(&tmp_mask, mask, pmask); 1885 mask = &tmp_mask; 1886 } 1887 1888 /* Bring the not-yet started CPUs up */ 1889 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1890 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1891 return true; 1892 } 1893 #else 1894 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1895 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1896 1897 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus) 1898 { 1899 /* Try parallel bringup optimization if enabled */ 1900 if (cpuhp_bringup_cpus_parallel(setup_max_cpus)) 1901 return; 1902 1903 /* Full per CPU serialized bringup */ 1904 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE); 1905 } 1906 1907 #ifdef CONFIG_PM_SLEEP_SMP 1908 static cpumask_var_t frozen_cpus; 1909 1910 int freeze_secondary_cpus(int primary) 1911 { 1912 int cpu, error = 0; 1913 1914 cpu_maps_update_begin(); 1915 if (primary == -1) { 1916 primary = cpumask_first(cpu_online_mask); 1917 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1918 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1919 } else { 1920 if (!cpu_online(primary)) 1921 primary = cpumask_first(cpu_online_mask); 1922 } 1923 1924 /* 1925 * We take down all of the non-boot CPUs in one shot to avoid races 1926 * with the userspace trying to use the CPU hotplug at the same time 1927 */ 1928 cpumask_clear(frozen_cpus); 1929 1930 pr_info("Disabling non-boot CPUs ...\n"); 1931 for_each_online_cpu(cpu) { 1932 if (cpu == primary) 1933 continue; 1934 1935 if (pm_wakeup_pending()) { 1936 pr_info("Wakeup pending. Abort CPU freeze\n"); 1937 error = -EBUSY; 1938 break; 1939 } 1940 1941 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1942 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1943 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1944 if (!error) 1945 cpumask_set_cpu(cpu, frozen_cpus); 1946 else { 1947 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1948 break; 1949 } 1950 } 1951 1952 if (!error) 1953 BUG_ON(num_online_cpus() > 1); 1954 else 1955 pr_err("Non-boot CPUs are not disabled\n"); 1956 1957 /* 1958 * Make sure the CPUs won't be enabled by someone else. We need to do 1959 * this even in case of failure as all freeze_secondary_cpus() users are 1960 * supposed to do thaw_secondary_cpus() on the failure path. 1961 */ 1962 cpu_hotplug_disabled++; 1963 1964 cpu_maps_update_done(); 1965 return error; 1966 } 1967 1968 void __weak arch_thaw_secondary_cpus_begin(void) 1969 { 1970 } 1971 1972 void __weak arch_thaw_secondary_cpus_end(void) 1973 { 1974 } 1975 1976 void thaw_secondary_cpus(void) 1977 { 1978 int cpu, error; 1979 1980 /* Allow everyone to use the CPU hotplug again */ 1981 cpu_maps_update_begin(); 1982 __cpu_hotplug_enable(); 1983 if (cpumask_empty(frozen_cpus)) 1984 goto out; 1985 1986 pr_info("Enabling non-boot CPUs ...\n"); 1987 1988 arch_thaw_secondary_cpus_begin(); 1989 1990 for_each_cpu(cpu, frozen_cpus) { 1991 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1992 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1993 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1994 if (!error) { 1995 pr_info("CPU%d is up\n", cpu); 1996 continue; 1997 } 1998 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1999 } 2000 2001 arch_thaw_secondary_cpus_end(); 2002 2003 cpumask_clear(frozen_cpus); 2004 out: 2005 cpu_maps_update_done(); 2006 } 2007 2008 static int __init alloc_frozen_cpus(void) 2009 { 2010 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2011 return -ENOMEM; 2012 return 0; 2013 } 2014 core_initcall(alloc_frozen_cpus); 2015 2016 /* 2017 * When callbacks for CPU hotplug notifications are being executed, we must 2018 * ensure that the state of the system with respect to the tasks being frozen 2019 * or not, as reported by the notification, remains unchanged *throughout the 2020 * duration* of the execution of the callbacks. 2021 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2022 * 2023 * This synchronization is implemented by mutually excluding regular CPU 2024 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2025 * Hibernate notifications. 