1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @cpu: CPU number 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 void cpus_read_lock(void) 488 { 489 percpu_down_read(&cpu_hotplug_lock); 490 } 491 EXPORT_SYMBOL_GPL(cpus_read_lock); 492 493 int cpus_read_trylock(void) 494 { 495 return percpu_down_read_trylock(&cpu_hotplug_lock); 496 } 497 EXPORT_SYMBOL_GPL(cpus_read_trylock); 498 499 void cpus_read_unlock(void) 500 { 501 percpu_up_read(&cpu_hotplug_lock); 502 } 503 EXPORT_SYMBOL_GPL(cpus_read_unlock); 504 505 void cpus_write_lock(void) 506 { 507 percpu_down_write(&cpu_hotplug_lock); 508 } 509 510 void cpus_write_unlock(void) 511 { 512 percpu_up_write(&cpu_hotplug_lock); 513 } 514 515 void lockdep_assert_cpus_held(void) 516 { 517 /* 518 * We can't have hotplug operations before userspace starts running, 519 * and some init codepaths will knowingly not take the hotplug lock. 520 * This is all valid, so mute lockdep until it makes sense to report 521 * unheld locks. 522 */ 523 if (system_state < SYSTEM_RUNNING) 524 return; 525 526 percpu_rwsem_assert_held(&cpu_hotplug_lock); 527 } 528 529 #ifdef CONFIG_LOCKDEP 530 int lockdep_is_cpus_held(void) 531 { 532 return percpu_rwsem_is_held(&cpu_hotplug_lock); 533 } 534 #endif 535 536 static void lockdep_acquire_cpus_lock(void) 537 { 538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 539 } 540 541 static void lockdep_release_cpus_lock(void) 542 { 543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 544 } 545 546 /* 547 * Wait for currently running CPU hotplug operations to complete (if any) and 548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 550 * hotplug path before performing hotplug operations. So acquiring that lock 551 * guarantees mutual exclusion from any currently running hotplug operations. 552 */ 553 void cpu_hotplug_disable(void) 554 { 555 cpu_maps_update_begin(); 556 cpu_hotplug_disabled++; 557 cpu_maps_update_done(); 558 } 559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 560 561 static void __cpu_hotplug_enable(void) 562 { 563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 564 return; 565 cpu_hotplug_disabled--; 566 } 567 568 void cpu_hotplug_enable(void) 569 { 570 cpu_maps_update_begin(); 571 __cpu_hotplug_enable(); 572 cpu_maps_update_done(); 573 } 574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 575 576 #else 577 578 static void lockdep_acquire_cpus_lock(void) 579 { 580 } 581 582 static void lockdep_release_cpus_lock(void) 583 { 584 } 585 586 #endif /* CONFIG_HOTPLUG_CPU */ 587 588 /* 589 * Architectures that need SMT-specific errata handling during SMT hotplug 590 * should override this. 591 */ 592 void __weak arch_smt_update(void) { } 593 594 #ifdef CONFIG_HOTPLUG_SMT 595 596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 597 static unsigned int cpu_smt_max_threads __ro_after_init; 598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 599 600 void __init cpu_smt_disable(bool force) 601 { 602 if (!cpu_smt_possible()) 603 return; 604 605 if (force) { 606 pr_info("SMT: Force disabled\n"); 607 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 608 } else { 609 pr_info("SMT: disabled\n"); 610 cpu_smt_control = CPU_SMT_DISABLED; 611 } 612 cpu_smt_num_threads = 1; 613 } 614 615 /* 616 * The decision whether SMT is supported can only be done after the full 617 * CPU identification. Called from architecture code. 618 */ 619 void __init cpu_smt_set_num_threads(unsigned int num_threads, 620 unsigned int max_threads) 621 { 622 WARN_ON(!num_threads || (num_threads > max_threads)); 623 624 if (max_threads == 1) 625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 626 627 cpu_smt_max_threads = max_threads; 628 629 /* 630 * If SMT has been disabled via the kernel command line or SMT is 631 * not supported, set cpu_smt_num_threads to 1 for consistency. 632 * If enabled, take the architecture requested number of threads 633 * to bring up into account. 634 */ 635 if (cpu_smt_control != CPU_SMT_ENABLED) 636 cpu_smt_num_threads = 1; 637 else if (num_threads < cpu_smt_num_threads) 638 cpu_smt_num_threads = num_threads; 639 } 640 641 static int __init smt_cmdline_disable(char *str) 642 { 643 cpu_smt_disable(str && !strcmp(str, "force")); 644 return 0; 645 } 646 early_param("nosmt", smt_cmdline_disable); 647 648 /* 649 * For Archicture supporting partial SMT states check if the thread is allowed. 650 * Otherwise this has already been checked through cpu_smt_max_threads when 651 * setting the SMT level. 652 */ 653 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 654 { 655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 656 return topology_smt_thread_allowed(cpu); 657 #else 658 return true; 659 #endif 660 } 661 662 static inline bool cpu_bootable(unsigned int cpu) 663 { 664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 665 return true; 666 667 /* All CPUs are bootable if controls are not configured */ 668 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 669 return true; 670 671 /* All CPUs are bootable if CPU is not SMT capable */ 672 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 673 return true; 674 675 if (topology_is_primary_thread(cpu)) 676 return true; 677 678 /* 679 * On x86 it's required to boot all logical CPUs at least once so 680 * that the init code can get a chance to set CR4.MCE on each 681 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 682 * core will shutdown the machine. 683 */ 684 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 685 } 686 687 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 688 bool cpu_smt_possible(void) 689 { 690 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 691 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 692 } 693 EXPORT_SYMBOL_GPL(cpu_smt_possible); 694 695 #else 696 static inline bool cpu_bootable(unsigned int cpu) { return true; } 697 #endif 698 699 static inline enum cpuhp_state 700 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 701 { 702 enum cpuhp_state prev_state = st->state; 703 bool bringup = st->state < target; 704 705 st->rollback = false; 706 st->last = NULL; 707 708 st->target = target; 709 st->single = false; 710 st->bringup = bringup; 711 if (cpu_dying(cpu) != !bringup) 712 set_cpu_dying(cpu, !bringup); 713 714 return prev_state; 715 } 716 717 static inline void 718 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 719 enum cpuhp_state prev_state) 720 { 721 bool bringup = !st->bringup; 722 723 st->target = prev_state; 724 725 /* 726 * Already rolling back. No need invert the bringup value or to change 727 * the current state. 728 */ 729 if (st->rollback) 730 return; 731 732 st->rollback = true; 733 734 /* 735 * If we have st->last we need to undo partial multi_instance of this 736 * state first. Otherwise start undo at the previous state. 737 */ 738 if (!st->last) { 739 if (st->bringup) 740 st->state--; 741 else 742 st->state++; 743 } 744 745 st->bringup = bringup; 746 if (cpu_dying(cpu) != !bringup) 747 set_cpu_dying(cpu, !bringup); 748 } 749 750 /* Regular hotplug invocation of the AP hotplug thread */ 751 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 752 { 753 if (!st->single && st->state == st->target) 754 return; 755 756 st->result = 0; 757 /* 758 * Make sure the above stores are visible before should_run becomes 759 * true. Paired with the mb() above in cpuhp_thread_fun() 760 */ 761 smp_mb(); 762 st->should_run = true; 763 wake_up_process(st->thread); 764 wait_for_ap_thread(st, st->bringup); 765 } 766 767 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 768 enum cpuhp_state target) 769 { 770 enum cpuhp_state prev_state; 771 int ret; 772 773 prev_state = cpuhp_set_state(cpu, st, target); 774 __cpuhp_kick_ap(st); 775 if ((ret = st->result)) { 776 cpuhp_reset_state(cpu, st, prev_state); 777 __cpuhp_kick_ap(st); 778 } 779 780 return ret; 781 } 782 783 static int bringup_wait_for_ap_online(unsigned int cpu) 784 { 785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 786 787 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 788 wait_for_ap_thread(st, true); 789 if (WARN_ON_ONCE((!cpu_online(cpu)))) 790 return -ECANCELED; 791 792 /* Unpark the hotplug thread of the target cpu */ 793 kthread_unpark(st->thread); 794 795 /* 796 * SMT soft disabling on X86 requires to bring the CPU out of the 797 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 798 * CPU marked itself as booted_once in notify_cpu_starting() so the 799 * cpu_bootable() check will now return false if this is not the 800 * primary sibling. 801 */ 802 if (!cpu_bootable(cpu)) 803 return -ECANCELED; 804 return 0; 805 } 806 807 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 808 static int cpuhp_kick_ap_alive(unsigned int cpu) 809 { 810 if (!cpuhp_can_boot_ap(cpu)) 811 return -EAGAIN; 812 813 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 814 } 815 816 static int cpuhp_bringup_ap(unsigned int cpu) 817 { 818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 819 int ret; 820 821 /* 822 * Some architectures have to walk the irq descriptors to 823 * setup the vector space for the cpu which comes online. 824 * Prevent irq alloc/free across the bringup. 825 */ 826 irq_lock_sparse(); 827 828 ret = cpuhp_bp_sync_alive(cpu); 829 if (ret) 830 goto out_unlock; 831 832 ret = bringup_wait_for_ap_online(cpu); 833 if (ret) 834 goto out_unlock; 835 836 irq_unlock_sparse(); 837 838 if (st->target <= CPUHP_AP_ONLINE_IDLE) 839 return 0; 840 841 return cpuhp_kick_ap(cpu, st, st->target); 842 843 out_unlock: 844 irq_unlock_sparse(); 845 return ret; 846 } 847 #else 848 static int bringup_cpu(unsigned int cpu) 849 { 850 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 851 struct task_struct *idle = idle_thread_get(cpu); 852 int ret; 853 854 if (!cpuhp_can_boot_ap(cpu)) 855 return -EAGAIN; 856 857 /* 858 * Some architectures have to walk the irq descriptors to 859 * setup the vector space for the cpu which comes online. 