xref: /linux/kernel/cpu.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/kthread.h>
15 #include <linux/stop_machine.h>
16 #include <linux/mutex.h>
17 #include <linux/gfp.h>
18 
19 #ifdef CONFIG_SMP
20 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
21 static DEFINE_MUTEX(cpu_add_remove_lock);
22 
23 static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain);
24 
25 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
26  * Should always be manipulated under cpu_add_remove_lock
27  */
28 static int cpu_hotplug_disabled;
29 
30 static struct {
31 	struct task_struct *active_writer;
32 	struct mutex lock; /* Synchronizes accesses to refcount, */
33 	/*
34 	 * Also blocks the new readers during
35 	 * an ongoing cpu hotplug operation.
36 	 */
37 	int refcount;
38 } cpu_hotplug = {
39 	.active_writer = NULL,
40 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
41 	.refcount = 0,
42 };
43 
44 #ifdef CONFIG_HOTPLUG_CPU
45 
46 void get_online_cpus(void)
47 {
48 	might_sleep();
49 	if (cpu_hotplug.active_writer == current)
50 		return;
51 	mutex_lock(&cpu_hotplug.lock);
52 	cpu_hotplug.refcount++;
53 	mutex_unlock(&cpu_hotplug.lock);
54 
55 }
56 EXPORT_SYMBOL_GPL(get_online_cpus);
57 
58 void put_online_cpus(void)
59 {
60 	if (cpu_hotplug.active_writer == current)
61 		return;
62 	mutex_lock(&cpu_hotplug.lock);
63 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
64 		wake_up_process(cpu_hotplug.active_writer);
65 	mutex_unlock(&cpu_hotplug.lock);
66 
67 }
68 EXPORT_SYMBOL_GPL(put_online_cpus);
69 
70 #endif	/* CONFIG_HOTPLUG_CPU */
71 
72 /*
73  * The following two API's must be used when attempting
74  * to serialize the updates to cpu_online_mask, cpu_present_mask.
75  */
76 void cpu_maps_update_begin(void)
77 {
78 	mutex_lock(&cpu_add_remove_lock);
79 }
80 
81 void cpu_maps_update_done(void)
82 {
83 	mutex_unlock(&cpu_add_remove_lock);
84 }
85 
86 /*
87  * This ensures that the hotplug operation can begin only when the
88  * refcount goes to zero.
89  *
90  * Note that during a cpu-hotplug operation, the new readers, if any,
91  * will be blocked by the cpu_hotplug.lock
92  *
93  * Since cpu_hotplug_begin() is always called after invoking
94  * cpu_maps_update_begin(), we can be sure that only one writer is active.
95  *
96  * Note that theoretically, there is a possibility of a livelock:
97  * - Refcount goes to zero, last reader wakes up the sleeping
98  *   writer.
99  * - Last reader unlocks the cpu_hotplug.lock.
100  * - A new reader arrives at this moment, bumps up the refcount.
101  * - The writer acquires the cpu_hotplug.lock finds the refcount
102  *   non zero and goes to sleep again.
103  *
104  * However, this is very difficult to achieve in practice since
105  * get_online_cpus() not an api which is called all that often.
