xref: /linux/kernel/cpu.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30 
31 #include "smpboot.h"
32 
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:	The current cpu state
36  * @target:	The target state
37  * @thread:	Pointer to the hotplug thread
38  * @should_run:	Thread should execute
39  * @rollback:	Perform a rollback
40  * @cb_stat:	The state for a single callback (install/uninstall)
41  * @cb:		Single callback function (install/uninstall)
42  * @result:	Result of the operation
43  * @done:	Signal completion to the issuer of the task
44  */
45 struct cpuhp_cpu_state {
46 	enum cpuhp_state	state;
47 	enum cpuhp_state	target;
48 #ifdef CONFIG_SMP
49 	struct task_struct	*thread;
50 	bool			should_run;
51 	bool			rollback;
52 	enum cpuhp_state	cb_state;
53 	int			(*cb)(unsigned int cpu);
54 	int			result;
55 	struct completion	done;
56 #endif
57 };
58 
59 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
60 
61 /**
62  * cpuhp_step - Hotplug state machine step
63  * @name:	Name of the step
64  * @startup:	Startup function of the step
65  * @teardown:	Teardown function of the step
66  * @skip_onerr:	Do not invoke the functions on error rollback
67  *		Will go away once the notifiers	are gone
68  * @cant_stop:	Bringup/teardown can't be stopped at this step
69  */
70 struct cpuhp_step {
71 	const char	*name;
72 	int		(*startup)(unsigned int cpu);
73 	int		(*teardown)(unsigned int cpu);
74 	bool		skip_onerr;
75 	bool		cant_stop;
76 };
77 
78 static DEFINE_MUTEX(cpuhp_state_mutex);
79 static struct cpuhp_step cpuhp_bp_states[];
80 static struct cpuhp_step cpuhp_ap_states[];
81 
82 /**
83  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
84  * @cpu:	The cpu for which the callback should be invoked
85  * @step:	The step in the state machine
86  * @cb:		The callback function to invoke
87  *
88  * Called from cpu hotplug and from the state register machinery
89  */
90 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
91 				 int (*cb)(unsigned int))
92 {
93 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
94 	int ret = 0;
95 
96 	if (cb) {
97 		trace_cpuhp_enter(cpu, st->target, step, cb);
98 		ret = cb(cpu);
99 		trace_cpuhp_exit(cpu, st->state, step, ret);
100 	}
101 	return ret;
102 }
103 
104 #ifdef CONFIG_SMP
105 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
106 static DEFINE_MUTEX(cpu_add_remove_lock);
107 bool cpuhp_tasks_frozen;
108 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
109 
110 /*
111  * The following two APIs (cpu_maps_update_begin/done) must be used when
112  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
113  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
114  * hotplug callback (un)registration performed using __register_cpu_notifier()
115  * or __unregister_cpu_notifier().
116  */
117 void cpu_maps_update_begin(void)
118 {
119 	mutex_lock(&cpu_add_remove_lock);
120 }
121 EXPORT_SYMBOL(cpu_notifier_register_begin);
122 
123 void cpu_maps_update_done(void)
124 {
125 	mutex_unlock(&cpu_add_remove_lock);
126 }
127 EXPORT_SYMBOL(cpu_notifier_register_done);
128 
129 static RAW_NOTIFIER_HEAD(cpu_chain);
130 
131 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
132  * Should always be manipulated under cpu_add_remove_lock
133  */
134 static int cpu_hotplug_disabled;
135 
136 #ifdef CONFIG_HOTPLUG_CPU
137 
138 static struct {
139 	struct task_struct *active_writer;
140 	/* wait queue to wake up the active_writer */
141 	wait_queue_head_t wq;
142 	/* verifies that no writer will get active while readers are active */
143 	struct mutex lock;
144 	/*
145 	 * Also blocks the new readers during
146 	 * an ongoing cpu hotplug operation.
147 	 */
148 	atomic_t refcount;
149 
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151 	struct lockdep_map dep_map;
152 #endif
153 } cpu_hotplug = {
154 	.active_writer = NULL,
155 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
156 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 	.dep_map = {.name = "cpu_hotplug.lock" },
159 #endif
160 };
161 
162 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
163 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire_tryread() \
165 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
166 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
167 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
168 
169 
170 void get_online_cpus(void)
171 {
172 	might_sleep();
173 	if (cpu_hotplug.active_writer == current)
174 		return;
175 	cpuhp_lock_acquire_read();
176 	mutex_lock(&cpu_hotplug.lock);
177 	atomic_inc(&cpu_hotplug.refcount);
178 	mutex_unlock(&cpu_hotplug.lock);
179 }
180 EXPORT_SYMBOL_GPL(get_online_cpus);
181 
182 void put_online_cpus(void)
183 {
184 	int refcount;
185 
186 	if (cpu_hotplug.active_writer == current)
187 		return;
188 
189 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
190 	if (WARN_ON(refcount < 0)) /* try to fix things up */
191 		atomic_inc(&cpu_hotplug.refcount);
192 
193 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
194 		wake_up(&cpu_hotplug.wq);
195 
196 	cpuhp_lock_release();
197 
198 }
199 EXPORT_SYMBOL_GPL(put_online_cpus);
200 
201 /*
202  * This ensures that the hotplug operation can begin only when the
203  * refcount goes to zero.
204  *
205  * Note that during a cpu-hotplug operation, the new readers, if any,
206  * will be blocked by the cpu_hotplug.lock
207  *
208  * Since cpu_hotplug_begin() is always called after invoking
209  * cpu_maps_update_begin(), we can be sure that only one writer is active.
210  *
211  * Note that theoretically, there is a possibility of a livelock:
212  * - Refcount goes to zero, last reader wakes up the sleeping
213  *   writer.
214  * - Last reader unlocks the cpu_hotplug.lock.
215  * - A new reader arrives at this moment, bumps up the refcount.
216  * - The writer acquires the cpu_hotplug.lock finds the refcount
217  *   non zero and goes to sleep again.
218  *
219  * However, this is very difficult to achieve in practice since
220  * get_online_cpus() not an api which is called all that often.
221  *
222  */
223 void cpu_hotplug_begin(void)
224 {
225 	DEFINE_WAIT(wait);
226 
227 	cpu_hotplug.active_writer = current;
228 	cpuhp_lock_acquire();
229 
230 	for (;;) {
231 		mutex_lock(&cpu_hotplug.lock);
232 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
233 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
234 				break;
235 		mutex_unlock(&cpu_hotplug.lock);
236 		schedule();
237 	}
238 	finish_wait(&cpu_hotplug.wq, &wait);
239 }
240 
241 void cpu_hotplug_done(void)
242 {
243 	cpu_hotplug.active_writer = NULL;
244 	mutex_unlock(&cpu_hotplug.lock);
245 	cpuhp_lock_release();
246 }
247 
248 /*
249  * Wait for currently running CPU hotplug operations to complete (if any) and
250  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
251  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
252  * hotplug path before performing hotplug operations. So acquiring that lock
253  * guarantees mutual exclusion from any currently running hotplug operations.