860 * 861 * Prevent irq alloc/free across the bringup by acquiring the 862 * sparse irq lock. Hold it until the upcoming CPU completes the 863 * startup in cpuhp_online_idle() which allows to avoid 864 * intermediate synchronization points in the architecture code. 865 */ 866 irq_lock_sparse(); 867 868 ret = __cpu_up(cpu, idle); 869 if (ret) 870 goto out_unlock; 871 872 ret = cpuhp_bp_sync_alive(cpu); 873 if (ret) 874 goto out_unlock; 875 876 ret = bringup_wait_for_ap_online(cpu); 877 if (ret) 878 goto out_unlock; 879 880 irq_unlock_sparse(); 881 882 if (st->target <= CPUHP_AP_ONLINE_IDLE) 883 return 0; 884 885 return cpuhp_kick_ap(cpu, st, st->target); 886 887 out_unlock: 888 irq_unlock_sparse(); 889 return ret; 890 } 891 #endif 892 893 static int finish_cpu(unsigned int cpu) 894 { 895 struct task_struct *idle = idle_thread_get(cpu); 896 struct mm_struct *mm = idle->active_mm; 897 898 /* 899 * idle_task_exit() will have switched to &init_mm, now 900 * clean up any remaining active_mm state. 901 */ 902 if (mm != &init_mm) 903 idle->active_mm = &init_mm; 904 mmdrop_lazy_tlb(mm); 905 return 0; 906 } 907 908 /* 909 * Hotplug state machine related functions 910 */ 911 912 /* 913 * Get the next state to run. Empty ones will be skipped. Returns true if a 914 * state must be run. 915 * 916 * st->state will be modified ahead of time, to match state_to_run, as if it 917 * has already ran. 918 */ 919 static bool cpuhp_next_state(bool bringup, 920 enum cpuhp_state *state_to_run, 921 struct cpuhp_cpu_state *st, 922 enum cpuhp_state target) 923 { 924 do { 925 if (bringup) { 926 if (st->state >= target) 927 return false; 928 929 *state_to_run = ++st->state; 930 } else { 931 if (st->state <= target) 932 return false; 933 934 *state_to_run = st->state--; 935 } 936 937 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 938 break; 939 } while (true); 940 941 return true; 942 } 943 944 static int __cpuhp_invoke_callback_range(bool bringup, 945 unsigned int cpu, 946 struct cpuhp_cpu_state *st, 947 enum cpuhp_state target, 948 bool nofail) 949 { 950 enum cpuhp_state state; 951 int ret = 0; 952 953 while (cpuhp_next_state(bringup, &state, st, target)) { 954 int err; 955 956 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 957 if (!err) 958 continue; 959 960 if (nofail) { 961 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 962 cpu, bringup ? "UP" : "DOWN", 963 cpuhp_get_step(st->state)->name, 964 st->state, err); 965 ret = -1; 966 } else { 967 ret = err; 968 break; 969 } 970 } 971 972 return ret; 973 } 974 975 static inline int cpuhp_invoke_callback_range(bool bringup, 976 unsigned int cpu, 977 struct cpuhp_cpu_state *st, 978 enum cpuhp_state target) 979 { 980 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 981 } 982 983 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 984 unsigned int cpu, 985 struct cpuhp_cpu_state *st, 986 enum cpuhp_state target) 987 { 988 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 989 } 990 991 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 992 { 993 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 994 return true; 995 /* 996 * When CPU hotplug is disabled, then taking the CPU down is not 997 * possible because takedown_cpu() and the architecture and 998 * subsystem specific mechanisms are not available. So the CPU 999 * which would be completely unplugged again needs to stay around 1000 * in the current state. 1001 */ 1002 return st->state <= CPUHP_BRINGUP_CPU; 1003 } 1004 1005 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1006 enum cpuhp_state target) 1007 { 1008 enum cpuhp_state prev_state = st->state; 1009 int ret = 0; 1010 1011 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1012 if (ret) { 1013 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1014 ret, cpu, cpuhp_get_step(st->state)->name, 1015 st->state); 1016 1017 cpuhp_reset_state(cpu, st, prev_state); 1018 if (can_rollback_cpu(st)) 1019 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1020 prev_state)); 1021 } 1022 return ret; 1023 } 1024 1025 /* 1026 * The cpu hotplug threads manage the bringup and teardown of the cpus 1027 */ 1028 static int cpuhp_should_run(unsigned int cpu) 1029 { 1030 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1031 1032 return st->should_run; 1033 } 1034 1035 /* 1036 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1037 * callbacks when a state gets [un]installed at runtime. 1038 * 1039 * Each invocation of this function by the smpboot thread does a single AP 1040 * state callback. 1041 * 1042 * It has 3 modes of operation: 1043 * - single: runs st->cb_state 1044 * - up: runs ++st->state, while st->state < st->target 1045 * - down: runs st->state--, while st->state > st->target 1046 * 1047 * When complete or on error, should_run is cleared and the completion is fired. 1048 */ 1049 static void cpuhp_thread_fun(unsigned int cpu) 1050 { 1051 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1052 bool bringup = st->bringup; 1053 enum cpuhp_state state; 1054 1055 if (WARN_ON_ONCE(!st->should_run)) 1056 return; 1057 1058 /* 1059 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1060 * that if we see ->should_run we also see the rest of the state. 1061 */ 1062 smp_mb(); 1063 1064 /* 1065 * The BP holds the hotplug lock, but we're now running on the AP, 1066 * ensure that anybody asserting the lock is held, will actually find 1067 * it so. 1068 */ 1069 lockdep_acquire_cpus_lock(); 1070 cpuhp_lock_acquire(bringup); 1071 1072 if (st->single) { 1073 state = st->cb_state; 1074 st->should_run = false; 1075 } else { 1076 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1077 if (!st->should_run) 1078 goto end; 1079 } 1080 1081 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1082 1083 if (cpuhp_is_atomic_state(state)) { 1084 local_irq_disable(); 1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1086 local_irq_enable(); 1087 1088 /* 1089 * STARTING/DYING must not fail! 1090 */ 1091 WARN_ON_ONCE(st->result); 1092 } else { 1093 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1094 } 1095 1096 if (st->result) { 1097 /* 1098 * If we fail on a rollback, we're up a creek without no 1099 * paddle, no way forward, no way back. We loose, thanks for 1100 * playing. 1101 */ 1102 WARN_ON_ONCE(st->rollback); 1103 st->should_run = false; 1104 } 1105 1106 end: 1107 cpuhp_lock_release(bringup); 1108 lockdep_release_cpus_lock(); 1109 1110 if (!st->should_run) 1111 complete_ap_thread(st, bringup); 1112 } 1113 1114 /* Invoke a single callback on a remote cpu */ 1115 static int 1116 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1117 struct hlist_node *node) 1118 { 1119 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1120 int ret; 1121 1122 if (!cpu_online(cpu)) 1123 return 0; 1124 1125 cpuhp_lock_acquire(false); 1126 cpuhp_lock_release(false); 1127 1128 cpuhp_lock_acquire(true); 1129 cpuhp_lock_release(true); 1130 1131 /* 1132 * If we are up and running, use the hotplug thread. For early calls 1133 * we invoke the thread function directly. 1134 */ 1135 if (!st->thread) 1136 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1137 1138 st->rollback = false; 1139 st->last = NULL; 1140 1141 st->node = node; 1142 st->bringup = bringup; 1143 st->cb_state = state; 1144 st->single = true; 1145 1146 __cpuhp_kick_ap(st); 1147 1148 /* 1149 * If we failed and did a partial, do a rollback. 1150 */ 1151 if ((ret = st->result) && st->last) { 1152 st->rollback = true; 1153 st->bringup = !bringup; 1154 1155 __cpuhp_kick_ap(st); 1156 } 1157 1158 /* 1159 * Clean up the leftovers so the next hotplug operation wont use stale 1160 * data. 1161 */ 1162 st->node = st->last = NULL; 1163 return ret; 1164 } 1165 1166 static int cpuhp_kick_ap_work(unsigned int cpu) 1167 { 1168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1169 enum cpuhp_state prev_state = st->state; 1170 int ret; 1171 1172 cpuhp_lock_acquire(false); 1173 cpuhp_lock_release(false); 1174 1175 cpuhp_lock_acquire(true); 1176 cpuhp_lock_release(true); 1177 1178 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1179 ret = cpuhp_kick_ap(cpu, st, st->target); 1180 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1181 1182 return ret; 1183 } 1184 1185 static struct smp_hotplug_thread cpuhp_threads = { 1186 .store = &cpuhp_state.thread, 1187 .thread_should_run = cpuhp_should_run, 1188 .thread_fn = cpuhp_thread_fun, 1189 .thread_comm = "cpuhp/%u", 1190 .selfparking = true, 1191 }; 1192 1193 static __init void cpuhp_init_state(void) 1194 { 1195 struct cpuhp_cpu_state *st; 1196 int cpu; 1197 1198 for_each_possible_cpu(cpu) { 1199 st = per_cpu_ptr(&cpuhp_state, cpu); 1200 init_completion(&st->done_up); 1201 init_completion(&st->done_down); 1202 } 1203 } 1204 1205 void __init cpuhp_threads_init(void) 1206 { 1207 cpuhp_init_state(); 1208 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1209 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1210 } 1211 1212 /* 1213 * 1214 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 1215 * protected region. 1216 * 1217 * The operation is still serialized against concurrent CPU hotplug via 1218 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 1219 * serialized against other hotplug related activity like adding or 1220 * removing of state callbacks and state instances, which invoke either the 1221 * startup or the teardown callback of the affected state. 