2026 */ 2027 static int 2028 cpu_hotplug_pm_callback(struct notifier_block *nb, 2029 unsigned long action, void *ptr) 2030 { 2031 switch (action) { 2032 2033 case PM_SUSPEND_PREPARE: 2034 case PM_HIBERNATION_PREPARE: 2035 cpu_hotplug_disable(); 2036 break; 2037 2038 case PM_POST_SUSPEND: 2039 case PM_POST_HIBERNATION: 2040 cpu_hotplug_enable(); 2041 break; 2042 2043 default: 2044 return NOTIFY_DONE; 2045 } 2046 2047 return NOTIFY_OK; 2048 } 2049 2050 2051 static int __init cpu_hotplug_pm_sync_init(void) 2052 { 2053 /* 2054 * cpu_hotplug_pm_callback has higher priority than x86 2055 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2056 * to disable cpu hotplug to avoid cpu hotplug race. 2057 */ 2058 pm_notifier(cpu_hotplug_pm_callback, 0); 2059 return 0; 2060 } 2061 core_initcall(cpu_hotplug_pm_sync_init); 2062 2063 #endif /* CONFIG_PM_SLEEP_SMP */ 2064 2065 int __boot_cpu_id; 2066 2067 #endif /* CONFIG_SMP */ 2068 2069 /* Boot processor state steps */ 2070 static struct cpuhp_step cpuhp_hp_states[] = { 2071 [CPUHP_OFFLINE] = { 2072 .name = "offline", 2073 .startup.single = NULL, 2074 .teardown.single = NULL, 2075 }, 2076 #ifdef CONFIG_SMP 2077 [CPUHP_CREATE_THREADS]= { 2078 .name = "threads:prepare", 2079 .startup.single = smpboot_create_threads, 2080 .teardown.single = NULL, 2081 .cant_stop = true, 2082 }, 2083 [CPUHP_PERF_PREPARE] = { 2084 .name = "perf:prepare", 2085 .startup.single = perf_event_init_cpu, 2086 .teardown.single = perf_event_exit_cpu, 2087 }, 2088 [CPUHP_RANDOM_PREPARE] = { 2089 .name = "random:prepare", 2090 .startup.single = random_prepare_cpu, 2091 .teardown.single = NULL, 2092 }, 2093 [CPUHP_WORKQUEUE_PREP] = { 2094 .name = "workqueue:prepare", 2095 .startup.single = workqueue_prepare_cpu, 2096 .teardown.single = NULL, 2097 }, 2098 [CPUHP_HRTIMERS_PREPARE] = { 2099 .name = "hrtimers:prepare", 2100 .startup.single = hrtimers_prepare_cpu, 2101 .teardown.single = hrtimers_dead_cpu, 2102 }, 2103 [CPUHP_SMPCFD_PREPARE] = { 2104 .name = "smpcfd:prepare", 2105 .startup.single = smpcfd_prepare_cpu, 2106 .teardown.single = smpcfd_dead_cpu, 2107 }, 2108 [CPUHP_RELAY_PREPARE] = { 2109 .name = "relay:prepare", 2110 .startup.single = relay_prepare_cpu, 2111 .teardown.single = NULL, 2112 }, 2113 [CPUHP_SLAB_PREPARE] = { 2114 .name = "slab:prepare", 2115 .startup.single = slab_prepare_cpu, 2116 .teardown.single = slab_dead_cpu, 2117 }, 2118 [CPUHP_RCUTREE_PREP] = { 2119 .name = "RCU/tree:prepare", 2120 .startup.single = rcutree_prepare_cpu, 2121 .teardown.single = rcutree_dead_cpu, 2122 }, 2123 /* 2124 * On the tear-down path, timers_dead_cpu() must be invoked 2125 * before blk_mq_queue_reinit_notify() from notify_dead(), 2126 * otherwise a RCU stall occurs. 2127 */ 2128 [CPUHP_TIMERS_PREPARE] = { 2129 .name = "timers:prepare", 2130 .startup.single = timers_prepare_cpu, 2131 .teardown.single = timers_dead_cpu, 2132 }, 2133 2134 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2135 /* 2136 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2137 * the next step will release it. 2138 */ 2139 [CPUHP_BP_KICK_AP] = { 2140 .name = "cpu:kick_ap", 2141 .startup.single = cpuhp_kick_ap_alive, 2142 }, 2143 2144 /* 2145 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2146 * releases it for the complete bringup. 2147 */ 2148 [CPUHP_BRINGUP_CPU] = { 2149 .name = "cpu:bringup", 2150 .startup.single = cpuhp_bringup_ap, 2151 .teardown.single = finish_cpu, 2152 .cant_stop = true, 2153 }, 2154 #else 2155 /* 2156 * All-in-one CPU bringup state which includes the kick alive. 2157 */ 2158 [CPUHP_BRINGUP_CPU] = { 2159 .name = "cpu:bringup", 2160 .startup.single = bringup_cpu, 2161 .teardown.single = finish_cpu, 2162 .cant_stop = true, 2163 }, 2164 #endif 2165 /* Final state before CPU kills itself */ 2166 [CPUHP_AP_IDLE_DEAD] = { 2167 .name = "idle:dead", 2168 }, 2169 /* 2170 * Last state before CPU enters the idle loop to die. Transient state 2171 * for synchronization. 2172 */ 2173 [CPUHP_AP_OFFLINE] = { 2174 .name = "ap:offline", 2175 .cant_stop = true, 2176 }, 2177 /* First state is scheduler control. Interrupts are disabled */ 2178 [CPUHP_AP_SCHED_STARTING] = { 2179 .name = "sched:starting", 2180 .startup.single = sched_cpu_starting, 2181 .teardown.single = sched_cpu_dying, 2182 }, 2183 [CPUHP_AP_RCUTREE_DYING] = { 2184 .name = "RCU/tree:dying", 2185 .startup.single = NULL, 2186 .teardown.single = rcutree_dying_cpu, 2187 }, 2188 [CPUHP_AP_SMPCFD_DYING] = { 2189 .name = "smpcfd:dying", 2190 .startup.single = NULL, 2191 .teardown.single = smpcfd_dying_cpu, 2192 }, 2193 /* Entry state on starting. Interrupts enabled from here on. Transient 2194 * state for synchronsization */ 2195 [CPUHP_AP_ONLINE] = { 2196 .name = "ap:online", 2197 }, 2198 /* 2199 * Handled on control processor until the plugged processor manages 2200 * this itself. 