254  */
255 void cpu_hotplug_disable(void)
256 {
257 	cpu_maps_update_begin();
258 	cpu_hotplug_disabled++;
259 	cpu_maps_update_done();
260 }
261 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
262 
263 void cpu_hotplug_enable(void)
264 {
265 	cpu_maps_update_begin();
266 	WARN_ON(--cpu_hotplug_disabled < 0);
267 	cpu_maps_update_done();
268 }
269 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
270 #endif	/* CONFIG_HOTPLUG_CPU */
271 
272 /* Need to know about CPUs going up/down? */
273 int register_cpu_notifier(struct notifier_block *nb)
274 {
275 	int ret;
276 	cpu_maps_update_begin();
277 	ret = raw_notifier_chain_register(&cpu_chain, nb);
278 	cpu_maps_update_done();
279 	return ret;
280 }
281 
282 int __register_cpu_notifier(struct notifier_block *nb)
283 {
284 	return raw_notifier_chain_register(&cpu_chain, nb);
285 }
286 
287 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
288 			int *nr_calls)
289 {
290 	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
291 	void *hcpu = (void *)(long)cpu;
292 
293 	int ret;
294 
295 	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
296 					nr_calls);
297 
298 	return notifier_to_errno(ret);
299 }
300 
301 static int cpu_notify(unsigned long val, unsigned int cpu)
302 {
303 	return __cpu_notify(val, cpu, -1, NULL);
304 }
305 
306 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
307 {
308 	BUG_ON(cpu_notify(val, cpu));
309 }
310 
311 /* Notifier wrappers for transitioning to state machine */
312 static int notify_prepare(unsigned int cpu)
313 {
314 	int nr_calls = 0;
315 	int ret;
316 
317 	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
318 	if (ret) {
319 		nr_calls--;
320 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
321 				__func__, cpu);
322 		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
323 	}
324 	return ret;
325 }
326 
327 static int notify_online(unsigned int cpu)
328 {
329 	cpu_notify(CPU_ONLINE, cpu);
330 	return 0;
331 }
332 
333 static int notify_starting(unsigned int cpu)
334 {
335 	cpu_notify(CPU_STARTING, cpu);
336 	return 0;
337 }
338 
339 static int bringup_wait_for_ap(unsigned int cpu)
340 {
341 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
342 
343 	wait_for_completion(&st->done);
344 	return st->result;
345 }
346 
347 static int bringup_cpu(unsigned int cpu)
348 {
349 	struct task_struct *idle = idle_thread_get(cpu);
350 	int ret;
351 
352 	/* Arch-specific enabling code. */
353 	ret = __cpu_up(cpu, idle);
354 	if (ret) {
355 		cpu_notify(CPU_UP_CANCELED, cpu);
356 		return ret;
357 	}
358 	ret = bringup_wait_for_ap(cpu);
359 	BUG_ON(!cpu_online(cpu));
360 	return ret;
361 }
362 
363 /*
364  * Hotplug state machine related functions
365  */
366 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
367 			  struct cpuhp_step *steps)
368 {
369 	for (st->state++; st->state < st->target; st->state++) {
370 		struct cpuhp_step *step = steps + st->state;
371 
372 		if (!step->skip_onerr)
373 			cpuhp_invoke_callback(cpu, st->state, step->startup);
374 	}
375 }
376 
377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
378 				struct cpuhp_step *steps, enum cpuhp_state target)
379 {
380 	enum cpuhp_state prev_state = st->state;
381 	int ret = 0;
382 
383 	for (; st->state > target; st->state--) {
384 		struct cpuhp_step *step = steps + st->state;
385 
386 		ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
387 		if (ret) {
388 			st->target = prev_state;
389 			undo_cpu_down(cpu, st, steps);
390 			break;
391 		}
392 	}
393 	return ret;
394 }
395 
396 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
397 			struct cpuhp_step *steps)
398 {
399 	for (st->state--; st->state > st->target; st->state--) {
400 		struct cpuhp_step *step = steps + st->state;
401 
402 		if (!step->skip_onerr)
403 			cpuhp_invoke_callback(cpu, st->state, step->teardown);
404 	}
405 }
406 
407 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
408 			      struct cpuhp_step *steps, enum cpuhp_state target)
409 {
410 	enum cpuhp_state prev_state = st->state;
411 	int ret = 0;
412 
413 	while (st->state < target) {
414 		struct cpuhp_step *step;
415 
416 		st->state++;
417 		step = steps + st->state;
418 		ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
419 		if (ret) {
420 			st->target = prev_state;
421 			undo_cpu_up(cpu, st, steps);
422 			break;
423 		}
424 	}
425 	return ret;
426 }
427 
428 /*
429  * The cpu hotplug threads manage the bringup and teardown of the cpus
430  */
431 static void cpuhp_create(unsigned int cpu)
432 {
433 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
434 
435 	init_completion(&st->done);
436 }
437 
438 static int cpuhp_should_run(unsigned int cpu)
439 {
440 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
441 
442 	return st->should_run;
443 }
444 
445 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
446 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
447 {
448 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
449 
450 	return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
451 }
452 
453 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
454 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
455 {
456 	return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
457 }
458 
459 /*
460  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
461  * callbacks when a state gets [un]installed at runtime.
462  */
463 static void cpuhp_thread_fun(unsigned int cpu)
464 {
465 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
466 	int ret = 0;
467 
468 	/*
469 	 * Paired with the mb() in cpuhp_kick_ap_work and
470 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
471 	 */
472 	smp_mb();
473 	if (!st->should_run)
474 		return;
475 
476 	st->should_run = false;
477 
478 	/* Single callback invocation for [un]install ? */
479 	if (st->cb) {
480 		if (st->cb_state < CPUHP_AP_ONLINE) {
481 			local_irq_disable();
482 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
483 			local_irq_enable();
484 		} else {
485 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
486 		}
487 	} else if (st->rollback) {
488 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
489 
490 		undo_cpu_down(cpu, st, cpuhp_ap_states);
491 		/*
492 		 * This is a momentary workaround to keep the notifier users
493 		 * happy. Will go away once we got rid of the notifiers.
