xref: /linux/kernel/cpu.c (revision b60a5b8dcf49af9f2c60ae82e0383ee8e62a9a52)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33 
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37 
38 #include "smpboot.h"
39 
40 /**
41  * cpuhp_cpu_state - Per cpu hotplug state storage
42  * @state:	The current cpu state
43  * @target:	The target state
44  * @thread:	Pointer to the hotplug thread
45  * @should_run:	Thread should execute
46  * @rollback:	Perform a rollback
47  * @single:	Single callback invocation
48  * @bringup:	Single callback bringup or teardown selector
49  * @cb_state:	The state for a single callback (install/uninstall)
50  * @result:	Result of the operation
51  * @done_up:	Signal completion to the issuer of the task for cpu-up
52  * @done_down:	Signal completion to the issuer of the task for cpu-down
53  */
54 struct cpuhp_cpu_state {
55 	enum cpuhp_state	state;
56 	enum cpuhp_state	target;
57 	enum cpuhp_state	fail;
58 #ifdef CONFIG_SMP
59 	struct task_struct	*thread;
60 	bool			should_run;
61 	bool			rollback;
62 	bool			single;
63 	bool			bringup;
64 	bool			booted_once;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83 
84 
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89 
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95 
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98 
99 #endif
100 
101 /**
102  * cpuhp_step - Hotplug state machine step
103  * @name:	Name of the step
104  * @startup:	Startup function of the step
105  * @teardown:	Teardown function of the step
106  * @cant_stop:	Bringup/teardown can't be stopped at this step
107  */
108 struct cpuhp_step {
109 	const char		*name;
110 	union {
111 		int		(*single)(unsigned int cpu);
112 		int		(*multi)(unsigned int cpu,
113 					 struct hlist_node *node);
114 	} startup;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} teardown;
120 	struct hlist_head	list;
121 	bool			cant_stop;
122 	bool			multi_instance;
123 };
124 
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127 
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 	return cpuhp_hp_states + state;
131 }
132 
133 /**
134  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135  * @cpu:	The cpu for which the callback should be invoked
136  * @state:	The state to do callbacks for
137  * @bringup:	True if the bringup callback should be invoked
138  * @node:	For multi-instance, do a single entry callback for install/remove
139  * @lastp:	For multi-instance rollback, remember how far we got
140  *
141  * Called from cpu hotplug and from the state register machinery.
142  */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 				 bool bringup, struct hlist_node *node,
145 				 struct hlist_node **lastp)
146 {
147 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 	struct cpuhp_step *step = cpuhp_get_step(state);
149 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 	int (*cb)(unsigned int cpu);
151 	int ret, cnt;
152 
153 	if (st->fail == state) {
154 		st->fail = CPUHP_INVALID;
155 
156 		if (!(bringup ? step->startup.single : step->teardown.single))
157 			return 0;
158 
159 		return -EAGAIN;
160 	}
161 
162 	if (!step->multi_instance) {
163 		WARN_ON_ONCE(lastp && *lastp);
164 		cb = bringup ? step->startup.single : step->teardown.single;
165 		if (!cb)
166 			return 0;
167 		trace_cpuhp_enter(cpu, st->target, state, cb);
168 		ret = cb(cpu);
169 		trace_cpuhp_exit(cpu, st->state, state, ret);
170 		return ret;
171 	}
172 	cbm = bringup ? step->startup.multi : step->teardown.multi;
173 	if (!cbm)
174 		return 0;
175 
176 	/* Single invocation for instance add/remove */
177 	if (node) {
178 		WARN_ON_ONCE(lastp && *lastp);
179 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 		ret = cbm(cpu, node);
181 		trace_cpuhp_exit(cpu, st->state, state, ret);
182 		return ret;
183 	}
184 
185 	/* State transition. Invoke on all instances */
186 	cnt = 0;
187 	hlist_for_each(node, &step->list) {
188 		if (lastp && node == *lastp)
189 			break;
190 
191 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 		ret = cbm(cpu, node);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		if (ret) {
195 			if (!lastp)
196 				goto err;
197 
198 			*lastp = node;
199 			return ret;
200 		}
201 		cnt++;
202 	}
203 	if (lastp)
204 		*lastp = NULL;
205 	return 0;
206 err:
207 	/* Rollback the instances if one failed */
208 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 	if (!cbm)
210 		return ret;
211 
212 	hlist_for_each(node, &step->list) {
213 		if (!cnt--)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		/*
220 		 * Rollback must not fail,
221 		 */
222 		WARN_ON_ONCE(ret);
223 	}
224 	return ret;
225 }
226 
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 	/*
231 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 	 * purposes as that state is handled explicitly in cpu_down.
233 	 */
234 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236 
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 	struct completion *done = bringup ? &st->done_up : &st->done_down;
240 	wait_for_completion(done);
241 }
242 
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 	struct completion *done = bringup ? &st->done_up : &st->done_down;
246 	complete(done);
247 }
248 
249 /*
250  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251  */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256 
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261 
262 /*
263  * The following two APIs (cpu_maps_update_begin/done) must be used when
264  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265  */
266 void cpu_maps_update_begin(void)
267 {
268 	mutex_lock(&cpu_add_remove_lock);
269 }
270 
271 void cpu_maps_update_done(void)
272 {
273 	mutex_unlock(&cpu_add_remove_lock);
274 }
275 
276 /*
277  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278  * Should always be manipulated under cpu_add_remove_lock
279  */
280 static int cpu_hotplug_disabled;
281 
282 #ifdef CONFIG_HOTPLUG_CPU
283 
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285 
286 void cpus_read_lock(void)
287 {
288 	percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291 
292 int cpus_read_trylock(void)
293 {
294 	return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297 
298 void cpus_read_unlock(void)
299 {
300 	percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303 
304 void cpus_write_lock(void)
305 {
306 	percpu_down_write(&cpu_hotplug_lock);
307 }
308 
309 void cpus_write_unlock(void)
310 {
311 	percpu_up_write(&cpu_hotplug_lock);
312 }
313 
314 void lockdep_assert_cpus_held(void)
315 {
316 	/*
317 	 * We can't have hotplug operations before userspace starts running,
318 	 * and some init codepaths will knowingly not take the hotplug lock.
319 	 * This is all valid, so mute lockdep until it makes sense to report
320 	 * unheld locks.
321 	 */
322 	if (system_state < SYSTEM_RUNNING)
323 		return;
324 
325 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
326 }
327 
328 static void lockdep_acquire_cpus_lock(void)
329 {
330 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
331 }
332 
333 static void lockdep_release_cpus_lock(void)
334 {
335 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
336 }
337 
338 /*
339  * Wait for currently running CPU hotplug operations to complete (if any) and
340  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
341  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
342  * hotplug path before performing hotplug operations. So acquiring that lock
343  * guarantees mutual exclusion from any currently running hotplug operations.
344  */
345 void cpu_hotplug_disable(void)
346 {
347 	cpu_maps_update_begin();
348 	cpu_hotplug_disabled++;
349 	cpu_maps_update_done();
350 }
351 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
352 
353 static void __cpu_hotplug_enable(void)
354 {
355 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
356 		return;
357 	cpu_hotplug_disabled--;
358 }
359 
360 void cpu_hotplug_enable(void)
361 {
362 	cpu_maps_update_begin();
363 	__cpu_hotplug_enable();
364 	cpu_maps_update_done();
365 }
366 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
367 
368 #else
369 
370 static void lockdep_acquire_cpus_lock(void)
371 {
372 }
373 
374 static void lockdep_release_cpus_lock(void)
375 {
376 }
377 
378 #endif	/* CONFIG_HOTPLUG_CPU */
379 
380 /*
381  * Architectures that need SMT-specific errata handling during SMT hotplug
382  * should override this.
383  */
384 void __weak arch_smt_update(void) { }
385 
386 #ifdef CONFIG_HOTPLUG_SMT
387 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
388 
389 void __init cpu_smt_disable(bool force)
390 {
391 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
392 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
393 		return;
394 
395 	if (force) {
396 		pr_info("SMT: Force disabled\n");
397 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
398 	} else {
399 		pr_info("SMT: disabled\n");
400 		cpu_smt_control = CPU_SMT_DISABLED;
401 	}
402 }
403 
404 /*
405  * The decision whether SMT is supported can only be done after the full
406  * CPU identification. Called from architecture code.