2201 */ 2202 [CPUHP_TEARDOWN_CPU] = { 2203 .name = "cpu:teardown", 2204 .startup.single = NULL, 2205 .teardown.single = takedown_cpu, 2206 .cant_stop = true, 2207 }, 2208 2209 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2210 .name = "sched:waitempty", 2211 .startup.single = NULL, 2212 .teardown.single = sched_cpu_wait_empty, 2213 }, 2214 2215 /* Handle smpboot threads park/unpark */ 2216 [CPUHP_AP_SMPBOOT_THREADS] = { 2217 .name = "smpboot/threads:online", 2218 .startup.single = smpboot_unpark_threads, 2219 .teardown.single = smpboot_park_threads, 2220 }, 2221 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2222 .name = "irq/affinity:online", 2223 .startup.single = irq_affinity_online_cpu, 2224 .teardown.single = NULL, 2225 }, 2226 [CPUHP_AP_PERF_ONLINE] = { 2227 .name = "perf:online", 2228 .startup.single = perf_event_init_cpu, 2229 .teardown.single = perf_event_exit_cpu, 2230 }, 2231 [CPUHP_AP_WATCHDOG_ONLINE] = { 2232 .name = "lockup_detector:online", 2233 .startup.single = lockup_detector_online_cpu, 2234 .teardown.single = lockup_detector_offline_cpu, 2235 }, 2236 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2237 .name = "workqueue:online", 2238 .startup.single = workqueue_online_cpu, 2239 .teardown.single = workqueue_offline_cpu, 2240 }, 2241 [CPUHP_AP_RANDOM_ONLINE] = { 2242 .name = "random:online", 2243 .startup.single = random_online_cpu, 2244 .teardown.single = NULL, 2245 }, 2246 [CPUHP_AP_RCUTREE_ONLINE] = { 2247 .name = "RCU/tree:online", 2248 .startup.single = rcutree_online_cpu, 2249 .teardown.single = rcutree_offline_cpu, 2250 }, 2251 #endif 2252 /* 2253 * The dynamically registered state space is here 2254 */ 2255 2256 #ifdef CONFIG_SMP 2257 /* Last state is scheduler control setting the cpu active */ 2258 [CPUHP_AP_ACTIVE] = { 2259 .name = "sched:active", 2260 .startup.single = sched_cpu_activate, 2261 .teardown.single = sched_cpu_deactivate, 2262 }, 2263 #endif 2264 2265 /* CPU is fully up and running. */ 2266 [CPUHP_ONLINE] = { 2267 .name = "online", 2268 .startup.single = NULL, 2269 .teardown.single = NULL, 2270 }, 2271 }; 2272 2273 /* Sanity check for callbacks */ 2274 static int cpuhp_cb_check(enum cpuhp_state state) 2275 { 2276 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2277 return -EINVAL; 2278 return 0; 2279 } 2280 2281 /* 2282 * Returns a free for dynamic slot assignment of the Online state. The states 2283 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2284 * by having no name assigned. 2285 */ 2286 static int cpuhp_reserve_state(enum cpuhp_state state) 2287 { 2288 enum cpuhp_state i, end; 2289 struct cpuhp_step *step; 2290 2291 switch (state) { 2292 case CPUHP_AP_ONLINE_DYN: 2293 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2294 end = CPUHP_AP_ONLINE_DYN_END; 2295 break; 2296 case CPUHP_BP_PREPARE_DYN: 2297 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2298 end = CPUHP_BP_PREPARE_DYN_END; 2299 break; 2300 default: 2301 return -EINVAL; 2302 } 2303 2304 for (i = state; i <= end; i++, step++) { 2305 if (!step->name) 2306 return i; 2307 } 2308 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2309 return -ENOSPC; 2310 } 2311 2312 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2313 int (*startup)(unsigned int cpu), 2314 int (*teardown)(unsigned int cpu), 2315 bool multi_instance) 2316 { 2317 /* (Un)Install the callbacks for further cpu hotplug operations */ 2318 struct cpuhp_step *sp; 2319 int ret = 0; 2320 2321 /* 2322 * If name is NULL, then the state gets removed. 2323 * 2324 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2325 * the first allocation from these dynamic ranges, so the removal 2326 * would trigger a new allocation and clear the wrong (already 2327 * empty) state, leaving the callbacks of the to be cleared state 2328 * dangling, which causes wreckage on the next hotplug operation. 2329 */ 2330 if (name && (state == CPUHP_AP_ONLINE_DYN || 2331 state == CPUHP_BP_PREPARE_DYN)) { 2332 ret = cpuhp_reserve_state(state); 2333 if (ret < 0) 2334 return ret; 2335 state = ret; 2336 } 2337 sp = cpuhp_get_step(state); 2338 if (name && sp->name) 2339 return -EBUSY; 2340 2341 sp->startup.single = startup; 2342 sp->teardown.single = teardown; 2343 sp->name = name; 2344 sp->multi_instance = multi_instance; 2345 INIT_HLIST_HEAD(&sp->list); 2346 return ret; 2347 } 2348 2349 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2350 { 2351 return cpuhp_get_step(state)->teardown.single; 2352 } 2353 2354 /* 2355 * Call the startup/teardown function for a step either on the AP or 2356 * on the current CPU. 2357 */ 2358 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2359 struct hlist_node *node) 2360 { 2361 struct cpuhp_step *sp = cpuhp_get_step(state); 2362 int ret; 2363 2364 /* 2365 * If there's nothing to do, we done. 2366 * Relies on the union for multi_instance. 2367 */ 2368 if (cpuhp_step_empty(bringup, sp)) 2369 return 0; 2370 /* 2371 * The non AP bound callbacks can fail on bringup. On teardown 2372 * e.g. module removal we crash for now. 2373 */ 2374 #ifdef CONFIG_SMP 2375 if (cpuhp_is_ap_state(state)) 2376 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2377 else 2378 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2379 #else 2380 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2381 #endif 2382 BUG_ON(ret && !bringup); 2383 return ret; 2384 } 2385 2386 /* 2387 * Called from __cpuhp_setup_state on a recoverable failure. 