1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 void cpus_read_lock(void) 487 { 488 percpu_down_read(&cpu_hotplug_lock); 489 } 490 EXPORT_SYMBOL_GPL(cpus_read_lock); 491 492 int cpus_read_trylock(void) 493 { 494 return percpu_down_read_trylock(&cpu_hotplug_lock); 495 } 496 EXPORT_SYMBOL_GPL(cpus_read_trylock); 497 498 void cpus_read_unlock(void) 499 { 500 percpu_up_read(&cpu_hotplug_lock); 501 } 502 EXPORT_SYMBOL_GPL(cpus_read_unlock); 503 504 void cpus_write_lock(void) 505 { 506 percpu_down_write(&cpu_hotplug_lock); 507 } 508 509 void cpus_write_unlock(void) 510 { 511 percpu_up_write(&cpu_hotplug_lock); 512 } 513 514 void lockdep_assert_cpus_held(void) 515 { 516 /* 517 * We can't have hotplug operations before userspace starts running, 518 * and some init codepaths will knowingly not take the hotplug lock. 519 * This is all valid, so mute lockdep until it makes sense to report 520 * unheld locks. 521 */ 522 if (system_state < SYSTEM_RUNNING) 523 return; 524 525 percpu_rwsem_assert_held(&cpu_hotplug_lock); 526 } 527 528 #ifdef CONFIG_LOCKDEP 529 int lockdep_is_cpus_held(void) 530 { 531 return percpu_rwsem_is_held(&cpu_hotplug_lock); 532 } 533 #endif 534 535 static void lockdep_acquire_cpus_lock(void) 536 { 537 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 538 } 539 540 static void lockdep_release_cpus_lock(void) 541 { 542 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 543 } 544 545 /* 546 * Wait for currently running CPU hotplug operations to complete (if any) and 547 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 548 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 549 * hotplug path before performing hotplug operations. So acquiring that lock 550 * guarantees mutual exclusion from any currently running hotplug operations. 551 */ 552 void cpu_hotplug_disable(void) 553 { 554 cpu_maps_update_begin(); 555 cpu_hotplug_disabled++; 556 cpu_maps_update_done(); 557 } 558 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 559 560 static void __cpu_hotplug_enable(void) 561 { 562 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 563 return; 564 cpu_hotplug_disabled--; 565 } 566 567 void cpu_hotplug_enable(void) 568 { 569 cpu_maps_update_begin(); 570 __cpu_hotplug_enable(); 571 cpu_maps_update_done(); 572 } 573 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 574 575 #else 576 577 static void lockdep_acquire_cpus_lock(void) 578 { 579 } 580 581 static void lockdep_release_cpus_lock(void) 582 { 583 } 584 585 #endif /* CONFIG_HOTPLUG_CPU */ 586 587 /* 588 * Architectures that need SMT-specific errata handling during SMT hotplug 589 * should override this. 590 */ 591 void __weak arch_smt_update(void) { } 592 593 #ifdef CONFIG_HOTPLUG_SMT 594 595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 596 static unsigned int cpu_smt_max_threads __ro_after_init; 597 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 598 599 void __init cpu_smt_disable(bool force) 600 { 601 if (!cpu_smt_possible()) 602 return; 603 604 if (force) { 605 pr_info("SMT: Force disabled\n"); 606 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 607 } else { 608 pr_info("SMT: disabled\n"); 609 cpu_smt_control = CPU_SMT_DISABLED; 610 } 611 cpu_smt_num_threads = 1; 612 } 613 614 /* 615 * The decision whether SMT is supported can only be done after the full 616 * CPU identification. Called from architecture code. 617 */ 618 void __init cpu_smt_set_num_threads(unsigned int num_threads, 619 unsigned int max_threads) 620 { 621 WARN_ON(!num_threads || (num_threads > max_threads)); 622 623 if (max_threads == 1) 624 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 625 626 cpu_smt_max_threads = max_threads; 627 628 /* 629 * If SMT has been disabled via the kernel command line or SMT is 630 * not supported, set cpu_smt_num_threads to 1 for consistency. 631 * If enabled, take the architecture requested number of threads 632 * to bring up into account. 633 */ 634 if (cpu_smt_control != CPU_SMT_ENABLED) 635 cpu_smt_num_threads = 1; 636 else if (num_threads < cpu_smt_num_threads) 637 cpu_smt_num_threads = num_threads; 638 } 639 640 static int __init smt_cmdline_disable(char *str) 641 { 642 cpu_smt_disable(str && !strcmp(str, "force")); 643 return 0; 644 } 645 early_param("nosmt", smt_cmdline_disable); 646 647 /* 648 * For Archicture supporting partial SMT states check if the thread is allowed. 