494 		 */
495 		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
496 		st->rollback = false;
497 	} else {
498 		/* Cannot happen .... */
499 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500 
501 		/* Regular hotplug work */
502 		if (st->state < st->target)
503 			ret = cpuhp_ap_online(cpu, st);
504 		else if (st->state > st->target)
505 			ret = cpuhp_ap_offline(cpu, st);
506 	}
507 	st->result = ret;
508 	complete(&st->done);
509 }
510 
511 /* Invoke a single callback on a remote cpu */
512 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
513 				    int (*cb)(unsigned int))
514 {
515 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
516 
517 	if (!cpu_online(cpu))
518 		return 0;
519 
520 	/*
521 	 * If we are up and running, use the hotplug thread. For early calls
522 	 * we invoke the thread function directly.
523 	 */
524 	if (!st->thread)
525 		return cpuhp_invoke_callback(cpu, state, cb);
526 
527 	st->cb_state = state;
528 	st->cb = cb;
529 	/*
530 	 * Make sure the above stores are visible before should_run becomes
531 	 * true. Paired with the mb() above in cpuhp_thread_fun()
532 	 */
533 	smp_mb();
534 	st->should_run = true;
535 	wake_up_process(st->thread);
536 	wait_for_completion(&st->done);
537 	return st->result;
538 }
539 
540 /* Regular hotplug invocation of the AP hotplug thread */
541 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
542 {
543 	st->result = 0;
544 	st->cb = NULL;
545 	/*
546 	 * Make sure the above stores are visible before should_run becomes
547 	 * true. Paired with the mb() above in cpuhp_thread_fun()
548 	 */
549 	smp_mb();
550 	st->should_run = true;
551 	wake_up_process(st->thread);
552 }
553 
554 static int cpuhp_kick_ap_work(unsigned int cpu)
555 {
556 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
557 	enum cpuhp_state state = st->state;
558 
559 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
560 	__cpuhp_kick_ap_work(st);
561 	wait_for_completion(&st->done);
562 	trace_cpuhp_exit(cpu, st->state, state, st->result);
563 	return st->result;
564 }
565 
566 static struct smp_hotplug_thread cpuhp_threads = {
567 	.store			= &cpuhp_state.thread,
568 	.create			= &cpuhp_create,
569 	.thread_should_run	= cpuhp_should_run,
570 	.thread_fn		= cpuhp_thread_fun,
571 	.thread_comm		= "cpuhp/%u",
572 	.selfparking		= true,
573 };
574 
575 void __init cpuhp_threads_init(void)
576 {
577 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
578 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
579 }
580 
581 #ifdef CONFIG_HOTPLUG_CPU
582 EXPORT_SYMBOL(register_cpu_notifier);
583 EXPORT_SYMBOL(__register_cpu_notifier);
584 void unregister_cpu_notifier(struct notifier_block *nb)
585 {
586 	cpu_maps_update_begin();
587 	raw_notifier_chain_unregister(&cpu_chain, nb);
588 	cpu_maps_update_done();
589 }
590 EXPORT_SYMBOL(unregister_cpu_notifier);
591 
592 void __unregister_cpu_notifier(struct notifier_block *nb)
593 {
594 	raw_notifier_chain_unregister(&cpu_chain, nb);
595 }
596 EXPORT_SYMBOL(__unregister_cpu_notifier);
597 
598 /**
599  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
600  * @cpu: a CPU id
601  *
602  * This function walks all processes, finds a valid mm struct for each one and
603  * then clears a corresponding bit in mm's cpumask.  While this all sounds
604  * trivial, there are various non-obvious corner cases, which this function
605  * tries to solve in a safe manner.
606  *
607  * Also note that the function uses a somewhat relaxed locking scheme, so it may
608  * be called only for an already offlined CPU.
609  */
610 void clear_tasks_mm_cpumask(int cpu)
611 {
612 	struct task_struct *p;
613 
614 	/*
615 	 * This function is called after the cpu is taken down and marked
616 	 * offline, so its not like new tasks will ever get this cpu set in
617 	 * their mm mask. -- Peter Zijlstra
618 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
619 	 * full-fledged tasklist_lock.
620 	 */
621 	WARN_ON(cpu_online(cpu));
622 	rcu_read_lock();
623 	for_each_process(p) {
624 		struct task_struct *t;
625 
626 		/*
627 		 * Main thread might exit, but other threads may still have
628 		 * a valid mm. Find one.
629 		 */
630 		t = find_lock_task_mm(p);
631 		if (!t)
632 			continue;
633 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
634 		task_unlock(t);
635 	}
636 	rcu_read_unlock();
637 }
638 
639 static inline void check_for_tasks(int dead_cpu)
640 {
641 	struct task_struct *g, *p;
642 
643 	read_lock(&tasklist_lock);
644 	for_each_process_thread(g, p) {
645 		if (!p->on_rq)
646 			continue;
647 		/*
648 		 * We do the check with unlocked task_rq(p)->lock.
649 		 * Order the reading to do not warn about a task,
650 		 * which was running on this cpu in the past, and
651 		 * it's just been woken on another cpu.
652 		 */
653 		rmb();
654 		if (task_cpu(p) != dead_cpu)
655 			continue;
656 
657 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
658 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
659 	}
660 	read_unlock(&tasklist_lock);
661 }
662 
663 static int notify_down_prepare(unsigned int cpu)
664 {
665 	int err, nr_calls = 0;
666 
667 	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
668 	if (err) {
669 		nr_calls--;
670 		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
671 		pr_warn("%s: attempt to take down CPU %u failed\n",
672 				__func__, cpu);
673 	}
674 	return err;
675 }
676 
677 static int notify_dying(unsigned int cpu)
678 {
679 	cpu_notify(CPU_DYING, cpu);
680 	return 0;
681 }
682 
683 /* Take this CPU down. */
684 static int take_cpu_down(void *_param)
685 {
686 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
687 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
688 	int err, cpu = smp_processor_id();
689 
690 	/* Ensure this CPU doesn't handle any more interrupts. */
691 	err = __cpu_disable();
692 	if (err < 0)
693 		return err;
694 
695 	/* Invoke the former CPU_DYING callbacks */
696 	for (; st->state > target; st->state--) {
697 		struct cpuhp_step *step = cpuhp_ap_states + st->state;
698 
699 		cpuhp_invoke_callback(cpu, st->state, step->teardown);
700 	}
701 	/* Give up timekeeping duties */
702 	tick_handover_do_timer();
703 	/* Park the stopper thread */
704 	stop_machine_park(cpu);
705 	return 0;
706 }
707 
708 static int takedown_cpu(unsigned int cpu)
709 {
710 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
711 	int err;
712 
713 	/* Park the smpboot threads */
714 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
715 	smpboot_park_threads(cpu);
716 
717 	/*
718 	 * Prevent irq alloc/free while the dying cpu reorganizes the
719 	 * interrupt affinities.