2388 * 2389 * Note: The teardown callbacks for rollback are not allowed to fail! 2390 */ 2391 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2392 struct hlist_node *node) 2393 { 2394 int cpu; 2395 2396 /* Roll back the already executed steps on the other cpus */ 2397 for_each_present_cpu(cpu) { 2398 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2399 int cpustate = st->state; 2400 2401 if (cpu >= failedcpu) 2402 break; 2403 2404 /* Did we invoke the startup call on that cpu ? */ 2405 if (cpustate >= state) 2406 cpuhp_issue_call(cpu, state, false, node); 2407 } 2408 } 2409 2410 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2411 struct hlist_node *node, 2412 bool invoke) 2413 { 2414 struct cpuhp_step *sp; 2415 int cpu; 2416 int ret; 2417 2418 lockdep_assert_cpus_held(); 2419 2420 sp = cpuhp_get_step(state); 2421 if (sp->multi_instance == false) 2422 return -EINVAL; 2423 2424 mutex_lock(&cpuhp_state_mutex); 2425 2426 if (!invoke || !sp->startup.multi) 2427 goto add_node; 2428 2429 /* 2430 * Try to call the startup callback for each present cpu 2431 * depending on the hotplug state of the cpu. 2432 */ 2433 for_each_present_cpu(cpu) { 2434 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2435 int cpustate = st->state; 2436 2437 if (cpustate < state) 2438 continue; 2439 2440 ret = cpuhp_issue_call(cpu, state, true, node); 2441 if (ret) { 2442 if (sp->teardown.multi) 2443 cpuhp_rollback_install(cpu, state, node); 2444 goto unlock; 2445 } 2446 } 2447 add_node: 2448 ret = 0; 2449 hlist_add_head(node, &sp->list); 2450 unlock: 2451 mutex_unlock(&cpuhp_state_mutex); 2452 return ret; 2453 } 2454 2455 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2456 bool invoke) 2457 { 2458 int ret; 2459 2460 cpus_read_lock(); 2461 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2462 cpus_read_unlock(); 2463 return ret; 2464 } 2465 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2466 2467 /** 2468 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2469 * @state: The state to setup 2470 * @name: Name of the step 2471 * @invoke: If true, the startup function is invoked for cpus where 2472 * cpu state >= @state 2473 * @startup: startup callback function 2474 * @teardown: teardown callback function 2475 * @multi_instance: State is set up for multiple instances which get 2476 * added afterwards. 2477 * 2478 * The caller needs to hold cpus read locked while calling this function. 2479 * Return: 2480 * On success: 2481 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2482 * 0 for all other states 2483 * On failure: proper (negative) error code 2484 */ 2485 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2486 const char *name, bool invoke, 2487 int (*startup)(unsigned int cpu), 2488 int (*teardown)(unsigned int cpu), 2489 bool multi_instance) 2490 { 2491 int cpu, ret = 0; 2492 bool dynstate; 2493 2494 lockdep_assert_cpus_held(); 2495 2496 if (cpuhp_cb_check(state) || !name) 2497 return -EINVAL; 2498 2499 mutex_lock(&cpuhp_state_mutex); 2500 2501 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2502 multi_instance); 2503 2504 dynstate = state == CPUHP_AP_ONLINE_DYN; 2505 if (ret > 0 && dynstate) { 2506 state = ret; 2507 ret = 0; 2508 } 2509 2510 if (ret || !invoke || !startup) 2511 goto out; 2512 2513 /* 2514 * Try to call the startup callback for each present cpu 2515 * depending on the hotplug state of the cpu. 2516 */ 2517 for_each_present_cpu(cpu) { 2518 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2519 int cpustate = st->state; 2520 2521 if (cpustate < state) 2522 continue; 2523 2524 ret = cpuhp_issue_call(cpu, state, true, NULL); 2525 if (ret) { 2526 if (teardown) 2527 cpuhp_rollback_install(cpu, state, NULL); 2528 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2529 goto out; 2530 } 2531 } 2532 out: 2533 mutex_unlock(&cpuhp_state_mutex); 2534 /* 2535 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2536 * dynamically allocated state in case of success. 2537 */ 2538 if (!ret && dynstate) 2539 return state; 2540 return ret; 2541 } 2542 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2543 2544 int __cpuhp_setup_state(enum cpuhp_state state, 2545 const char *name, bool invoke, 2546 int (*startup)(unsigned int cpu), 2547 int (*teardown)(unsigned int cpu), 2548 bool multi_instance) 2549 { 2550 int ret; 2551 2552 cpus_read_lock(); 2553 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2554 teardown, multi_instance); 2555 cpus_read_unlock(); 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(__cpuhp_setup_state); 2559 2560 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2561 struct hlist_node *node, bool invoke) 2562 { 2563 struct cpuhp_step *sp = cpuhp_get_step(state); 2564 int cpu; 2565 2566 BUG_ON(cpuhp_cb_check(state)); 2567 2568 if (!sp->multi_instance) 2569 return -EINVAL; 2570 2571 cpus_read_lock(); 2572 mutex_lock(&cpuhp_state_mutex); 2573 2574 if (!invoke || !cpuhp_get_teardown_cb(state)) 2575 goto remove; 2576 /* 2577 * Call the teardown callback for each present cpu depending 2578 * on the hotplug state of the cpu. This function is not 2579 * allowed to fail currently! 