1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 static bool cpu_hotplug_offline_disabled __ro_after_init; 487 488 void cpus_read_lock(void) 489 { 490 percpu_down_read(&cpu_hotplug_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 494 int cpus_read_trylock(void) 495 { 496 return percpu_down_read_trylock(&cpu_hotplug_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); 499 500 void cpus_read_unlock(void) 501 { 502 percpu_up_read(&cpu_hotplug_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 506 void cpus_write_lock(void) 507 { 508 percpu_down_write(&cpu_hotplug_lock); 509 } 510 511 void cpus_write_unlock(void) 512 { 513 percpu_up_write(&cpu_hotplug_lock); 514 } 515 516 void lockdep_assert_cpus_held(void) 517 { 518 /* 519 * We can't have hotplug operations before userspace starts running, 520 * and some init codepaths will knowingly not take the hotplug lock. 521 * This is all valid, so mute lockdep until it makes sense to report 522 * unheld locks. 523 */ 524 if (system_state < SYSTEM_RUNNING) 525 return; 526 527 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 529 530 #ifdef CONFIG_LOCKDEP 531 int lockdep_is_cpus_held(void) 532 { 533 return percpu_rwsem_is_held(&cpu_hotplug_lock); 534 } 535 #endif 536 537 static void lockdep_acquire_cpus_lock(void) 538 { 539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 540 } 541 542 static void lockdep_release_cpus_lock(void) 543 { 544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 545 } 546 547 /* Declare CPU offlining not supported */ 548 void cpu_hotplug_disable_offlining(void) 549 { 550 cpu_maps_update_begin(); 551 cpu_hotplug_offline_disabled = true; 552 cpu_maps_update_done(); 553 } 554 555 /* 556 * Wait for currently running CPU hotplug operations to complete (if any) and 557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 559 * hotplug path before performing hotplug operations. So acquiring that lock 560 * guarantees mutual exclusion from any currently running hotplug operations. 561 */ 562 void cpu_hotplug_disable(void) 563 { 564 cpu_maps_update_begin(); 565 cpu_hotplug_disabled++; 566 cpu_maps_update_done(); 567 } 568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 569 570 static void __cpu_hotplug_enable(void) 571 { 572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 573 return; 574 cpu_hotplug_disabled--; 575 } 576 577 void cpu_hotplug_enable(void) 578 { 579 cpu_maps_update_begin(); 580 __cpu_hotplug_enable(); 581 cpu_maps_update_done(); 582 } 583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 584 585 #else 586 587 static void lockdep_acquire_cpus_lock(void) 588 { 589 } 590 591 static void lockdep_release_cpus_lock(void) 592 { 593 } 594 595 #endif /* CONFIG_HOTPLUG_CPU */ 596 597 /* 598 * Architectures that need SMT-specific errata handling during SMT hotplug 599 * should override this. 600 */ 601 void __weak arch_smt_update(void) { } 602 603 #ifdef CONFIG_HOTPLUG_SMT 604 605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 606 static unsigned int cpu_smt_max_threads __ro_after_init; 607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 608 609 void __init cpu_smt_disable(bool force) 610 { 611 if (!cpu_smt_possible()) 612 return; 613 614 if (force) { 615 pr_info("SMT: Force disabled\n"); 616 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 617 } else { 618 pr_info("SMT: disabled\n"); 619 cpu_smt_control = CPU_SMT_DISABLED; 620 } 621 cpu_smt_num_threads = 1; 622 } 623 624 /* 625 * The decision whether SMT is supported can only be done after the full 626 * CPU identification. Called from architecture code. 627 */ 628 void __init cpu_smt_set_num_threads(unsigned int num_threads, 629 unsigned int max_threads) 630 { 631 WARN_ON(!num_threads || (num_threads > max_threads)); 632 633 if (max_threads == 1) 634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 635 636 cpu_smt_max_threads = max_threads; 637 638 /* 639 * If SMT has been disabled via the kernel command line or SMT is 640 * not supported, set cpu_smt_num_threads to 1 for consistency. 641 * If enabled, take the architecture requested number of threads 642 * to bring up into account. 643 */ 644 if (cpu_smt_control != CPU_SMT_ENABLED) 645 cpu_smt_num_threads = 1; 646 else if (num_threads < cpu_smt_num_threads) 647 cpu_smt_num_threads = num_threads; 648 } 649 650 static int __init smt_cmdline_disable(char *str) 651 { 652 cpu_smt_disable(str && !strcmp(str, "force")); 653 return 0; 654 } 655 early_param("nosmt", smt_cmdline_disable); 656 657 /* 658 * For Archicture supporting partial SMT states check if the thread is allowed. 659 * Otherwise this has already been checked through cpu_smt_max_threads when 660 * setting the SMT level. 661 */ 662 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 663 { 664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 665 return topology_smt_thread_allowed(cpu); 666 #else 667 return true; 668 #endif 669 } 670 671 static inline bool cpu_bootable(unsigned int cpu) 672 { 673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 674 return true; 675 676 /* All CPUs are bootable if controls are not configured */ 677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 678 return true; 679 680 /* All CPUs are bootable if CPU is not SMT capable */ 681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 682 return true; 683 684 if (topology_is_primary_thread(cpu)) 685 return true; 686 687 /* 688 * On x86 it's required to boot all logical CPUs at least once so 689 * that the init code can get a chance to set CR4.MCE on each 690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 691 * core will shutdown the machine. 692 */ 693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 694 } 695 696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 697 bool cpu_smt_possible(void) 698 { 699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 701 } 702 EXPORT_SYMBOL_GPL(cpu_smt_possible); 703 704 #else 705 static inline bool cpu_bootable(unsigned int cpu) { return true; } 706 #endif 707 708 static inline enum cpuhp_state 709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 710 { 711 enum cpuhp_state prev_state = st->state; 712 bool bringup = st->state < target; 713 714 st->rollback = false; 715 st->last = NULL; 716 717 st->target = target; 718 st->single = false; 719 st->bringup = bringup; 720 if (cpu_dying(cpu) != !bringup) 721 set_cpu_dying(cpu, !bringup); 722 723 return prev_state; 724 } 725 726 static inline void 727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 728 enum cpuhp_state prev_state) 729 { 730 bool bringup = !st->bringup; 731 732 st->target = prev_state; 733 734 /* 735 * Already rolling back. No need invert the bringup value or to change 736 * the current state. 737 */ 738 if (st->rollback) 739 return; 740 741 st->rollback = true; 742 743 /* 744 * If we have st->last we need to undo partial multi_instance of this 745 * state first. Otherwise start undo at the previous state. 746 */ 747 if (!st->last) { 748 if (st->bringup) 749 st->state--; 750 else 751 st->state++; 752 } 753 754 st->bringup = bringup; 755 if (cpu_dying(cpu) != !bringup) 756 set_cpu_dying(cpu, !bringup); 757 } 758 759 /* Regular hotplug invocation of the AP hotplug thread */ 760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 761 { 762 if (!st->single && st->state == st->target) 763 return; 764 765 st->result = 0; 766 /* 767 * Make sure the above stores are visible before should_run becomes 768 * true. Paired with the mb() above in cpuhp_thread_fun() 769 */ 770 smp_mb(); 771 st->should_run = true; 772 wake_up_process(st->thread); 773 wait_for_ap_thread(st, st->bringup); 774 } 775 776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 777 enum cpuhp_state target) 778 { 779 enum cpuhp_state prev_state; 780 int ret; 781 782 prev_state = cpuhp_set_state(cpu, st, target); 783 __cpuhp_kick_ap(st); 784 if ((ret = st->result)) { 785 cpuhp_reset_state(cpu, st, prev_state); 786 __cpuhp_kick_ap(st); 787 } 788 789 return ret; 790 } 791 792 static int bringup_wait_for_ap_online(unsigned int cpu) 793 { 794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 795 796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 797 wait_for_ap_thread(st, true); 798 if (WARN_ON_ONCE((!cpu_online(cpu)))) 799 return -ECANCELED; 800 801 /* Unpark the hotplug thread of the target cpu */ 802 kthread_unpark(st->thread); 803 804 /* 805 * SMT soft disabling on X86 requires to bring the CPU out of the 806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 807 * CPU marked itself as booted_once in notify_cpu_starting() so the 808 * cpu_bootable() check will now return false if this is not the 809 * primary sibling. 810 */ 811 if (!cpu_bootable(cpu)) 812 return -ECANCELED; 813 return 0; 814 } 815 816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 817 static int cpuhp_kick_ap_alive(unsigned int cpu) 818 { 819 if (!cpuhp_can_boot_ap(cpu)) 820 return -EAGAIN; 821 822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 823 } 824 825 static int cpuhp_bringup_ap(unsigned int cpu) 826 { 827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 828 int ret; 829 830 /* 831 * Some architectures have to walk the irq descriptors to 832 * setup the vector space for the cpu which comes online. 833 * Prevent irq alloc/free across the bringup. 