720 	 */
721 	irq_lock_sparse();
722 
723 	/*
724 	 * So now all preempt/rcu users must observe !cpu_active().
725 	 */
726 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
727 	if (err) {
728 		/* CPU refused to die */
729 		irq_unlock_sparse();
730 		/* Unpark the hotplug thread so we can rollback there */
731 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
732 		return err;
733 	}
734 	BUG_ON(cpu_online(cpu));
735 
736 	/*
737 	 * The migration_call() CPU_DYING callback will have removed all
738 	 * runnable tasks from the cpu, there's only the idle task left now
739 	 * that the migration thread is done doing the stop_machine thing.
740 	 *
741 	 * Wait for the stop thread to go away.
742 	 */
743 	wait_for_completion(&st->done);
744 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
745 
746 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
747 	irq_unlock_sparse();
748 
749 	hotplug_cpu__broadcast_tick_pull(cpu);
750 	/* This actually kills the CPU. */
751 	__cpu_die(cpu);
752 
753 	tick_cleanup_dead_cpu(cpu);
754 	return 0;
755 }
756 
757 static int notify_dead(unsigned int cpu)
758 {
759 	cpu_notify_nofail(CPU_DEAD, cpu);
760 	check_for_tasks(cpu);
761 	return 0;
762 }
763 
764 static void cpuhp_complete_idle_dead(void *arg)
765 {
766 	struct cpuhp_cpu_state *st = arg;
767 
768 	complete(&st->done);
769 }
770 
771 void cpuhp_report_idle_dead(void)
772 {
773 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
774 
775 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
776 	rcu_report_dead(smp_processor_id());
777 	st->state = CPUHP_AP_IDLE_DEAD;
778 	/*
779 	 * We cannot call complete after rcu_report_dead() so we delegate it
780 	 * to an online cpu.
781 	 */
782 	smp_call_function_single(cpumask_first(cpu_online_mask),
783 				 cpuhp_complete_idle_dead, st, 0);
784 }
785 
786 #else
787 #define notify_down_prepare	NULL
788 #define takedown_cpu		NULL
789 #define notify_dead		NULL
790 #define notify_dying		NULL
791 #endif
792 
793 #ifdef CONFIG_HOTPLUG_CPU
794 
795 /* Requires cpu_add_remove_lock to be held */
796 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
797 			   enum cpuhp_state target)
798 {
799 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
800 	int prev_state, ret = 0;
801 	bool hasdied = false;
802 
803 	if (num_online_cpus() == 1)
804 		return -EBUSY;
805 
806 	if (!cpu_present(cpu))
807 		return -EINVAL;
808 
809 	cpu_hotplug_begin();
810 
811 	cpuhp_tasks_frozen = tasks_frozen;
812 
813 	prev_state = st->state;
814 	st->target = target;
815 	/*
816 	 * If the current CPU state is in the range of the AP hotplug thread,
817 	 * then we need to kick the thread.
818 	 */
819 	if (st->state > CPUHP_TEARDOWN_CPU) {
820 		ret = cpuhp_kick_ap_work(cpu);
821 		/*
822 		 * The AP side has done the error rollback already. Just
823 		 * return the error code..
824 		 */
825 		if (ret)
826 			goto out;
827 
828 		/*
829 		 * We might have stopped still in the range of the AP hotplug
830 		 * thread. Nothing to do anymore.
831 		 */
832 		if (st->state > CPUHP_TEARDOWN_CPU)
833 			goto out;
834 	}
835 	/*
836 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
837 	 * to do the further cleanups.
838 	 */
839 	ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
840 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
841 		st->target = prev_state;
842 		st->rollback = true;
843 		cpuhp_kick_ap_work(cpu);
844 	}
845 
846 	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
847 out:
848 	cpu_hotplug_done();
849 	/* This post dead nonsense must die */
850 	if (!ret && hasdied)
851 		cpu_notify_nofail(CPU_POST_DEAD, cpu);
852 	return ret;
853 }
854 
855 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
856 {
857 	int err;
858 
859 	cpu_maps_update_begin();
860 
861 	if (cpu_hotplug_disabled) {
862 		err = -EBUSY;
863 		goto out;
864 	}
865 
866 	err = _cpu_down(cpu, 0, target);
867 
868 out:
869 	cpu_maps_update_done();
870 	return err;
871 }
872 int cpu_down(unsigned int cpu)
873 {
874 	return do_cpu_down(cpu, CPUHP_OFFLINE);
875 }
876 EXPORT_SYMBOL(cpu_down);
877 #endif /*CONFIG_HOTPLUG_CPU*/
878 
879 /**
880  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
881  * @cpu: cpu that just started
882  *
883  * This function calls the cpu_chain notifiers with CPU_STARTING.
884  * It must be called by the arch code on the new cpu, before the new cpu
885  * enables interrupts and before the "boot" cpu returns from __cpu_up().
886  */
887 void notify_cpu_starting(unsigned int cpu)
888 {
889 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
890 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
891 
892 	while (st->state < target) {
893 		struct cpuhp_step *step;
894 
895 		st->state++;
896 		step = cpuhp_ap_states + st->state;
897 		cpuhp_invoke_callback(cpu, st->state, step->startup);
898 	}
899 }
900 
901 /*
902  * Called from the idle task. We need to set active here, so we can kick off
903  * the stopper thread and unpark the smpboot threads. If the target state is
904  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
905  * cpu further.
906  */
907 void cpuhp_online_idle(enum cpuhp_state state)
908 {
909 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
910 	unsigned int cpu = smp_processor_id();
911 
912 	/* Happens for the boot cpu */
913 	if (state != CPUHP_AP_ONLINE_IDLE)
914 		return;
915 
916 	st->state = CPUHP_AP_ONLINE_IDLE;
917 
918 	/* Unpark the stopper thread and the hotplug thread of this cpu */
919 	stop_machine_unpark(cpu);
920 	kthread_unpark(st->thread);
921 
922 	/* Should we go further up ? */
923 	if (st->target > CPUHP_AP_ONLINE_IDLE)
924 		__cpuhp_kick_ap_work(st);
925 	else
926 		complete(&st->done);
927 }
928 
929 /* Requires cpu_add_remove_lock to be held */
930 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
931 {
932 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
933 	struct task_struct *idle;
934 	int ret = 0;
935 
936 	cpu_hotplug_begin();
937 
938 	if (!cpu_present(cpu)) {
939 		ret = -EINVAL;
940 		goto out;
941 	}
942 
943 	/*
944 	 * The caller of do_cpu_up might have raced with another
945 	 * caller. Ignore it for now.
