1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/kthread.h> 15 #include <linux/stop_machine.h> 16 #include <linux/mutex.h> 17 #include <linux/gfp.h> 18 19 #ifdef CONFIG_SMP 20 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 21 static DEFINE_MUTEX(cpu_add_remove_lock); 22 23 static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain); 24 25 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 26 * Should always be manipulated under cpu_add_remove_lock 27 */ 28 static int cpu_hotplug_disabled; 29 30 static struct { 31 struct task_struct *active_writer; 32 struct mutex lock; /* Synchronizes accesses to refcount, */ 33 /* 34 * Also blocks the new readers during 35 * an ongoing cpu hotplug operation. 36 */ 37 int refcount; 38 } cpu_hotplug = { 39 .active_writer = NULL, 40 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 41 .refcount = 0, 42 }; 43 44 #ifdef CONFIG_HOTPLUG_CPU 45 46 void get_online_cpus(void) 47 { 48 might_sleep(); 49 if (cpu_hotplug.active_writer == current) 50 return; 51 mutex_lock(&cpu_hotplug.lock); 52 cpu_hotplug.refcount++; 53 mutex_unlock(&cpu_hotplug.lock); 54 55 } 56 EXPORT_SYMBOL_GPL(get_online_cpus); 57 58 void put_online_cpus(void) 59 { 60 if (cpu_hotplug.active_writer == current) 61 return; 62 mutex_lock(&cpu_hotplug.lock); 63 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) 64 wake_up_process(cpu_hotplug.active_writer); 65 mutex_unlock(&cpu_hotplug.lock); 66 67 } 68 EXPORT_SYMBOL_GPL(put_online_cpus); 69 70 #endif /* CONFIG_HOTPLUG_CPU */ 71 72 /* 73 * The following two API's must be used when attempting 74 * to serialize the updates to cpu_online_mask, cpu_present_mask. 75 */ 76 void cpu_maps_update_begin(void) 77 { 78 mutex_lock(&cpu_add_remove_lock); 79 } 80 81 void cpu_maps_update_done(void) 82 { 83 mutex_unlock(&cpu_add_remove_lock); 84 } 85 86 /* 87 * This ensures that the hotplug operation can begin only when the 88 * refcount goes to zero. 89 * 90 * Note that during a cpu-hotplug operation, the new readers, if any, 91 * will be blocked by the cpu_hotplug.lock 92 * 93 * Since cpu_hotplug_begin() is always called after invoking 94 * cpu_maps_update_begin(), we can be sure that only one writer is active. 95 * 96 * Note that theoretically, there is a possibility of a livelock: 97 * - Refcount goes to zero, last reader wakes up the sleeping 98 * writer. 99 * - Last reader unlocks the cpu_hotplug.lock. 100 * - A new reader arrives at this moment, bumps up the refcount. 101 * - The writer acquires the cpu_hotplug.lock finds the refcount 102 * non zero and goes to sleep again. 103 * 104 * However, this is very difficult to achieve in practice since 105 * get_online_cpus() not an api which is called all that often. 106 * 107 */ 108 static void cpu_hotplug_begin(void) 109 { 110 cpu_hotplug.active_writer = current; 111 112 for (;;) { 113 mutex_lock(&cpu_hotplug.lock); 114 if (likely(!cpu_hotplug.refcount)) 115 break; 116 __set_current_state(TASK_UNINTERRUPTIBLE); 117 mutex_unlock(&cpu_hotplug.lock); 118 schedule(); 119 } 120 } 121 122 static void cpu_hotplug_done(void) 123 { 124 cpu_hotplug.active_writer = NULL; 125 mutex_unlock(&cpu_hotplug.lock); 126 } 127 /* Need to know about CPUs going up/down? */ 128 int __ref register_cpu_notifier(struct notifier_block *nb) 129 { 130 int ret; 131 cpu_maps_update_begin(); 132 ret = raw_notifier_chain_register(&cpu_chain, nb); 133 cpu_maps_update_done(); 134 return ret; 135 } 136 137 #ifdef CONFIG_HOTPLUG_CPU 138 139 EXPORT_SYMBOL(register_cpu_notifier); 140 141 void __ref unregister_cpu_notifier(struct notifier_block *nb) 142 { 143 cpu_maps_update_begin(); 144 raw_notifier_chain_unregister(&cpu_chain, nb); 145 cpu_maps_update_done(); 146 } 147 