407  */
408 void __init cpu_smt_check_topology(void)
409 {
410 	if (!topology_smt_supported())
411 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
412 }
413 
414 static int __init smt_cmdline_disable(char *str)
415 {
416 	cpu_smt_disable(str && !strcmp(str, "force"));
417 	return 0;
418 }
419 early_param("nosmt", smt_cmdline_disable);
420 
421 static inline bool cpu_smt_allowed(unsigned int cpu)
422 {
423 	if (cpu_smt_control == CPU_SMT_ENABLED)
424 		return true;
425 
426 	if (topology_is_primary_thread(cpu))
427 		return true;
428 
429 	/*
430 	 * On x86 it's required to boot all logical CPUs at least once so
431 	 * that the init code can get a chance to set CR4.MCE on each
432 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
433 	 * core will shutdown the machine.
434 	 */
435 	return !per_cpu(cpuhp_state, cpu).booted_once;
436 }
437 #else
438 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
439 #endif
440 
441 static inline enum cpuhp_state
442 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
443 {
444 	enum cpuhp_state prev_state = st->state;
445 
446 	st->rollback = false;
447 	st->last = NULL;
448 
449 	st->target = target;
450 	st->single = false;
451 	st->bringup = st->state < target;
452 
453 	return prev_state;
454 }
455 
456 static inline void
457 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
458 {
459 	st->rollback = true;
460 
461 	/*
462 	 * If we have st->last we need to undo partial multi_instance of this
463 	 * state first. Otherwise start undo at the previous state.
464 	 */
465 	if (!st->last) {
466 		if (st->bringup)
467 			st->state--;
468 		else
469 			st->state++;
470 	}
471 
472 	st->target = prev_state;
473 	st->bringup = !st->bringup;
474 }
475 
476 /* Regular hotplug invocation of the AP hotplug thread */
477 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
478 {
479 	if (!st->single && st->state == st->target)
480 		return;
481 
482 	st->result = 0;
483 	/*
484 	 * Make sure the above stores are visible before should_run becomes
485 	 * true. Paired with the mb() above in cpuhp_thread_fun()
486 	 */
487 	smp_mb();
488 	st->should_run = true;
489 	wake_up_process(st->thread);
490 	wait_for_ap_thread(st, st->bringup);
491 }
492 
493 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
494 {
495 	enum cpuhp_state prev_state;
496 	int ret;
497 
498 	prev_state = cpuhp_set_state(st, target);
499 	__cpuhp_kick_ap(st);
500 	if ((ret = st->result)) {
501 		cpuhp_reset_state(st, prev_state);
502 		__cpuhp_kick_ap(st);
503 	}
504 
505 	return ret;
506 }
507 
508 static int bringup_wait_for_ap(unsigned int cpu)
509 {
510 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
511 
512 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
513 	wait_for_ap_thread(st, true);
514 	if (WARN_ON_ONCE((!cpu_online(cpu))))
515 		return -ECANCELED;
516 
517 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
518 	stop_machine_unpark(cpu);
519 	kthread_unpark(st->thread);
520 
521 	/*
522 	 * SMT soft disabling on X86 requires to bring the CPU out of the
523 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
524 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
525 	 * cpu_smt_allowed() check will now return false if this is not the
526 	 * primary sibling.
527 	 */
528 	if (!cpu_smt_allowed(cpu))
529 		return -ECANCELED;
530 
531 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
532 		return 0;
533 
534 	return cpuhp_kick_ap(st, st->target);
535 }
536 
537 static int bringup_cpu(unsigned int cpu)
538 {
539 	struct task_struct *idle = idle_thread_get(cpu);
540 	int ret;
541 
542 	/*
543 	 * Some architectures have to walk the irq descriptors to
544 	 * setup the vector space for the cpu which comes online.
545 	 * Prevent irq alloc/free across the bringup.
546 	 */
547 	irq_lock_sparse();
548 
549 	/* Arch-specific enabling code. */
550 	ret = __cpu_up(cpu, idle);
551 	irq_unlock_sparse();
552 	if (ret)
553 		return ret;
554 	return bringup_wait_for_ap(cpu);
555 }
556 
557 /*
558  * Hotplug state machine related functions
559  */
560 
561 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
562 {
563 	for (st->state--; st->state > st->target; st->state--)
564 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
565 }
566 
567 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
568 			      enum cpuhp_state target)
569 {
570 	enum cpuhp_state prev_state = st->state;
571 	int ret = 0;
572 
573 	while (st->state < target) {
574 		st->state++;
575 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
576 		if (ret) {
577 			st->target = prev_state;
578 			undo_cpu_up(cpu, st);
579 			break;
580 		}
581 	}
582 	return ret;
583 }
584 
585 /*
586  * The cpu hotplug threads manage the bringup and teardown of the cpus
587  */
588 static void cpuhp_create(unsigned int cpu)
589 {
590 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
591 
592 	init_completion(&st->done_up);
593 	init_completion(&st->done_down);
594 }
595 
596 static int cpuhp_should_run(unsigned int cpu)
597 {
598 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
599 
600 	return st->should_run;
601 }
602 
603 /*
604  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
605  * callbacks when a state gets [un]installed at runtime.
606  *
607  * Each invocation of this function by the smpboot thread does a single AP
608  * state callback.
609  *
610  * It has 3 modes of operation:
611  *  - single: runs st->cb_state
612  *  - up:     runs ++st->state, while st->state < st->target
613  *  - down:   runs st->state--, while st->state > st->target
614  *
615  * When complete or on error, should_run is cleared and the completion is fired.
616  */
617 static void cpuhp_thread_fun(unsigned int cpu)
618 {
619 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
620 	bool bringup = st->bringup;
621 	enum cpuhp_state state;
622 
623 	if (WARN_ON_ONCE(!st->should_run))
624 		return;
625 
626 	/*
627 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
628 	 * that if we see ->should_run we also see the rest of the state.
629 	 */
630 	smp_mb();
631 
632 	/*
633 	 * The BP holds the hotplug lock, but we're now running on the AP,
634 	 * ensure that anybody asserting the lock is held, will actually find
635 	 * it so.
636 	 */
637 	lockdep_acquire_cpus_lock();
638 	cpuhp_lock_acquire(bringup);
639 
640 	if (st->single) {
641 		state = st->cb_state;
642 		st->should_run = false;
643 	} else {
644 		if (bringup) {
645 			st->state++;
646 			state = st->state;
647 			st->should_run = (st->state < st->target);
648 			WARN_ON_ONCE(st->state > st->target);
649 		} else {
650 			state = st->state;
651 			st->state--;
652 			st->should_run = (st->state > st->target);
653 			WARN_ON_ONCE(st->state < st->target);
654 		}
655 	}
656 
657 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
658 
659 	if (cpuhp_is_atomic_state(state)) {
660 		local_irq_disable();
661 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
662 		local_irq_enable();
663 
664 		/*
665 		 * STARTING/DYING must not fail!
666 		 */
667 		WARN_ON_ONCE(st->result);
668 	} else {
669 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
670 	}
671 
672 	if (st->result) {
673 		/*
674 		 * If we fail on a rollback, we're up a creek without no
675 		 * paddle, no way forward, no way back. We loose, thanks for
676 		 * playing.
677 		 */
678 		WARN_ON_ONCE(st->rollback);
679 		st->should_run = false;
680 	}
681 
682 	cpuhp_lock_release(bringup);
683 	lockdep_release_cpus_lock();
684 
685 	if (!st->should_run)
686 		complete_ap_thread(st, bringup);
687 }
688 
689 /* Invoke a single callback on a remote cpu */
690 static int
691 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
692 			 struct hlist_node *node)
693 {
694 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
695 	int ret;
696 
697 	if (!cpu_online(cpu))
698 		return 0;
699 
700 	cpuhp_lock_acquire(false);
701 	cpuhp_lock_release(false);
702 
703 	cpuhp_lock_acquire(true);
704 	cpuhp_lock_release(true);
705 
706 	/*
707 	 * If we are up and running, use the hotplug thread. For early calls
708 	 * we invoke the thread function directly.