946 	 */
947 	if (st->state >= target)
948 		goto out;
949 
950 	if (st->state == CPUHP_OFFLINE) {
951 		/* Let it fail before we try to bring the cpu up */
952 		idle = idle_thread_get(cpu);
953 		if (IS_ERR(idle)) {
954 			ret = PTR_ERR(idle);
955 			goto out;
956 		}
957 	}
958 
959 	cpuhp_tasks_frozen = tasks_frozen;
960 
961 	st->target = target;
962 	/*
963 	 * If the current CPU state is in the range of the AP hotplug thread,
964 	 * then we need to kick the thread once more.
965 	 */
966 	if (st->state > CPUHP_BRINGUP_CPU) {
967 		ret = cpuhp_kick_ap_work(cpu);
968 		/*
969 		 * The AP side has done the error rollback already. Just
970 		 * return the error code..
971 		 */
972 		if (ret)
973 			goto out;
974 	}
975 
976 	/*
977 	 * Try to reach the target state. We max out on the BP at
978 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
979 	 * responsible for bringing it up to the target state.
980 	 */
981 	target = min((int)target, CPUHP_BRINGUP_CPU);
982 	ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
983 out:
984 	cpu_hotplug_done();
985 	return ret;
986 }
987 
988 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
989 {
990 	int err = 0;
991 
992 	if (!cpu_possible(cpu)) {
993 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
994 		       cpu);
995 #if defined(CONFIG_IA64)
996 		pr_err("please check additional_cpus= boot parameter\n");
997 #endif
998 		return -EINVAL;
999 	}
1000 
1001 	err = try_online_node(cpu_to_node(cpu));
1002 	if (err)
1003 		return err;
1004 
1005 	cpu_maps_update_begin();
1006 
1007 	if (cpu_hotplug_disabled) {
1008 		err = -EBUSY;
1009 		goto out;
1010 	}
1011 
1012 	err = _cpu_up(cpu, 0, target);
1013 out:
1014 	cpu_maps_update_done();
1015 	return err;
1016 }
1017 
1018 int cpu_up(unsigned int cpu)
1019 {
1020 	return do_cpu_up(cpu, CPUHP_ONLINE);
1021 }
1022 EXPORT_SYMBOL_GPL(cpu_up);
1023 
1024 #ifdef CONFIG_PM_SLEEP_SMP
1025 static cpumask_var_t frozen_cpus;
1026 
1027 int disable_nonboot_cpus(void)
1028 {
1029 	int cpu, first_cpu, error = 0;
1030 
1031 	cpu_maps_update_begin();
1032 	first_cpu = cpumask_first(cpu_online_mask);
1033 	/*
1034 	 * We take down all of the non-boot CPUs in one shot to avoid races
1035 	 * with the userspace trying to use the CPU hotplug at the same time
1036 	 */
1037 	cpumask_clear(frozen_cpus);
1038 
1039 	pr_info("Disabling non-boot CPUs ...\n");
1040 	for_each_online_cpu(cpu) {
1041 		if (cpu == first_cpu)
1042 			continue;
1043 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1044 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1045 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1046 		if (!error)
1047 			cpumask_set_cpu(cpu, frozen_cpus);
1048 		else {
1049 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1050 			break;
1051 		}
1052 	}
1053 
1054 	if (!error)
1055 		BUG_ON(num_online_cpus() > 1);
1056 	else
1057 		pr_err("Non-boot CPUs are not disabled\n");
1058 
1059 	/*
1060 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1061 	 * this even in case of failure as all disable_nonboot_cpus() users are
1062 	 * supposed to do enable_nonboot_cpus() on the failure path.
1063 	 */
1064 	cpu_hotplug_disabled++;
1065 
1066 	cpu_maps_update_done();
1067 	return error;
1068 }
1069 
1070 void __weak arch_enable_nonboot_cpus_begin(void)
1071 {
1072 }
1073 
1074 void __weak arch_enable_nonboot_cpus_end(void)
1075 {
1076 }
1077 
1078 void enable_nonboot_cpus(void)
1079 {
1080 	int cpu, error;
1081 
1082 	/* Allow everyone to use the CPU hotplug again */
1083 	cpu_maps_update_begin();
1084 	WARN_ON(--cpu_hotplug_disabled < 0);
1085 	if (cpumask_empty(frozen_cpus))
1086 		goto out;
1087 
1088 	pr_info("Enabling non-boot CPUs ...\n");
1089 
1090 	arch_enable_nonboot_cpus_begin();
1091 
1092 	for_each_cpu(cpu, frozen_cpus) {
1093 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1094 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1095 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1096 		if (!error) {
1097 			pr_info("CPU%d is up\n", cpu);
1098 			continue;
1099 		}
1100 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1101 	}
1102 
1103 	arch_enable_nonboot_cpus_end();
1104 
1105 	cpumask_clear(frozen_cpus);
1106 out:
1107 	cpu_maps_update_done();
1108 }
1109 
1110 static int __init alloc_frozen_cpus(void)
1111 {
1112 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1113 		return -ENOMEM;
1114 	return 0;
1115 }
1116 core_initcall(alloc_frozen_cpus);
1117 
1118 /*
1119  * When callbacks for CPU hotplug notifications are being executed, we must
1120  * ensure that the state of the system with respect to the tasks being frozen
1121  * or not, as reported by the notification, remains unchanged *throughout the
1122  * duration* of the execution of the callbacks.
1123  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1124  *
1125  * This synchronization is implemented by mutually excluding regular CPU
1126  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1127  * Hibernate notifications.
1128  */
1129 static int
1130 cpu_hotplug_pm_callback(struct notifier_block *nb,
1131 			unsigned long action, void *ptr)
1132 {
1133 	switch (action) {
1134 
1135 	case PM_SUSPEND_PREPARE:
1136 	case PM_HIBERNATION_PREPARE:
1137 		cpu_hotplug_disable();
1138 		break;
1139 
1140 	case PM_POST_SUSPEND:
1141 	case PM_POST_HIBERNATION:
1142 		cpu_hotplug_enable();
1143 		break;
1144 
1145 	default:
1146 		return NOTIFY_DONE;
1147 	}
1148 
1149 	return NOTIFY_OK;
1150 }
1151 
1152 
1153 static int __init cpu_hotplug_pm_sync_init(void)
1154 {
1155 	/*
1156 	 * cpu_hotplug_pm_callback has higher priority than x86
1157 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1158 	 * to disable cpu hotplug to avoid cpu hotplug race.