834 */ 835 irq_lock_sparse(); 836 837 ret = cpuhp_bp_sync_alive(cpu); 838 if (ret) 839 goto out_unlock; 840 841 ret = bringup_wait_for_ap_online(cpu); 842 if (ret) 843 goto out_unlock; 844 845 irq_unlock_sparse(); 846 847 if (st->target <= CPUHP_AP_ONLINE_IDLE) 848 return 0; 849 850 return cpuhp_kick_ap(cpu, st, st->target); 851 852 out_unlock: 853 irq_unlock_sparse(); 854 return ret; 855 } 856 #else 857 static int bringup_cpu(unsigned int cpu) 858 { 859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 860 struct task_struct *idle = idle_thread_get(cpu); 861 int ret; 862 863 if (!cpuhp_can_boot_ap(cpu)) 864 return -EAGAIN; 865 866 /* 867 * Some architectures have to walk the irq descriptors to 868 * setup the vector space for the cpu which comes online. 869 * 870 * Prevent irq alloc/free across the bringup by acquiring the 871 * sparse irq lock. Hold it until the upcoming CPU completes the 872 * startup in cpuhp_online_idle() which allows to avoid 873 * intermediate synchronization points in the architecture code. 874 */ 875 irq_lock_sparse(); 876 877 ret = __cpu_up(cpu, idle); 878 if (ret) 879 goto out_unlock; 880 881 ret = cpuhp_bp_sync_alive(cpu); 882 if (ret) 883 goto out_unlock; 884 885 ret = bringup_wait_for_ap_online(cpu); 886 if (ret) 887 goto out_unlock; 888 889 irq_unlock_sparse(); 890 891 if (st->target <= CPUHP_AP_ONLINE_IDLE) 892 return 0; 893 894 return cpuhp_kick_ap(cpu, st, st->target); 895 896 out_unlock: 897 irq_unlock_sparse(); 898 return ret; 899 } 900 #endif 901 902 static int finish_cpu(unsigned int cpu) 903 { 904 struct task_struct *idle = idle_thread_get(cpu); 905 struct mm_struct *mm = idle->active_mm; 906 907 /* 908 * sched_force_init_mm() ensured the use of &init_mm, 909 * drop that refcount now that the CPU has stopped. 910 */ 911 WARN_ON(mm != &init_mm); 912 idle->active_mm = NULL; 913 mmdrop_lazy_tlb(mm); 914 915 return 0; 916 } 917 918 /* 919 * Hotplug state machine related functions 920 */ 921 922 /* 923 * Get the next state to run. Empty ones will be skipped. Returns true if a 924 * state must be run. 925 * 926 * st->state will be modified ahead of time, to match state_to_run, as if it 927 * has already ran. 928 */ 929 static bool cpuhp_next_state(bool bringup, 930 enum cpuhp_state *state_to_run, 931 struct cpuhp_cpu_state *st, 932 enum cpuhp_state target) 933 { 934 do { 935 if (bringup) { 936 if (st->state >= target) 937 return false; 938 939 *state_to_run = ++st->state; 940 } else { 941 if (st->state <= target) 942 return false; 943 944 *state_to_run = st->state--; 945 } 946 947 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 948 break; 949 } while (true); 950 951 return true; 952 } 953 954 static int __cpuhp_invoke_callback_range(bool bringup, 955 unsigned int cpu, 956 struct cpuhp_cpu_state *st, 957 enum cpuhp_state target, 958 bool nofail) 959 { 960 enum cpuhp_state state; 961 int ret = 0; 962 963 while (cpuhp_next_state(bringup, &state, st, target)) { 964 int err; 965 966 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 967 if (!err) 968 continue; 969 970 if (nofail) { 971 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 972 cpu, bringup ? "UP" : "DOWN", 973 cpuhp_get_step(st->state)->name, 974 st->state, err); 975 ret = -1; 976 } else { 977 ret = err; 978 break; 979 } 980 } 981 982 return ret; 983 } 984 985 static inline int cpuhp_invoke_callback_range(bool bringup, 986 unsigned int cpu, 987 struct cpuhp_cpu_state *st, 988 enum cpuhp_state target) 989 { 990 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 991 } 992 993 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 994 unsigned int cpu, 995 struct cpuhp_cpu_state *st, 996 enum cpuhp_state target) 997 { 998 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 999 } 1000 1001 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1002 { 1003 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1004 return true; 1005 /* 1006 * When CPU hotplug is disabled, then taking the CPU down is not 1007 * possible because takedown_cpu() and the architecture and 1008 * subsystem specific mechanisms are not available. So the CPU 1009 * which would be completely unplugged again needs to stay around 1010 * in the current state. 1011 */ 1012 return st->state <= CPUHP_BRINGUP_CPU; 1013 } 1014 1015 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1016 enum cpuhp_state target) 1017 { 1018 enum cpuhp_state prev_state = st->state; 1019 int ret = 0; 1020 1021 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1022 if (ret) { 1023 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1024 ret, cpu, cpuhp_get_step(st->state)->name, 1025 st->state); 1026 1027 cpuhp_reset_state(cpu, st, prev_state); 1028 if (can_rollback_cpu(st)) 1029 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1030 prev_state)); 1031 } 1032 return ret; 1033 } 1034 1035 /* 1036 * The cpu hotplug threads manage the bringup and teardown of the cpus 1037 */ 1038 static int cpuhp_should_run(unsigned int cpu) 1039 { 1040 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1041 1042 return st->should_run; 1043 } 1044 1045 /* 1046 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1047 * callbacks when a state gets [un]installed at runtime. 1048 * 1049 * Each invocation of this function by the smpboot thread does a single AP 1050 * state callback. 1051 * 1052 * It has 3 modes of operation: 1053 * - single: runs st->cb_state 1054 * - up: runs ++st->state, while st->state < st->target 1055 * - down: runs st->state--, while st->state > st->target 1056 * 1057 * When complete or on error, should_run is cleared and the completion is fired. 1058 */ 1059 static void cpuhp_thread_fun(unsigned int cpu) 1060 { 1061 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1062 bool bringup = st->bringup; 1063 enum cpuhp_state state; 1064 1065 if (WARN_ON_ONCE(!st->should_run)) 1066 return; 1067 1068 /* 1069 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1070 * that if we see ->should_run we also see the rest of the state. 1071 */ 1072 smp_mb(); 1073 1074 /* 1075 * The BP holds the hotplug lock, but we're now running on the AP, 1076 * ensure that anybody asserting the lock is held, will actually find 1077 * it so. 1078 */ 1079 lockdep_acquire_cpus_lock(); 1080 cpuhp_lock_acquire(bringup); 1081 1082 if (st->single) { 1083 state = st->cb_state; 1084 st->should_run = false; 1085 } else { 1086 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1087 if (!st->should_run) 1088 goto end; 1089 } 1090 1091 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1092 1093 if (cpuhp_is_atomic_state(state)) { 1094 local_irq_disable(); 1095 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1096 local_irq_enable(); 1097 1098 /* 1099 * STARTING/DYING must not fail! 1100 */ 1101 WARN_ON_ONCE(st->result); 1102 } else { 1103 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1104 } 1105 1106 if (st->result) { 1107 /* 1108 * If we fail on a rollback, we're up a creek without no 1109 * paddle, no way forward, no way back. We loose, thanks for 1110 * playing. 1111 */ 1112 WARN_ON_ONCE(st->rollback); 1113 st->should_run = false; 1114 } 1115 1116 end: 1117 cpuhp_lock_release(bringup); 1118 lockdep_release_cpus_lock(); 1119 1120 if (!st->should_run) 1121 complete_ap_thread(st, bringup); 1122 } 1123 1124 /* Invoke a single callback on a remote cpu */ 1125 static int 1126 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1127 struct hlist_node *node) 1128 { 1129 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1130 int ret; 1131 1132 if (!cpu_online(cpu)) 1133 return 0; 1134 1135 cpuhp_lock_acquire(false); 1136 cpuhp_lock_release(false); 1137 1138 cpuhp_lock_acquire(true); 1139 cpuhp_lock_release(true); 1140 1141 /* 1142 * If we are up and running, use the hotplug thread. For early calls 1143 * we invoke the thread function directly. 1144 */ 1145 if (!st->thread) 1146 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1147 1148 st->rollback = false; 1149 st->last = NULL; 1150 1151 st->node = node; 1152 st->bringup = bringup; 1153 st->cb_state = state; 1154 st->single = true; 1155 1156 __cpuhp_kick_ap(st); 1157 1158 /* 1159 * If we failed and did a partial, do a rollback. 1160 */ 1161 if ((ret = st->result) && st->last) { 1162 st->rollback = true; 1163 st->bringup = !bringup; 1164 1165 __cpuhp_kick_ap(st); 1166 } 1167 1168 /* 1169 * Clean up the leftovers so the next hotplug operation wont use stale 1170 * data. 1171 */ 1172 st->node = st->last = NULL; 1173 return ret; 1174 } 1175 1176 static int cpuhp_kick_ap_work(unsigned int cpu) 1177 { 1178 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1179 enum cpuhp_state prev_state = st->state; 1180 int ret; 1181 1182 cpuhp_lock_acquire(false); 1183 cpuhp_lock_release(false); 1184 1185 cpuhp_lock_acquire(true); 1186 cpuhp_lock_release(true); 1187 1188 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1189 ret = cpuhp_kick_ap(cpu, st, st->target); 1190 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1191 1192 return ret; 1193 } 1194 1195 static struct smp_hotplug_thread cpuhp_threads = { 1196 .store = &cpuhp_state.thread, 1197 .thread_should_run = cpuhp_should_run, 1198 .thread_fn = cpuhp_thread_fun, 1199 .thread_comm = "cpuhp/%u", 1200 .selfparking = true, 1201 }; 1202 1203 static __init void cpuhp_init_state(void) 1204 { 1205 struct cpuhp_cpu_state *st; 1206 int cpu; 1207 1208 for_each_possible_cpu(cpu) { 1209 st = per_cpu_ptr(&cpuhp_state, cpu); 1210 init_completion(&st->done_up); 1211 init_completion(&st->done_down); 1212 } 1213 } 1214 1215 void __init cpuhp_threads_init(void) 1216 { 1217 cpuhp_init_state(); 1218 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1219 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1220 } 1221 1222 #ifdef CONFIG_HOTPLUG_CPU 1223 #ifndef arch_clear_mm_cpumask_cpu 1224 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1225 #endif 1226 1227 /** 1228 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1229 * @cpu: a CPU id 1230 * 1231 * This function walks all processes, finds a valid mm struct for each one and 1232 * then clears a corresponding bit in mm's cpumask. While this all sounds 1233 * trivial, there are various non-obvious corner cases, which this function 1234 * tries to solve in a safe manner. 