2580 */ 2581 for_each_present_cpu(cpu) { 2582 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2583 int cpustate = st->state; 2584 2585 if (cpustate >= state) 2586 cpuhp_issue_call(cpu, state, false, node); 2587 } 2588 2589 remove: 2590 hlist_del(node); 2591 mutex_unlock(&cpuhp_state_mutex); 2592 cpus_read_unlock(); 2593 2594 return 0; 2595 } 2596 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2597 2598 /** 2599 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2600 * @state: The state to remove 2601 * @invoke: If true, the teardown function is invoked for cpus where 2602 * cpu state >= @state 2603 * 2604 * The caller needs to hold cpus read locked while calling this function. 2605 * The teardown callback is currently not allowed to fail. Think 2606 * about module removal! 2607 */ 2608 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2609 { 2610 struct cpuhp_step *sp = cpuhp_get_step(state); 2611 int cpu; 2612 2613 BUG_ON(cpuhp_cb_check(state)); 2614 2615 lockdep_assert_cpus_held(); 2616 2617 mutex_lock(&cpuhp_state_mutex); 2618 if (sp->multi_instance) { 2619 WARN(!hlist_empty(&sp->list), 2620 "Error: Removing state %d which has instances left.\n", 2621 state); 2622 goto remove; 2623 } 2624 2625 if (!invoke || !cpuhp_get_teardown_cb(state)) 2626 goto remove; 2627 2628 /* 2629 * Call the teardown callback for each present cpu depending 2630 * on the hotplug state of the cpu. This function is not 2631 * allowed to fail currently! 2632 */ 2633 for_each_present_cpu(cpu) { 2634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2635 int cpustate = st->state; 2636 2637 if (cpustate >= state) 2638 cpuhp_issue_call(cpu, state, false, NULL); 2639 } 2640 remove: 2641 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2642 mutex_unlock(&cpuhp_state_mutex); 2643 } 2644 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2645 2646 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2647 { 2648 cpus_read_lock(); 2649 __cpuhp_remove_state_cpuslocked(state, invoke); 2650 cpus_read_unlock(); 2651 } 2652 EXPORT_SYMBOL(__cpuhp_remove_state); 2653 2654 #ifdef CONFIG_HOTPLUG_SMT 2655 static void cpuhp_offline_cpu_device(unsigned int cpu) 2656 { 2657 struct device *dev = get_cpu_device(cpu); 2658 2659 dev->offline = true; 2660 /* Tell user space about the state change */ 2661 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2662 } 2663 2664 static void cpuhp_online_cpu_device(unsigned int cpu) 2665 { 2666 struct device *dev = get_cpu_device(cpu); 2667 2668 dev->offline = false; 2669 /* Tell user space about the state change */ 2670 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2671 } 2672 2673 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2674 { 2675 int cpu, ret = 0; 2676 2677 cpu_maps_update_begin(); 2678 for_each_online_cpu(cpu) { 2679 if (topology_is_primary_thread(cpu)) 2680 continue; 2681 /* 2682 * Disable can be called with CPU_SMT_ENABLED when changing 2683 * from a higher to lower number of SMT threads per core. 2684 */ 2685 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2686 continue; 2687 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2688 if (ret) 2689 break; 2690 /* 2691 * As this needs to hold the cpu maps lock it's impossible 2692 * to call device_offline() because that ends up calling 2693 * cpu_down() which takes cpu maps lock. cpu maps lock 2694 * needs to be held as this might race against in kernel 2695 * abusers of the hotplug machinery (thermal management). 2696 * 2697 * So nothing would update device:offline state. That would 2698 * leave the sysfs entry stale and prevent onlining after 2699 * smt control has been changed to 'off' again. This is 2700 * called under the sysfs hotplug lock, so it is properly 2701 * serialized against the regular offline usage. 