649 * Otherwise this has already been checked through cpu_smt_max_threads when 650 * setting the SMT level. 651 */ 652 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 653 { 654 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 655 return topology_smt_thread_allowed(cpu); 656 #else 657 return true; 658 #endif 659 } 660 661 static inline bool cpu_bootable(unsigned int cpu) 662 { 663 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 664 return true; 665 666 /* All CPUs are bootable if controls are not configured */ 667 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 668 return true; 669 670 /* All CPUs are bootable if CPU is not SMT capable */ 671 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 672 return true; 673 674 if (topology_is_primary_thread(cpu)) 675 return true; 676 677 /* 678 * On x86 it's required to boot all logical CPUs at least once so 679 * that the init code can get a chance to set CR4.MCE on each 680 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 681 * core will shutdown the machine. 682 */ 683 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 684 } 685 686 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 687 bool cpu_smt_possible(void) 688 { 689 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 690 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 691 } 692 EXPORT_SYMBOL_GPL(cpu_smt_possible); 693 694 #else 695 static inline bool cpu_bootable(unsigned int cpu) { return true; } 696 #endif 697 698 static inline enum cpuhp_state 699 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 700 { 701 enum cpuhp_state prev_state = st->state; 702 bool bringup = st->state < target; 703 704 st->rollback = false; 705 st->last = NULL; 706 707 st->target = target; 708 st->single = false; 709 st->bringup = bringup; 710 if (cpu_dying(cpu) != !bringup) 711 set_cpu_dying(cpu, !bringup); 712 713 return prev_state; 714 } 715 716 static inline void 717 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 718 enum cpuhp_state prev_state) 719 { 720 bool bringup = !st->bringup; 721 722 st->target = prev_state; 723 724 /* 725 * Already rolling back. No need invert the bringup value or to change 726 * the current state. 727 */ 728 if (st->rollback) 729 return; 730 731 st->rollback = true; 732 733 /* 734 * If we have st->last we need to undo partial multi_instance of this 735 * state first. Otherwise start undo at the previous state. 736 */ 737 if (!st->last) { 738 if (st->bringup) 739 st->state--; 740 else 741 st->state++; 742 } 743 744 st->bringup = bringup; 745 if (cpu_dying(cpu) != !bringup) 746 set_cpu_dying(cpu, !bringup); 747 } 748 749 /* Regular hotplug invocation of the AP hotplug thread */ 750 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 751 { 752 if (!st->single && st->state == st->target) 753 return; 754 755 st->result = 0; 756 /* 757 * Make sure the above stores are visible before should_run becomes 758 * true. Paired with the mb() above in cpuhp_thread_fun() 759 */ 760 smp_mb(); 761 st->should_run = true; 762 wake_up_process(st->thread); 763 wait_for_ap_thread(st, st->bringup); 764 } 765 766 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 767 enum cpuhp_state target) 768 { 769 enum cpuhp_state prev_state; 770 int ret; 771 772 prev_state = cpuhp_set_state(cpu, st, target); 773 __cpuhp_kick_ap(st); 774 if ((ret = st->result)) { 775 cpuhp_reset_state(cpu, st, prev_state); 776 __cpuhp_kick_ap(st); 777 } 778 779 return ret; 780 } 781 782 static int bringup_wait_for_ap_online(unsigned int cpu) 783 { 784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 785 786 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 787 wait_for_ap_thread(st, true); 788 if (WARN_ON_ONCE((!cpu_online(cpu)))) 789 return -ECANCELED; 790 791 /* Unpark the hotplug thread of the target cpu */ 792 kthread_unpark(st->thread); 793 794 /* 795 * SMT soft disabling on X86 requires to bring the CPU out of the 796 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 797 * CPU marked itself as booted_once in notify_cpu_starting() so the 798 * cpu_bootable() check will now return false if this is not the 799 * primary sibling. 