1235 * 1236 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1237 * be called only for an already offlined CPU. 1238 */ 1239 void clear_tasks_mm_cpumask(int cpu) 1240 { 1241 struct task_struct *p; 1242 1243 /* 1244 * This function is called after the cpu is taken down and marked 1245 * offline, so its not like new tasks will ever get this cpu set in 1246 * their mm mask. -- Peter Zijlstra 1247 * Thus, we may use rcu_read_lock() here, instead of grabbing 1248 * full-fledged tasklist_lock. 1249 */ 1250 WARN_ON(cpu_online(cpu)); 1251 rcu_read_lock(); 1252 for_each_process(p) { 1253 struct task_struct *t; 1254 1255 /* 1256 * Main thread might exit, but other threads may still have 1257 * a valid mm. Find one. 1258 */ 1259 t = find_lock_task_mm(p); 1260 if (!t) 1261 continue; 1262 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1263 task_unlock(t); 1264 } 1265 rcu_read_unlock(); 1266 } 1267 1268 /* Take this CPU down. */ 1269 static int take_cpu_down(void *_param) 1270 { 1271 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1272 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1273 int err, cpu = smp_processor_id(); 1274 1275 /* Ensure this CPU doesn't handle any more interrupts. */ 1276 err = __cpu_disable(); 1277 if (err < 0) 1278 return err; 1279 1280 /* 1281 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1282 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1283 */ 1284 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1285 1286 /* 1287 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1288 */ 1289 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1290 1291 /* Park the stopper thread */ 1292 stop_machine_park(cpu); 1293 return 0; 1294 } 1295 1296 static int takedown_cpu(unsigned int cpu) 1297 { 1298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1299 int err; 1300 1301 /* Park the smpboot threads */ 1302 kthread_park(st->thread); 1303 1304 /* 1305 * Prevent irq alloc/free while the dying cpu reorganizes the 1306 * interrupt affinities. 1307 */ 1308 irq_lock_sparse(); 1309 1310 /* 1311 * So now all preempt/rcu users must observe !cpu_active(). 1312 */ 1313 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1314 if (err) { 1315 /* CPU refused to die */ 1316 irq_unlock_sparse(); 1317 /* Unpark the hotplug thread so we can rollback there */ 1318 kthread_unpark(st->thread); 1319 return err; 1320 } 1321 BUG_ON(cpu_online(cpu)); 1322 1323 /* 1324 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1325 * all runnable tasks from the CPU, there's only the idle task left now 1326 * that the migration thread is done doing the stop_machine thing. 1327 * 1328 * Wait for the stop thread to go away. 1329 */ 1330 wait_for_ap_thread(st, false); 1331 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1332 1333 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1334 irq_unlock_sparse(); 1335 1336 hotplug_cpu__broadcast_tick_pull(cpu); 1337 /* This actually kills the CPU. */ 1338 __cpu_die(cpu); 1339 1340 cpuhp_bp_sync_dead(cpu); 1341 1342 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); 1343 1344 /* 1345 * Callbacks must be re-integrated right away to the RCU state machine. 1346 * Otherwise an RCU callback could block a further teardown function 1347 * waiting for its completion. 1348 */ 1349 rcutree_migrate_callbacks(cpu); 1350 1351 return 0; 1352 } 1353 1354 static void cpuhp_complete_idle_dead(void *arg) 1355 { 1356 struct cpuhp_cpu_state *st = arg; 1357 1358 complete_ap_thread(st, false); 1359 } 1360 1361 void cpuhp_report_idle_dead(void) 1362 { 1363 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1364 1365 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1366 tick_assert_timekeeping_handover(); 1367 rcutree_report_cpu_dead(); 1368 st->state = CPUHP_AP_IDLE_DEAD; 1369 /* 1370 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1371 * to an online cpu. 1372 */ 1373 smp_call_function_single(cpumask_first(cpu_online_mask), 1374 cpuhp_complete_idle_dead, st, 0); 1375 } 1376 1377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1378 enum cpuhp_state target) 1379 { 1380 enum cpuhp_state prev_state = st->state; 1381 int ret = 0; 1382 1383 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1384 if (ret) { 1385 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1386 ret, cpu, cpuhp_get_step(st->state)->name, 1387 st->state); 1388 1389 cpuhp_reset_state(cpu, st, prev_state); 1390 1391 if (st->state < prev_state) 1392 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1393 prev_state)); 1394 } 1395 1396 return ret; 1397 } 1398 1399 /* Requires cpu_add_remove_lock to be held */ 1400 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1401 enum cpuhp_state target) 1402 { 1403 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1404 int prev_state, ret = 0; 1405 1406 if (num_online_cpus() == 1) 1407 return -EBUSY; 1408 1409 if (!cpu_present(cpu)) 1410 return -EINVAL; 1411 1412 cpus_write_lock(); 1413 1414 cpuhp_tasks_frozen = tasks_frozen; 1415 1416 prev_state = cpuhp_set_state(cpu, st, target); 1417 /* 1418 * If the current CPU state is in the range of the AP hotplug thread, 1419 * then we need to kick the thread. 1420 */ 1421 if (st->state > CPUHP_TEARDOWN_CPU) { 1422 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1423 ret = cpuhp_kick_ap_work(cpu); 1424 /* 1425 * The AP side has done the error rollback already. Just 1426 * return the error code.. 1427 */ 1428 if (ret) 1429 goto out; 1430 1431 /* 1432 * We might have stopped still in the range of the AP hotplug 1433 * thread. Nothing to do anymore. 1434 */ 1435 if (st->state > CPUHP_TEARDOWN_CPU) 1436 goto out; 1437 1438 st->target = target; 1439 } 1440 /* 1441 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1442 * to do the further cleanups. 1443 */ 1444 ret = cpuhp_down_callbacks(cpu, st, target); 1445 if (ret && st->state < prev_state) { 1446 if (st->state == CPUHP_TEARDOWN_CPU) { 1447 cpuhp_reset_state(cpu, st, prev_state); 1448 __cpuhp_kick_ap(st); 1449 } else { 1450 WARN(1, "DEAD callback error for CPU%d", cpu); 1451 } 1452 } 1453 1454 out: 1455 cpus_write_unlock(); 1456 arch_smt_update(); 1457 return ret; 1458 } 1459 1460 struct cpu_down_work { 1461 unsigned int cpu; 1462 enum cpuhp_state target; 1463 }; 1464 1465 static long __cpu_down_maps_locked(void *arg) 1466 { 1467 struct cpu_down_work *work = arg; 1468 1469 return _cpu_down(work->cpu, 0, work->target); 1470 } 1471 1472 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1473 { 1474 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1475 1476 /* 1477 * If the platform does not support hotplug, report it explicitly to 1478 * differentiate it from a transient offlining failure. 1479 */ 1480 if (cpu_hotplug_offline_disabled) 1481 return -EOPNOTSUPP; 1482 if (cpu_hotplug_disabled) 1483 return -EBUSY; 1484 1485 /* 1486 * Ensure that the control task does not run on the to be offlined 1487 * CPU to prevent a deadlock against cfs_b->period_timer. 1488 * Also keep at least one housekeeping cpu onlined to avoid generating 1489 * an empty sched_domain span. 1490 */ 1491 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1492 if (cpu != work.cpu) 1493 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1494 } 1495 return -EBUSY; 1496 } 1497 1498 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1499 { 1500 int err; 1501 1502 cpu_maps_update_begin(); 1503 err = cpu_down_maps_locked(cpu, target); 1504 cpu_maps_update_done(); 1505 return err; 1506 } 1507 1508 /** 1509 * cpu_device_down - Bring down a cpu device 1510 * @dev: Pointer to the cpu device to offline 1511 * 1512 * This function is meant to be used by device core cpu subsystem only. 1513 * 1514 * Other subsystems should use remove_cpu() instead. 1515 * 1516 * Return: %0 on success or a negative errno code 1517 */ 1518 int cpu_device_down(struct device *dev) 1519 { 1520 return cpu_down(dev->id, CPUHP_OFFLINE); 1521 } 1522 1523 int remove_cpu(unsigned int cpu) 1524 { 1525 int ret; 1526 1527 lock_device_hotplug(); 1528 ret = device_offline(get_cpu_device(cpu)); 1529 unlock_device_hotplug(); 1530 1531 return ret; 1532 } 1533 EXPORT_SYMBOL_GPL(remove_cpu); 1534 1535 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1536 { 1537 unsigned int cpu; 1538 int error; 1539 1540 cpu_maps_update_begin(); 1541 1542 /* 1543 * Make certain the cpu I'm about to reboot on is online. 1544 * 1545 * This is inline to what migrate_to_reboot_cpu() already do. 1546 */ 1547 if (!cpu_online(primary_cpu)) 1548 primary_cpu = cpumask_first(cpu_online_mask); 1549 1550 for_each_online_cpu(cpu) { 1551 if (cpu == primary_cpu) 1552 continue; 1553 1554 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1555 if (error) { 1556 pr_err("Failed to offline CPU%d - error=%d", 1557 cpu, error); 1558 break; 1559 } 1560 } 1561 1562 /* 1563 * Ensure all but the reboot CPU are offline. 