709 	 */
710 	if (!st->thread)
711 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
712 
713 	st->rollback = false;
714 	st->last = NULL;
715 
716 	st->node = node;
717 	st->bringup = bringup;
718 	st->cb_state = state;
719 	st->single = true;
720 
721 	__cpuhp_kick_ap(st);
722 
723 	/*
724 	 * If we failed and did a partial, do a rollback.
725 	 */
726 	if ((ret = st->result) && st->last) {
727 		st->rollback = true;
728 		st->bringup = !bringup;
729 
730 		__cpuhp_kick_ap(st);
731 	}
732 
733 	/*
734 	 * Clean up the leftovers so the next hotplug operation wont use stale
735 	 * data.
736 	 */
737 	st->node = st->last = NULL;
738 	return ret;
739 }
740 
741 static int cpuhp_kick_ap_work(unsigned int cpu)
742 {
743 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
744 	enum cpuhp_state prev_state = st->state;
745 	int ret;
746 
747 	cpuhp_lock_acquire(false);
748 	cpuhp_lock_release(false);
749 
750 	cpuhp_lock_acquire(true);
751 	cpuhp_lock_release(true);
752 
753 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
754 	ret = cpuhp_kick_ap(st, st->target);
755 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
756 
757 	return ret;
758 }
759 
760 static struct smp_hotplug_thread cpuhp_threads = {
761 	.store			= &cpuhp_state.thread,
762 	.create			= &cpuhp_create,
763 	.thread_should_run	= cpuhp_should_run,
764 	.thread_fn		= cpuhp_thread_fun,
765 	.thread_comm		= "cpuhp/%u",
766 	.selfparking		= true,
767 };
768 
769 void __init cpuhp_threads_init(void)
770 {
771 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
772 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
773 }
774 
775 #ifdef CONFIG_HOTPLUG_CPU
776 /**
777  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
778  * @cpu: a CPU id
779  *
780  * This function walks all processes, finds a valid mm struct for each one and
781  * then clears a corresponding bit in mm's cpumask.  While this all sounds
782  * trivial, there are various non-obvious corner cases, which this function
783  * tries to solve in a safe manner.
784  *
785  * Also note that the function uses a somewhat relaxed locking scheme, so it may
786  * be called only for an already offlined CPU.
787  */
788 void clear_tasks_mm_cpumask(int cpu)
789 {
790 	struct task_struct *p;
791 
792 	/*
793 	 * This function is called after the cpu is taken down and marked
794 	 * offline, so its not like new tasks will ever get this cpu set in
795 	 * their mm mask. -- Peter Zijlstra
796 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
797 	 * full-fledged tasklist_lock.
798 	 */
799 	WARN_ON(cpu_online(cpu));
800 	rcu_read_lock();
801 	for_each_process(p) {
802 		struct task_struct *t;
803 
804 		/*
805 		 * Main thread might exit, but other threads may still have
806 		 * a valid mm. Find one.
807 		 */
808 		t = find_lock_task_mm(p);
809 		if (!t)
810 			continue;
811 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
812 		task_unlock(t);
813 	}
814 	rcu_read_unlock();
815 }
816 
817 /* Take this CPU down. */
818 static int take_cpu_down(void *_param)
819 {
820 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
821 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
822 	int err, cpu = smp_processor_id();
823 	int ret;
824 
825 	/* Ensure this CPU doesn't handle any more interrupts. */
826 	err = __cpu_disable();
827 	if (err < 0)
828 		return err;
829 
830 	/*
831 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
832 	 * do this step again.
833 	 */
834 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
835 	st->state--;
836 	/* Invoke the former CPU_DYING callbacks */
837 	for (; st->state > target; st->state--) {
838 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
839 		/*
840 		 * DYING must not fail!
841 		 */
842 		WARN_ON_ONCE(ret);
843 	}
844 
845 	/* Give up timekeeping duties */
846 	tick_handover_do_timer();
847 	/* Park the stopper thread */
848 	stop_machine_park(cpu);
849 	return 0;
850 }
851 
852 static int takedown_cpu(unsigned int cpu)
853 {
854 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
855 	int err;
856 
857 	/* Park the smpboot threads */
858 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
859 
860 	/*
861 	 * Prevent irq alloc/free while the dying cpu reorganizes the
862 	 * interrupt affinities.
863 	 */
864 	irq_lock_sparse();
865 
866 	/*
867 	 * So now all preempt/rcu users must observe !cpu_active().
868 	 */
869 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
870 	if (err) {
871 		/* CPU refused to die */
872 		irq_unlock_sparse();
873 		/* Unpark the hotplug thread so we can rollback there */
874 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
875 		return err;
876 	}
877 	BUG_ON(cpu_online(cpu));
878 
879 	/*
880 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
881 	 * all runnable tasks from the CPU, there's only the idle task left now
882 	 * that the migration thread is done doing the stop_machine thing.
883 	 *
884 	 * Wait for the stop thread to go away.
885 	 */
886 	wait_for_ap_thread(st, false);
887 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
888 
889 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
890 	irq_unlock_sparse();
891 
892 	hotplug_cpu__broadcast_tick_pull(cpu);
893 	/* This actually kills the CPU. */
894 	__cpu_die(cpu);
895 
896 	tick_cleanup_dead_cpu(cpu);
897 	rcutree_migrate_callbacks(cpu);
898 	return 0;
899 }
900 
901 static void cpuhp_complete_idle_dead(void *arg)
902 {
903 	struct cpuhp_cpu_state *st = arg;
904 
905 	complete_ap_thread(st, false);
906 }
907 
908 void cpuhp_report_idle_dead(void)
909 {
910 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
911 
912 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
913 	rcu_report_dead(smp_processor_id());
914 	st->state = CPUHP_AP_IDLE_DEAD;
915 	/*
916 	 * We cannot call complete after rcu_report_dead() so we delegate it
917 	 * to an online cpu.
918 	 */
919 	smp_call_function_single(cpumask_first(cpu_online_mask),
920 				 cpuhp_complete_idle_dead, st, 0);
921 }
922 
923 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
924 {
925 	for (st->state++; st->state < st->target; st->state++)
926 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
927 }
928 
929 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
930 				enum cpuhp_state target)
931 {
932 	enum cpuhp_state prev_state = st->state;
933 	int ret = 0;
934 
935 	for (; st->state > target; st->state--) {
936 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
937 		if (ret) {
938 			st->target = prev_state;
939 			if (st->state < prev_state)
940 				undo_cpu_down(cpu, st);
941 			break;
942 		}
943 	}
944 	return ret;
945 }
946 
947 /* Requires cpu_add_remove_lock to be held */
948 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
949 			   enum cpuhp_state target)
950 {
951 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
952 	int prev_state, ret = 0;
953 
954 	if (num_online_cpus() == 1)
955 		return -EBUSY;
956 
957 	if (!cpu_present(cpu))
958 		return -EINVAL;
959 
960 	cpus_write_lock();
961 
962 	cpuhp_tasks_frozen = tasks_frozen;
963 
964 	prev_state = cpuhp_set_state(st, target);
965 	/*
966 	 * If the current CPU state is in the range of the AP hotplug thread,
967 	 * then we need to kick the thread.
968 	 */
969 	if (st->state > CPUHP_TEARDOWN_CPU) {
970 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
971 		ret = cpuhp_kick_ap_work(cpu);
972 		/*
973 		 * The AP side has done the error rollback already. Just
974 		 * return the error code..
975 		 */
976 		if (ret)
977 			goto out;
978 
979 		/*
980 		 * We might have stopped still in the range of the AP hotplug
981 		 * thread. Nothing to do anymore.
982 		 */
983 		if (st->state > CPUHP_TEARDOWN_CPU)
984 			goto out;
985 
986 		st->target = target;
987 	}
988 	/*
989 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
990 	 * to do the further cleanups.