2702 */ 2703 cpuhp_offline_cpu_device(cpu); 2704 } 2705 if (!ret) 2706 cpu_smt_control = ctrlval; 2707 cpu_maps_update_done(); 2708 return ret; 2709 } 2710 2711 int cpuhp_smt_enable(void) 2712 { 2713 int cpu, ret = 0; 2714 2715 cpu_maps_update_begin(); 2716 cpu_smt_control = CPU_SMT_ENABLED; 2717 for_each_present_cpu(cpu) { 2718 /* Skip online CPUs and CPUs on offline nodes */ 2719 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2720 continue; 2721 if (!cpu_smt_thread_allowed(cpu)) 2722 continue; 2723 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2724 if (ret) 2725 break; 2726 /* See comment in cpuhp_smt_disable() */ 2727 cpuhp_online_cpu_device(cpu); 2728 } 2729 cpu_maps_update_done(); 2730 return ret; 2731 } 2732 #endif 2733 2734 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2735 static ssize_t state_show(struct device *dev, 2736 struct device_attribute *attr, char *buf) 2737 { 2738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2739 2740 return sprintf(buf, "%d\n", st->state); 2741 } 2742 static DEVICE_ATTR_RO(state); 2743 2744 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2745 const char *buf, size_t count) 2746 { 2747 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2748 struct cpuhp_step *sp; 2749 int target, ret; 2750 2751 ret = kstrtoint(buf, 10, &target); 2752 if (ret) 2753 return ret; 2754 2755 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2756 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2757 return -EINVAL; 2758 #else 2759 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2760 return -EINVAL; 2761 #endif 2762 2763 ret = lock_device_hotplug_sysfs(); 2764 if (ret) 2765 return ret; 2766 2767 mutex_lock(&cpuhp_state_mutex); 2768 sp = cpuhp_get_step(target); 2769 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2770 mutex_unlock(&cpuhp_state_mutex); 2771 if (ret) 2772 goto out; 2773 2774 if (st->state < target) 2775 ret = cpu_up(dev->id, target); 2776 else if (st->state > target) 2777 ret = cpu_down(dev->id, target); 2778 else if (WARN_ON(st->target != target)) 2779 st->target = target; 2780 out: 2781 unlock_device_hotplug(); 2782 return ret ? ret : count; 2783 } 2784 2785 static ssize_t target_show(struct device *dev, 2786 struct device_attribute *attr, char *buf) 2787 { 2788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2789 2790 return sprintf(buf, "%d\n", st->target); 2791 } 2792 static DEVICE_ATTR_RW(target); 2793 2794 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2795 const char *buf, size_t count) 2796 { 2797 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2798 struct cpuhp_step *sp; 2799 int fail, ret; 2800 2801 ret = kstrtoint(buf, 10, &fail); 2802 if (ret) 2803 return ret; 2804 2805 if (fail == CPUHP_INVALID) { 2806 st->fail = fail; 2807 return count; 2808 } 2809 2810 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2811 return -EINVAL; 2812 2813 /* 2814 * Cannot fail STARTING/DYING callbacks. 2815 */ 2816 if (cpuhp_is_atomic_state(fail)) 2817 return -EINVAL; 2818 2819 /* 2820 * DEAD callbacks cannot fail... 2821 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2822 * triggering STARTING callbacks, a failure in this state would 2823 * hinder rollback. 2824 */ 2825 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2826 return -EINVAL; 2827 2828 /* 2829 * Cannot fail anything that doesn't have callbacks. 2830 */ 2831 mutex_lock(&cpuhp_state_mutex); 2832 sp = cpuhp_get_step(fail); 2833 if (!sp->startup.single && !sp->teardown.single) 2834 ret = -EINVAL; 2835 mutex_unlock(&cpuhp_state_mutex); 2836 if (ret) 2837 return ret; 2838 2839 st->fail = fail; 2840 2841 return count; 2842 } 2843 2844 static ssize_t fail_show(struct device *dev, 2845 struct device_attribute *attr, char *buf) 2846 { 2847 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2848 2849 return sprintf(buf, "%d\n", st->fail); 2850 } 2851 2852 static DEVICE_ATTR_RW(fail); 2853 2854 static struct attribute *cpuhp_cpu_attrs[] = { 2855 &dev_attr_state.attr, 2856 &dev_attr_target.attr, 2857 &dev_attr_fail.attr, 2858 NULL 2859 }; 2860 2861 static const struct attribute_group cpuhp_cpu_attr_group = { 2862 .attrs = cpuhp_cpu_attrs, 2863 .name = "hotplug", 2864 NULL 2865 }; 2866 2867 static ssize_t states_show(struct device *dev, 2868 struct device_attribute *attr, char *buf) 2869 { 2870 ssize_t cur, res = 0; 2871 int i; 2872 2873 mutex_lock(&cpuhp_state_mutex); 2874 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2875 struct cpuhp_step *sp = cpuhp_get_step(i); 2876 2877 if (sp->name) { 2878 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2879 buf += cur; 2880 res += cur; 2881 } 2882 } 2883 mutex_unlock(&cpuhp_state_mutex); 2884 return res; 2885 } 2886 static DEVICE_ATTR_RO(states); 2887 2888 static struct attribute *cpuhp_cpu_root_attrs[] = { 2889 &dev_attr_states.attr, 2890 NULL 2891 }; 2892 2893 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2894 .attrs = cpuhp_cpu_root_attrs, 2895 .name = "hotplug", 2896 NULL 2897 }; 2898 2899 #ifdef CONFIG_HOTPLUG_SMT 2900 2901 static bool cpu_smt_num_threads_valid(unsigned int threads) 2902 { 2903 