1159 	 */
1160 	pm_notifier(cpu_hotplug_pm_callback, 0);
1161 	return 0;
1162 }
1163 core_initcall(cpu_hotplug_pm_sync_init);
1164 
1165 #endif /* CONFIG_PM_SLEEP_SMP */
1166 
1167 #endif /* CONFIG_SMP */
1168 
1169 /* Boot processor state steps */
1170 static struct cpuhp_step cpuhp_bp_states[] = {
1171 	[CPUHP_OFFLINE] = {
1172 		.name			= "offline",
1173 		.startup		= NULL,
1174 		.teardown		= NULL,
1175 	},
1176 #ifdef CONFIG_SMP
1177 	[CPUHP_CREATE_THREADS]= {
1178 		.name			= "threads:create",
1179 		.startup		= smpboot_create_threads,
1180 		.teardown		= NULL,
1181 		.cant_stop		= true,
1182 	},
1183 	[CPUHP_PERF_PREPARE] = {
1184 		.name = "perf prepare",
1185 		.startup = perf_event_init_cpu,
1186 		.teardown = perf_event_exit_cpu,
1187 	},
1188 	[CPUHP_WORKQUEUE_PREP] = {
1189 		.name = "workqueue prepare",
1190 		.startup = workqueue_prepare_cpu,
1191 		.teardown = NULL,
1192 	},
1193 	[CPUHP_HRTIMERS_PREPARE] = {
1194 		.name = "hrtimers prepare",
1195 		.startup = hrtimers_prepare_cpu,
1196 		.teardown = hrtimers_dead_cpu,
1197 	},
1198 	[CPUHP_SMPCFD_PREPARE] = {
1199 		.name = "SMPCFD prepare",
1200 		.startup = smpcfd_prepare_cpu,
1201 		.teardown = smpcfd_dead_cpu,
1202 	},
1203 	[CPUHP_RCUTREE_PREP] = {
1204 		.name = "RCU-tree prepare",
1205 		.startup = rcutree_prepare_cpu,
1206 		.teardown = rcutree_dead_cpu,
1207 	},
1208 	/*
1209 	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1210 	 * are converted to states.
1211 	 */
1212 	[CPUHP_NOTIFY_PREPARE] = {
1213 		.name			= "notify:prepare",
1214 		.startup		= notify_prepare,
1215 		.teardown		= notify_dead,
1216 		.skip_onerr		= true,
1217 		.cant_stop		= true,
1218 	},
1219 	/*
1220 	 * On the tear-down path, timers_dead_cpu() must be invoked
1221 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1222 	 * otherwise a RCU stall occurs.
1223 	 */
1224 	[CPUHP_TIMERS_DEAD] = {
1225 		.name = "timers dead",
1226 		.startup = NULL,
1227 		.teardown = timers_dead_cpu,
1228 	},
1229 	/* Kicks the plugged cpu into life */
1230 	[CPUHP_BRINGUP_CPU] = {
1231 		.name			= "cpu:bringup",
1232 		.startup		= bringup_cpu,
1233 		.teardown		= NULL,
1234 		.cant_stop		= true,
1235 	},
1236 	[CPUHP_AP_SMPCFD_DYING] = {
1237 		.startup = NULL,
1238 		.teardown = smpcfd_dying_cpu,
1239 	},
1240 	/*
1241 	 * Handled on controll processor until the plugged processor manages
1242 	 * this itself.
1243 	 */
1244 	[CPUHP_TEARDOWN_CPU] = {
1245 		.name			= "cpu:teardown",
1246 		.startup		= NULL,
1247 		.teardown		= takedown_cpu,
1248 		.cant_stop		= true,
1249 	},
1250 #else
1251 	[CPUHP_BRINGUP_CPU] = { },
1252 #endif
1253 };
1254 
1255 /* Application processor state steps */
1256 static struct cpuhp_step cpuhp_ap_states[] = {
1257 #ifdef CONFIG_SMP
1258 	/* Final state before CPU kills itself */
1259 	[CPUHP_AP_IDLE_DEAD] = {
1260 		.name			= "idle:dead",
1261 	},
1262 	/*
1263 	 * Last state before CPU enters the idle loop to die. Transient state
1264 	 * for synchronization.
1265 	 */
1266 	[CPUHP_AP_OFFLINE] = {
1267 		.name			= "ap:offline",
1268 		.cant_stop		= true,
1269 	},
1270 	/* First state is scheduler control. Interrupts are disabled */
1271 	[CPUHP_AP_SCHED_STARTING] = {
1272 		.name			= "sched:starting",
1273 		.startup		= sched_cpu_starting,
1274 		.teardown		= sched_cpu_dying,
1275 	},
1276 	[CPUHP_AP_RCUTREE_DYING] = {
1277 		.startup = NULL,
1278 		.teardown = rcutree_dying_cpu,
1279 	},
1280 	/*
1281 	 * Low level startup/teardown notifiers. Run with interrupts
1282 	 * disabled. Will be removed once the notifiers are converted to
1283 	 * states.
1284 	 */
1285 	[CPUHP_AP_NOTIFY_STARTING] = {
1286 		.name			= "notify:starting",
1287 		.startup		= notify_starting,
1288 		.teardown		= notify_dying,
1289 		.skip_onerr		= true,
1290 		.cant_stop		= true,
1291 	},
1292 	/* Entry state on starting. Interrupts enabled from here on. Transient
1293 	 * state for synchronsization */
1294 	[CPUHP_AP_ONLINE] = {
1295 		.name			= "ap:online",
1296 	},
1297 	/* Handle smpboot threads park/unpark */
1298 	[CPUHP_AP_SMPBOOT_THREADS] = {
1299 		.name			= "smpboot:threads",
1300 		.startup		= smpboot_unpark_threads,
1301 		.teardown		= NULL,
1302 	},
1303 	[CPUHP_AP_PERF_ONLINE] = {
1304 		.name = "perf online",
1305 		.startup = perf_event_init_cpu,
1306 		.teardown = perf_event_exit_cpu,
1307 	},
1308 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1309 		.name = "workqueue online",
1310 		.startup = workqueue_online_cpu,
1311 		.teardown = workqueue_offline_cpu,
1312 	},
1313 	[CPUHP_AP_RCUTREE_ONLINE] = {
1314 		.name = "RCU-tree online",
1315 		.startup = rcutree_online_cpu,
1316 		.teardown = rcutree_offline_cpu,
1317 	},
1318 
1319 	/*
1320 	 * Online/down_prepare notifiers. Will be removed once the notifiers
1321 	 * are converted to states.