106  *
107  */
108 static void cpu_hotplug_begin(void)
109 {
110 	cpu_hotplug.active_writer = current;
111 
112 	for (;;) {
113 		mutex_lock(&cpu_hotplug.lock);
114 		if (likely(!cpu_hotplug.refcount))
115 			break;
116 		__set_current_state(TASK_UNINTERRUPTIBLE);
117 		mutex_unlock(&cpu_hotplug.lock);
118 		schedule();
119 	}
120 }
121 
122 static void cpu_hotplug_done(void)
123 {
124 	cpu_hotplug.active_writer = NULL;
125 	mutex_unlock(&cpu_hotplug.lock);
126 }
127 /* Need to know about CPUs going up/down? */
128 int __ref register_cpu_notifier(struct notifier_block *nb)
129 {
130 	int ret;
131 	cpu_maps_update_begin();
132 	ret = raw_notifier_chain_register(&cpu_chain, nb);
133 	cpu_maps_update_done();
134 	return ret;
135 }
136 
137 #ifdef CONFIG_HOTPLUG_CPU
138 
139 EXPORT_SYMBOL(register_cpu_notifier);
140 
141 void __ref unregister_cpu_notifier(struct notifier_block *nb)
142 {
143 	cpu_maps_update_begin();
144 	raw_notifier_chain_unregister(&cpu_chain, nb);
145 	cpu_maps_update_done();
146 }
147 EXPORT_SYMBOL(unregister_cpu_notifier);
148 
149 static inline void check_for_tasks(int cpu)
150 {
151 	struct task_struct *p;
152 
153 	write_lock_irq(&tasklist_lock);
154 	for_each_process(p) {
155 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
156 		    (!cputime_eq(p->utime, cputime_zero) ||
157 		     !cputime_eq(p->stime, cputime_zero)))
158 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
159 				"(state = %ld, flags = %x)\n",
160 				p->comm, task_pid_nr(p), cpu,
161 				p->state, p->flags);
162 	}
163 	write_unlock_irq(&tasklist_lock);
164 }
165 
166 struct take_cpu_down_param {
167 	unsigned long mod;
168 	void *hcpu;
169 };
170 
171 /* Take this CPU down. */
172 static int __ref take_cpu_down(void *_param)
173 {
174 	struct take_cpu_down_param *param = _param;
175 	int err;
176 
177 	/* Ensure this CPU doesn't handle any more interrupts. */
178 	err = __cpu_disable();
179 	if (err < 0)
180 		return err;
181 
182 	raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
183 				param->hcpu);
184 
185 	/* Force idle task to run as soon as we yield: it should
186 	   immediately notice cpu is offline and die quickly. */
187 	sched_idle_next();
188 	return 0;
189 }
190 
191 /* Requires cpu_add_remove_lock to be held */
192 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
193 {
194 	int err, nr_calls = 0;
195 	cpumask_var_t old_allowed;
196 	void *hcpu = (void *)(long)cpu;
197 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
198 	struct take_cpu_down_param tcd_param = {
199 		.mod = mod,
200 		.hcpu = hcpu,
201 	};
202 
203 	if (num_online_cpus() == 1)
204 		return -EBUSY;
205 
206 	if (!cpu_online(cpu))
207 		return -EINVAL;
208 
209 	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
210 		return -ENOMEM;
211 
212 	cpu_hotplug_begin();
213 	set_cpu_active(cpu, false);
214 	err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
215 					hcpu, -1, &nr_calls);
216 	if (err == NOTIFY_BAD) {
217 		set_cpu_active(cpu, true);
218 
219 		nr_calls--;
220 		__raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
221 					  hcpu, nr_calls, NULL);
222 		printk("%s: attempt to take down CPU %u failed\n",
223 				__func__, cpu);
224 		err = -EINVAL;
225 		goto out_release;
226 	}
227 
228 	/* Ensure that we are not runnable on dying cpu */
229 	cpumask_copy(old_allowed, &current->cpus_allowed);
230 	set_cpus_allowed_ptr(current, cpu_active_mask);
231 
232 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
233 	if (err) {
234 		set_cpu_active(cpu, true);
235 		/* CPU didn't die: tell everyone.  Can't complain. */
236 		if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
237 					    hcpu) == NOTIFY_BAD)
238 			BUG();
239 
240 		goto out_allowed;
241 	}
242 	BUG_ON(cpu_online(cpu));
243 
244 	/* Wait for it to sleep (leaving idle task). */
245 	while (!idle_cpu(cpu))
246 		yield();
247 
248 	/* This actually kills the CPU. */
249 	__cpu_die(cpu);
250 
251 	/* CPU is completely dead: tell everyone.  Too late to complain. */
252 	if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod,
253 				    hcpu) == NOTIFY_BAD)
254 		BUG();
255 
256 	check_for_tasks(cpu);
257 
258 out_allowed:
259 	set_cpus_allowed_ptr(current, old_allowed);
260 out_release:
261 	cpu_hotplug_done();
262 	if (!err) {
263 		if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod,
264 					    hcpu) == NOTIFY_BAD)
265 			BUG();
266 	}
267 	free_cpumask_var(old_allowed);
268 	return err;
269 }
270 
271 int __ref cpu_down(unsigned int cpu)
272 {
273 	int err;
274 
275 	err = stop_machine_create();
276 	if (err)
277 		return err;
278 	cpu_maps_update_begin();
279 
280 	if (cpu_hotplug_disabled) {
281 		err = -EBUSY;
282 		goto out;
283 	}
284 
285 	err = _cpu_down(cpu, 0);
286 
287 out:
288 	cpu_maps_update_done();
289 	stop_machine_destroy();
290 	return err;
291 }
292 EXPORT_SYMBOL(cpu_down);
293 #endif /*CONFIG_HOTPLUG_CPU*/
294 
295 /* Requires cpu_add_remove_lock to be held */
296 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
297 {
298 	int ret, nr_calls = 0;
299 	void *hcpu = (void *)(long)cpu;
300 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
301 
302 	if (cpu_online(cpu) || !cpu_present(cpu))
303 		return -EINVAL;
304 
305 	cpu_hotplug_begin();
306 	ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu,
307 							-1, &nr_calls);
308 	if (ret == NOTIFY_BAD) {
309 		nr_calls--;
310 		printk("%s: attempt to bring up CPU %u failed\n",
311 				__func__, cpu);
312 		ret = -EINVAL;
313 		goto out_notify;
314 	}
315 
316 	/* Arch-specific enabling code. */
317 	ret = __cpu_up(cpu);
318 	if (ret != 0)
319 		goto out_notify;
320 	BUG_ON(!cpu_online(cpu));
321 
322 	set_cpu_active(cpu, true);
323 
324 	/* Now call notifier in preparation. */
325 	raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu);
326 
327 out_notify:
328 	if (ret != 0)
329 		__raw_notifier_call_chain(&cpu_chain,
330 				CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
331 	cpu_hotplug_done();
332 
333 	return ret;
334 }
335 
336 int __cpuinit cpu_up(unsigned int cpu)
337 {
338 	int err = 0;
339 	if (!cpu_possible(cpu)) {
340 		printk(KERN_ERR "can't online cpu %d because it is not "
341 			"configured as may-hotadd at boot time\n", cpu);
342 #if defined(CONFIG_IA64)
343 		printk(KERN_ERR "please check additional_cpus= boot "
344 				"parameter\n");
345 #endif
346 		return -EINVAL;
347 	}
348 
349 	cpu_maps_update_begin();
350 
351 	if (cpu_hotplug_disabled) {
352 		err = -EBUSY;
353 		goto out;
354 	}
355 
356 	err = _cpu_up(cpu, 0);
357 
358 out:
359 	cpu_maps_update_done();
360 	return err;
361 }
362 
363 #ifdef CONFIG_PM_SLEEP_SMP
364 static cpumask_var_t frozen_cpus;
365 
366 int disable_nonboot_cpus(void)
367 {
368 	int cpu, first_cpu, error;
369 
370 	error = stop_machine_create();
371 	if (error)
372 		return error;
373 	cpu_maps_update_begin();
374 	first_cpu = cpumask_first(cpu_online_mask);
375 	/*
376 	 * We take down all of the non-boot CPUs in one shot to avoid races
377 	 * with the userspace trying to use the CPU hotplug at the same time
378 	 */
379 	cpumask_clear(frozen_cpus);
380 
381 	printk("Disabling non-boot CPUs ...\n");
382 	for_each_online_cpu(cpu) {
383 		if (cpu == first_cpu)
384 			continue;
385 		error = _cpu_down(cpu, 1);
386 		if (!error)
387 			cpumask_set_cpu(cpu, frozen_cpus);
388 		else {
389 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
390 				cpu, error);
391 			break;
392 		}
393 	}
394 
395 	if (!error) {
396 		BUG_ON(num_online_cpus() > 1);
397 		/* Make sure the CPUs won't be enabled by someone else */
398 		cpu_hotplug_disabled = 1;
399 	} else {
400 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
401 	}
402 	cpu_maps_update_done();
403 	stop_machine_destroy();
404 	return error;
405 }
406 
407 void __weak arch_enable_nonboot_cpus_begin(void)
408 {
409 }
410 
411 void __weak arch_enable_nonboot_cpus_end(void)
412 {
413 }
414 
415 void __ref enable_nonboot_cpus(void)
416 {
417 	int cpu, error;
418 
419 	/* Allow everyone to use the CPU hotplug again */
420 	cpu_maps_update_begin();
421 	cpu_hotplug_disabled = 0;
422 	if (cpumask_empty(frozen_cpus))
423 		goto out;
424 
425 	printk("Enabling non-boot CPUs ...\n");
426 
427 	arch_enable_nonboot_cpus_begin();
428 
429 	for_each_cpu(cpu, frozen_cpus) {
430 		error = _cpu_up(cpu, 1);
431 		if (!error) {
432 			printk("CPU%d is up\n", cpu);
433 			continue;
434 		}