1564 */ 1565 BUG_ON(num_online_cpus() > 1); 1566 1567 /* 1568 * Make sure the CPUs won't be enabled by someone else after this 1569 * point. Kexec will reboot to a new kernel shortly resetting 1570 * everything along the way. 1571 */ 1572 cpu_hotplug_disabled++; 1573 1574 cpu_maps_update_done(); 1575 } 1576 1577 #else 1578 #define takedown_cpu NULL 1579 #endif /*CONFIG_HOTPLUG_CPU*/ 1580 1581 /** 1582 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1583 * @cpu: cpu that just started 1584 * 1585 * It must be called by the arch code on the new cpu, before the new cpu 1586 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1587 */ 1588 void notify_cpu_starting(unsigned int cpu) 1589 { 1590 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1591 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1592 1593 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1594 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1595 1596 /* 1597 * STARTING must not fail! 1598 */ 1599 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1600 } 1601 1602 /* 1603 * Called from the idle task. Wake up the controlling task which brings the 1604 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1605 * online bringup to the hotplug thread. 1606 */ 1607 void cpuhp_online_idle(enum cpuhp_state state) 1608 { 1609 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1610 1611 /* Happens for the boot cpu */ 1612 if (state != CPUHP_AP_ONLINE_IDLE) 1613 return; 1614 1615 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1616 1617 /* 1618 * Unpark the stopper thread before we start the idle loop (and start 1619 * scheduling); this ensures the stopper task is always available. 1620 */ 1621 stop_machine_unpark(smp_processor_id()); 1622 1623 st->state = CPUHP_AP_ONLINE_IDLE; 1624 complete_ap_thread(st, true); 1625 } 1626 1627 /* Requires cpu_add_remove_lock to be held */ 1628 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1629 { 1630 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1631 struct task_struct *idle; 1632 int ret = 0; 1633 1634 cpus_write_lock(); 1635 1636 if (!cpu_present(cpu)) { 1637 ret = -EINVAL; 1638 goto out; 1639 } 1640 1641 /* 1642 * The caller of cpu_up() might have raced with another 1643 * caller. Nothing to do. 1644 */ 1645 if (st->state >= target) 1646 goto out; 1647 1648 if (st->state == CPUHP_OFFLINE) { 1649 /* Let it fail before we try to bring the cpu up */ 1650 idle = idle_thread_get(cpu); 1651 if (IS_ERR(idle)) { 1652 ret = PTR_ERR(idle); 1653 goto out; 1654 } 1655 1656 /* 1657 * Reset stale stack state from the last time this CPU was online. 1658 */ 1659 scs_task_reset(idle); 1660 kasan_unpoison_task_stack(idle); 1661 } 1662 1663 cpuhp_tasks_frozen = tasks_frozen; 1664 1665 cpuhp_set_state(cpu, st, target); 1666 /* 1667 * If the current CPU state is in the range of the AP hotplug thread, 1668 * then we need to kick the thread once more. 1669 */ 1670 if (st->state > CPUHP_BRINGUP_CPU) { 1671 ret = cpuhp_kick_ap_work(cpu); 1672 /* 1673 * The AP side has done the error rollback already. Just 1674 * return the error code.. 1675 */ 1676 if (ret) 1677 goto out; 1678 } 1679 1680 /* 1681 * Try to reach the target state. We max out on the BP at 1682 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1683 * responsible for bringing it up to the target state. 1684 */ 1685 target = min((int)target, CPUHP_BRINGUP_CPU); 1686 ret = cpuhp_up_callbacks(cpu, st, target); 1687 out: 1688 cpus_write_unlock(); 1689 arch_smt_update(); 1690 return ret; 1691 } 1692 1693 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1694 { 1695 int err = 0; 1696 1697 if (!cpu_possible(cpu)) { 1698 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1699 cpu); 1700 return -EINVAL; 1701 } 1702 1703 err = try_online_node(cpu_to_node(cpu)); 1704 if (err) 1705 return err; 1706 1707 cpu_maps_update_begin(); 1708 1709 if (cpu_hotplug_disabled) { 1710 err = -EBUSY; 1711 goto out; 1712 } 1713 if (!cpu_bootable(cpu)) { 1714 err = -EPERM; 1715 goto out; 1716 } 1717 1718 err = _cpu_up(cpu, 0, target); 1719 out: 1720 cpu_maps_update_done(); 1721 return err; 1722 } 1723 1724 /** 1725 * cpu_device_up - Bring up a cpu device 1726 * @dev: Pointer to the cpu device to online 1727 * 1728 * This function is meant to be used by device core cpu subsystem only. 1729 * 1730 * Other subsystems should use add_cpu() instead. 1731 * 1732 * Return: %0 on success or a negative errno code 1733 */ 1734 int cpu_device_up(struct device *dev) 1735 { 1736 return cpu_up(dev->id, CPUHP_ONLINE); 1737 } 1738 1739 int add_cpu(unsigned int cpu) 1740 { 1741 int ret; 1742 1743 lock_device_hotplug(); 1744 ret = device_online(get_cpu_device(cpu)); 1745 unlock_device_hotplug(); 1746 1747 return ret; 1748 } 1749 EXPORT_SYMBOL_GPL(add_cpu); 1750 1751 /** 1752 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1753 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1754 * 1755 * On some architectures like arm64, we can hibernate on any CPU, but on 1756 * wake up the CPU we hibernated on might be offline as a side effect of 1757 * using maxcpus= for example. 1758 * 1759 * Return: %0 on success or a negative errno code 1760 */ 1761 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1762 { 1763 int ret; 1764 1765 if (!cpu_online(sleep_cpu)) { 1766 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1767 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1768 if (ret) { 1769 pr_err("Failed to bring hibernate-CPU up!\n"); 1770 return ret; 1771 } 1772 } 1773 return 0; 1774 } 1775 1776 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1777 enum cpuhp_state target) 1778 { 1779 unsigned int cpu; 1780 1781 for_each_cpu(cpu, mask) { 1782 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1783 1784 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1785 /* 1786 * If this failed then cpu_up() might have only 1787 * rolled back to CPUHP_BP_KICK_AP for the final 1788 * online. Clean it up. NOOP if already rolled back. 1789 */ 1790 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1791 } 1792 1793 if (!--ncpus) 1794 break; 1795 } 1796 } 1797 1798 #ifdef CONFIG_HOTPLUG_PARALLEL 1799 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1800 1801 static int __init parallel_bringup_parse_param(char *arg) 1802 { 1803 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1804 } 1805 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1806 1807 #ifdef CONFIG_HOTPLUG_SMT 1808 static inline bool cpuhp_smt_aware(void) 1809 { 1810 return cpu_smt_max_threads > 1; 1811 } 1812 1813 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1814 { 1815 return cpu_primary_thread_mask; 1816 } 1817 #else 1818 static inline bool cpuhp_smt_aware(void) 1819 { 1820 return false; 1821 } 1822 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1823 { 1824 return cpu_none_mask; 1825 } 1826 #endif 1827 1828 bool __weak arch_cpuhp_init_parallel_bringup(void) 1829 { 1830 return true; 1831 } 1832 1833 /* 1834 * On architectures which have enabled parallel bringup this invokes all BP 1835 * prepare states for each of the to be onlined APs first. The last state 1836 * sends the startup IPI to the APs. The APs proceed through the low level 1837 * bringup code in parallel and then wait for the control CPU to release 1838 * them one by one for the final onlining procedure. 1839 * 1840 * This avoids waiting for each AP to respond to the startup IPI in 1841 * CPUHP_BRINGUP_CPU. 1842 */ 1843 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1844 { 1845 const struct cpumask *mask = cpu_present_mask; 1846 1847 if (__cpuhp_parallel_bringup) 1848 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1849 if (!__cpuhp_parallel_bringup) 1850 return false; 1851 1852 if (cpuhp_smt_aware()) { 1853 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1854 static struct cpumask tmp_mask __initdata; 1855 1856 /* 1857 * X86 requires to prevent that SMT siblings stopped while 1858 * the primary thread does a microcode update for various 1859 * reasons. Bring the primary threads up first. 1860 */ 1861 cpumask_and(&tmp_mask, mask, pmask); 1862 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1863 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1864 /* Account for the online CPUs */ 1865 ncpus -= num_online_cpus(); 1866 if (!ncpus) 1867 return true; 1868 /* Create the mask for secondary CPUs */ 1869 cpumask_andnot(&tmp_mask, mask, pmask); 1870 mask = &tmp_mask; 1871 } 1872 1873 /* Bring the not-yet started CPUs up */ 1874 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1875 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1876 return true; 1877 } 1878 #else 1879 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1880 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1881 1882 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1883 { 1884 if (!max_cpus) 1885 return; 1886 1887 /* Try parallel bringup optimization if enabled */ 1888 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1889 return; 1890 1891 /* Full per CPU serialized bringup */ 1892 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1893 } 1894 1895 #ifdef CONFIG_PM_SLEEP_SMP 1896 static cpumask_var_t frozen_cpus; 1897 1898 int freeze_secondary_cpus(int primary) 1899 { 1900 int cpu, error = 0; 1901 1902 cpu_maps_update_begin(); 1903 if (primary == -1) { 1904 primary = cpumask_first(cpu_online_mask); 1905 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1906 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1907 } else { 1908 if (!cpu_online(primary)) 1909 primary = cpumask_first(cpu_online_mask); 1910 } 1911 1912 /* 1913 * We take down all of the non-boot CPUs in one shot to avoid races 1914 * with the userspace trying to use the CPU hotplug at the same time 1915 */ 1916 cpumask_clear(frozen_cpus); 1917 1918 pr_info("Disabling non-boot CPUs ...