1222 * 1223 * This is required for subsystems which are unfixable vs. CPU hotplug and 1224 * evade lock inversion problems by scheduling work which has to be 1225 * completed _before_ cpu_up()/_cpu_down() returns. 1226 * 1227 * Don't even think about adding anything to this for any new code or even 1228 * drivers. It's only purpose is to keep existing lock order trainwrecks 1229 * working. 1230 * 1231 * For cpu_down() there might be valid reasons to finish cleanups which are 1232 * not required to be done under cpu_hotplug_lock, but that's a different 1233 * story and would be not invoked via this. 1234 */ 1235 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 1236 { 1237 /* 1238 * cpusets delegate hotplug operations to a worker to "solve" the 1239 * lock order problems. Wait for the worker, but only if tasks are 1240 * _not_ frozen (suspend, hibernate) as that would wait forever. 1241 * 1242 * The wait is required because otherwise the hotplug operation 1243 * returns with inconsistent state, which could even be observed in 1244 * user space when a new CPU is brought up. The CPU plug uevent 1245 * would be delivered and user space reacting on it would fail to 1246 * move tasks to the newly plugged CPU up to the point where the 1247 * work has finished because up to that point the newly plugged CPU 1248 * is not assignable in cpusets/cgroups. On unplug that's not 1249 * necessarily a visible issue, but it is still inconsistent state, 1250 * which is the real problem which needs to be "fixed". This can't 1251 * prevent the transient state between scheduling the work and 1252 * returning from waiting for it. 1253 */ 1254 if (!tasks_frozen) 1255 cpuset_wait_for_hotplug(); 1256 } 1257 1258 #ifdef CONFIG_HOTPLUG_CPU 1259 #ifndef arch_clear_mm_cpumask_cpu 1260 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1261 #endif 1262 1263 /** 1264 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1265 * @cpu: a CPU id 1266 * 1267 * This function walks all processes, finds a valid mm struct for each one and 1268 * then clears a corresponding bit in mm's cpumask. While this all sounds 1269 * trivial, there are various non-obvious corner cases, which this function 1270 * tries to solve in a safe manner. 1271 * 1272 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1273 * be called only for an already offlined CPU. 1274 */ 1275 void clear_tasks_mm_cpumask(int cpu) 1276 { 1277 struct task_struct *p; 1278 1279 /* 1280 * This function is called after the cpu is taken down and marked 1281 * offline, so its not like new tasks will ever get this cpu set in 1282 * their mm mask. -- Peter Zijlstra 1283 * Thus, we may use rcu_read_lock() here, instead of grabbing 1284 * full-fledged tasklist_lock. 1285 */ 1286 WARN_ON(cpu_online(cpu)); 1287 rcu_read_lock(); 1288 for_each_process(p) { 1289 struct task_struct *t; 1290 1291 /* 1292 * Main thread might exit, but other threads may still have 1293 * a valid mm. Find one. 1294 */ 1295 t = find_lock_task_mm(p); 1296 if (!t) 1297 continue; 1298 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1299 task_unlock(t); 1300 } 1301 rcu_read_unlock(); 1302 } 1303 1304 /* Take this CPU down. */ 1305 static int take_cpu_down(void *_param) 1306 { 1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1308 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1309 int err, cpu = smp_processor_id(); 1310 1311 /* Ensure this CPU doesn't handle any more interrupts. */ 1312 err = __cpu_disable(); 1313 if (err < 0) 1314 return err; 1315 1316 /* 1317 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1318 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1319 */ 1320 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1321 1322 /* 1323 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1324 */ 1325 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1326 1327 /* Give up timekeeping duties */ 1328 tick_handover_do_timer(); 1329 /* Remove CPU from timer broadcasting */ 1330 tick_offline_cpu(cpu); 1331 /* Park the stopper thread */ 1332 stop_machine_park(cpu); 1333 return 0; 1334 } 1335 1336 static int takedown_cpu(unsigned int cpu) 1337 { 1338 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1339 int err; 1340 1341 /* Park the smpboot threads */ 1342 kthread_park(st->thread); 1343 1344 /* 1345 * Prevent irq alloc/free while the dying cpu reorganizes the 1346 * interrupt affinities. 1347 */ 1348 irq_lock_sparse(); 1349 1350 /* 1351 * So now all preempt/rcu users must observe !cpu_active(). 1352 */ 1353 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1354 if (err) { 1355 /* CPU refused to die */ 1356 irq_unlock_sparse(); 1357 /* Unpark the hotplug thread so we can rollback there */ 1358 kthread_unpark(st->thread); 1359 return err; 1360 } 1361 BUG_ON(cpu_online(cpu)); 1362 1363 /* 1364 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1365 * all runnable tasks from the CPU, there's only the idle task left now 1366 * that the migration thread is done doing the stop_machine thing. 1367 * 1368 * Wait for the stop thread to go away. 1369 */ 1370 wait_for_ap_thread(st, false); 1371 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1372 1373 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1374 irq_unlock_sparse(); 1375 1376 hotplug_cpu__broadcast_tick_pull(cpu); 1377 /* This actually kills the CPU. */ 1378 __cpu_die(cpu); 1379 1380 cpuhp_bp_sync_dead(cpu); 1381 1382 tick_cleanup_dead_cpu(cpu); 1383 1384 /* 1385 * Callbacks must be re-integrated right away to the RCU state machine. 1386 * Otherwise an RCU callback could block a further teardown function 1387 * waiting for its completion. 1388 */ 1389 rcutree_migrate_callbacks(cpu); 1390 1391 return 0; 1392 } 1393 1394 static void cpuhp_complete_idle_dead(void *arg) 1395 { 1396 struct cpuhp_cpu_state *st = arg; 1397 1398 complete_ap_thread(st, false); 1399 } 1400 1401 void cpuhp_report_idle_dead(void) 1402 { 1403 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1404 1405 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1406 rcutree_report_cpu_dead(); 1407 st->state = CPUHP_AP_IDLE_DEAD; 1408 /* 1409 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1410 * to an online cpu. 1411 */ 1412 smp_call_function_single(cpumask_first(cpu_online_mask), 1413 cpuhp_complete_idle_dead, st, 0); 1414 } 1415 1416 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1417 enum cpuhp_state target) 1418 { 1419 enum cpuhp_state prev_state = st->state; 1420 int ret = 0; 1421 1422 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1423 if (ret) { 1424 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1425 ret, cpu, cpuhp_get_step(st->state)->name, 1426 st->state); 1427 1428 cpuhp_reset_state(cpu, st, prev_state); 1429 1430 if (st->state < prev_state) 1431 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1432 prev_state)); 1433 } 1434 1435 return ret; 1436 } 1437 1438 /* Requires cpu_add_remove_lock to be held */ 1439 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1440 enum cpuhp_state target) 1441 { 1442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1443 int prev_state, ret = 0; 1444 1445 if (num_online_cpus() == 1) 1446 return -EBUSY; 1447 1448 if (!cpu_present(cpu)) 1449 return -EINVAL; 1450 1451 cpus_write_lock(); 1452 1453 cpuhp_tasks_frozen = tasks_frozen; 1454 1455 prev_state = cpuhp_set_state(cpu, st, target); 1456 /* 1457 * If the current CPU state is in the range of the AP hotplug thread, 1458 * then we need to kick the thread. 1459 */ 1460 if (st->state > CPUHP_TEARDOWN_CPU) { 1461 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1462 ret = cpuhp_kick_ap_work(cpu); 1463 /* 1464 * The AP side has done the error rollback already. Just 1465 * return the error code.. 1466 */ 1467 if (ret) 1468 goto out; 1469 1470 /* 1471 * We might have stopped still in the range of the AP hotplug 1472 * thread. Nothing to do anymore. 1473 */ 1474 if (st->state > CPUHP_TEARDOWN_CPU) 1475 goto out; 1476 1477 st->target = target; 1478 } 1479 /* 1480 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1481 * to do the further cleanups. 1482 */ 1483 ret = cpuhp_down_callbacks(cpu, st, target); 1484 if (ret && st->state < prev_state) { 1485 if (st->state == CPUHP_TEARDOWN_CPU) { 1486 cpuhp_reset_state(cpu, st, prev_state); 1487 __cpuhp_kick_ap(st); 1488 } else { 1489 WARN(1, "DEAD callback error for CPU%d", cpu); 1490 } 1491 } 1492 1493 out: 1494 cpus_write_unlock(); 1495 /* 1496 * Do post unplug cleanup. This is still protected against 1497 * concurrent CPU hotplug via cpu_add_remove_lock. 1498 */ 1499 lockup_detector_cleanup(); 1500 arch_smt_update(); 1501 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1502 return ret; 1503 } 1504 1505 struct cpu_down_work { 1506 unsigned int cpu; 1507 enum cpuhp_state target; 1508 }; 1509 1510 static long __cpu_down_maps_locked(void *arg) 1511 { 1512 struct cpu_down_work *work = arg; 1513 1514 return _cpu_down(work->cpu, 0, work->target); 1515 } 1516 1517 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1518 { 1519 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1520 1521 /* 1522 * If the platform does not support hotplug, report it explicitly to 1523 * differentiate it from a transient offlining failure. 1524 */ 1525 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1526 return -EOPNOTSUPP; 1527 if (cpu_hotplug_disabled) 1528 return -EBUSY; 1529 1530 /* 1531 * Ensure that the control task does not run on the to be offlined 1532 * CPU to prevent a deadlock against cfs_b->period_timer. 