EXPORT_SYMBOL(unregister_cpu_notifier); 148 149 static inline void check_for_tasks(int cpu) 150 { 151 struct task_struct *p; 152 153 write_lock_irq(&tasklist_lock); 154 for_each_process(p) { 155 if (task_cpu(p) == cpu && p->state == TASK_RUNNING && 156 (!cputime_eq(p->utime, cputime_zero) || 157 !cputime_eq(p->stime, cputime_zero))) 158 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " 159 "(state = %ld, flags = %x)\n", 160 p->comm, task_pid_nr(p), cpu, 161 p->state, p->flags); 162 } 163 write_unlock_irq(&tasklist_lock); 164 } 165 166 struct take_cpu_down_param { 167 unsigned long mod; 168 void *hcpu; 169 }; 170 171 /* Take this CPU down. */ 172 static int __ref take_cpu_down(void *_param) 173 { 174 struct take_cpu_down_param *param = _param; 175 int err; 176 177 /* Ensure this CPU doesn't handle any more interrupts. */ 178 err = __cpu_disable(); 179 if (err < 0) 180 return err; 181 182 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, 183 param->hcpu); 184 185 /* Force idle task to run as soon as we yield: it should 186 immediately notice cpu is offline and die quickly. */ 187 sched_idle_next(); 188 return 0; 189 } 190 191 /* Requires cpu_add_remove_lock to be held */ 192 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 193 { 194 int err, nr_calls = 0; 195 cpumask_var_t old_allowed; 196 void *hcpu = (void *)(long)cpu; 197 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 198 struct take_cpu_down_param tcd_param = { 199 .mod = mod, 200 .hcpu = hcpu, 201 }; 202 203 if (num_online_cpus() == 1) 204 return -EBUSY; 205 206 if (!cpu_online(cpu)) 207 return -EINVAL; 208 209 if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) 210 return -ENOMEM; 211 212 cpu_hotplug_begin(); 213 set_cpu_active(cpu, false); 214 err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, 215 hcpu, -1, &nr_calls); 216 if (err == NOTIFY_BAD) { 217 set_cpu_active(cpu, true); 218 219 nr_calls--; 220 __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, 221 hcpu, nr_calls, NULL); 222 printk("%s: attempt to take down CPU %u failed\n", 223 __func__, cpu); 224 err = -EINVAL; 225 goto out_release; 226 } 227 228 /* Ensure that we are not runnable on dying cpu */ 229 cpumask_copy(old_allowed, ¤t->cpus_allowed); 230 set_cpus_allowed_ptr(current, cpu_active_mask); 231 232 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 233 if (err) { 234 set_cpu_active(cpu, true); 235 /* CPU didn't die: tell everyone. Can't complain. */ 236 if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod, 237 hcpu) == NOTIFY_BAD) 238 BUG(); 239 240 goto out_allowed; 241 } 242 BUG_ON(cpu_online(cpu)); 243 244 /* Wait for it to sleep (leaving idle task). */ 245 while (!idle_cpu(cpu)) 246 yield(); 247 248 /* This actually kills the CPU. */ 249 __cpu_die(cpu); 250 251 /* CPU is completely dead: tell everyone. Too late to complain. */ 252 if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod, 253 hcpu) == NOTIFY_BAD) 254 BUG(); 255 256 check_for_tasks(cpu); 257 258 out_allowed: 259 set_cpus_allowed_ptr(current, old_allowed); 260 out_release: 261 cpu_hotplug_done(); 262 if (!err) { 263 if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod, 264 hcpu) == NOTIFY_BAD) 265 BUG(); 266 } 267 free_cpumask_var(old_allowed); 268 return err; 269 } 270 271 int __ref cpu_down(unsigned int cpu) 272 { 273 int err; 274 275 err = stop_machine_create(); 276 if (err) 277 return err; 278 cpu_maps_update_begin(); 279 280 if (cpu_hotplug_disabled) { 281 err = -EBUSY; 282 goto out; 283 } 284 285 err = _cpu_down(cpu, 0); 286 287 out: 288 cpu_maps_update_done(); 289 stop_machine_destroy(); 290 return err; 291 } 292 EXPORT_SYMBOL(cpu_down); 293 #endif /*CONFIG_HOTPLUG_CPU*/ 294 295 /* Requires cpu_add_remove_lock to be held */ 