\n"); 1919 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1920 if (!cpu_online(cpu) || cpu == primary) 1921 continue; 1922 1923 if (pm_wakeup_pending()) { 1924 pr_info("Wakeup pending. Abort CPU freeze\n"); 1925 error = -EBUSY; 1926 break; 1927 } 1928 1929 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1930 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1931 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1932 if (!error) 1933 cpumask_set_cpu(cpu, frozen_cpus); 1934 else { 1935 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1936 break; 1937 } 1938 } 1939 1940 if (!error) 1941 BUG_ON(num_online_cpus() > 1); 1942 else 1943 pr_err("Non-boot CPUs are not disabled\n"); 1944 1945 /* 1946 * Make sure the CPUs won't be enabled by someone else. We need to do 1947 * this even in case of failure as all freeze_secondary_cpus() users are 1948 * supposed to do thaw_secondary_cpus() on the failure path. 1949 */ 1950 cpu_hotplug_disabled++; 1951 1952 cpu_maps_update_done(); 1953 return error; 1954 } 1955 1956 void __weak arch_thaw_secondary_cpus_begin(void) 1957 { 1958 } 1959 1960 void __weak arch_thaw_secondary_cpus_end(void) 1961 { 1962 } 1963 1964 void thaw_secondary_cpus(void) 1965 { 1966 int cpu, error; 1967 1968 /* Allow everyone to use the CPU hotplug again */ 1969 cpu_maps_update_begin(); 1970 __cpu_hotplug_enable(); 1971 if (cpumask_empty(frozen_cpus)) 1972 goto out; 1973 1974 pr_info("Enabling non-boot CPUs ...\n"); 1975 1976 arch_thaw_secondary_cpus_begin(); 1977 1978 for_each_cpu(cpu, frozen_cpus) { 1979 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1980 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1981 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1982 if (!error) { 1983 pr_info("CPU%d is up\n", cpu); 1984 continue; 1985 } 1986 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1987 } 1988 1989 arch_thaw_secondary_cpus_end(); 1990 1991 cpumask_clear(frozen_cpus); 1992 out: 1993 cpu_maps_update_done(); 1994 } 1995 1996 static int __init alloc_frozen_cpus(void) 1997 { 1998 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1999 return -ENOMEM; 2000 return 0; 2001 } 2002 core_initcall(alloc_frozen_cpus); 2003 2004 /* 2005 * When callbacks for CPU hotplug notifications are being executed, we must 2006 * ensure that the state of the system with respect to the tasks being frozen 2007 * or not, as reported by the notification, remains unchanged *throughout the 2008 * duration* of the execution of the callbacks. 2009 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2010 * 2011 * This synchronization is implemented by mutually excluding regular CPU 2012 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2013 * Hibernate notifications. 2014 */ 2015 static int 2016 cpu_hotplug_pm_callback(struct notifier_block *nb, 2017 unsigned long action, void *ptr) 2018 { 2019 switch (action) { 2020 2021 case PM_SUSPEND_PREPARE: 2022 case PM_HIBERNATION_PREPARE: 2023 cpu_hotplug_disable(); 2024 break; 2025 2026 case PM_POST_SUSPEND: 2027 case PM_POST_HIBERNATION: 2028 cpu_hotplug_enable(); 2029 break; 2030 2031 default: 2032 return NOTIFY_DONE; 2033 } 2034 2035 return NOTIFY_OK; 2036 } 2037 2038 2039 static int __init cpu_hotplug_pm_sync_init(void) 2040 { 2041 /* 2042 * cpu_hotplug_pm_callback has higher priority than x86 2043 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2044 * to disable cpu hotplug to avoid cpu hotplug race. 2045 */ 2046 pm_notifier(cpu_hotplug_pm_callback, 0); 2047 return 0; 2048 } 2049 core_initcall(cpu_hotplug_pm_sync_init); 2050 2051 #endif /* CONFIG_PM_SLEEP_SMP */ 2052 2053 int __boot_cpu_id; 2054 2055 #endif /* CONFIG_SMP */ 2056 2057 /* Boot processor state steps */ 2058 static struct cpuhp_step cpuhp_hp_states[] = { 2059 [CPUHP_OFFLINE] = { 2060 .name = "offline", 2061 .startup.single = NULL, 2062 .teardown.single = NULL, 2063 }, 2064 #ifdef CONFIG_SMP 2065 [CPUHP_CREATE_THREADS]= { 2066 .name = "threads:prepare", 2067 .startup.single = smpboot_create_threads, 2068 .teardown.single = NULL, 2069 .cant_stop = true, 2070 }, 2071 [CPUHP_PERF_PREPARE] = { 2072 .name = "perf:prepare", 2073 .startup.single = perf_event_init_cpu, 2074 .teardown.single = perf_event_exit_cpu, 2075 }, 2076 [CPUHP_RANDOM_PREPARE] = { 2077 .name = "random:prepare", 2078 .startup.single = random_prepare_cpu, 2079 .teardown.single = NULL, 2080 }, 2081 [CPUHP_WORKQUEUE_PREP] = { 2082 .name = "workqueue:prepare", 2083 .startup.single = workqueue_prepare_cpu, 2084 .teardown.single = NULL, 2085 }, 2086 [CPUHP_HRTIMERS_PREPARE] = { 2087 .name = "hrtimers:prepare", 2088 .startup.single = hrtimers_prepare_cpu, 2089 .teardown.single = NULL, 2090 }, 2091 [CPUHP_SMPCFD_PREPARE] = { 2092 .name = "smpcfd:prepare", 2093 .startup.single = smpcfd_prepare_cpu, 2094 .teardown.single = smpcfd_dead_cpu, 2095 }, 2096 [CPUHP_RELAY_PREPARE] = { 2097 .name = "relay:prepare", 2098 .startup.single = relay_prepare_cpu, 2099 .teardown.single = NULL, 2100 }, 2101 [CPUHP_RCUTREE_PREP] = { 2102 .name = "RCU/tree:prepare", 2103 .startup.single = rcutree_prepare_cpu, 2104 .teardown.single = rcutree_dead_cpu, 2105 }, 2106 /* 2107 * On the tear-down path, timers_dead_cpu() must be invoked 2108 * before blk_mq_queue_reinit_notify() from notify_dead(), 2109 * otherwise a RCU stall occurs. 2110 */ 2111 [CPUHP_TIMERS_PREPARE] = { 2112 .name = "timers:prepare", 2113 .startup.single = timers_prepare_cpu, 2114 .teardown.single = timers_dead_cpu, 2115 }, 2116 2117 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2118 /* 2119 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2120 * the next step will release it. 2121 */ 2122 [CPUHP_BP_KICK_AP] = { 2123 .name = "cpu:kick_ap", 2124 .startup.single = cpuhp_kick_ap_alive, 2125 }, 2126 2127 /* 2128 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2129 * releases it for the complete bringup. 2130 */ 2131 [CPUHP_BRINGUP_CPU] = { 2132 .name = "cpu:bringup", 2133 .startup.single = cpuhp_bringup_ap, 2134 .teardown.single = finish_cpu, 2135 .cant_stop = true, 2136 }, 2137 #else 2138 /* 2139 * All-in-one CPU bringup state which includes the kick alive. 2140 */ 2141 [CPUHP_BRINGUP_CPU] = { 2142 .name = "cpu:bringup", 2143 .startup.single = bringup_cpu, 2144 .teardown.single = finish_cpu, 2145 .cant_stop = true, 2146 }, 2147 #endif 2148 /* Final state before CPU kills itself */ 2149 [CPUHP_AP_IDLE_DEAD] = { 2150 .name = "idle:dead", 2151 }, 2152 /* 2153 * Last state before CPU enters the idle loop to die. Transient state 2154 * for synchronization. 2155 */ 2156 [CPUHP_AP_OFFLINE] = { 2157 .name = "ap:offline", 2158 .cant_stop = true, 2159 }, 2160 /* First state is scheduler control. Interrupts are disabled */ 2161 [CPUHP_AP_SCHED_STARTING] = { 2162 .name = "sched:starting", 2163 .startup.single = sched_cpu_starting, 2164 .teardown.single = sched_cpu_dying, 2165 }, 2166 [CPUHP_AP_RCUTREE_DYING] = { 2167 .name = "RCU/tree:dying", 2168 .startup.single = NULL, 2169 .teardown.single = rcutree_dying_cpu, 2170 }, 2171 [CPUHP_AP_SMPCFD_DYING] = { 2172 .name = "smpcfd:dying", 2173 .startup.single = NULL, 2174 .teardown.single = smpcfd_dying_cpu, 2175 }, 2176 [CPUHP_AP_HRTIMERS_DYING] = { 2177 .name = "hrtimers:dying", 2178 .startup.single = hrtimers_cpu_starting, 2179 .teardown.single = hrtimers_cpu_dying, 2180 }, 2181 [CPUHP_AP_TICK_DYING] = { 2182 .name = "tick:dying", 2183 .startup.single = NULL, 2184 .teardown.single = tick_cpu_dying, 2185 }, 2186 /* Entry state on starting. Interrupts enabled from here on. Transient 2187 * state for synchronsization */ 2188 [CPUHP_AP_ONLINE] = { 2189 .name = "ap:online", 2190 }, 2191 /* 2192 * Handled on control processor until the plugged processor manages 2193 * this itself. 