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2904 return threads >= 1 && threads <= cpu_smt_max_threads; 2905 return threads == 1 || threads == cpu_smt_max_threads; 2906 } 2907 2908 static ssize_t 2909 __store_smt_control(struct device *dev, struct device_attribute *attr, 2910 const char *buf, size_t count) 2911 { 2912 int ctrlval, ret, num_threads, orig_threads; 2913 bool force_off; 2914 2915 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2916 return -EPERM; 2917 2918 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2919 return -ENODEV; 2920 2921 if (sysfs_streq(buf, "on")) { 2922 ctrlval = CPU_SMT_ENABLED; 2923 num_threads = cpu_smt_max_threads; 2924 } else if (sysfs_streq(buf, "off")) { 2925 ctrlval = CPU_SMT_DISABLED; 2926 num_threads = 1; 2927 } else if (sysfs_streq(buf, "forceoff")) { 2928 ctrlval = CPU_SMT_FORCE_DISABLED; 2929 num_threads = 1; 2930 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2931 if (num_threads == 1) 2932 ctrlval = CPU_SMT_DISABLED; 2933 else if (cpu_smt_num_threads_valid(num_threads)) 2934 ctrlval = CPU_SMT_ENABLED; 2935 else 2936 return -EINVAL; 2937 } else { 2938 return -EINVAL; 2939 } 2940 2941 ret = lock_device_hotplug_sysfs(); 2942 if (ret) 2943 return ret; 2944 2945 orig_threads = cpu_smt_num_threads; 2946 cpu_smt_num_threads = num_threads; 2947 2948 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2949 2950 if (num_threads > orig_threads) 2951 ret = cpuhp_smt_enable(); 2952 else if (num_threads < orig_threads || force_off) 2953 ret = cpuhp_smt_disable(ctrlval); 2954 2955 unlock_device_hotplug(); 2956 return ret ? ret : count; 2957 } 2958 2959 #else /* !CONFIG_HOTPLUG_SMT */ 2960 static ssize_t 2961 __store_smt_control(struct device *dev, struct device_attribute *attr, 2962 const char *buf, size_t count) 2963 { 2964 return -ENODEV; 2965 } 2966 #endif /* CONFIG_HOTPLUG_SMT */ 2967 2968 static const char *smt_states[] = { 2969 [CPU_SMT_ENABLED] = "on", 2970 [CPU_SMT_DISABLED] = "off", 2971 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2972 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2973 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2974 }; 2975 2976 static ssize_t control_show(struct device *dev, 2977 struct device_attribute *attr, char *buf) 2978 { 2979 const char *state = smt_states[cpu_smt_control]; 2980 2981 #ifdef CONFIG_HOTPLUG_SMT 2982 /* 2983 * If SMT is enabled but not all threads are enabled then show the 2984 * number of threads. If all threads are enabled show "on". Otherwise 2985 * show the state name. 2986 */ 2987 if (cpu_smt_control == CPU_SMT_ENABLED && 2988 cpu_smt_num_threads != cpu_smt_max_threads) 2989 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2990 #endif 2991 2992 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2993 } 2994 2995 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2996 const char *buf, size_t count) 2997 { 2998 return __store_smt_control(dev, attr, buf, count); 2999 } 3000 static DEVICE_ATTR_RW(control); 3001 3002 static ssize_t active_show(struct device *dev, 3003 struct device_attribute *attr, char *buf) 3004 { 3005 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 3006 } 3007 static DEVICE_ATTR_RO(active); 3008 3009 static struct attribute *cpuhp_smt_attrs[] = { 3010 &dev_attr_control.attr, 3011 &dev_attr_active.attr, 3012 NULL 3013 }; 3014 3015 static const struct attribute_group cpuhp_smt_attr_group = { 3016 .attrs = cpuhp_smt_attrs, 3017 .name = "smt", 3018 NULL 3019 }; 3020 3021 static int __init cpu_smt_sysfs_init(void) 3022 { 3023 struct device *dev_root; 3024 int ret = -ENODEV; 3025 3026 dev_root = bus_get_dev_root(&cpu_subsys); 3027 if (dev_root) { 3028 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3029 put_device(dev_root); 3030 } 3031 return ret; 3032 } 3033 3034 static int __init cpuhp_sysfs_init(void) 3035 { 3036 struct device *dev_root; 3037 int cpu, ret; 3038 3039 ret = cpu_smt_sysfs_init(); 3040 if (ret) 3041 return ret; 3042 3043 dev_root = bus_get_dev_root(&cpu_subsys); 3044 if (dev_root) { 3045 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3046 put_device(dev_root); 3047 if (ret) 3048 return ret; 3049 } 3050 3051 for_each_possible_cpu(cpu) { 3052 struct device *dev = get_cpu_device(cpu); 3053 3054 if (!dev) 3055 continue; 3056 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3057 if (ret) 3058 return ret; 3059 } 3060 return 0; 3061 } 3062 device_initcall(cpuhp_sysfs_init); 3063 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3064 3065 /* 3066 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3067 * represents all NR_CPUS bits binary values of 1<<nr. 3068 * 3069 * It is used by cpumask_of() to get a constant address to a CPU 3070 * mask value that has a