991 	 */
992 	ret = cpuhp_down_callbacks(cpu, st, target);
993 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
994 		cpuhp_reset_state(st, prev_state);
995 		__cpuhp_kick_ap(st);
996 	}
997 
998 out:
999 	cpus_write_unlock();
1000 	/*
1001 	 * Do post unplug cleanup. This is still protected against
1002 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1003 	 */
1004 	lockup_detector_cleanup();
1005 	arch_smt_update();
1006 	return ret;
1007 }
1008 
1009 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1010 {
1011 	if (cpu_hotplug_disabled)
1012 		return -EBUSY;
1013 	return _cpu_down(cpu, 0, target);
1014 }
1015 
1016 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1017 {
1018 	int err;
1019 
1020 	cpu_maps_update_begin();
1021 	err = cpu_down_maps_locked(cpu, target);
1022 	cpu_maps_update_done();
1023 	return err;
1024 }
1025 
1026 int cpu_down(unsigned int cpu)
1027 {
1028 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1029 }
1030 EXPORT_SYMBOL(cpu_down);
1031 
1032 #else
1033 #define takedown_cpu		NULL
1034 #endif /*CONFIG_HOTPLUG_CPU*/
1035 
1036 /**
1037  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1038  * @cpu: cpu that just started
1039  *
1040  * It must be called by the arch code on the new cpu, before the new cpu
1041  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1042  */
1043 void notify_cpu_starting(unsigned int cpu)
1044 {
1045 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1046 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1047 	int ret;
1048 
1049 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1050 	st->booted_once = true;
1051 	while (st->state < target) {
1052 		st->state++;
1053 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1054 		/*
1055 		 * STARTING must not fail!
1056 		 */
1057 		WARN_ON_ONCE(ret);
1058 	}
1059 }
1060 
1061 /*
1062  * Called from the idle task. Wake up the controlling task which brings the
1063  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1064  * the rest of the online bringup to the hotplug thread.
1065  */
1066 void cpuhp_online_idle(enum cpuhp_state state)
1067 {
1068 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1069 
1070 	/* Happens for the boot cpu */
1071 	if (state != CPUHP_AP_ONLINE_IDLE)
1072 		return;
1073 
1074 	st->state = CPUHP_AP_ONLINE_IDLE;
1075 	complete_ap_thread(st, true);
1076 }
1077 
1078 /* Requires cpu_add_remove_lock to be held */
1079 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1080 {
1081 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1082 	struct task_struct *idle;
1083 	int ret = 0;
1084 
1085 	cpus_write_lock();
1086 
1087 	if (!cpu_present(cpu)) {
1088 		ret = -EINVAL;
1089 		goto out;
1090 	}
1091 
1092 	/*
1093 	 * The caller of do_cpu_up might have raced with another
1094 	 * caller. Ignore it for now.
1095 	 */
1096 	if (st->state >= target)
1097 		goto out;
1098 
1099 	if (st->state == CPUHP_OFFLINE) {
1100 		/* Let it fail before we try to bring the cpu up */
1101 		idle = idle_thread_get(cpu);
1102 		if (IS_ERR(idle)) {
1103 			ret = PTR_ERR(idle);
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	cpuhp_tasks_frozen = tasks_frozen;
1109 
1110 	cpuhp_set_state(st, target);
1111 	/*
1112 	 * If the current CPU state is in the range of the AP hotplug thread,
1113 	 * then we need to kick the thread once more.
1114 	 */
1115 	if (st->state > CPUHP_BRINGUP_CPU) {
1116 		ret = cpuhp_kick_ap_work(cpu);
1117 		/*
1118 		 * The AP side has done the error rollback already. Just
1119 		 * return the error code..
1120 		 */
1121 		if (ret)
1122 			goto out;
1123 	}
1124 
1125 	/*
1126 	 * Try to reach the target state. We max out on the BP at
1127 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1128 	 * responsible for bringing it up to the target state.
1129 	 */
1130 	target = min((int)target, CPUHP_BRINGUP_CPU);
1131 	ret = cpuhp_up_callbacks(cpu, st, target);
1132 out:
1133 	cpus_write_unlock();
1134 	arch_smt_update();
1135 	return ret;
1136 }
1137 
1138 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1139 {
1140 	int err = 0;
1141 
1142 	if (!cpu_possible(cpu)) {
1143 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1144 		       cpu);
1145 #if defined(CONFIG_IA64)
1146 		pr_err("please check additional_cpus= boot parameter\n");
1147 #endif
1148 		return -EINVAL;
1149 	}
1150 
1151 	err = try_online_node(cpu_to_node(cpu));
1152 	if (err)
1153 		return err;
1154 
1155 	cpu_maps_update_begin();
1156 
1157 	if (cpu_hotplug_disabled) {
1158 		err = -EBUSY;
1159 		goto out;
1160 	}
1161 	if (!cpu_smt_allowed(cpu)) {
1162 		err = -EPERM;
1163 		goto out;
1164 	}
1165 
1166 	err = _cpu_up(cpu, 0, target);
1167 out:
1168 	cpu_maps_update_done();
1169 	return err;
1170 }
1171 
1172 int cpu_up(unsigned int cpu)
1173 {
1174 	return do_cpu_up(cpu, CPUHP_ONLINE);
1175 }
1176 EXPORT_SYMBOL_GPL(cpu_up);
1177 
1178 #ifdef CONFIG_PM_SLEEP_SMP
1179 static cpumask_var_t frozen_cpus;
1180 
1181 int freeze_secondary_cpus(int primary)
1182 {
1183 	int cpu, error = 0;
1184 
1185 	cpu_maps_update_begin();
1186 	if (!cpu_online(primary))
1187 		primary = cpumask_first(cpu_online_mask);
1188 	/*
1189 	 * We take down all of the non-boot CPUs in one shot to avoid races
1190 	 * with the userspace trying to use the CPU hotplug at the same time
1191 	 */
1192 	cpumask_clear(frozen_cpus);
1193 
1194 	pr_info("Disabling non-boot CPUs ...\n");
1195 	for_each_online_cpu(cpu) {
1196 		if (cpu == primary)
1197 			continue;
1198 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1199 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1200 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1201 		if (!error)
1202 			cpumask_set_cpu(cpu, frozen_cpus);
1203 		else {
1204 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1205 			break;
1206 		}
1207 	}
1208 
1209 	if (!error)
1210 		BUG_ON(num_online_cpus() > 1);
1211 	else
1212 		pr_err("Non-boot CPUs are not disabled\n");
1213 
1214 	/*
1215 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1216 	 * this even in case of failure as all disable_nonboot_cpus() users are
1217 	 * supposed to do enable_nonboot_cpus() on the failure path.
1218 	 */
1219 	cpu_hotplug_disabled++;
1220 
1221 	cpu_maps_update_done();
1222 	return error;
1223 }
1224 
1225 void __weak arch_enable_nonboot_cpus_begin(void)
1226 {
1227 }
1228 
1229 void __weak arch_enable_nonboot_cpus_end(void)
1230 {
1231 }
1232 
1233 void enable_nonboot_cpus(void)
1234 {
1235 	int cpu, error;
1236 
1237 	/* Allow everyone to use the CPU hotplug again */
1238 	cpu_maps_update_begin();
1239 	__cpu_hotplug_enable();
1240 	if (cpumask_empty(frozen_cpus))
1241 		goto out;
1242 
1243 	pr_info("Enabling non-boot CPUs ...\n");
1244 
1245 	arch_enable_nonboot_cpus_begin();
1246 
1247 	for_each_cpu(cpu, frozen_cpus) {
1248 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1249 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1250 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1251 		if (!error) {
1252 			pr_info("CPU%d is up\n", cpu);
1253 			continue;
1254 		}
1255 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1256 	}
1257 
1258 	arch_enable_nonboot_cpus_end();
1259 
1260 	cpumask_clear(frozen_cpus);
1261 out:
1262 	cpu_maps_update_done();
1263 }
1264 
1265 static int __init alloc_frozen_cpus(void)
1266 {
1267 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1268 		return -ENOMEM;
1269 	return 0;
1270 }
1271 core_initcall(alloc_frozen_cpus);
1272 
1273 /*
1274  * When callbacks for CPU hotplug notifications are being executed, we must
1275  * ensure that the state of the system with respect to the tasks being frozen
1276  * or not, as reported by the notification, remains unchanged *throughout the
1277  * duration* of the execution of the callbacks.