2194 */ 2195 [CPUHP_TEARDOWN_CPU] = { 2196 .name = "cpu:teardown", 2197 .startup.single = NULL, 2198 .teardown.single = takedown_cpu, 2199 .cant_stop = true, 2200 }, 2201 2202 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2203 .name = "sched:waitempty", 2204 .startup.single = NULL, 2205 .teardown.single = sched_cpu_wait_empty, 2206 }, 2207 2208 /* Handle smpboot threads park/unpark */ 2209 [CPUHP_AP_SMPBOOT_THREADS] = { 2210 .name = "smpboot/threads:online", 2211 .startup.single = smpboot_unpark_threads, 2212 .teardown.single = smpboot_park_threads, 2213 }, 2214 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2215 .name = "irq/affinity:online", 2216 .startup.single = irq_affinity_online_cpu, 2217 .teardown.single = NULL, 2218 }, 2219 [CPUHP_AP_PERF_ONLINE] = { 2220 .name = "perf:online", 2221 .startup.single = perf_event_init_cpu, 2222 .teardown.single = perf_event_exit_cpu, 2223 }, 2224 [CPUHP_AP_WATCHDOG_ONLINE] = { 2225 .name = "lockup_detector:online", 2226 .startup.single = lockup_detector_online_cpu, 2227 .teardown.single = lockup_detector_offline_cpu, 2228 }, 2229 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2230 .name = "workqueue:online", 2231 .startup.single = workqueue_online_cpu, 2232 .teardown.single = workqueue_offline_cpu, 2233 }, 2234 [CPUHP_AP_RANDOM_ONLINE] = { 2235 .name = "random:online", 2236 .startup.single = random_online_cpu, 2237 .teardown.single = NULL, 2238 }, 2239 [CPUHP_AP_RCUTREE_ONLINE] = { 2240 .name = "RCU/tree:online", 2241 .startup.single = rcutree_online_cpu, 2242 .teardown.single = rcutree_offline_cpu, 2243 }, 2244 #endif 2245 /* 2246 * The dynamically registered state space is here 2247 */ 2248 2249 #ifdef CONFIG_SMP 2250 /* Last state is scheduler control setting the cpu active */ 2251 [CPUHP_AP_ACTIVE] = { 2252 .name = "sched:active", 2253 .startup.single = sched_cpu_activate, 2254 .teardown.single = sched_cpu_deactivate, 2255 }, 2256 #endif 2257 2258 /* CPU is fully up and running. */ 2259 [CPUHP_ONLINE] = { 2260 .name = "online", 2261 .startup.single = NULL, 2262 .teardown.single = NULL, 2263 }, 2264 }; 2265 2266 /* Sanity check for callbacks */ 2267 static int cpuhp_cb_check(enum cpuhp_state state) 2268 { 2269 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2270 return -EINVAL; 2271 return 0; 2272 } 2273 2274 /* 2275 * Returns a free for dynamic slot assignment of the Online state. The states 2276 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2277 * by having no name assigned. 2278 */ 2279 static int cpuhp_reserve_state(enum cpuhp_state state) 2280 { 2281 enum cpuhp_state i, end; 2282 struct cpuhp_step *step; 2283 2284 switch (state) { 2285 case CPUHP_AP_ONLINE_DYN: 2286 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2287 end = CPUHP_AP_ONLINE_DYN_END; 2288 break; 2289 case CPUHP_BP_PREPARE_DYN: 2290 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2291 end = CPUHP_BP_PREPARE_DYN_END; 2292 break; 2293 default: 2294 return -EINVAL; 2295 } 2296 2297 for (i = state; i <= end; i++, step++) { 2298 if (!step->name) 2299 return i; 2300 } 2301 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2302 return -ENOSPC; 2303 } 2304 2305 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2306 int (*startup)(unsigned int cpu), 2307 int (*teardown)(unsigned int cpu), 2308 bool multi_instance) 2309 { 2310 /* (Un)Install the callbacks for further cpu hotplug operations */ 2311 struct cpuhp_step *sp; 2312 int ret = 0; 2313 2314 /* 2315 * If name is NULL, then the state gets removed. 2316 * 2317 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2318 * the first allocation from these dynamic ranges, so the removal 2319 * would trigger a new allocation and clear the wrong (already 2320 * empty) state, leaving the callbacks of the to be cleared state 2321 * dangling, which causes wreckage on the next hotplug operation. 2322 */ 2323 if (name && (state == CPUHP_AP_ONLINE_DYN || 2324 state == CPUHP_BP_PREPARE_DYN)) { 2325 ret = cpuhp_reserve_state(state); 2326 if (ret < 0) 2327 return ret; 2328 state = ret; 2329 } 2330 sp = cpuhp_get_step(state); 2331 if (name && sp->name) 2332 return -EBUSY; 2333 2334 sp->startup.single = startup; 2335 sp->teardown.single = teardown; 2336 sp->name = name; 2337 sp->multi_instance = multi_instance; 2338 INIT_HLIST_HEAD(&sp->list); 2339 return ret; 2340 } 2341 2342 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2343 { 2344 return cpuhp_get_step(state)->teardown.single; 2345 } 2346 2347 /* 2348 * Call the startup/teardown function for a step either on the AP or 2349 * on the current CPU. 2350 */ 2351 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2352 struct hlist_node *node) 2353 { 2354 struct cpuhp_step *sp = cpuhp_get_step(state); 2355 int ret; 2356 2357 /* 2358 * If there's nothing to do, we done. 2359 * Relies on the union for multi_instance. 2360 */ 2361 if (cpuhp_step_empty(bringup, sp)) 2362 return 0; 2363 /* 2364 * The non AP bound callbacks can fail on bringup. On teardown 2365 * e.g. module removal we crash for now. 2366 */ 2367 #ifdef CONFIG_SMP 2368 if (cpuhp_is_ap_state(state)) 2369 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2370 else 2371 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2372 #else 2373 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2374 #endif 2375 BUG_ON(ret && !bringup); 2376 return ret; 2377 } 2378 2379 /* 2380 * Called from __cpuhp_setup_state on a recoverable failure. 2381 * 2382 * Note: The teardown callbacks for rollback are not allowed to fail! 2383 */ 2384 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2385 struct hlist_node *node) 2386 { 2387 int cpu; 2388 2389 /* Roll back the already executed steps on the other cpus */ 2390 for_each_present_cpu(cpu) { 2391 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2392 int cpustate = st->state; 2393 2394 if (cpu >= failedcpu) 2395 break; 2396 2397 /* Did we invoke the startup call on that cpu ? */ 2398 if (cpustate >= state) 2399 cpuhp_issue_call(cpu, state, false, node); 2400 } 2401 } 2402 2403 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2404 struct hlist_node *node, 2405 bool invoke) 2406 { 2407 struct cpuhp_step *sp; 2408 int cpu; 2409 int ret; 2410 2411 lockdep_assert_cpus_held(); 2412 2413 sp = cpuhp_get_step(state); 2414 if (sp->multi_instance == false) 2415 return -EINVAL; 2416 2417 mutex_lock(&cpuhp_state_mutex); 2418 2419 if (!invoke || !sp->startup.multi) 2420 goto add_node; 2421 2422 /* 2423 * Try to call the startup callback for each present cpu 2424 * depending on the hotplug state of the cpu. 2425 */ 2426 for_each_present_cpu(cpu) { 2427 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2428 int cpustate = st->state; 2429 2430 if (cpustate < state) 2431 continue; 2432 2433 ret = cpuhp_issue_call(cpu, state, true, node); 2434 if (ret) { 2435 if (sp->teardown.multi) 2436 cpuhp_rollback_install(cpu, state, node); 2437 goto unlock; 2438 } 2439 } 2440 add_node: 2441 ret = 0; 2442 hlist_add_head(node, &sp->list); 2443 unlock: 2444 mutex_unlock(&cpuhp_state_mutex); 2445 return ret; 2446 } 2447 2448 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2449 bool invoke) 2450 { 2451 int ret; 2452 2453 cpus_read_lock(); 2454 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2455 cpus_read_unlock(); 2456 return ret; 2457 } 2458 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2459 2460 /** 2461 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2462 * @state: The state to setup 2463 * @name: Name of the step 2464 * @invoke: If true, the startup function is invoked for cpus where 2465 * cpu state >= @state 2466 * @startup: startup callback function 2467 * @teardown: teardown callback function 2468 * @multi_instance: State is set up for multiple instances which get 2469 * added afterwards. 2470 * 2471 * The caller needs to hold cpus read locked while calling this function. 2472 * Return: 2473 * On success: 2474 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2475 * 0 for all other states 2476 * On failure: proper (negative) error code 2477 */ 2478 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2479 const char *name, bool invoke, 2480 int (*startup)(unsigned int cpu), 2481 int (*teardown)(unsigned int cpu), 2482 bool multi_instance) 2483 { 2484 int cpu, ret = 0; 2485 bool dynstate; 2486 2487 lockdep_assert_cpus_held(); 2488 2489 if (cpuhp_cb_check(state) || !name) 2490 return -EINVAL; 2491 2492 mutex_lock(&cpuhp_state_mutex); 2493 2494 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2495 multi_instance); 2496 2497 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2498 if (ret > 0 && dynstate) { 2499 state = ret; 2500 ret = 0; 2501 } 2502 2503 if (ret || !invoke || !startup) 2504 goto out; 2505 2506 /* 2507 * Try to call the startup callback for each present cpu 2508 * depending on the hotplug state of the cpu. 2509 */ 2510 for_each_present_cpu(cpu) { 2511 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2512 int cpustate = st->state; 2513 2514 if (cpustate < state) 2515 continue; 2516 2517 ret = cpuhp_issue_call(cpu, state, true, NULL); 2518 if (ret) { 2519 if (teardown) 2520 cpuhp_rollback_install(cpu, state, NULL); 2521 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2522 goto out; 2523 } 2524 } 2525 out: 2526 mutex_unlock(&cpuhp_state_mutex); 2527 /* 2528 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2529 * return the dynamically allocated state in case of success. 2530 */ 2531 if (!ret && dynstate) 2532 return state; 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2536 2537 int __cpuhp_setup_state(enum cpuhp_state state, 2538 const char *name, bool invoke, 2539 int (*startup)(unsigned int cpu), 2540 int (*teardown)(unsigned int cpu), 2541 bool multi_instance) 2542 { 2543 int ret; 2544 2545 cpus_read_lock(); 2546 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2547 teardown, multi_instance); 2548 cpus_read_unlock(); 2549 return ret; 2550 } 2551 EXPORT_SYMBOL(__cpuhp_setup_state); 2552 2553 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2554 struct hlist_node *node, bool invoke) 2555 { 2556 struct cpuhp_step *sp = cpuhp_get_step(state); 2557 int cpu; 2558 2559 BUG_ON(cpuhp_cb_check(state)); 2560 2561 if (!sp->multi_instance) 2562 return -EINVAL; 2563 2564 cpus_read_lock(); 2565 mutex_lock(&cpuhp_state_mutex); 2566 2567 if (!invoke || !cpuhp_get_teardown_cb(state)) 2568 goto remove; 2569 /* 2570 * Call the teardown callback for each present cpu depending 2571 * on the hotplug state of the cpu. This function is not 2572 * allowed to fail currently! 