single bit set only. 3071 */ 3072 3073 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3074 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3075 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3076 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3077 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3078 3079 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3080 3081 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3082 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3083 #if BITS_PER_LONG > 32 3084 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3085 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3086 #endif 3087 }; 3088 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3089 3090 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3091 EXPORT_SYMBOL(cpu_all_bits); 3092 3093 #ifdef CONFIG_INIT_ALL_POSSIBLE 3094 struct cpumask __cpu_possible_mask __read_mostly 3095 = {CPU_BITS_ALL}; 3096 #else 3097 struct cpumask __cpu_possible_mask __read_mostly; 3098 #endif 3099 EXPORT_SYMBOL(__cpu_possible_mask); 3100 3101 struct cpumask __cpu_online_mask __read_mostly; 3102 EXPORT_SYMBOL(__cpu_online_mask); 3103 3104 struct cpumask __cpu_present_mask __read_mostly; 3105 EXPORT_SYMBOL(__cpu_present_mask); 3106 3107 struct cpumask __cpu_active_mask __read_mostly; 3108 EXPORT_SYMBOL(__cpu_active_mask); 3109 3110 struct cpumask __cpu_dying_mask __read_mostly; 3111 EXPORT_SYMBOL(__cpu_dying_mask); 3112 3113 atomic_t __num_online_cpus __read_mostly; 3114 EXPORT_SYMBOL(__num_online_cpus); 3115 3116 void init_cpu_present(const struct cpumask *src) 3117 { 3118 cpumask_copy(&__cpu_present_mask, src); 3119 } 3120 3121 void init_cpu_possible(const struct cpumask *src) 3122 { 3123 cpumask_copy(&__cpu_possible_mask, src); 3124 } 3125 3126 void init_cpu_online(const struct cpumask *src) 3127 { 3128 cpumask_copy(&__cpu_online_mask, src); 3129 } 3130 3131 void set_cpu_online(unsigned int cpu, bool online) 3132 { 3133 /* 3134 * atomic_inc/dec() is required to handle the horrid abuse of this 3135 * function by the reboot and kexec code which invoke it from 3136 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3137 * regular CPU hotplug is properly serialized. 3138 * 3139 * Note, that the fact that __num_online_cpus is of type atomic_t 3140 * does not protect readers which are not serialized against 3141 * concurrent hotplug operations. 3142 */ 3143 if (online) { 3144 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3145 atomic_inc(&__num_online_cpus); 3146 } else { 3147 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3148 atomic_dec(&__num_online_cpus); 3149 } 3150 } 3151 3152 /* 3153 * Activate the first processor. 3154 */ 3155 void __init boot_cpu_init(void) 3156 { 3157 int cpu = smp_processor_id(); 3158 3159 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3160 set_cpu_online(cpu, true); 3161 set_cpu_active(cpu, true); 3162 set_cpu_present(cpu, true); 3163 set_cpu_possible(cpu, true); 3164 3165 #ifdef CONFIG_SMP 3166 __boot_cpu_id = cpu; 3167 #endif 3168 } 3169 3170 /* 3171 * Must be called _AFTER_ setting up the per_cpu areas 3172 */ 3173 void __init boot_cpu_hotplug_init(void) 3174 { 3175 #ifdef CONFIG_SMP 3176 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3177 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3178 #endif 3179 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3180 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3181 } 3182 3183 /* 3184 * These are used for a global "mitigations=" cmdline option for toggling 3185 * optional CPU mitigations. 3186 */ 3187 enum cpu_mitigations { 3188 CPU_MITIGATIONS_OFF, 3189 CPU_MITIGATIONS_AUTO, 3190 CPU_MITIGATIONS_AUTO_NOSMT, 3191 }; 3192 3193 static enum cpu_mitigations cpu_mitigations __ro_after_init = 3194 CPU_MITIGATIONS_AUTO; 3195 3196 static int __init mitigations_parse_cmdline(char *arg) 3197 { 3198 if (!strcmp(arg, "off")) 3199 cpu_mitigations = CPU_MITIGATIONS_OFF; 3200 else if (!strcmp(arg, "auto")) 3201 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3202 else if (!strcmp(arg, "auto,nosmt")) 3203 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3204 else 3205 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3206 arg); 3207 3208 return 0; 3209 } 3210 early_param("mitigations", mitigations_parse_cmdline); 3211 3212 /* mitigations=off */ 3213 bool cpu_mitigations_off(void) 3214 { 3215 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3216 } 3217 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3218 3219 /* mitigations=auto,nosmt */ 3220 bool cpu_mitigations_auto_nosmt(void) 3221 { 3222 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3223 } 3224 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3225