435 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
436 	}
437 
438 	arch_enable_nonboot_cpus_end();
439 
440 	cpumask_clear(frozen_cpus);
441 out:
442 	cpu_maps_update_done();
443 }
444 
445 static int alloc_frozen_cpus(void)
446 {
447 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
448 		return -ENOMEM;
449 	return 0;
450 }
451 core_initcall(alloc_frozen_cpus);
452 #endif /* CONFIG_PM_SLEEP_SMP */
453 
454 /**
455  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
456  * @cpu: cpu that just started
457  *
458  * This function calls the cpu_chain notifiers with CPU_STARTING.
459  * It must be called by the arch code on the new cpu, before the new cpu
460  * enables interrupts and before the "boot" cpu returns from __cpu_up().
461  */
462 void __cpuinit notify_cpu_starting(unsigned int cpu)
463 {
464 	unsigned long val = CPU_STARTING;
465 
466 #ifdef CONFIG_PM_SLEEP_SMP
467 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
468 		val = CPU_STARTING_FROZEN;
469 #endif /* CONFIG_PM_SLEEP_SMP */
470 	raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
471 }
472 
473 #endif /* CONFIG_SMP */
474 
475 /*
476  * cpu_bit_bitmap[] is a special, "compressed" data structure that
477  * represents all NR_CPUS bits binary values of 1<<nr.
478  *
479  * It is used by cpumask_of() to get a constant address to a CPU
480  * mask value that has a single bit set only.
481  */
482 
483 /* cpu_bit_bitmap[0] is empty - so we can back into it */
484 #define MASK_DECLARE_1(x)	[x+1][0] = 1UL << (x)
485 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
486 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
487 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
488 
489 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
490 
491 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
492 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
493 #if BITS_PER_LONG > 32
494 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
495 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
496 #endif
497 };
498 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
499 
500 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
501 EXPORT_SYMBOL(cpu_all_bits);
502 
503 #ifdef CONFIG_INIT_ALL_POSSIBLE
504 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
505 	= CPU_BITS_ALL;
506 #else
507 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
508 #endif
509 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
510 EXPORT_SYMBOL(cpu_possible_mask);
511 
512 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
513 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
514 EXPORT_SYMBOL(cpu_online_mask);
515 
516 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
517 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
518 EXPORT_SYMBOL(cpu_present_mask);
519 
520 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
521 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
522 EXPORT_SYMBOL(cpu_active_mask);
523 
524 void set_cpu_possible(unsigned int cpu, bool possible)
525 {
526 	if (possible)
527 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
528 	else
529 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
530 }
531 
532 void set_cpu_present(unsigned int cpu, bool present)
533 {
534 	if (present)
535 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
536 	else
537 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
538 }
539 
540 void set_cpu_online(unsigned int cpu, bool online)
541 {
542 	if (online)
543 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
544 	else
545 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
546 }
547 
548 void set_cpu_active(unsigned int cpu, bool active)
549 {
550 	if (active)
551 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
552 	else
553 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
554 }
555 
556 void init_cpu_present(const struct cpumask *src)
557 {
558 	cpumask_copy(to_cpumask(cpu_present_bits), src);
559 }
560 
561 void init_cpu_possible(const struct cpumask *src)
562 {
563 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
564 }
565 
566 void init_cpu_online(const struct cpumask *src)
567 {
568 	cpumask_copy(to_cpumask(cpu_online_bits), src);
569 }
570