1278  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1279  *
1280  * This synchronization is implemented by mutually excluding regular CPU
1281  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1282  * Hibernate notifications.
1283  */
1284 static int
1285 cpu_hotplug_pm_callback(struct notifier_block *nb,
1286 			unsigned long action, void *ptr)
1287 {
1288 	switch (action) {
1289 
1290 	case PM_SUSPEND_PREPARE:
1291 	case PM_HIBERNATION_PREPARE:
1292 		cpu_hotplug_disable();
1293 		break;
1294 
1295 	case PM_POST_SUSPEND:
1296 	case PM_POST_HIBERNATION:
1297 		cpu_hotplug_enable();
1298 		break;
1299 
1300 	default:
1301 		return NOTIFY_DONE;
1302 	}
1303 
1304 	return NOTIFY_OK;
1305 }
1306 
1307 
1308 static int __init cpu_hotplug_pm_sync_init(void)
1309 {
1310 	/*
1311 	 * cpu_hotplug_pm_callback has higher priority than x86
1312 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1313 	 * to disable cpu hotplug to avoid cpu hotplug race.
1314 	 */
1315 	pm_notifier(cpu_hotplug_pm_callback, 0);
1316 	return 0;
1317 }
1318 core_initcall(cpu_hotplug_pm_sync_init);
1319 
1320 #endif /* CONFIG_PM_SLEEP_SMP */
1321 
1322 int __boot_cpu_id;
1323 
1324 #endif /* CONFIG_SMP */
1325 
1326 /* Boot processor state steps */
1327 static struct cpuhp_step cpuhp_hp_states[] = {
1328 	[CPUHP_OFFLINE] = {
1329 		.name			= "offline",
1330 		.startup.single		= NULL,
1331 		.teardown.single	= NULL,
1332 	},
1333 #ifdef CONFIG_SMP
1334 	[CPUHP_CREATE_THREADS]= {
1335 		.name			= "threads:prepare",
1336 		.startup.single		= smpboot_create_threads,
1337 		.teardown.single	= NULL,
1338 		.cant_stop		= true,
1339 	},
1340 	[CPUHP_PERF_PREPARE] = {
1341 		.name			= "perf:prepare",
1342 		.startup.single		= perf_event_init_cpu,
1343 		.teardown.single	= perf_event_exit_cpu,
1344 	},
1345 	[CPUHP_WORKQUEUE_PREP] = {
1346 		.name			= "workqueue:prepare",
1347 		.startup.single		= workqueue_prepare_cpu,
1348 		.teardown.single	= NULL,
1349 	},
1350 	[CPUHP_HRTIMERS_PREPARE] = {
1351 		.name			= "hrtimers:prepare",
1352 		.startup.single		= hrtimers_prepare_cpu,
1353 		.teardown.single	= hrtimers_dead_cpu,
1354 	},
1355 	[CPUHP_SMPCFD_PREPARE] = {
1356 		.name			= "smpcfd:prepare",
1357 		.startup.single		= smpcfd_prepare_cpu,
1358 		.teardown.single	= smpcfd_dead_cpu,
1359 	},
1360 	[CPUHP_RELAY_PREPARE] = {
1361 		.name			= "relay:prepare",
1362 		.startup.single		= relay_prepare_cpu,
1363 		.teardown.single	= NULL,
1364 	},
1365 	[CPUHP_SLAB_PREPARE] = {
1366 		.name			= "slab:prepare",
1367 		.startup.single		= slab_prepare_cpu,
1368 		.teardown.single	= slab_dead_cpu,
1369 	},
1370 	[CPUHP_RCUTREE_PREP] = {
1371 		.name			= "RCU/tree:prepare",
1372 		.startup.single		= rcutree_prepare_cpu,
1373 		.teardown.single	= rcutree_dead_cpu,
1374 	},
1375 	/*
1376 	 * On the tear-down path, timers_dead_cpu() must be invoked
1377 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1378 	 * otherwise a RCU stall occurs.
1379 	 */
1380 	[CPUHP_TIMERS_PREPARE] = {
1381 		.name			= "timers:prepare",
1382 		.startup.single		= timers_prepare_cpu,
1383 		.teardown.single	= timers_dead_cpu,
1384 	},
1385 	/* Kicks the plugged cpu into life */
1386 	[CPUHP_BRINGUP_CPU] = {
1387 		.name			= "cpu:bringup",
1388 		.startup.single		= bringup_cpu,
1389 		.teardown.single	= NULL,
1390 		.cant_stop		= true,
1391 	},
1392 	/* Final state before CPU kills itself */
1393 	[CPUHP_AP_IDLE_DEAD] = {
1394 		.name			= "idle:dead",
1395 	},
1396 	/*
1397 	 * Last state before CPU enters the idle loop to die. Transient state
1398 	 * for synchronization.
1399 	 */
1400 	[CPUHP_AP_OFFLINE] = {
1401 		.name			= "ap:offline",
1402 		.cant_stop		= true,
1403 	},
1404 	/* First state is scheduler control. Interrupts are disabled */
1405 	[CPUHP_AP_SCHED_STARTING] = {
1406 		.name			= "sched:starting",
1407 		.startup.single		= sched_cpu_starting,
1408 		.teardown.single	= sched_cpu_dying,
1409 	},
1410 	[CPUHP_AP_RCUTREE_DYING] = {
1411 		.name			= "RCU/tree:dying",
1412 		.startup.single		= NULL,
1413 		.teardown.single	= rcutree_dying_cpu,
1414 	},
1415 	[CPUHP_AP_SMPCFD_DYING] = {
1416 		.name			= "smpcfd:dying",
1417 		.startup.single		= NULL,
1418 		.teardown.single	= smpcfd_dying_cpu,
1419 	},
1420 	/* Entry state on starting. Interrupts enabled from here on. Transient
1421 	 * state for synchronsization */
1422 	[CPUHP_AP_ONLINE] = {
1423 		.name			= "ap:online",
1424 	},
1425 	/*
1426 	 * Handled on controll processor until the plugged processor manages
1427 	 * this itself.
1428 	 */
1429 	[CPUHP_TEARDOWN_CPU] = {
1430 		.name			= "cpu:teardown",
1431 		.startup.single		= NULL,
1432 		.teardown.single	= takedown_cpu,
1433 		.cant_stop		= true,
1434 	},
1435 	/* Handle smpboot threads park/unpark */
1436 	[CPUHP_AP_SMPBOOT_THREADS] = {
1437 		.name			= "smpboot/threads:online",
1438 		.startup.single		= smpboot_unpark_threads,
1439 		.teardown.single	= smpboot_park_threads,
1440 	},
1441 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1442 		.name			= "irq/affinity:online",
1443 		.startup.single		= irq_affinity_online_cpu,
1444 		.teardown.single	= NULL,
1445 	},
1446 	[CPUHP_AP_PERF_ONLINE] = {
1447 		.name			= "perf:online",
1448 		.startup.single		= perf_event_init_cpu,
1449 		.teardown.single	= perf_event_exit_cpu,
1450 	},
1451 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1452 		.name			= "lockup_detector:online",
1453 		.startup.single		= lockup_detector_online_cpu,
1454 		.teardown.single	= lockup_detector_offline_cpu,
1455 	},
1456 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1457 		.name			= "workqueue:online",
1458 		.startup.single		= workqueue_online_cpu,
1459 		.teardown.single	= workqueue_offline_cpu,
1460 	},
1461 	[CPUHP_AP_RCUTREE_ONLINE] = {
1462 		.name			= "RCU/tree:online",
1463 		.startup.single		= rcutree_online_cpu,
1464 		.teardown.single	= rcutree_offline_cpu,
1465 	},
1466 #endif
1467 	/*
1468 	 * The dynamically registered state space is here
1469 	 */
1470 
1471 #ifdef CONFIG_SMP
1472 	/* Last state is scheduler control setting the cpu active */
1473 	[CPUHP_AP_ACTIVE] = {
1474 		.name			= "sched:active",
1475 		.startup.single		= sched_cpu_activate,
1476 		.teardown.single	= sched_cpu_deactivate,
1477 	},
1478 #endif
1479 
1480 	/* CPU is fully up and running. */
1481 	[CPUHP_ONLINE] = {
1482 		.name			= "online",
1483 		.startup.single		= NULL,
1484 		.teardown.single	= NULL,
1485 	},
1486 };
1487 
1488 /* Sanity check for callbacks */
1489 static int cpuhp_cb_check(enum cpuhp_state state)
1490 {
1491 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1492 		return -EINVAL;
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Returns a free for dynamic slot assignment of the Online state. The states
1498  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1499  * by having no name assigned.