2573 */ 2574 for_each_present_cpu(cpu) { 2575 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2576 int cpustate = st->state; 2577 2578 if (cpustate >= state) 2579 cpuhp_issue_call(cpu, state, false, node); 2580 } 2581 2582 remove: 2583 hlist_del(node); 2584 mutex_unlock(&cpuhp_state_mutex); 2585 cpus_read_unlock(); 2586 2587 return 0; 2588 } 2589 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2590 2591 /** 2592 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2593 * @state: The state to remove 2594 * @invoke: If true, the teardown function is invoked for cpus where 2595 * cpu state >= @state 2596 * 2597 * The caller needs to hold cpus read locked while calling this function. 2598 * The teardown callback is currently not allowed to fail. Think 2599 * about module removal! 2600 */ 2601 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2602 { 2603 struct cpuhp_step *sp = cpuhp_get_step(state); 2604 int cpu; 2605 2606 BUG_ON(cpuhp_cb_check(state)); 2607 2608 lockdep_assert_cpus_held(); 2609 2610 mutex_lock(&cpuhp_state_mutex); 2611 if (sp->multi_instance) { 2612 WARN(!hlist_empty(&sp->list), 2613 "Error: Removing state %d which has instances left.\n", 2614 state); 2615 goto remove; 2616 } 2617 2618 if (!invoke || !cpuhp_get_teardown_cb(state)) 2619 goto remove; 2620 2621 /* 2622 * Call the teardown callback for each present cpu depending 2623 * on the hotplug state of the cpu. This function is not 2624 * allowed to fail currently! 2625 */ 2626 for_each_present_cpu(cpu) { 2627 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2628 int cpustate = st->state; 2629 2630 if (cpustate >= state) 2631 cpuhp_issue_call(cpu, state, false, NULL); 2632 } 2633 remove: 2634 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2635 mutex_unlock(&cpuhp_state_mutex); 2636 } 2637 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2638 2639 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2640 { 2641 cpus_read_lock(); 2642 __cpuhp_remove_state_cpuslocked(state, invoke); 2643 cpus_read_unlock(); 2644 } 2645 EXPORT_SYMBOL(__cpuhp_remove_state); 2646 2647 #ifdef CONFIG_HOTPLUG_SMT 2648 static void cpuhp_offline_cpu_device(unsigned int cpu) 2649 { 2650 struct device *dev = get_cpu_device(cpu); 2651 2652 dev->offline = true; 2653 /* Tell user space about the state change */ 2654 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2655 } 2656 2657 static void cpuhp_online_cpu_device(unsigned int cpu) 2658 { 2659 struct device *dev = get_cpu_device(cpu); 2660 2661 dev->offline = false; 2662 /* Tell user space about the state change */ 2663 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2664 } 2665 2666 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2667 { 2668 int cpu, ret = 0; 2669 2670 cpu_maps_update_begin(); 2671 for_each_online_cpu(cpu) { 2672 if (topology_is_primary_thread(cpu)) 2673 continue; 2674 /* 2675 * Disable can be called with CPU_SMT_ENABLED when changing 2676 * from a higher to lower number of SMT threads per core. 2677 */ 2678 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2679 continue; 2680 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2681 if (ret) 2682 break; 2683 /* 2684 * As this needs to hold the cpu maps lock it's impossible 2685 * to call device_offline() because that ends up calling 2686 * cpu_down() which takes cpu maps lock. cpu maps lock 2687 * needs to be held as this might race against in kernel 2688 * abusers of the hotplug machinery (thermal management). 2689 * 2690 * So nothing would update device:offline state. That would 2691 * leave the sysfs entry stale and prevent onlining after 2692 * smt control has been changed to 'off' again. This is 2693 * called under the sysfs hotplug lock, so it is properly 2694 * serialized against the regular offline usage. 2695 */ 2696 cpuhp_offline_cpu_device(cpu); 2697 } 2698 if (!ret) 2699 cpu_smt_control = ctrlval; 2700 cpu_maps_update_done(); 2701 return ret; 2702 } 2703 2704 /* Check if the core a CPU belongs to is online */ 2705 #if !defined(topology_is_core_online) 2706 static inline bool topology_is_core_online(unsigned int cpu) 2707 { 2708 return true; 2709 } 2710 #endif 2711 2712 int cpuhp_smt_enable(void) 2713 { 2714 int cpu, ret = 0; 2715 2716 cpu_maps_update_begin(); 2717 cpu_smt_control = CPU_SMT_ENABLED; 2718 for_each_present_cpu(cpu) { 2719 /* Skip online CPUs and CPUs on offline nodes */ 2720 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2721 continue; 2722 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2723 continue; 2724 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2725 if (ret) 2726 break; 2727 /* See comment in cpuhp_smt_disable() */ 2728 cpuhp_online_cpu_device(cpu); 2729 } 2730 cpu_maps_update_done(); 2731 return ret; 2732 } 2733 #endif 2734 2735 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2736 static ssize_t state_show(struct device *dev, 2737 struct device_attribute *attr, char *buf) 2738 { 2739 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2740 2741 return sprintf(buf, "%d\n", st->state); 2742 } 2743 static DEVICE_ATTR_RO(state); 2744 2745 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2746 const char *buf, size_t count) 2747 { 2748 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2749 struct cpuhp_step *sp; 2750 int target, ret; 2751 2752 ret = kstrtoint(buf, 10, &target); 2753 if (ret) 2754 return ret; 2755 2756 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2757 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2758 return -EINVAL; 2759 #else 2760 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2761 return -EINVAL; 2762 #endif 2763 2764 ret = lock_device_hotplug_sysfs(); 2765 if (ret) 2766 return ret; 2767 2768 mutex_lock(&cpuhp_state_mutex); 2769 sp = cpuhp_get_step(target); 2770 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2771 mutex_unlock(&cpuhp_state_mutex); 2772 if (ret) 2773 goto out; 2774 2775 if (st->state < target) 2776 ret = cpu_up(dev->id, target); 2777 else if (st->state > target) 2778 ret = cpu_down(dev->id, target); 2779 else if (WARN_ON(st->target != target)) 2780 st->target = target; 2781 out: 2782 unlock_device_hotplug(); 2783 return ret ? ret : count; 2784 } 2785 2786 static ssize_t target_show(struct device *dev, 2787 struct device_attribute *attr, char *buf) 2788 { 2789 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2790 2791 return sprintf(buf, "%d\n", st->target); 2792 } 2793 static DEVICE_ATTR_RW(target); 2794 2795 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2796 const char *buf, size_t count) 2797 { 2798 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2799 struct cpuhp_step *sp; 2800 int fail, ret; 2801 2802 ret = kstrtoint(buf, 10, &fail); 2803 if (ret) 2804 return ret; 2805 2806 if (fail == CPUHP_INVALID) { 2807 st->fail = fail; 2808 return count; 2809 } 2810 2811 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2812 return -EINVAL; 2813 2814 /* 2815 * Cannot fail STARTING/DYING callbacks. 2816 */ 2817 if (cpuhp_is_atomic_state(fail)) 2818 return -EINVAL; 2819 2820 /* 2821 * DEAD callbacks cannot fail... 2822 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2823 * triggering STARTING callbacks, a failure in this state would 2824 * hinder rollback. 2825 */ 2826 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2827 return -EINVAL; 2828 2829 /* 2830 * Cannot fail anything that doesn't have callbacks. 2831 */ 2832 mutex_lock(&cpuhp_state_mutex); 2833 sp = cpuhp_get_step(fail); 2834 if (!sp->startup.single && !sp->teardown.single) 2835 ret = -EINVAL; 2836 mutex_unlock(&cpuhp_state_mutex); 2837 if (ret) 2838 return ret; 2839 2840 st->fail = fail; 2841 2842 return count; 2843 } 2844 2845 static ssize_t fail_show(struct device *dev, 2846 struct device_attribute *attr, char *buf) 2847 { 2848 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2849 2850 return sprintf(buf, "%d\n", st->fail); 2851 } 2852 2853 static DEVICE_ATTR_RW(fail); 2854 2855 static struct attribute *cpuhp_cpu_attrs[] = { 2856 &dev_attr_state.attr, 2857 &dev_attr_target.attr, 2858 &dev_attr_fail.attr, 2859 NULL 2860 }; 2861 2862 static const struct attribute_group cpuhp_cpu_attr_group = { 2863 .attrs = cpuhp_cpu_attrs, 2864 .name = "hotplug", 2865 }; 2866 2867 static ssize_t states_show(struct device *dev, 2868 struct device_attribute *attr, char *buf) 2869 { 2870 ssize_t cur, res = 0; 2871 int i; 2872 2873 mutex_lock(&cpuhp_state_mutex); 2874 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2875 struct cpuhp_step *sp = cpuhp_get_step(i); 2876 2877 if (sp->name) { 2878 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2879 buf += cur; 2880 res += cur; 2881 } 2882 } 2883 mutex_unlock(&cpuhp_state_mutex); 2884 return res; 2885 } 2886 static DEVICE_ATTR_RO(states); 2887 2888 static struct attribute *cpuhp_cpu_root_attrs[] = { 2889 &dev_attr_states.attr, 2890 NULL 2891 }; 2892 2893 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2894 .attrs = cpuhp_cpu_root_attrs, 2895 .name = "hotplug", 2896 }; 2897 2898 #ifdef CONFIG_HOTPLUG_SMT 2899 2900 static bool cpu_smt_num_threads_valid(unsigned int threads) 2901 { 2902 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2903 return threads >= 1 && threads <= cpu_smt_max_threads; 2904 return threads == 1 || threads == cpu_smt_max_threads; 2905 } 2906 2907 static