296 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) 297 { 298 int ret, nr_calls = 0; 299 void *hcpu = (void *)(long)cpu; 300 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 301 302 if (cpu_online(cpu) || !cpu_present(cpu)) 303 return -EINVAL; 304 305 cpu_hotplug_begin(); 306 ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu, 307 -1, &nr_calls); 308 if (ret == NOTIFY_BAD) { 309 nr_calls--; 310 printk("%s: attempt to bring up CPU %u failed\n", 311 __func__, cpu); 312 ret = -EINVAL; 313 goto out_notify; 314 } 315 316 /* Arch-specific enabling code. */ 317 ret = __cpu_up(cpu); 318 if (ret != 0) 319 goto out_notify; 320 BUG_ON(!cpu_online(cpu)); 321 322 set_cpu_active(cpu, true); 323 324 /* Now call notifier in preparation. */ 325 raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); 326 327 out_notify: 328 if (ret != 0) 329 __raw_notifier_call_chain(&cpu_chain, 330 CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 331 cpu_hotplug_done(); 332 333 return ret; 334 } 335 336 int __cpuinit cpu_up(unsigned int cpu) 337 { 338 int err = 0; 339 if (!cpu_possible(cpu)) { 340 printk(KERN_ERR "can't online cpu %d because it is not " 341 "configured as may-hotadd at boot time\n", cpu); 342 #if defined(CONFIG_IA64) 343 printk(KERN_ERR "please check additional_cpus= boot " 344 "parameter\n"); 345 #endif 346 return -EINVAL; 347 } 348 349 cpu_maps_update_begin(); 350 351 if (cpu_hotplug_disabled) { 352 err = -EBUSY; 353 goto out; 354 } 355 356 err = _cpu_up(cpu, 0); 357 358 out: 359 cpu_maps_update_done(); 360 return err; 361 } 362 363 #ifdef CONFIG_PM_SLEEP_SMP 364 static cpumask_var_t frozen_cpus; 365 366 int disable_nonboot_cpus(void) 367 { 368 int cpu, first_cpu, error; 369 370 error = stop_machine_create(); 371 if (error) 372 return error; 373 cpu_maps_update_begin(); 374 first_cpu = cpumask_first(cpu_online_mask); 375 /* 376 * We take down all of the non-boot CPUs in one shot to avoid races 377 * with the userspace trying to use the CPU hotplug at the same time 378 */ 379 cpumask_clear(frozen_cpus); 380 381 printk("Disabling non-boot CPUs ...\n"); 382 for_each_online_cpu(cpu) { 383 if (cpu == first_cpu) 384 continue; 385 error = _cpu_down(cpu, 1); 386 if (!error) 387 cpumask_set_cpu(cpu, frozen_cpus); 388 else { 389 printk(KERN_ERR "Error taking CPU%d down: %d\n", 390 cpu, error); 391 break; 392 } 393 } 394 395 if (!error) { 396 BUG_ON(num_online_cpus() > 1); 397 /* Make sure the CPUs won't be enabled by someone else */ 398 cpu_hotplug_disabled = 1; 399 } else { 400 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 401 } 402 cpu_maps_update_done(); 403 stop_machine_destroy(); 404 return error; 405 } 406 407 void __weak arch_enable_nonboot_cpus_begin(void) 408 { 409 } 410 411 void __weak arch_enable_nonboot_cpus_end(void) 412 { 413 } 414 415 void __ref enable_nonboot_cpus(void) 416 { 417 int cpu, error; 418 419 /* Allow everyone to use the CPU hotplug again */ 420 cpu_maps_update_begin(); 421 cpu_hotplug_disabled = 0; 422 if (cpumask_empty(frozen_cpus)) 423 goto out; 424 425 printk("Enabling non-boot CPUs ...\n"); 426 427 arch_enable_nonboot_cpus_begin(); 428 429 for_each_cpu(cpu, frozen_cpus) { 430 error = _cpu_up(cpu, 1); 431 if (!error) { 432 printk("CPU%d is up\n", cpu); 433 continue; 434 } 435 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 436 } 437 438 arch_enable_nonboot_cpus_end(); 439 440 cpumask_clear(frozen_cpus); 441 out: 442 cpu_maps_update_done(); 443 } 444 445 static int alloc_frozen_cpus(void) 446 { 447 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 448 return -ENOMEM; 449 return 0; 450 } 451 core_initcall(alloc_frozen_cpus); 452 #endif /* CONFIG_PM_SLEEP_SMP */ 453 454 /** 455 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 456 * @cpu: cpu that just started 457 * 458 * This function calls the cpu_chain notifiers with CPU_STARTING. 