1533 * Also keep at least one housekeeping cpu onlined to avoid generating 1534 * an empty sched_domain span. 1535 */ 1536 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1537 if (cpu != work.cpu) 1538 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1539 } 1540 return -EBUSY; 1541 } 1542 1543 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1544 { 1545 int err; 1546 1547 cpu_maps_update_begin(); 1548 err = cpu_down_maps_locked(cpu, target); 1549 cpu_maps_update_done(); 1550 return err; 1551 } 1552 1553 /** 1554 * cpu_device_down - Bring down a cpu device 1555 * @dev: Pointer to the cpu device to offline 1556 * 1557 * This function is meant to be used by device core cpu subsystem only. 1558 * 1559 * Other subsystems should use remove_cpu() instead. 1560 * 1561 * Return: %0 on success or a negative errno code 1562 */ 1563 int cpu_device_down(struct device *dev) 1564 { 1565 return cpu_down(dev->id, CPUHP_OFFLINE); 1566 } 1567 1568 int remove_cpu(unsigned int cpu) 1569 { 1570 int ret; 1571 1572 lock_device_hotplug(); 1573 ret = device_offline(get_cpu_device(cpu)); 1574 unlock_device_hotplug(); 1575 1576 return ret; 1577 } 1578 EXPORT_SYMBOL_GPL(remove_cpu); 1579 1580 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1581 { 1582 unsigned int cpu; 1583 int error; 1584 1585 cpu_maps_update_begin(); 1586 1587 /* 1588 * Make certain the cpu I'm about to reboot on is online. 1589 * 1590 * This is inline to what migrate_to_reboot_cpu() already do. 1591 */ 1592 if (!cpu_online(primary_cpu)) 1593 primary_cpu = cpumask_first(cpu_online_mask); 1594 1595 for_each_online_cpu(cpu) { 1596 if (cpu == primary_cpu) 1597 continue; 1598 1599 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1600 if (error) { 1601 pr_err("Failed to offline CPU%d - error=%d", 1602 cpu, error); 1603 break; 1604 } 1605 } 1606 1607 /* 1608 * Ensure all but the reboot CPU are offline. 1609 */ 1610 BUG_ON(num_online_cpus() > 1); 1611 1612 /* 1613 * Make sure the CPUs won't be enabled by someone else after this 1614 * point. Kexec will reboot to a new kernel shortly resetting 1615 * everything along the way. 1616 */ 1617 cpu_hotplug_disabled++; 1618 1619 cpu_maps_update_done(); 1620 } 1621 1622 #else 1623 #define takedown_cpu NULL 1624 #endif /*CONFIG_HOTPLUG_CPU*/ 1625 1626 /** 1627 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1628 * @cpu: cpu that just started 1629 * 1630 * It must be called by the arch code on the new cpu, before the new cpu 1631 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1632 */ 1633 void notify_cpu_starting(unsigned int cpu) 1634 { 1635 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1636 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1637 1638 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1639 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1640 1641 /* 1642 * STARTING must not fail! 1643 */ 1644 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1645 } 1646 1647 /* 1648 * Called from the idle task. Wake up the controlling task which brings the 1649 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1650 * online bringup to the hotplug thread. 1651 */ 1652 void cpuhp_online_idle(enum cpuhp_state state) 1653 { 1654 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1655 1656 /* Happens for the boot cpu */ 1657 if (state != CPUHP_AP_ONLINE_IDLE) 1658 return; 1659 1660 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1661 1662 /* 1663 * Unpark the stopper thread before we start the idle loop (and start 1664 * scheduling); this ensures the stopper task is always available. 1665 */ 1666 stop_machine_unpark(smp_processor_id()); 1667 1668 st->state = CPUHP_AP_ONLINE_IDLE; 1669 complete_ap_thread(st, true); 1670 } 1671 1672 /* Requires cpu_add_remove_lock to be held */ 1673 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1674 { 1675 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1676 struct task_struct *idle; 1677 int ret = 0; 1678 1679 cpus_write_lock(); 1680 1681 if (!cpu_present(cpu)) { 1682 ret = -EINVAL; 1683 goto out; 1684 } 1685 1686 /* 1687 * The caller of cpu_up() might have raced with another 1688 * caller. Nothing to do. 1689 */ 1690 if (st->state >= target) 1691 goto out; 1692 1693 if (st->state == CPUHP_OFFLINE) { 1694 /* Let it fail before we try to bring the cpu up */ 1695 idle = idle_thread_get(cpu); 1696 if (IS_ERR(idle)) { 1697 ret = PTR_ERR(idle); 1698 goto out; 1699 } 1700 1701 /* 1702 * Reset stale stack state from the last time this CPU was online. 1703 */ 1704 scs_task_reset(idle); 1705 kasan_unpoison_task_stack(idle); 1706 } 1707 1708 cpuhp_tasks_frozen = tasks_frozen; 1709 1710 cpuhp_set_state(cpu, st, target); 1711 /* 1712 * If the current CPU state is in the range of the AP hotplug thread, 1713 * then we need to kick the thread once more. 1714 */ 1715 if (st->state > CPUHP_BRINGUP_CPU) { 1716 ret = cpuhp_kick_ap_work(cpu); 1717 /* 1718 * The AP side has done the error rollback already. Just 1719 * return the error code.. 1720 */ 1721 if (ret) 1722 goto out; 1723 } 1724 1725 /* 1726 * Try to reach the target state. We max out on the BP at 1727 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1728 * responsible for bringing it up to the target state. 1729 */ 1730 target = min((int)target, CPUHP_BRINGUP_CPU); 1731 ret = cpuhp_up_callbacks(cpu, st, target); 1732 out: 1733 cpus_write_unlock(); 1734 arch_smt_update(); 1735 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1736 return ret; 1737 } 1738 1739 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1740 { 1741 int err = 0; 1742 1743 if (!cpu_possible(cpu)) { 1744 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1745 cpu); 1746 return -EINVAL; 1747 } 1748 1749 err = try_online_node(cpu_to_node(cpu)); 1750 if (err) 1751 return err; 1752 1753 cpu_maps_update_begin(); 1754 1755 if (cpu_hotplug_disabled) { 1756 err = -EBUSY; 1757 goto out; 1758 } 1759 if (!cpu_bootable(cpu)) { 1760 err = -EPERM; 1761 goto out; 1762 } 1763 1764 err = _cpu_up(cpu, 0, target); 1765 out: 1766 cpu_maps_update_done(); 1767 return err; 1768 } 1769 1770 /** 1771 * cpu_device_up - Bring up a cpu device 1772 * @dev: Pointer to the cpu device to online 1773 * 1774 * This function is meant to be used by device core cpu subsystem only. 1775 * 1776 * Other subsystems should use add_cpu() instead. 1777 * 1778 * Return: %0 on success or a negative errno code 1779 */ 1780 int cpu_device_up(struct device *dev) 1781 { 1782 return cpu_up(dev->id, CPUHP_ONLINE); 1783 } 1784 1785 int add_cpu(unsigned int cpu) 1786 { 1787 int ret; 1788 1789 lock_device_hotplug(); 1790 ret = device_online(get_cpu_device(cpu)); 1791 unlock_device_hotplug(); 1792 1793 return ret; 1794 } 1795 EXPORT_SYMBOL_GPL(add_cpu); 1796 1797 /** 1798 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1799 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1800 * 1801 * On some architectures like arm64, we can hibernate on any CPU, but on 1802 * wake up the CPU we hibernated on might be offline as a side effect of 1803 * using maxcpus= for example. 1804 * 1805 * Return: %0 on success or a negative errno code 1806 */ 1807 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1808 { 1809 int ret; 1810 1811 if (!cpu_online(sleep_cpu)) { 1812 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1813 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1814 if (ret) { 1815 pr_err("Failed to bring hibernate-CPU up!\n"); 1816 return ret; 1817 } 1818 } 1819 return 0; 1820 } 1821 1822 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1823 enum cpuhp_state target) 1824 { 1825 unsigned int cpu; 1826 1827 for_each_cpu(cpu, mask) { 1828 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1829 1830 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1831 /* 1832 * If this failed then cpu_up() might have only 1833 * rolled back to CPUHP_BP_KICK_AP for the final 1834 * online. Clean it up. NOOP if already rolled back. 1835 */ 1836 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1837 } 1838 1839 if (!--ncpus) 1840 break; 1841 } 1842 } 1843 1844 #ifdef CONFIG_HOTPLUG_PARALLEL 1845 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1846 1847 static int __init parallel_bringup_parse_param(char *arg) 1848 { 1849 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1850 } 1851 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1852 1853 static inline bool cpuhp_smt_aware(void) 1854 { 1855 return cpu_smt_max_threads > 1; 1856 } 1857 1858 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1859 { 1860 return cpu_primary_thread_mask; 1861 } 1862 1863 /* 1864 * On architectures which have enabled parallel bringup this invokes all BP 1865 * prepare states for each of the to be onlined APs first. The last state 1866 * sends the startup IPI to the APs. The APs proceed through the low level 1867 * bringup code in parallel and then wait for the control CPU to release 1868 * them one by one for the final onlining procedure. 1869 * 1870 * This avoids waiting for each AP to respond to the startup IPI in 1871 * CPUHP_BRINGUP_CPU. 1872 */ 1873 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1874 { 1875 const struct cpumask *mask = cpu_present_mask; 1876 1877 if (__cpuhp_parallel_bringup) 1878 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1879 if (!