1500  */
1501 static int cpuhp_reserve_state(enum cpuhp_state state)
1502 {
1503 	enum cpuhp_state i, end;
1504 	struct cpuhp_step *step;
1505 
1506 	switch (state) {
1507 	case CPUHP_AP_ONLINE_DYN:
1508 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1509 		end = CPUHP_AP_ONLINE_DYN_END;
1510 		break;
1511 	case CPUHP_BP_PREPARE_DYN:
1512 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1513 		end = CPUHP_BP_PREPARE_DYN_END;
1514 		break;
1515 	default:
1516 		return -EINVAL;
1517 	}
1518 
1519 	for (i = state; i <= end; i++, step++) {
1520 		if (!step->name)
1521 			return i;
1522 	}
1523 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1524 	return -ENOSPC;
1525 }
1526 
1527 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1528 				 int (*startup)(unsigned int cpu),
1529 				 int (*teardown)(unsigned int cpu),
1530 				 bool multi_instance)
1531 {
1532 	/* (Un)Install the callbacks for further cpu hotplug operations */
1533 	struct cpuhp_step *sp;
1534 	int ret = 0;
1535 
1536 	/*
1537 	 * If name is NULL, then the state gets removed.
1538 	 *
1539 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1540 	 * the first allocation from these dynamic ranges, so the removal
1541 	 * would trigger a new allocation and clear the wrong (already
1542 	 * empty) state, leaving the callbacks of the to be cleared state
1543 	 * dangling, which causes wreckage on the next hotplug operation.
1544 	 */
1545 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1546 		     state == CPUHP_BP_PREPARE_DYN)) {
1547 		ret = cpuhp_reserve_state(state);
1548 		if (ret < 0)
1549 			return ret;
1550 		state = ret;
1551 	}
1552 	sp = cpuhp_get_step(state);
1553 	if (name && sp->name)
1554 		return -EBUSY;
1555 
1556 	sp->startup.single = startup;
1557 	sp->teardown.single = teardown;
1558 	sp->name = name;
1559 	sp->multi_instance = multi_instance;
1560 	INIT_HLIST_HEAD(&sp->list);
1561 	return ret;
1562 }
1563 
1564 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1565 {
1566 	return cpuhp_get_step(state)->teardown.single;
1567 }
1568 
1569 /*
1570  * Call the startup/teardown function for a step either on the AP or
1571  * on the current CPU.
1572  */
1573 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1574 			    struct hlist_node *node)
1575 {
1576 	struct cpuhp_step *sp = cpuhp_get_step(state);
1577 	int ret;
1578 
1579 	/*
1580 	 * If there's nothing to do, we done.
1581 	 * Relies on the union for multi_instance.
1582 	 */
1583 	if ((bringup && !sp->startup.single) ||
1584 	    (!bringup && !sp->teardown.single))
1585 		return 0;
1586 	/*
1587 	 * The non AP bound callbacks can fail on bringup. On teardown
1588 	 * e.g. module removal we crash for now.
1589 	 */
1590 #ifdef CONFIG_SMP
1591 	if (cpuhp_is_ap_state(state))
1592 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1593 	else
1594 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1595 #else
1596 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1597 #endif
1598 	BUG_ON(ret && !bringup);
1599 	return ret;
1600 }
1601 
1602 /*
1603  * Called from __cpuhp_setup_state on a recoverable failure.
1604  *
1605  * Note: The teardown callbacks for rollback are not allowed to fail!
1606  */
1607 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1608 				   struct hlist_node *node)
1609 {
1610 	int cpu;
1611 
1612 	/* Roll back the already executed steps on the other cpus */
1613 	for_each_present_cpu(cpu) {
1614 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1615 		int cpustate = st->state;
1616 
1617 		if (cpu >= failedcpu)
1618 			break;
1619 
1620 		/* Did we invoke the startup call on that cpu ? */
1621 		if (cpustate >= state)
1622 			cpuhp_issue_call(cpu, state, false, node);
1623 	}
1624 }
1625 
1626 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1627 					  struct hlist_node *node,
1628 					  bool invoke)
1629 {
1630 	struct cpuhp_step *sp;
1631 	int cpu;
1632 	int ret;
1633 
1634 	lockdep_assert_cpus_held();
1635 
1636 	sp = cpuhp_get_step(state);
1637 	if (sp->multi_instance == false)
1638 		return -EINVAL;
1639 
1640 	mutex_lock(&cpuhp_state_mutex);
1641 
1642 	if (!invoke || !sp->startup.multi)
1643 		goto add_node;
1644 
1645 	/*
1646 	 * Try to call the startup callback for each present cpu
1647 	 * depending on the hotplug state of the cpu.
1648 	 */
1649 	for_each_present_cpu(cpu) {
1650 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1651 		int cpustate = st->state;
1652 
1653 		if (cpustate < state)
1654 			continue;
1655 
1656 		ret = cpuhp_issue_call(cpu, state, true, node);
1657 		if (ret) {
1658 			if (sp->teardown.multi)
1659 				cpuhp_rollback_install(cpu, state, node);
1660 			goto unlock;
1661 		}
1662 	}
1663 add_node:
1664 	ret = 0;
1665 	hlist_add_head(node, &sp->list);
1666 unlock:
1667 	mutex_unlock(&cpuhp_state_mutex);
1668 	return ret;
1669 }
1670 
1671 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1672 			       bool invoke)
1673 {
1674 	int ret;
1675 
1676 	cpus_read_lock();
1677 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1678 	cpus_read_unlock();
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1682 
1683 /**
1684  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1685  * @state:		The state to setup
1686  * @invoke:		If true, the startup function is invoked for cpus where
1687  *			cpu state >= @state
1688  * @startup:		startup callback function
1689  * @teardown:		teardown callback function
1690  * @multi_instance:	State is set up for multiple instances which get
1691  *			added afterwards.
1692  *
1693  * The caller needs to hold cpus read locked while calling this function.
1694  * Returns:
1695  *   On success:
1696  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1697  *      0 for all other states
1698  *   On failure: proper (negative) error code
1699  */
1700 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1701 				   const char *name, bool invoke,
1702 				   int (*startup)(unsigned int cpu),
1703 				   int (*teardown)(unsigned int cpu),
1704 				   bool multi_instance)
1705 {
1706 	int cpu, ret = 0;
1707 	bool dynstate;
1708 
1709 	lockdep_assert_cpus_held();
1710 
1711 	if (cpuhp_cb_check(state) || !name)
1712 		return -EINVAL;
1713 
1714 	mutex_lock(&cpuhp_state_mutex);
1715 
1716 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1717 				    multi_instance);
1718 
1719 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1720 	if (ret > 0 && dynstate) {
1721 		state = ret;
1722 		ret = 0;
1723 	}
1724 
1725 	if (ret || !invoke || !startup)
1726 		goto out;
1727 
1728 	/*
1729 	 * Try to call the startup callback for each present cpu
1730 	 * depending on the hotplug state of the cpu.
1731 	 */
1732 	for_each_present_cpu(cpu) {
1733 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1734 		int cpustate = st->state;
1735 
1736 		if (cpustate < state)
1737 			continue;
1738 
1739 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1740 		if (ret) {
1741 			if (teardown)
1742 				cpuhp_rollback_install(cpu, state, NULL);
1743 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1744 			goto out;
1745 		}
1746 	}
1747 out:
1748 	mutex_unlock(&cpuhp_state_mutex);
1749 	/*
1750 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1751 	 * dynamically allocated state in case of success.