1322 	 */
1323 	[CPUHP_AP_NOTIFY_ONLINE] = {
1324 		.name			= "notify:online",
1325 		.startup		= notify_online,
1326 		.teardown		= notify_down_prepare,
1327 		.skip_onerr		= true,
1328 	},
1329 #endif
1330 	/*
1331 	 * The dynamically registered state space is here
1332 	 */
1333 
1334 #ifdef CONFIG_SMP
1335 	/* Last state is scheduler control setting the cpu active */
1336 	[CPUHP_AP_ACTIVE] = {
1337 		.name			= "sched:active",
1338 		.startup		= sched_cpu_activate,
1339 		.teardown		= sched_cpu_deactivate,
1340 	},
1341 #endif
1342 
1343 	/* CPU is fully up and running. */
1344 	[CPUHP_ONLINE] = {
1345 		.name			= "online",
1346 		.startup		= NULL,
1347 		.teardown		= NULL,
1348 	},
1349 };
1350 
1351 /* Sanity check for callbacks */
1352 static int cpuhp_cb_check(enum cpuhp_state state)
1353 {
1354 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1355 		return -EINVAL;
1356 	return 0;
1357 }
1358 
1359 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1360 {
1361 	/*
1362 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1363 	 * purposes as that state is handled explicitely in cpu_down.
1364 	 */
1365 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1366 }
1367 
1368 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1369 {
1370 	struct cpuhp_step *sp;
1371 
1372 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1373 	return sp + state;
1374 }
1375 
1376 static void cpuhp_store_callbacks(enum cpuhp_state state,
1377 				  const char *name,
1378 				  int (*startup)(unsigned int cpu),
1379 				  int (*teardown)(unsigned int cpu))
1380 {
1381 	/* (Un)Install the callbacks for further cpu hotplug operations */
1382 	struct cpuhp_step *sp;
1383 
1384 	mutex_lock(&cpuhp_state_mutex);
1385 	sp = cpuhp_get_step(state);
1386 	sp->startup = startup;
1387 	sp->teardown = teardown;
1388 	sp->name = name;
1389 	mutex_unlock(&cpuhp_state_mutex);
1390 }
1391 
1392 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1393 {
1394 	return cpuhp_get_step(state)->teardown;
1395 }
1396 
1397 /*
1398  * Call the startup/teardown function for a step either on the AP or
1399  * on the current CPU.
1400  */
1401 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1402 			    int (*cb)(unsigned int), bool bringup)
1403 {
1404 	int ret;
1405 
1406 	if (!cb)
1407 		return 0;
1408 	/*
1409 	 * The non AP bound callbacks can fail on bringup. On teardown
1410 	 * e.g. module removal we crash for now.
1411 	 */
1412 #ifdef CONFIG_SMP
1413 	if (cpuhp_is_ap_state(state))
1414 		ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1415 	else
1416 		ret = cpuhp_invoke_callback(cpu, state, cb);
1417 #else
1418 	ret = cpuhp_invoke_callback(cpu, state, cb);
1419 #endif
1420 	BUG_ON(ret && !bringup);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Called from __cpuhp_setup_state on a recoverable failure.
1426  *
1427  * Note: The teardown callbacks for rollback are not allowed to fail!
1428  */
1429 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1430 				   int (*teardown)(unsigned int cpu))
1431 {
1432 	int cpu;
1433 
1434 	if (!teardown)
1435 		return;
1436 
1437 	/* Roll back the already executed steps on the other cpus */
1438 	for_each_present_cpu(cpu) {
1439 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1440 		int cpustate = st->state;
1441 
1442 		if (cpu >= failedcpu)
1443 			break;
1444 
1445 		/* Did we invoke the startup call on that cpu ? */
1446 		if (cpustate >= state)
1447 			cpuhp_issue_call(cpu, state, teardown, false);
1448 	}
1449 }
1450 
1451 /*
1452  * Returns a free for dynamic slot assignment of the Online state. The states
1453  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1454  * by having no name assigned.
1455  */
1456 static int cpuhp_reserve_state(enum cpuhp_state state)
1457 {
1458 	enum cpuhp_state i;
1459 
1460 	mutex_lock(&cpuhp_state_mutex);
1461 	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1462 		if (cpuhp_ap_states[i].name)
1463 			continue;
1464 
1465 		cpuhp_ap_states[i].name = "Reserved";
1466 		mutex_unlock(&cpuhp_state_mutex);
1467 		return i;
1468 	}
1469 	mutex_unlock(&cpuhp_state_mutex);
1470 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1471 	return -ENOSPC;
1472 }
1473 
1474 /**
1475  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1476  * @state:	The state to setup
1477  * @invoke:	If true, the startup function is invoked for cpus where
1478  *		cpu state >= @state
1479  * @startup:	startup callback function
1480  * @teardown:	teardown callback function
1481  *
1482  * Returns 0 if successful, otherwise a proper error code
1483  */
1484 int __cpuhp_setup_state(enum cpuhp_state state,
1485 			const char *name, bool invoke,
1486 			int (*startup)(unsigned int cpu),
1487 			int (*teardown)(unsigned int cpu))
1488 {
1489 	int cpu, ret = 0;
1490 	int dyn_state = 0;
1491 
1492 	if (cpuhp_cb_check(state) || !name)
1493 		return -EINVAL;
1494 
1495 	get_online_cpus();
1496 
1497 	/* currently assignments for the ONLINE state are possible */
1498 	if (state == CPUHP_AP_ONLINE_DYN) {
1499 		dyn_state = 1;
1500 		ret = cpuhp_reserve_state(state);
1501 		if (ret < 0)
1502 			goto out;
1503 		state = ret;
1504 	}
1505 
1506 	cpuhp_store_callbacks(state, name, startup, teardown);
1507 
1508 	if (!invoke || !startup)
1509 		goto out;
1510 
1511 	/*
1512 	 * Try to call the startup callback for each present cpu
1513 	 * depending on the hotplug state of the cpu.
1514 	 */
1515 	for_each_present_cpu(cpu) {
1516 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1517 		int cpustate = st->state;
1518 
1519 		if (cpustate < state)
1520 			continue;
1521 
1522 		ret = cpuhp_issue_call(cpu, state, startup, true);
1523 		if (ret) {
1524 			cpuhp_rollback_install(cpu, state, teardown);
1525 			cpuhp_store_callbacks(state, NULL, NULL, NULL);
1526 			goto out;
1527 		}
1528 	}
1529 out:
1530 	put_online_cpus();
1531 	if (!ret && dyn_state)
1532 		return state;
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(__cpuhp_setup_state);
1536 
1537 /**
1538  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1539  * @state:	The state to remove
1540  * @invoke:	If true, the teardown function is invoked for cpus where
1541  *		cpu state >= @state
1542  *
1543  * The teardown callback is currently not allowed to fail. Think
1544  * about module removal!
1545  */
1546 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1547 {
1548 	int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1549 	int cpu;
1550 
1551 	BUG_ON(cpuhp_cb_check(state));
1552 
1553 	get_online_cpus();
1554 
1555 	if (!invoke || !teardown)
1556 		goto remove;
1557 
1558 	/*
1559 	 * Call the teardown callback for each present cpu depending
1560 	 * on the hotplug state of the cpu. This function is not
1561 	 * allowed to fail currently!