459 * It must be called by the arch code on the new cpu, before the new cpu 460 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 461 */ 462 void __cpuinit notify_cpu_starting(unsigned int cpu) 463 { 464 unsigned long val = CPU_STARTING; 465 466 #ifdef CONFIG_PM_SLEEP_SMP 467 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) 468 val = CPU_STARTING_FROZEN; 469 #endif /* CONFIG_PM_SLEEP_SMP */ 470 raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu); 471 } 472 473 #endif /* CONFIG_SMP */ 474 475 /* 476 * cpu_bit_bitmap[] is a special, "compressed" data structure that 477 * represents all NR_CPUS bits binary values of 1<<nr. 478 * 479 * It is used by cpumask_of() to get a constant address to a CPU 480 * mask value that has a single bit set only. 481 */ 482 483 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 484 #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x) 485 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 486 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 487 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 488 489 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 490 491 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 492 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 493 #if BITS_PER_LONG > 32 494 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 495 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 496 #endif 497 }; 498 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 499 500 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 501 EXPORT_SYMBOL(cpu_all_bits); 502 503 #ifdef CONFIG_INIT_ALL_POSSIBLE 504 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly 505 = CPU_BITS_ALL; 506 #else 507 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; 508 #endif 509 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); 510 EXPORT_SYMBOL(cpu_possible_mask); 511 512 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; 513 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); 514 EXPORT_SYMBOL(cpu_online_mask); 515 516 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; 517 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); 518 EXPORT_SYMBOL(cpu_present_mask); 519 520 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; 521 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); 522 EXPORT_SYMBOL(cpu_active_mask); 523 524 void set_cpu_possible(unsigned int cpu, bool possible) 525 { 526 if (possible) 527 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); 528 else 529 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); 530 } 531 532 void set_cpu_present(unsigned int cpu, bool present) 533 { 534 if (present) 535 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); 536 else 537 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); 538 } 539 540 void set_cpu_online(unsigned int cpu, bool online) 541 { 542 if (online) 543 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); 544 else 545 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); 546 } 547 548 void set_cpu_active(unsigned int cpu, bool active) 549 { 550 if (active) 551 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 552 else 553 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); 554 } 555 556 void init_cpu_present(const struct cpumask *src) 557 { 558 cpumask_copy(to_cpumask(cpu_present_bits), src); 559 } 560 561 void init_cpu_possible(const struct cpumask *src) 562 { 563 cpumask_copy(to_cpumask(cpu_possible_bits), src); 564 } 565 566 void init_cpu_online(const struct cpumask *src) 567 { 568 cpumask_copy(to_cpumask(cpu_online_bits), src); 569 } 570