1752 	 */
1753 	if (!ret && dynstate)
1754 		return state;
1755 	return ret;
1756 }
1757 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1758 
1759 int __cpuhp_setup_state(enum cpuhp_state state,
1760 			const char *name, bool invoke,
1761 			int (*startup)(unsigned int cpu),
1762 			int (*teardown)(unsigned int cpu),
1763 			bool multi_instance)
1764 {
1765 	int ret;
1766 
1767 	cpus_read_lock();
1768 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1769 					     teardown, multi_instance);
1770 	cpus_read_unlock();
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL(__cpuhp_setup_state);
1774 
1775 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1776 				  struct hlist_node *node, bool invoke)
1777 {
1778 	struct cpuhp_step *sp = cpuhp_get_step(state);
1779 	int cpu;
1780 
1781 	BUG_ON(cpuhp_cb_check(state));
1782 
1783 	if (!sp->multi_instance)
1784 		return -EINVAL;
1785 
1786 	cpus_read_lock();
1787 	mutex_lock(&cpuhp_state_mutex);
1788 
1789 	if (!invoke || !cpuhp_get_teardown_cb(state))
1790 		goto remove;
1791 	/*
1792 	 * Call the teardown callback for each present cpu depending
1793 	 * on the hotplug state of the cpu. This function is not
1794 	 * allowed to fail currently!
1795 	 */
1796 	for_each_present_cpu(cpu) {
1797 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1798 		int cpustate = st->state;
1799 
1800 		if (cpustate >= state)
1801 			cpuhp_issue_call(cpu, state, false, node);
1802 	}
1803 
1804 remove:
1805 	hlist_del(node);
1806 	mutex_unlock(&cpuhp_state_mutex);
1807 	cpus_read_unlock();
1808 
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1812 
1813 /**
1814  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1815  * @state:	The state to remove
1816  * @invoke:	If true, the teardown function is invoked for cpus where
1817  *		cpu state >= @state
1818  *
1819  * The caller needs to hold cpus read locked while calling this function.
1820  * The teardown callback is currently not allowed to fail. Think
1821  * about module removal!
1822  */
1823 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1824 {
1825 	struct cpuhp_step *sp = cpuhp_get_step(state);
1826 	int cpu;
1827 
1828 	BUG_ON(cpuhp_cb_check(state));
1829 
1830 	lockdep_assert_cpus_held();
1831 
1832 	mutex_lock(&cpuhp_state_mutex);
1833 	if (sp->multi_instance) {
1834 		WARN(!hlist_empty(&sp->list),
1835 		     "Error: Removing state %d which has instances left.\n",
1836 		     state);
1837 		goto remove;
1838 	}
1839 
1840 	if (!invoke || !cpuhp_get_teardown_cb(state))
1841 		goto remove;
1842 
1843 	/*
1844 	 * Call the teardown callback for each present cpu depending
1845 	 * on the hotplug state of the cpu. This function is not
1846 	 * allowed to fail currently!
1847 	 */
1848 	for_each_present_cpu(cpu) {
1849 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1850 		int cpustate = st->state;
1851 
1852 		if (cpustate >= state)
1853 			cpuhp_issue_call(cpu, state, false, NULL);
1854 	}
1855 remove:
1856 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1857 	mutex_unlock(&cpuhp_state_mutex);
1858 }
1859 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1860 
1861 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1862 {
1863 	cpus_read_lock();
1864 	__cpuhp_remove_state_cpuslocked(state, invoke);
1865 	cpus_read_unlock();
1866 }
1867 EXPORT_SYMBOL(__cpuhp_remove_state);
1868 
1869 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1870 static ssize_t show_cpuhp_state(struct device *dev,
1871 				struct device_attribute *attr, char *buf)
1872 {
1873 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1874 
1875 	return sprintf(buf, "%d\n", st->state);
1876 }
1877 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1878 
1879 static ssize_t write_cpuhp_target(struct device *dev,
1880 				  struct device_attribute *attr,
1881 				  const char *buf, size_t count)
1882 {
1883 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1884 	struct cpuhp_step *sp;
1885 	int target, ret;
1886 
1887 	ret = kstrtoint(buf, 10, &target);
1888 	if (ret)
1889 		return ret;
1890 
1891 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1892 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1893 		return -EINVAL;
1894 #else
1895 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1896 		return -EINVAL;
1897 #endif
1898 
1899 	ret = lock_device_hotplug_sysfs();
1900 	if (ret)
1901 		return ret;
1902 
1903 	mutex_lock(&cpuhp_state_mutex);
1904 	sp = cpuhp_get_step(target);
1905 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1906 	mutex_unlock(&cpuhp_state_mutex);
1907 	if (ret)
1908 		goto out;
1909 
1910 	if (st->state < target)
1911 		ret = do_cpu_up(dev->id, target);
1912 	else
1913 		ret = do_cpu_down(dev->id, target);
1914 out:
1915 	unlock_device_hotplug();
1916 	return ret ? ret : count;
1917 }
1918 
1919 static ssize_t show_cpuhp_target(struct device *dev,
1920 				 struct device_attribute *attr, char *buf)
1921 {
1922 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1923 
1924 	return sprintf(buf, "%d\n", st->target);
1925 }
1926 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1927 
1928 
1929 static ssize_t write_cpuhp_fail(struct device *dev,
1930 				struct device_attribute *attr,
1931 				const char *buf, size_t count)
1932 {
1933 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1934 	struct cpuhp_step *sp;
1935 	int fail, ret;
1936 
1937 	ret = kstrtoint(buf, 10, &fail);
1938 	if (ret)
1939 		return ret;
1940 
1941 	/*
1942 	 * Cannot fail STARTING/DYING callbacks.
1943 	 */
1944 	if (cpuhp_is_atomic_state(fail))
1945 		return -EINVAL;
1946 
1947 	/*
1948 	 * Cannot fail anything that doesn't have callbacks.
1949 	 */
1950 	mutex_lock(&cpuhp_state_mutex);
1951 	sp = cpuhp_get_step(fail);
1952 	if (!sp->startup.single && !sp->teardown.single)
1953 		ret = -EINVAL;
1954 	mutex_unlock(&cpuhp_state_mutex);
1955 	if (ret)
1956 		return ret;
1957 
1958 	st->fail = fail;
1959 
1960 	return count;
1961 }
1962 
1963 static ssize_t show_cpuhp_fail(struct device *dev,
1964 			       struct device_attribute *attr, char *buf)
1965 {
1966 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1967 
1968 	return sprintf(buf, "%d\n", st->fail);
1969 }
1970 
1971 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1972 
1973 static struct attribute *cpuhp_cpu_attrs[] = {
1974 	&dev_attr_state.attr,
1975 	&dev_attr_target.attr,
1976 	&dev_attr_fail.attr,
1977 	NULL
1978 };
1979 
1980 static const struct attribute_group cpuhp_cpu_attr_group = {
1981 	.attrs = cpuhp_cpu_attrs,
1982 	.name = "hotplug",
1983 	NULL
1984 };
1985 
1986 static ssize_t show_cpuhp_states(struct device *dev,
1987 				 struct device_attribute *attr, char *buf)
1988 {
1989 	ssize_t cur, res = 0;
1990 	int i;
1991 
1992 	mutex_lock(&cpuhp_state_mutex);
1993 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1994 		struct cpuhp_step *sp = cpuhp_get_step(i);
1995 
1996 		if (sp->name) {
1997 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1998 			buf += cur;
1999 			res += cur;
2000 		}
2001 	}
2002 	mutex_unlock(&cpuhp_state_mutex);
2003 	return res;
2004 }
2005 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2006 
2007 static struct attribute *cpuhp_cpu_root_attrs[] = {
2008 	&dev_attr_states.attr,
2009 	NULL
2010 };
2011 
2012 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2013 	.attrs = cpuhp_cpu_root_attrs,
2014 	.name = "hotplug",
2015 	NULL
2016 };
2017 
2018 #ifdef CONFIG_HOTPLUG_SMT
2019 
2020 static const char *smt_states[] = {
2021 	[CPU_SMT_ENABLED]		= "on",
2022 	[CPU_SMT_DISABLED]		= "off",
2023 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2024 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2025 };
2026 
2027 static ssize_t
2028 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2029 {
2030 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2031 }
2032 
2033 static void cpuhp_offline_cpu_device(unsigned int cpu)
2034 {
2035 	struct device *dev = get_cpu_device(cpu);
2036 
2037 	dev->offline = true;
2038 	/* Tell user space about the state change */
2039 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2040 }
2041 
2042 static void cpuhp_online_cpu_device(unsigned int cpu)
2043 {
2044 	struct device *dev = get_cpu_device(cpu);
2045 
2046 	dev->offline = false;
2047 	/* Tell user space about the state change */
2048 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2049 }
2050 
2051 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2052 {
2053 	int cpu, ret = 0;
2054 
2055 	cpu_maps_update_begin();
2056 	for_each_online_cpu(cpu) {
2057 		if (topology_is_primary_thread(cpu))
2058 			continue;
2059 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2060 		if (ret)
2061 			break;
2062 		/*
2063 		 * As this needs to hold the cpu maps lock it's impossible
2064 		 * to call device_offline() because that ends up calling
2065 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2066 		 * needs to be held as this might race against in kernel
2067 		 * abusers of the hotplug machinery (thermal management).