__cpuhp_parallel_bringup) 1880 return false; 1881 1882 if (cpuhp_smt_aware()) { 1883 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1884 static struct cpumask tmp_mask __initdata; 1885 1886 /* 1887 * X86 requires to prevent that SMT siblings stopped while 1888 * the primary thread does a microcode update for various 1889 * reasons. Bring the primary threads up first. 1890 */ 1891 cpumask_and(&tmp_mask, mask, pmask); 1892 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1893 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1894 /* Account for the online CPUs */ 1895 ncpus -= num_online_cpus(); 1896 if (!ncpus) 1897 return true; 1898 /* Create the mask for secondary CPUs */ 1899 cpumask_andnot(&tmp_mask, mask, pmask); 1900 mask = &tmp_mask; 1901 } 1902 1903 /* Bring the not-yet started CPUs up */ 1904 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1905 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1906 return true; 1907 } 1908 #else 1909 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1910 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1911 1912 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus) 1913 { 1914 /* Try parallel bringup optimization if enabled */ 1915 if (cpuhp_bringup_cpus_parallel(setup_max_cpus)) 1916 return; 1917 1918 /* Full per CPU serialized bringup */ 1919 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE); 1920 } 1921 1922 #ifdef CONFIG_PM_SLEEP_SMP 1923 static cpumask_var_t frozen_cpus; 1924 1925 int freeze_secondary_cpus(int primary) 1926 { 1927 int cpu, error = 0; 1928 1929 cpu_maps_update_begin(); 1930 if (primary == -1) { 1931 primary = cpumask_first(cpu_online_mask); 1932 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1933 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1934 } else { 1935 if (!cpu_online(primary)) 1936 primary = cpumask_first(cpu_online_mask); 1937 } 1938 1939 /* 1940 * We take down all of the non-boot CPUs in one shot to avoid races 1941 * with the userspace trying to use the CPU hotplug at the same time 1942 */ 1943 cpumask_clear(frozen_cpus); 1944 1945 pr_info("Disabling non-boot CPUs ...\n"); 1946 for_each_online_cpu(cpu) { 1947 if (cpu == primary) 1948 continue; 1949 1950 if (pm_wakeup_pending()) { 1951 pr_info("Wakeup pending. Abort CPU freeze\n"); 1952 error = -EBUSY; 1953 break; 1954 } 1955 1956 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1957 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1958 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1959 if (!error) 1960 cpumask_set_cpu(cpu, frozen_cpus); 1961 else { 1962 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1963 break; 1964 } 1965 } 1966 1967 if (!error) 1968 BUG_ON(num_online_cpus() > 1); 1969 else 1970 pr_err("Non-boot CPUs are not disabled\n"); 1971 1972 /* 1973 * Make sure the CPUs won't be enabled by someone else. We need to do 1974 * this even in case of failure as all freeze_secondary_cpus() users are 1975 * supposed to do thaw_secondary_cpus() on the failure path. 1976 */ 1977 cpu_hotplug_disabled++; 1978 1979 cpu_maps_update_done(); 1980 return error; 1981 } 1982 1983 void __weak arch_thaw_secondary_cpus_begin(void) 1984 { 1985 } 1986 1987 void __weak arch_thaw_secondary_cpus_end(void) 1988 { 1989 } 1990 1991 void thaw_secondary_cpus(void) 1992 { 1993 int cpu, error; 1994 1995 /* Allow everyone to use the CPU hotplug again */ 1996 cpu_maps_update_begin(); 1997 __cpu_hotplug_enable(); 1998 if (cpumask_empty(frozen_cpus)) 1999 goto out; 2000 2001 pr_info("Enabling non-boot CPUs ...\n"); 2002 2003 arch_thaw_secondary_cpus_begin(); 2004 2005 for_each_cpu(cpu, frozen_cpus) { 2006 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 2007 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 2008 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 2009 if (!error) { 2010 pr_info("CPU%d is up\n", cpu); 2011 continue; 2012 } 2013 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 2014 } 2015 2016 arch_thaw_secondary_cpus_end(); 2017 2018 cpumask_clear(frozen_cpus); 2019 out: 2020 cpu_maps_update_done(); 2021 } 2022 2023 static int __init alloc_frozen_cpus(void) 2024 { 2025 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2026 return -ENOMEM; 2027 return 0; 2028 } 2029 core_initcall(alloc_frozen_cpus); 2030 2031 /* 2032 * When callbacks for CPU hotplug notifications are being executed, we must 2033 * ensure that the state of the system with respect to the tasks being frozen 2034 * or not, as reported by the notification, remains unchanged *throughout the 2035 * duration* of the execution of the callbacks. 2036 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2037 * 2038 * This synchronization is implemented by mutually excluding regular CPU 2039 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2040 * Hibernate notifications. 2041 */ 2042 static int 2043 cpu_hotplug_pm_callback(struct notifier_block *nb, 2044 unsigned long action, void *ptr) 2045 { 2046 switch (action) { 2047 2048 case PM_SUSPEND_PREPARE: 2049 case PM_HIBERNATION_PREPARE: 2050 cpu_hotplug_disable(); 2051 break; 2052 2053 case PM_POST_SUSPEND: 2054 case PM_POST_HIBERNATION: 2055 cpu_hotplug_enable(); 2056 break; 2057 2058 default: 2059 return NOTIFY_DONE; 2060 } 2061 2062 return NOTIFY_OK; 2063 } 2064 2065 2066 static int __init cpu_hotplug_pm_sync_init(void) 2067 { 2068 /* 2069 * cpu_hotplug_pm_callback has higher priority than x86 2070 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2071 * to disable cpu hotplug to avoid cpu hotplug race. 2072 */ 2073 pm_notifier(cpu_hotplug_pm_callback, 0); 2074 return 0; 2075 } 2076 core_initcall(cpu_hotplug_pm_sync_init); 2077 2078 #endif /* CONFIG_PM_SLEEP_SMP */ 2079 2080 int __boot_cpu_id; 2081 2082 #endif /* CONFIG_SMP */ 2083 2084 /* Boot processor state steps */ 2085 static struct cpuhp_step cpuhp_hp_states[] = { 2086 [CPUHP_OFFLINE] = { 2087 .name = "offline", 2088 .startup.single = NULL, 2089 .teardown.single = NULL, 2090 }, 2091 #ifdef CONFIG_SMP 2092 [CPUHP_CREATE_THREADS]= { 2093 .name = "threads:prepare", 2094 .startup.single = smpboot_create_threads, 2095 .teardown.single = NULL, 2096 .cant_stop = true, 2097 }, 2098 [CPUHP_PERF_PREPARE] = { 2099 .name = "perf:prepare", 2100 .startup.single = perf_event_init_cpu, 2101 .teardown.single = perf_event_exit_cpu, 2102 }, 2103 [CPUHP_RANDOM_PREPARE] = { 2104 .name = "random:prepare", 2105 .startup.single = random_prepare_cpu, 2106 .teardown.single = NULL, 2107 }, 2108 [CPUHP_WORKQUEUE_PREP] = { 2109 .name = "workqueue:prepare", 2110 .startup.single = workqueue_prepare_cpu, 2111 .teardown.single = NULL, 2112 }, 2113 [CPUHP_HRTIMERS_PREPARE] = { 2114 .name = "hrtimers:prepare", 2115 .startup.single = hrtimers_prepare_cpu, 2116 .teardown.single = NULL, 2117 }, 2118 [CPUHP_SMPCFD_PREPARE] = { 2119 .name = "smpcfd:prepare", 2120 .startup.single = smpcfd_prepare_cpu, 2121 .teardown.single = smpcfd_dead_cpu, 2122 }, 2123 [CPUHP_RELAY_PREPARE] = { 2124 .name = "relay:prepare", 2125 .startup.single = relay_prepare_cpu, 2126 .teardown.single = NULL, 2127 }, 2128 [CPUHP_RCUTREE_PREP] = { 2129 .name = "RCU/tree:prepare", 2130 .startup.single = rcutree_prepare_cpu, 2131 .teardown.single = rcutree_dead_cpu, 2132 }, 2133 /* 2134 * On the tear-down path, timers_dead_cpu() must be invoked 2135 * before blk_mq_queue_reinit_notify() from notify_dead(), 2136 * otherwise a RCU stall occurs. 2137 */ 2138 [CPUHP_TIMERS_PREPARE] = { 2139 .name = "timers:prepare", 2140 .startup.single = timers_prepare_cpu, 2141 .teardown.single = timers_dead_cpu, 2142 }, 2143 2144 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2145 /* 2146 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2147 * the next step will release it. 2148 */ 2149 [CPUHP_BP_KICK_AP] = { 2150 .name = "cpu:kick_ap", 2151 .startup.single = cpuhp_kick_ap_alive, 2152 }, 2153 2154 /* 2155 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2156 * releases it for the complete bringup. 2157 */ 2158 [CPUHP_BRINGUP_CPU] = { 2159 .name = "cpu:bringup", 2160 .startup.single = cpuhp_bringup_ap, 2161 .teardown.single = finish_cpu, 2162 .cant_stop = true, 2163 }, 2164 #else 2165 /* 2166 * All-in-one CPU bringup state which includes the kick alive. 2167 */ 2168 [CPUHP_BRINGUP_CPU] = { 2169 .name = "cpu:bringup", 2170 .startup.single = bringup_cpu, 2171 .teardown.single = finish_cpu, 2172 .cant_stop = true, 2173 }, 2174 #endif 2175 /* Final state before CPU kills itself */ 2176 [CPUHP_AP_IDLE_DEAD] = { 2177 .name = "idle:dead", 2178 }, 2179 /* 2180 * Last state before CPU enters the idle loop to die. Transient state 2181 * for synchronization. 2182 */ 2183 [CPUHP_AP_OFFLINE] = { 2184 .name = "ap:offline", 2185 .cant_stop = true, 2186 }, 2187 /* First state is scheduler control. Interrupts are disabled */ 2188 [CPUHP_AP_SCHED_STARTING] = { 2189 .name = "sched:starting", 2190 .startup.single = sched_cpu_starting, 2191 .teardown.single = sched_cpu_dying, 2192 }, 2193 [CPUHP_AP_RCUTREE_DYING] = { 2194 .name = "RCU/tree:dying", 2195 .startup.single = NULL, 2196 .teardown.single = rcutree_dying_cpu, 2197 }, 2198 [CPUHP_AP_SMPCFD_DYING] = { 2199 .name = "smpcfd:dying", 2200 .startup.single = NULL, 2201 .teardown.single = smpcfd_dying_cpu, 2202 }, 2203 [CPUHP_AP_HRTIMERS_DYING] = { 2204 .name = "hrtimers:dying", 2205 .startup.single = NULL, 2206 .teardown.single = hrtimers_cpu_dying, 2207 }, 2208 2209 /* Entry state on starting. Interrupts enabled from here on. Transient 2210 * state for synchronsization */ 2211 [CPUHP_AP_ONLINE] = { 2212 .name = "ap:online", 2213 }, 2214 /* 2215 * Handled on control processor until the plugged processor manages 2216 * this itself. 