ssize_t 2908 __store_smt_control(struct device *dev, struct device_attribute *attr, 2909 const char *buf, size_t count) 2910 { 2911 int ctrlval, ret, num_threads, orig_threads; 2912 bool force_off; 2913 2914 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2915 return -EPERM; 2916 2917 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2918 return -ENODEV; 2919 2920 if (sysfs_streq(buf, "on")) { 2921 ctrlval = CPU_SMT_ENABLED; 2922 num_threads = cpu_smt_max_threads; 2923 } else if (sysfs_streq(buf, "off")) { 2924 ctrlval = CPU_SMT_DISABLED; 2925 num_threads = 1; 2926 } else if (sysfs_streq(buf, "forceoff")) { 2927 ctrlval = CPU_SMT_FORCE_DISABLED; 2928 num_threads = 1; 2929 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2930 if (num_threads == 1) 2931 ctrlval = CPU_SMT_DISABLED; 2932 else if (cpu_smt_num_threads_valid(num_threads)) 2933 ctrlval = CPU_SMT_ENABLED; 2934 else 2935 return -EINVAL; 2936 } else { 2937 return -EINVAL; 2938 } 2939 2940 ret = lock_device_hotplug_sysfs(); 2941 if (ret) 2942 return ret; 2943 2944 orig_threads = cpu_smt_num_threads; 2945 cpu_smt_num_threads = num_threads; 2946 2947 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2948 2949 if (num_threads > orig_threads) 2950 ret = cpuhp_smt_enable(); 2951 else if (num_threads < orig_threads || force_off) 2952 ret = cpuhp_smt_disable(ctrlval); 2953 2954 unlock_device_hotplug(); 2955 return ret ? ret : count; 2956 } 2957 2958 #else /* !CONFIG_HOTPLUG_SMT */ 2959 static ssize_t 2960 __store_smt_control(struct device *dev, struct device_attribute *attr, 2961 const char *buf, size_t count) 2962 { 2963 return -ENODEV; 2964 } 2965 #endif /* CONFIG_HOTPLUG_SMT */ 2966 2967 static const char *smt_states[] = { 2968 [CPU_SMT_ENABLED] = "on", 2969 [CPU_SMT_DISABLED] = "off", 2970 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2971 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2972 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2973 }; 2974 2975 static ssize_t control_show(struct device *dev, 2976 struct device_attribute *attr, char *buf) 2977 { 2978 const char *state = smt_states[cpu_smt_control]; 2979 2980 #ifdef CONFIG_HOTPLUG_SMT 2981 /* 2982 * If SMT is enabled but not all threads are enabled then show the 2983 * number of threads. If all threads are enabled show "on". Otherwise 2984 * show the state name. 2985 */ 2986 if (cpu_smt_control == CPU_SMT_ENABLED && 2987 cpu_smt_num_threads != cpu_smt_max_threads) 2988 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2989 #endif 2990 2991 return sysfs_emit(buf, "%s\n", state); 2992 } 2993 2994 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2995 const char *buf, size_t count) 2996 { 2997 return __store_smt_control(dev, attr, buf, count); 2998 } 2999 static DEVICE_ATTR_RW(control); 3000 3001 static ssize_t active_show(struct device *dev, 3002 struct device_attribute *attr, char *buf) 3003 { 3004 return sysfs_emit(buf, "%d\n", sched_smt_active()); 3005 } 3006 static DEVICE_ATTR_RO(active); 3007 3008 static struct attribute *cpuhp_smt_attrs[] = { 3009 &dev_attr_control.attr, 3010 &dev_attr_active.attr, 3011 NULL 3012 }; 3013 3014 static const struct attribute_group cpuhp_smt_attr_group = { 3015 .attrs = cpuhp_smt_attrs, 3016 .name = "smt", 3017 }; 3018 3019 static int __init cpu_smt_sysfs_init(void) 3020 { 3021 struct device *dev_root; 3022 int ret = -ENODEV; 3023 3024 dev_root = bus_get_dev_root(&cpu_subsys); 3025 if (dev_root) { 3026 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3027 put_device(dev_root); 3028 } 3029 return ret; 3030 } 3031 3032 static int __init cpuhp_sysfs_init(void) 3033 { 3034 struct device *dev_root; 3035 int cpu, ret; 3036 3037 ret = cpu_smt_sysfs_init(); 3038 if (ret) 3039 return ret; 3040 3041 dev_root = bus_get_dev_root(&cpu_subsys); 3042 if (dev_root) { 3043 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3044 put_device(dev_root); 3045 if (ret) 3046 return ret; 3047 } 3048 3049 for_each_possible_cpu(cpu) { 3050 struct device *dev = get_cpu_device(cpu); 3051 3052 if (!dev) 3053 continue; 3054 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3055 if (ret) 3056 return ret; 3057 } 3058 return 0; 3059 } 3060 device_initcall(cpuhp_sysfs_init); 3061 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3062 3063 /* 3064 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3065 * represents all NR_CPUS bits binary values of 1<<nr. 3066 * 3067 * It is used by cpumask_of() to get a constant address to a CPU 3068 * mask value that has a single bit set only. 3069 */ 3070 3071 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3072 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3073 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3074 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3075 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3076 3077 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3078 3079 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3080 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3081 #if BITS_PER_LONG > 32 3082 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3083 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3084 #endif 3085 }; 3086 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3087 3088 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3089 EXPORT_SYMBOL(cpu_all_bits); 3090 3091 #ifdef CONFIG_INIT_ALL_POSSIBLE 3092 struct cpumask __cpu_possible_mask __ro_after_init 3093 = {CPU_BITS_ALL}; 3094 #else 3095 struct cpumask __cpu_possible_mask __ro_after_init; 3096 #endif 3097 EXPORT_SYMBOL(__cpu_possible_mask); 3098 3099 struct cpumask __cpu_online_mask __read_mostly; 3100 EXPORT_SYMBOL(__cpu_online_mask); 3101 3102 struct cpumask __cpu_enabled_mask __read_mostly; 3103 EXPORT_SYMBOL(__cpu_enabled_mask); 3104 3105 struct cpumask __cpu_present_mask __read_mostly; 3106 EXPORT_SYMBOL(__cpu_present_mask); 3107 3108 struct cpumask __cpu_active_mask __read_mostly; 3109 EXPORT_SYMBOL(__cpu_active_mask); 3110 3111 struct cpumask __cpu_dying_mask __read_mostly; 3112 EXPORT_SYMBOL(__cpu_dying_mask); 3113 3114 atomic_t __num_online_cpus __read_mostly; 3115 EXPORT_SYMBOL(__num_online_cpus); 3116 3117 void init_cpu_present(const struct cpumask *src) 3118 { 3119 cpumask_copy(&__cpu_present_mask, src); 3120 } 3121 3122 void init_cpu_possible(const struct cpumask *src) 3123 { 3124 cpumask_copy(&__cpu_possible_mask, src); 3125 } 3126 3127 void set_cpu_online(unsigned int cpu, bool online) 3128 { 3129 /* 3130 * atomic_inc/dec() is required to handle the horrid abuse of this 3131 * function by the reboot and kexec code which invoke it from 3132 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3133 * regular CPU hotplug is properly serialized. 3134 * 3135 * Note, that the fact that __num_online_cpus is of type atomic_t 3136 * does not protect readers which are not serialized against 3137 * concurrent hotplug operations. 3138 */ 3139 if (online) { 3140 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3141 atomic_inc(&__num_online_cpus); 3142 } else { 3143 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3144 atomic_dec(&__num_online_cpus); 3145 } 3146 } 3147 3148 /* 3149 * Activate the first processor. 3150 */ 3151 void __init boot_cpu_init(void) 3152 { 3153 int cpu = smp_processor_id(); 3154 3155 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3156 set_cpu_online(cpu, true); 3157 set_cpu_active(cpu, true); 3158 set_cpu_present(cpu, true); 3159 set_cpu_possible(cpu, true); 3160 3161 #ifdef CONFIG_SMP 3162 __boot_cpu_id = cpu; 3163 #endif 3164 } 3165 3166 /* 3167 * Must be called _AFTER_ setting up the per_cpu areas 3168 */ 3169 void __init boot_cpu_hotplug_init(void) 3170 { 3171 #ifdef CONFIG_SMP 3172 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3173 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3174 #endif 3175 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3176 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3177 } 3178 3179 #ifdef CONFIG_CPU_MITIGATIONS 3180 /* 3181 * These are used for a global "mitigations=" cmdline option for toggling 3182 * optional CPU mitigations. 3183 */ 3184 enum cpu_mitigations { 3185 CPU_MITIGATIONS_OFF, 3186 CPU_MITIGATIONS_AUTO, 3187 CPU_MITIGATIONS_AUTO_NOSMT, 3188 }; 3189 3190 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3191 3192 static int __init mitigations_parse_cmdline(char *arg) 3193 { 3194 if (!strcmp(arg, "off")) 3195 cpu_mitigations = CPU_MITIGATIONS_OFF; 3196 else if (!strcmp(arg, "auto")) 3197 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3198 else if (!strcmp(arg, "auto,nosmt")) 3199 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3200 else 3201 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3202 arg); 3203 3204 return 0; 3205 } 3206 3207 /* mitigations=off */ 3208 bool cpu_mitigations_off(void) 3209 { 3210 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3211 } 3212 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3213 3214 /* mitigations=auto,nosmt */ 3215 bool cpu_mitigations_auto_nosmt(void) 3216 { 3217 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3218 } 3219 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3220 #else 3221 static int __init mitigations_parse_cmdline(char *arg) 3222 { 3223 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3224 return 0; 3225 } 3226 #endif 3227 early_param("mitigations", mitigations_parse_cmdline); 3228