1562 	 */
1563 	for_each_present_cpu(cpu) {
1564 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1565 		int cpustate = st->state;
1566 
1567 		if (cpustate >= state)
1568 			cpuhp_issue_call(cpu, state, teardown, false);
1569 	}
1570 remove:
1571 	cpuhp_store_callbacks(state, NULL, NULL, NULL);
1572 	put_online_cpus();
1573 }
1574 EXPORT_SYMBOL(__cpuhp_remove_state);
1575 
1576 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1577 static ssize_t show_cpuhp_state(struct device *dev,
1578 				struct device_attribute *attr, char *buf)
1579 {
1580 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1581 
1582 	return sprintf(buf, "%d\n", st->state);
1583 }
1584 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1585 
1586 static ssize_t write_cpuhp_target(struct device *dev,
1587 				  struct device_attribute *attr,
1588 				  const char *buf, size_t count)
1589 {
1590 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1591 	struct cpuhp_step *sp;
1592 	int target, ret;
1593 
1594 	ret = kstrtoint(buf, 10, &target);
1595 	if (ret)
1596 		return ret;
1597 
1598 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1599 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1600 		return -EINVAL;
1601 #else
1602 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1603 		return -EINVAL;
1604 #endif
1605 
1606 	ret = lock_device_hotplug_sysfs();
1607 	if (ret)
1608 		return ret;
1609 
1610 	mutex_lock(&cpuhp_state_mutex);
1611 	sp = cpuhp_get_step(target);
1612 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1613 	mutex_unlock(&cpuhp_state_mutex);
1614 	if (ret)
1615 		return ret;
1616 
1617 	if (st->state < target)
1618 		ret = do_cpu_up(dev->id, target);
1619 	else
1620 		ret = do_cpu_down(dev->id, target);
1621 
1622 	unlock_device_hotplug();
1623 	return ret ? ret : count;
1624 }
1625 
1626 static ssize_t show_cpuhp_target(struct device *dev,
1627 				 struct device_attribute *attr, char *buf)
1628 {
1629 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1630 
1631 	return sprintf(buf, "%d\n", st->target);
1632 }
1633 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1634 
1635 static struct attribute *cpuhp_cpu_attrs[] = {
1636 	&dev_attr_state.attr,
1637 	&dev_attr_target.attr,
1638 	NULL
1639 };
1640 
1641 static struct attribute_group cpuhp_cpu_attr_group = {
1642 	.attrs = cpuhp_cpu_attrs,
1643 	.name = "hotplug",
1644 	NULL
1645 };
1646 
1647 static ssize_t show_cpuhp_states(struct device *dev,
1648 				 struct device_attribute *attr, char *buf)
1649 {
1650 	ssize_t cur, res = 0;
1651 	int i;
1652 
1653 	mutex_lock(&cpuhp_state_mutex);
1654 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1655 		struct cpuhp_step *sp = cpuhp_get_step(i);
1656 
1657 		if (sp->name) {
1658 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1659 			buf += cur;
1660 			res += cur;
1661 		}
1662 	}
1663 	mutex_unlock(&cpuhp_state_mutex);
1664 	return res;
1665 }
1666 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1667 
1668 static struct attribute *cpuhp_cpu_root_attrs[] = {
1669 	&dev_attr_states.attr,
1670 	NULL
1671 };
1672 
1673 static struct attribute_group cpuhp_cpu_root_attr_group = {
1674 	.attrs = cpuhp_cpu_root_attrs,
1675 	.name = "hotplug",
1676 	NULL
1677 };
1678 
1679 static int __init cpuhp_sysfs_init(void)
1680 {
1681 	int cpu, ret;
1682 
1683 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1684 				 &cpuhp_cpu_root_attr_group);
1685 	if (ret)
1686 		return ret;
1687 
1688 	for_each_possible_cpu(cpu) {
1689 		struct device *dev = get_cpu_device(cpu);
1690 
1691 		if (!dev)
1692 			continue;
1693 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1694 		if (ret)
1695 			return ret;
1696 	}
1697 	return 0;
1698 }
1699 device_initcall(cpuhp_sysfs_init);
1700 #endif
1701 
1702 /*
1703  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1704  * represents all NR_CPUS bits binary values of 1<<nr.
1705  *
1706  * It is used by cpumask_of() to get a constant address to a CPU
1707  * mask value that has a single bit set only.
1708  */
1709 
1710 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1711 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1712 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1713 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1714 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1715 
1716 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1717 
1718 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1719 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1720 #if BITS_PER_LONG > 32
1721 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1722 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1723 #endif
1724 };
1725 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1726 
1727 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1728 EXPORT_SYMBOL(cpu_all_bits);
1729 
1730 #ifdef CONFIG_INIT_ALL_POSSIBLE
1731 struct cpumask __cpu_possible_mask __read_mostly
1732 	= {CPU_BITS_ALL};
1733 #else
1734 struct cpumask __cpu_possible_mask __read_mostly;
1735 #endif
1736 EXPORT_SYMBOL(__cpu_possible_mask);
1737 
1738 struct cpumask __cpu_online_mask __read_mostly;
1739 EXPORT_SYMBOL(__cpu_online_mask);
1740 
1741 struct cpumask __cpu_present_mask __read_mostly;
1742 EXPORT_SYMBOL(__cpu_present_mask);
1743 
1744 struct cpumask __cpu_active_mask __read_mostly;
1745 EXPORT_SYMBOL(__cpu_active_mask);
1746 
1747 void init_cpu_present(const struct cpumask *src)
1748 {
1749 	cpumask_copy(&__cpu_present_mask, src);
1750 }
1751 
1752 void init_cpu_possible(const struct cpumask *src)
1753 {
1754 	cpumask_copy(&__cpu_possible_mask, src);
1755 }
1756 
1757 void init_cpu_online(const struct cpumask *src)
1758 {
1759 	cpumask_copy(&__cpu_online_mask, src);
1760 }
1761 
1762 /*
1763  * Activate the first processor.
1764  */
1765 void __init boot_cpu_init(void)
1766 {
1767 	int cpu = smp_processor_id();
1768 
1769 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1770 	set_cpu_online(cpu, true);
1771 	set_cpu_active(cpu, true);
1772 	set_cpu_present(cpu, true);
1773 	set_cpu_possible(cpu, true);
1774 }
1775 
1776 /*
1777  * Must be called _AFTER_ setting up the per_cpu areas
1778  */
1779 void __init boot_cpu_state_init(void)
1780 {
1781 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1782 }
1783