2217 */ 2218 [CPUHP_TEARDOWN_CPU] = { 2219 .name = "cpu:teardown", 2220 .startup.single = NULL, 2221 .teardown.single = takedown_cpu, 2222 .cant_stop = true, 2223 }, 2224 2225 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2226 .name = "sched:waitempty", 2227 .startup.single = NULL, 2228 .teardown.single = sched_cpu_wait_empty, 2229 }, 2230 2231 /* Handle smpboot threads park/unpark */ 2232 [CPUHP_AP_SMPBOOT_THREADS] = { 2233 .name = "smpboot/threads:online", 2234 .startup.single = smpboot_unpark_threads, 2235 .teardown.single = smpboot_park_threads, 2236 }, 2237 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2238 .name = "irq/affinity:online", 2239 .startup.single = irq_affinity_online_cpu, 2240 .teardown.single = NULL, 2241 }, 2242 [CPUHP_AP_PERF_ONLINE] = { 2243 .name = "perf:online", 2244 .startup.single = perf_event_init_cpu, 2245 .teardown.single = perf_event_exit_cpu, 2246 }, 2247 [CPUHP_AP_WATCHDOG_ONLINE] = { 2248 .name = "lockup_detector:online", 2249 .startup.single = lockup_detector_online_cpu, 2250 .teardown.single = lockup_detector_offline_cpu, 2251 }, 2252 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2253 .name = "workqueue:online", 2254 .startup.single = workqueue_online_cpu, 2255 .teardown.single = workqueue_offline_cpu, 2256 }, 2257 [CPUHP_AP_RANDOM_ONLINE] = { 2258 .name = "random:online", 2259 .startup.single = random_online_cpu, 2260 .teardown.single = NULL, 2261 }, 2262 [CPUHP_AP_RCUTREE_ONLINE] = { 2263 .name = "RCU/tree:online", 2264 .startup.single = rcutree_online_cpu, 2265 .teardown.single = rcutree_offline_cpu, 2266 }, 2267 #endif 2268 /* 2269 * The dynamically registered state space is here 2270 */ 2271 2272 #ifdef CONFIG_SMP 2273 /* Last state is scheduler control setting the cpu active */ 2274 [CPUHP_AP_ACTIVE] = { 2275 .name = "sched:active", 2276 .startup.single = sched_cpu_activate, 2277 .teardown.single = sched_cpu_deactivate, 2278 }, 2279 #endif 2280 2281 /* CPU is fully up and running. */ 2282 [CPUHP_ONLINE] = { 2283 .name = "online", 2284 .startup.single = NULL, 2285 .teardown.single = NULL, 2286 }, 2287 }; 2288 2289 /* Sanity check for callbacks */ 2290 static int cpuhp_cb_check(enum cpuhp_state state) 2291 { 2292 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2293 return -EINVAL; 2294 return 0; 2295 } 2296 2297 /* 2298 * Returns a free for dynamic slot assignment of the Online state. The states 2299 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2300 * by having no name assigned. 2301 */ 2302 static int cpuhp_reserve_state(enum cpuhp_state state) 2303 { 2304 enum cpuhp_state i, end; 2305 struct cpuhp_step *step; 2306 2307 switch (state) { 2308 case CPUHP_AP_ONLINE_DYN: 2309 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2310 end = CPUHP_AP_ONLINE_DYN_END; 2311 break; 2312 case CPUHP_BP_PREPARE_DYN: 2313 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2314 end = CPUHP_BP_PREPARE_DYN_END; 2315 break; 2316 default: 2317 return -EINVAL; 2318 } 2319 2320 for (i = state; i <= end; i++, step++) { 2321 if (!step->name) 2322 return i; 2323 } 2324 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2325 return -ENOSPC; 2326 } 2327 2328 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2329 int (*startup)(unsigned int cpu), 2330 int (*teardown)(unsigned int cpu), 2331 bool multi_instance) 2332 { 2333 /* (Un)Install the callbacks for further cpu hotplug operations */ 2334 struct cpuhp_step *sp; 2335 int ret = 0; 2336 2337 /* 2338 * If name is NULL, then the state gets removed. 2339 * 2340 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2341 * the first allocation from these dynamic ranges, so the removal 2342 * would trigger a new allocation and clear the wrong (already 2343 * empty) state, leaving the callbacks of the to be cleared state 2344 * dangling, which causes wreckage on the next hotplug operation. 2345 */ 2346 if (name && (state == CPUHP_AP_ONLINE_DYN || 2347 state == CPUHP_BP_PREPARE_DYN)) { 2348 ret = cpuhp_reserve_state(state); 2349 if (ret < 0) 2350 return ret; 2351 state = ret; 2352 } 2353 sp = cpuhp_get_step(state); 2354 if (name && sp->name) 2355 return -EBUSY; 2356 2357 sp->startup.single = startup; 2358 sp->teardown.single = teardown; 2359 sp->name = name; 2360 sp->multi_instance = multi_instance; 2361 INIT_HLIST_HEAD(&sp->list); 2362 return ret; 2363 } 2364 2365 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2366 { 2367 return cpuhp_get_step(state)->teardown.single; 2368 } 2369 2370 /* 2371 * Call the startup/teardown function for a step either on the AP or 2372 * on the current CPU. 2373 */ 2374 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2375 struct hlist_node *node) 2376 { 2377 struct cpuhp_step *sp = cpuhp_get_step(state); 2378 int ret; 2379 2380 /* 2381 * If there's nothing to do, we done. 2382 * Relies on the union for multi_instance. 2383 */ 2384 if (cpuhp_step_empty(bringup, sp)) 2385 return 0; 2386 /* 2387 * The non AP bound callbacks can fail on bringup. On teardown 2388 * e.g. module removal we crash for now. 2389 */ 2390 #ifdef CONFIG_SMP 2391 if (cpuhp_is_ap_state(state)) 2392 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2393 else 2394 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2395 #else 2396 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2397 #endif 2398 BUG_ON(ret && !bringup); 2399 return ret; 2400 } 2401 2402 /* 2403 * Called from __cpuhp_setup_state on a recoverable failure. 2404 * 2405 * Note: The teardown callbacks for rollback are not allowed to fail! 2406 */ 2407 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2408 struct hlist_node *node) 2409 { 2410 int cpu; 2411 2412 /* Roll back the already executed steps on the other cpus */ 2413 for_each_present_cpu(cpu) { 2414 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2415 int cpustate = st->state; 2416 2417 if (cpu >= failedcpu) 2418 break; 2419 2420 /* Did we invoke the startup call on that cpu ? */ 2421 if (cpustate >= state) 2422 cpuhp_issue_call(cpu, state, false, node); 2423 } 2424 } 2425 2426 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2427 struct hlist_node *node, 2428 bool invoke) 2429 { 2430 struct cpuhp_step *sp; 2431 int cpu; 2432 int ret; 2433 2434 lockdep_assert_cpus_held(); 2435 2436 sp = cpuhp_get_step(state); 2437 if (sp->multi_instance == false) 2438 return -EINVAL; 2439 2440 mutex_lock(&cpuhp_state_mutex); 2441 2442 if (!invoke || !sp->startup.multi) 2443 goto add_node; 2444 2445 /* 2446 * Try to call the startup callback for each present cpu 2447 * depending on the hotplug state of the cpu. 2448 */ 2449 for_each_present_cpu(cpu) { 2450 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2451 int cpustate = st->state; 2452 2453 if (cpustate < state) 2454 continue; 2455 2456 ret = cpuhp_issue_call(cpu, state, true, node); 2457 if (ret) { 2458 if (sp->teardown.multi) 2459 cpuhp_rollback_install(cpu, state, node); 2460 goto unlock; 2461 } 2462 } 2463 add_node: 2464 ret = 0; 2465 hlist_add_head(node, &sp->list); 2466 unlock: 2467 mutex_unlock(&cpuhp_state_mutex); 2468 return ret; 2469 } 2470 2471 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2472 bool invoke) 2473 { 2474 int ret; 2475 2476 cpus_read_lock(); 2477 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2478 cpus_read_unlock(); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2482 2483 /** 2484 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2485 * @state: The state to setup 2486 * @name: Name of the step 2487 * @invoke: If true, the startup function is invoked for cpus where 2488 * cpu state >= @state 2489 * @startup: startup callback function 2490 * @teardown: teardown callback function 2491 * @multi_instance: State is set up for multiple instances which get 2492 * added afterwards. 2493 * 2494 * The caller needs to hold cpus read locked while calling this function. 2495 * Return: 2496 * On success: 2497 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2498 * 0 for all other states 2499 * On failure: proper (negative) error code 2500 */ 2501 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2502 const char *name, bool invoke, 2503 int (*startup)(unsigned int cpu), 2504 int (*teardown)(unsigned int cpu), 2505 bool multi_instance) 2506 { 2507 int cpu, ret = 0; 2508 bool dynstate; 2509 2510 lockdep_assert_cpus_held(); 2511 2512 if (cpuhp_cb_check(state) || !name) 2513 return -EINVAL; 2514 2515 mutex_lock(&cpuhp_state_mutex); 2516 2517 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2518 multi_instance); 2519 2520 dynstate = state == CPUHP_AP_ONLINE_DYN; 2521 if (ret > 0 && dynstate) { 2522 state = ret; 2523 ret = 0; 2524 } 2525 2526 if (ret || !invoke || !startup) 2527 goto out; 2528 2529 /* 2530 * Try to call the startup callback for each present cpu 2531 * depending on the hotplug state of the cpu. 2532 */ 2533 for_each_present_cpu(cpu) { 2534 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2535 int cpustate = st->state; 2536 2537 if (cpustate < state) 2538 continue; 2539 2540 ret = cpuhp_issue_call(cpu, state, true, NULL); 2541 if (ret) { 2542 if (teardown) 2543 cpuhp_rollback_install(cpu, state, NULL); 2544 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2545 goto out; 2546 } 2547 } 2548 out: 2549 mutex_unlock(&cpuhp_state_mutex); 2550 /* 2551 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2552 * dynamically allocated state in case of success. 