2068 		 *
2069 		 * So nothing would update device:offline state. That would
2070 		 * leave the sysfs entry stale and prevent onlining after
2071 		 * smt control has been changed to 'off' again. This is
2072 		 * called under the sysfs hotplug lock, so it is properly
2073 		 * serialized against the regular offline usage.
2074 		 */
2075 		cpuhp_offline_cpu_device(cpu);
2076 	}
2077 	if (!ret)
2078 		cpu_smt_control = ctrlval;
2079 	cpu_maps_update_done();
2080 	return ret;
2081 }
2082 
2083 static int cpuhp_smt_enable(void)
2084 {
2085 	int cpu, ret = 0;
2086 
2087 	cpu_maps_update_begin();
2088 	cpu_smt_control = CPU_SMT_ENABLED;
2089 	for_each_present_cpu(cpu) {
2090 		/* Skip online CPUs and CPUs on offline nodes */
2091 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2092 			continue;
2093 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2094 		if (ret)
2095 			break;
2096 		/* See comment in cpuhp_smt_disable() */
2097 		cpuhp_online_cpu_device(cpu);
2098 	}
2099 	cpu_maps_update_done();
2100 	return ret;
2101 }
2102 
2103 static ssize_t
2104 store_smt_control(struct device *dev, struct device_attribute *attr,
2105 		  const char *buf, size_t count)
2106 {
2107 	int ctrlval, ret;
2108 
2109 	if (sysfs_streq(buf, "on"))
2110 		ctrlval = CPU_SMT_ENABLED;
2111 	else if (sysfs_streq(buf, "off"))
2112 		ctrlval = CPU_SMT_DISABLED;
2113 	else if (sysfs_streq(buf, "forceoff"))
2114 		ctrlval = CPU_SMT_FORCE_DISABLED;
2115 	else
2116 		return -EINVAL;
2117 
2118 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2119 		return -EPERM;
2120 
2121 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2122 		return -ENODEV;
2123 
2124 	ret = lock_device_hotplug_sysfs();
2125 	if (ret)
2126 		return ret;
2127 
2128 	if (ctrlval != cpu_smt_control) {
2129 		switch (ctrlval) {
2130 		case CPU_SMT_ENABLED:
2131 			ret = cpuhp_smt_enable();
2132 			break;
2133 		case CPU_SMT_DISABLED:
2134 		case CPU_SMT_FORCE_DISABLED:
2135 			ret = cpuhp_smt_disable(ctrlval);
2136 			break;
2137 		}
2138 	}
2139 
2140 	unlock_device_hotplug();
2141 	return ret ? ret : count;
2142 }
2143 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2144 
2145 static ssize_t
2146 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2147 {
2148 	bool active = topology_max_smt_threads() > 1;
2149 
2150 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2151 }
2152 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2153 
2154 static struct attribute *cpuhp_smt_attrs[] = {
2155 	&dev_attr_control.attr,
2156 	&dev_attr_active.attr,
2157 	NULL
2158 };
2159 
2160 static const struct attribute_group cpuhp_smt_attr_group = {
2161 	.attrs = cpuhp_smt_attrs,
2162 	.name = "smt",
2163 	NULL
2164 };
2165 
2166 static int __init cpu_smt_state_init(void)
2167 {
2168 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2169 				  &cpuhp_smt_attr_group);
2170 }
2171 
2172 #else
2173 static inline int cpu_smt_state_init(void) { return 0; }
2174 #endif
2175 
2176 static int __init cpuhp_sysfs_init(void)
2177 {
2178 	int cpu, ret;
2179 
2180 	ret = cpu_smt_state_init();
2181 	if (ret)
2182 		return ret;
2183 
2184 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2185 				 &cpuhp_cpu_root_attr_group);
2186 	if (ret)
2187 		return ret;
2188 
2189 	for_each_possible_cpu(cpu) {
2190 		struct device *dev = get_cpu_device(cpu);
2191 
2192 		if (!dev)
2193 			continue;
2194 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2195 		if (ret)
2196 			return ret;
2197 	}
2198 	return 0;
2199 }
2200 device_initcall(cpuhp_sysfs_init);
2201 #endif
2202 
2203 /*
2204  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2205  * represents all NR_CPUS bits binary values of 1<<nr.
2206  *
2207  * It is used by cpumask_of() to get a constant address to a CPU
2208  * mask value that has a single bit set only.
2209  */
2210 
2211 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2212 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2213 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2214 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2215 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2216 
2217 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2218 
2219 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2220 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2221 #if BITS_PER_LONG > 32
2222 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2223 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2224 #endif
2225 };
2226 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2227 
2228 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2229 EXPORT_SYMBOL(cpu_all_bits);
2230 
2231 #ifdef CONFIG_INIT_ALL_POSSIBLE
2232 struct cpumask __cpu_possible_mask __read_mostly
2233 	= {CPU_BITS_ALL};
2234 #else
2235 struct cpumask __cpu_possible_mask __read_mostly;
2236 #endif
2237 EXPORT_SYMBOL(__cpu_possible_mask);
2238 
2239 struct cpumask __cpu_online_mask __read_mostly;
2240 EXPORT_SYMBOL(__cpu_online_mask);
2241 
2242 struct cpumask __cpu_present_mask __read_mostly;
2243 EXPORT_SYMBOL(__cpu_present_mask);
2244 
2245 struct cpumask __cpu_active_mask __read_mostly;
2246 EXPORT_SYMBOL(__cpu_active_mask);
2247 
2248 void init_cpu_present(const struct cpumask *src)
2249 {
2250 	cpumask_copy(&__cpu_present_mask, src);
2251 }
2252 
2253 void init_cpu_possible(const struct cpumask *src)
2254 {
2255 	cpumask_copy(&__cpu_possible_mask, src);
2256 }
2257 
2258 void init_cpu_online(const struct cpumask *src)
2259 {
2260 	cpumask_copy(&__cpu_online_mask, src);
2261 }
2262 
2263 /*
2264  * Activate the first processor.
2265  */
2266 void __init boot_cpu_init(void)
2267 {
2268 	int cpu = smp_processor_id();
2269 
2270 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2271 	set_cpu_online(cpu, true);
2272 	set_cpu_active(cpu, true);
2273 	set_cpu_present(cpu, true);
2274 	set_cpu_possible(cpu, true);
2275 
2276 #ifdef CONFIG_SMP
2277 	__boot_cpu_id = cpu;
2278 #endif
2279 }
2280 
2281 /*
2282  * Must be called _AFTER_ setting up the per_cpu areas
2283  */
2284 void __init boot_cpu_hotplug_init(void)
2285 {
2286 #ifdef CONFIG_SMP
2287 	this_cpu_write(cpuhp_state.booted_once, true);
2288 #endif
2289 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2290 }
2291