2553 */ 2554 if (!ret && dynstate) 2555 return state; 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2559 2560 int __cpuhp_setup_state(enum cpuhp_state state, 2561 const char *name, bool invoke, 2562 int (*startup)(unsigned int cpu), 2563 int (*teardown)(unsigned int cpu), 2564 bool multi_instance) 2565 { 2566 int ret; 2567 2568 cpus_read_lock(); 2569 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2570 teardown, multi_instance); 2571 cpus_read_unlock(); 2572 return ret; 2573 } 2574 EXPORT_SYMBOL(__cpuhp_setup_state); 2575 2576 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2577 struct hlist_node *node, bool invoke) 2578 { 2579 struct cpuhp_step *sp = cpuhp_get_step(state); 2580 int cpu; 2581 2582 BUG_ON(cpuhp_cb_check(state)); 2583 2584 if (!sp->multi_instance) 2585 return -EINVAL; 2586 2587 cpus_read_lock(); 2588 mutex_lock(&cpuhp_state_mutex); 2589 2590 if (!invoke || !cpuhp_get_teardown_cb(state)) 2591 goto remove; 2592 /* 2593 * Call the teardown callback for each present cpu depending 2594 * on the hotplug state of the cpu. This function is not 2595 * allowed to fail currently! 2596 */ 2597 for_each_present_cpu(cpu) { 2598 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2599 int cpustate = st->state; 2600 2601 if (cpustate >= state) 2602 cpuhp_issue_call(cpu, state, false, node); 2603 } 2604 2605 remove: 2606 hlist_del(node); 2607 mutex_unlock(&cpuhp_state_mutex); 2608 cpus_read_unlock(); 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2613 2614 /** 2615 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2616 * @state: The state to remove 2617 * @invoke: If true, the teardown function is invoked for cpus where 2618 * cpu state >= @state 2619 * 2620 * The caller needs to hold cpus read locked while calling this function. 2621 * The teardown callback is currently not allowed to fail. Think 2622 * about module removal! 2623 */ 2624 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2625 { 2626 struct cpuhp_step *sp = cpuhp_get_step(state); 2627 int cpu; 2628 2629 BUG_ON(cpuhp_cb_check(state)); 2630 2631 lockdep_assert_cpus_held(); 2632 2633 mutex_lock(&cpuhp_state_mutex); 2634 if (sp->multi_instance) { 2635 WARN(!hlist_empty(&sp->list), 2636 "Error: Removing state %d which has instances left.\n", 2637 state); 2638 goto remove; 2639 } 2640 2641 if (!invoke || !cpuhp_get_teardown_cb(state)) 2642 goto remove; 2643 2644 /* 2645 * Call the teardown callback for each present cpu depending 2646 * on the hotplug state of the cpu. This function is not 2647 * allowed to fail currently! 2648 */ 2649 for_each_present_cpu(cpu) { 2650 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2651 int cpustate = st->state; 2652 2653 if (cpustate >= state) 2654 cpuhp_issue_call(cpu, state, false, NULL); 2655 } 2656 remove: 2657 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2658 mutex_unlock(&cpuhp_state_mutex); 2659 } 2660 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2661 2662 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2663 { 2664 cpus_read_lock(); 2665 __cpuhp_remove_state_cpuslocked(state, invoke); 2666 cpus_read_unlock(); 2667 } 2668 EXPORT_SYMBOL(__cpuhp_remove_state); 2669 2670 #ifdef CONFIG_HOTPLUG_SMT 2671 static void cpuhp_offline_cpu_device(unsigned int cpu) 2672 { 2673 struct device *dev = get_cpu_device(cpu); 2674 2675 dev->offline = true; 2676 /* Tell user space about the state change */ 2677 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2678 } 2679 2680 static void cpuhp_online_cpu_device(unsigned int cpu) 2681 { 2682 struct device *dev = get_cpu_device(cpu); 2683 2684 dev->offline = false; 2685 /* Tell user space about the state change */ 2686 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2687 } 2688 2689 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2690 { 2691 int cpu, ret = 0; 2692 2693 cpu_maps_update_begin(); 2694 for_each_online_cpu(cpu) { 2695 if (topology_is_primary_thread(cpu)) 2696 continue; 2697 /* 2698 * Disable can be called with CPU_SMT_ENABLED when changing 2699 * from a higher to lower number of SMT threads per core. 2700 */ 2701 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2702 continue; 2703 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2704 if (ret) 2705 break; 2706 /* 2707 * As this needs to hold the cpu maps lock it's impossible 2708 * to call device_offline() because that ends up calling 2709 * cpu_down() which takes cpu maps lock. cpu maps lock 2710 * needs to be held as this might race against in kernel 2711 * abusers of the hotplug machinery (thermal management). 2712 * 2713 * So nothing would update device:offline state. That would 2714 * leave the sysfs entry stale and prevent onlining after 2715 * smt control has been changed to 'off' again. This is 2716 * called under the sysfs hotplug lock, so it is properly 2717 * serialized against the regular offline usage. 2718 */ 2719 cpuhp_offline_cpu_device(cpu); 2720 } 2721 if (!ret) 2722 cpu_smt_control = ctrlval; 2723 cpu_maps_update_done(); 2724 return ret; 2725 } 2726 2727 int cpuhp_smt_enable(void) 2728 { 2729 int cpu, ret = 0; 2730 2731 cpu_maps_update_begin(); 2732 cpu_smt_control = CPU_SMT_ENABLED; 2733 for_each_present_cpu(cpu) { 2734 /* Skip online CPUs and CPUs on offline nodes */ 2735 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2736 continue; 2737 if (!cpu_smt_thread_allowed(cpu)) 2738 continue; 2739 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2740 if (ret) 2741 break; 2742 /* See comment in cpuhp_smt_disable() */ 2743 cpuhp_online_cpu_device(cpu); 2744 } 2745 cpu_maps_update_done(); 2746 return ret; 2747 } 2748 #endif 2749 2750 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2751 static ssize_t state_show(struct device *dev, 2752 struct device_attribute *attr, char *buf) 2753 { 2754 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2755 2756 return sprintf(buf, "%d\n", st->state); 2757 } 2758 static DEVICE_ATTR_RO(state); 2759 2760 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2761 const char *buf, size_t count) 2762 { 2763 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2764 struct cpuhp_step *sp; 2765 int target, ret; 2766 2767 ret = kstrtoint(buf, 10, &target); 2768 if (ret) 2769 return ret; 2770 2771 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2772 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2773 return -EINVAL; 2774 #else 2775 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2776 return -EINVAL; 2777 #endif 2778 2779 ret = lock_device_hotplug_sysfs(); 2780 if (ret) 2781 return ret; 2782 2783 mutex_lock(&cpuhp_state_mutex); 2784 sp = cpuhp_get_step(target); 2785 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2786 mutex_unlock(&cpuhp_state_mutex); 2787 if (ret) 2788 goto out; 2789 2790 if (st->state < target) 2791 ret = cpu_up(dev->id, target); 2792 else if (st->state > target) 2793 ret = cpu_down(dev->id, target); 2794 else if (WARN_ON(st->target != target)) 2795 st->target = target; 2796 out: 2797 unlock_device_hotplug(); 2798 return ret ? ret : count; 2799 } 2800 2801 static ssize_t target_show(struct device *dev, 2802 struct device_attribute *attr, char *buf) 2803 { 2804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2805 2806 return sprintf(buf, "%d\n", st->target); 2807 } 2808 static DEVICE_ATTR_RW(target); 2809 2810 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2811 const char *buf, size_t count) 2812 { 2813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2814 struct cpuhp_step *sp; 2815 int fail, ret; 2816 2817 ret = kstrtoint(buf, 10, &fail); 2818 if (ret) 2819 return ret; 2820 2821 if (fail == CPUHP_INVALID) { 2822 st->fail = fail; 2823 return count; 2824 } 2825 2826 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2827 return -EINVAL; 2828 2829 /* 2830 * Cannot fail STARTING/DYING callbacks. 2831 */ 2832 if (cpuhp_is_atomic_state(fail)) 2833 return -EINVAL; 2834 2835 /* 2836 * DEAD callbacks cannot fail... 2837 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2838 * triggering STARTING callbacks, a failure in this state would 2839 * hinder rollback. 2840 */ 2841 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2842 return -EINVAL; 2843 2844 /* 2845 * Cannot fail anything that doesn't have callbacks. 2846 */ 2847 mutex_lock(&cpuhp_state_mutex); 2848 sp = cpuhp_get_step(fail); 2849 if (!sp->startup.single && !sp->teardown.single) 2850 ret = -EINVAL; 2851 mutex_unlock(&cpuhp_state_mutex); 2852 if (ret) 2853 return ret; 2854 2855 st->fail = fail; 2856 2857 return count; 2858 } 2859 2860 static ssize_t fail_show(struct device *dev, 2861 struct device_attribute *attr, char *buf) 2862 { 2863 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2864 2865 return sprintf(buf, "%d\n", st->fail); 2866 } 2867 2868 static DEVICE_ATTR_RW(fail); 2869 2870 static struct attribute *cpuhp_cpu_attrs[] = { 2871 &dev_attr_state.attr, 2872 &dev_attr_target.attr, 2873 &dev_attr_fail.attr, 2874 NULL 2875 }; 2876 2877 static const struct attribute_group cpuhp_cpu_attr_group = { 2878 .attrs = cpuhp_cpu_attrs, 2879 .name = "hotplug", 2880 NULL 2881 }; 2882 2883 static ssize_t states_show(struct device *dev, 2884 struct device_attribute *attr, char *buf) 2885 { 2886 ssize_t cur, res = 0; 2887 int i; 2888 2889 mutex_lock(&cpuhp_state_mutex); 2890 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2891 struct cpuhp_step *sp = cpuhp_get_step(i); 2892 2893 if (sp->name) { 2894 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2895 buf += cur; 2896 res += cur; 2897 } 2898 } 2899 mutex_unlock(&cpuhp_state_mutex); 2900 return res; 2901 } 2902 static DEVICE_ATTR_RO(states); 2903 2904 static struct attribute *cpuhp_cpu_root_attrs[] = { 2905 &dev_attr_states.attr, 2906 NULL 2907 }; 2908 2909 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2910 .attrs = cpuhp_cpu_root_attrs, 2911 .name = "hotplug", 2912 NULL 2913 }; 2914 2915 #ifdef CONFIG_HOTPLUG_SMT 2916 2917 static bool cpu_smt_num_threads_valid(unsigned int threads) 2918 { 2919 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2920 return threads >= 1 && threads <= cpu_smt_max_threads; 2921 return threads == 1 || threads == cpu_smt_max_threads; 2922 } 2923 2924 static ssize_t 2925 __store_smt_control(struct device *dev, struct device_attribute *attr, 2926 const char *buf, size_t count) 2927 { 2928 int ctrlval, ret, num_threads, orig_threads; 2929 bool force_off; 2930 2931 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2932 return -EPERM; 2933 2934 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2935 return -ENODEV; 2936 2937 if (sysfs_streq(buf, "on")) { 2938 ctrlval = CPU_SMT_ENABLED; 2939 num_threads = cpu_smt_max_threads; 2940 } else if (sysfs_streq(buf, "off")) { 2941 ctrlval = CPU_SMT_DISABLED; 2942 num_threads = 1; 2943 } else if (sysfs_streq(buf, "forceoff")) { 2944 ctrlval = CPU_SMT_FORCE_DISABLED; 2945 num_threads = 1; 2946 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2947 if (num_threads == 1) 2948 ctrlval = CPU_SMT_DISABLED; 2949 else if (cpu_smt_num_threads_valid(num_threads)) 2950 ctrlval = CPU_SMT_ENABLED; 2951 else 2952 return -EINVAL; 2953 } else { 2954 return -EINVAL; 2955 } 2956 2957 ret = lock_device_hotplug_sysfs(); 2958 if (ret) 2959 return ret; 2960 2961 orig_threads = cpu_smt_num_threads; 2962 cpu_smt_num_threads = num_threads; 2963 2964 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2965 2966 if (num_threads > orig_threads) 2967 ret = cpuhp_smt_enable(); 2968 else if (num_threads < orig_threads || force_off) 2969 ret = cpuhp_smt_disable(ctrlval); 2970 2971 unlock_device_hotplug(); 2972 return ret ? ret : count; 2973 } 2974 2975 #else /* !CONFIG_HOTPLUG_SMT */ 2976 static ssize_t 2977 __store_smt_control(struct device *dev, struct device_attribute *attr, 2978 const char *buf, size_t count) 2979 { 2980 return -ENODEV; 2981 } 2982 #endif /* CONFIG_HOTPLUG_SMT */ 2983 2984 static const char *smt_states[] = { 2985 [CPU_SMT_ENABLED] = "on", 2986 [CPU_SMT_DISABLED] = "off", 2987 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2988 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2989 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2990 }; 2991 2992 static ssize_t control_show(struct device *dev, 2993 struct device_attribute *attr, char *buf) 2994 { 2995 const char *state = smt_states[cpu_smt_control]; 2996 2997 #ifdef CONFIG_HOTPLUG_SMT 2998 /* 2999 * If SMT is enabled but not all threads are enabled then show the 3000 * number of threads. If all threads are enabled show "on". Otherwise 3001 * show the state name. 3002 */ 3003 if (cpu_smt_control == CPU_SMT_ENABLED && 3004 cpu_smt_num_threads != cpu_smt_max_threads) 3005 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 3006 #endif 3007 3008 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 3009 } 3010 3011 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 3012 const char *buf, size_t count) 3013 { 3014 return __store_smt_control(dev, attr, buf, count); 3015 } 3016 static DEVICE_ATTR_RW(control); 3017 3018 static ssize_t active_show(struct device *dev, 3019 struct device_attribute *attr, char *buf) 3020 { 3021 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 3022 } 3023 static DEVICE_ATTR_RO(active); 3024 3025 static struct attribute *cpuhp_smt_attrs[] = { 3026 &dev_attr_control.attr, 3027 &dev_attr_active.attr, 3028 NULL 3029 }; 3030 3031 static const struct attribute_group cpuhp_smt_attr_group = { 3032 .attrs = cpuhp_smt_attrs, 3033 .name = "smt", 3034 NULL 3035 }; 3036 3037 static int __init cpu_smt_sysfs_init(void) 3038 { 3039 struct device *dev_root; 3040 int ret = -ENODEV; 3041 3042 dev_root = bus_get_dev_root(&cpu_subsys); 3043 if (dev_root) { 3044 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3045 put_device(dev_root); 3046 } 3047 return ret; 3048 } 3049 3050 static int __init cpuhp_sysfs_init(void) 3051 { 3052 struct device *dev_root; 3053 int cpu, ret; 3054 3055 ret = cpu_smt_sysfs_init(); 3056 if (ret) 3057 return ret; 3058 3059 dev_root = bus_get_dev_root(&cpu_subsys); 3060 if (dev_root) { 3061 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3062 put_device(dev_root); 3063 if (ret) 3064 return ret; 3065 } 3066 3067 for_each_possible_cpu(cpu) { 3068 struct device *dev = get_cpu_device(cpu); 3069 3070 if (!dev) 3071 continue; 3072 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3073 if (ret) 3074 return ret; 3075 } 3076 return 0; 3077 } 3078 device_initcall(cpuhp_sysfs_init); 3079 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3080 3081 /* 3082 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3083 * represents all NR_CPUS bits binary values of 1<<nr. 3084 * 3085 * It is used by cpumask_of() to get a constant address to a CPU 3086 * mask value that has a single bit set only. 3087 */ 3088 3089 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3090 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3091 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3092 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3093 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3094 3095 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3096 3097 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3098 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3099 #if BITS_PER_LONG > 32 3100 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3101 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3102 #endif 3103 }; 3104 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3105 3106 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3107 EXPORT_SYMBOL(cpu_all_bits); 3108 3109 #ifdef CONFIG_INIT_ALL_POSSIBLE 3110 struct cpumask __cpu_possible_mask __read_mostly 3111 = {CPU_BITS_ALL}; 3112 #else 3113 struct cpumask __cpu_possible_mask __read_mostly; 3114 #endif 3115 EXPORT_SYMBOL(__cpu_possible_mask); 3116 3117 struct cpumask __cpu_online_mask __read_mostly; 3118 EXPORT_SYMBOL(__cpu_online_mask); 3119 3120 struct cpumask __cpu_present_mask __read_mostly; 3121 EXPORT_SYMBOL(__cpu_present_mask); 3122 3123 struct cpumask __cpu_active_mask __read_mostly; 3124 EXPORT_SYMBOL(__cpu_active_mask); 3125 3126 struct cpumask __cpu_dying_mask __read_mostly; 3127 EXPORT_SYMBOL(__cpu_dying_mask); 3128 3129 atomic_t __num_online_cpus __read_mostly; 3130 EXPORT_SYMBOL(__num_online_cpus); 3131 3132 void init_cpu_present(const struct cpumask *src) 3133 { 3134 cpumask_copy(&__cpu_present_mask, src); 3135 } 3136 3137 void init_cpu_possible(const struct cpumask *src) 3138 { 3139 cpumask_copy(&__cpu_possible_mask, src); 3140 } 3141 3142 void init_cpu_online(const struct cpumask *src) 3143 { 3144 cpumask_copy(&__cpu_online_mask, src); 3145 } 3146 3147 void set_cpu_online(unsigned int cpu, bool online) 3148 { 3149 /* 3150 * atomic_inc/dec() is required to handle the horrid abuse of this 3151 * function by the reboot and kexec code which invoke it from 3152 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3153 * regular CPU hotplug is properly serialized. 3154 * 3155 * Note, that the fact that __num_online_cpus is of type atomic_t 3156 * does not protect readers which are not serialized against 3157 * concurrent hotplug operations. 3158 */ 3159 if (online) { 3160 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3161 atomic_inc(&__num_online_cpus); 3162 } else { 3163 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3164 atomic_dec(&__num_online_cpus); 3165 } 3166 } 3167 3168 /* 3169 * Activate the first processor. 3170 */ 3171 void __init boot_cpu_init(void) 3172 { 3173 int cpu = smp_processor_id(); 3174 3175 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3176 set_cpu_online(cpu, true); 3177 set_cpu_active(cpu, true); 3178 set_cpu_present(cpu, true); 3179 set_cpu_possible(cpu, true); 3180 3181 #ifdef CONFIG_SMP 3182 __boot_cpu_id = cpu; 3183 #endif 3184 } 3185 3186 /* 3187 * Must be called _AFTER_ setting up the per_cpu areas 3188 */ 3189 void __init boot_cpu_hotplug_init(void) 3190 { 3191 #ifdef CONFIG_SMP 3192 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3193 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3194 #endif 3195 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3196 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3197 } 3198 3199 /* 3200 * These are used for a global "mitigations=" cmdline option for toggling 3201 * optional CPU mitigations. 3202 */ 3203 enum cpu_mitigations { 3204 CPU_MITIGATIONS_OFF, 3205 CPU_MITIGATIONS_AUTO, 3206 CPU_MITIGATIONS_AUTO_NOSMT, 3207 }; 3208 3209 static enum cpu_mitigations cpu_mitigations __ro_after_init = 3210 CPU_MITIGATIONS_AUTO; 3211 3212 static int __init mitigations_parse_cmdline(char *arg) 3213 { 3214 if (!strcmp(arg, "off")) 3215 cpu_mitigations = CPU_MITIGATIONS_OFF; 3216 else if (!strcmp(arg, "auto")) 3217 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3218 else if (!strcmp(arg, "auto,nosmt")) 3219 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3220 else 3221 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3222 arg); 3223 3224 return 0; 3225 } 3226 early_param("mitigations", mitigations_parse_cmdline); 3227 3228 /* mitigations=off */ 3229 bool cpu_mitigations_off(void) 3230 { 3231 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3232 } 3233 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3234 3235 /* mitigations=auto,nosmt */ 3236 bool cpu_mitigations_auto_nosmt(void) 3237 { 3238 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3239 } 3240 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3241