800 */ 801 if (!cpu_bootable(cpu)) 802 return -ECANCELED; 803 return 0; 804 } 805 806 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 807 static int cpuhp_kick_ap_alive(unsigned int cpu) 808 { 809 if (!cpuhp_can_boot_ap(cpu)) 810 return -EAGAIN; 811 812 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 813 } 814 815 static int cpuhp_bringup_ap(unsigned int cpu) 816 { 817 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 818 int ret; 819 820 /* 821 * Some architectures have to walk the irq descriptors to 822 * setup the vector space for the cpu which comes online. 823 * Prevent irq alloc/free across the bringup. 824 */ 825 irq_lock_sparse(); 826 827 ret = cpuhp_bp_sync_alive(cpu); 828 if (ret) 829 goto out_unlock; 830 831 ret = bringup_wait_for_ap_online(cpu); 832 if (ret) 833 goto out_unlock; 834 835 irq_unlock_sparse(); 836 837 if (st->target <= CPUHP_AP_ONLINE_IDLE) 838 return 0; 839 840 return cpuhp_kick_ap(cpu, st, st->target); 841 842 out_unlock: 843 irq_unlock_sparse(); 844 return ret; 845 } 846 #else 847 static int bringup_cpu(unsigned int cpu) 848 { 849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 850 struct task_struct *idle = idle_thread_get(cpu); 851 int ret; 852 853 if (!cpuhp_can_boot_ap(cpu)) 854 return -EAGAIN; 855 856 /* 857 * Some architectures have to walk the irq descriptors to 858 * setup the vector space for the cpu which comes online. 859 * 860 * Prevent irq alloc/free across the bringup by acquiring the 861 * sparse irq lock. Hold it until the upcoming CPU completes the 862 * startup in cpuhp_online_idle() which allows to avoid 863 * intermediate synchronization points in the architecture code. 864 */ 865 irq_lock_sparse(); 866 867 ret = __cpu_up(cpu, idle); 868 if (ret) 869 goto out_unlock; 870 871 ret = cpuhp_bp_sync_alive(cpu); 872 if (ret) 873 goto out_unlock; 874 875 ret = bringup_wait_for_ap_online(cpu); 876 if (ret) 877 goto out_unlock; 878 879 irq_unlock_sparse(); 880 881 if (st->target <= CPUHP_AP_ONLINE_IDLE) 882 return 0; 883 884 return cpuhp_kick_ap(cpu, st, st->target); 885 886 out_unlock: 887 irq_unlock_sparse(); 888 return ret; 889 } 890 #endif 891 892 static int finish_cpu(unsigned int cpu) 893 { 894 struct task_struct *idle = idle_thread_get(cpu); 895 struct mm_struct *mm = idle->active_mm; 896 897 /* 898 * idle_task_exit() will have switched to &init_mm, now 899 * clean up any remaining active_mm state. 900 */ 901 if (mm != &init_mm) 902 idle->active_mm = &init_mm; 903 mmdrop_lazy_tlb(mm); 904 return 0; 905 } 906 907 /* 908 * Hotplug state machine related functions 909 */ 910 911 /* 912 * Get the next state to run. Empty ones will be skipped. Returns true if a 913 * state must be run. 914 * 915 * st->state will be modified ahead of time, to match state_to_run, as if it 916 * has already ran. 917 */ 918 static bool cpuhp_next_state(bool bringup, 919 enum cpuhp_state *state_to_run, 920 struct cpuhp_cpu_state *st, 921 enum cpuhp_state target) 922 { 923 do { 924 if (bringup) { 925 if (st->state >= target) 926 return false; 927 928 *state_to_run = ++st->state; 929 } else { 930 if (st->state <= target) 931 return false; 932 933 *state_to_run = st->state--; 934 } 935 936 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 937 break; 938 } while (true); 939 940 return true; 941 } 942 943 static int __cpuhp_invoke_callback_range(bool bringup, 944 unsigned int cpu, 945 struct cpuhp_cpu_state *st, 946 enum cpuhp_state target, 947 bool nofail) 948 { 949 enum cpuhp_state state; 950 int ret = 0; 951 952 while (cpuhp_next_state(bringup, &state, st, target)) { 953 int err; 954 955 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 956 if (!err) 957 continue; 958 959 if (nofail) { 960 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 961 cpu, bringup ? "UP" : "DOWN", 962 cpuhp_get_step(st->state)->name, 963 st->state, err); 964 ret = -1; 965 } else { 966 ret = err; 967 break; 968 } 969 } 970 971 return ret; 972 } 973 974 static inline int cpuhp_invoke_callback_range(bool bringup, 975 unsigned int cpu, 976 struct cpuhp_cpu_state *st, 977 enum cpuhp_state target) 978 { 979 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 980 } 981 982 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 983 unsigned int cpu, 984 struct cpuhp_cpu_state *st, 985 enum cpuhp_state target) 986 { 987 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 988 } 989 990 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 991 { 992 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 993 return true; 994 /* 995 * When CPU hotplug is disabled, then taking the CPU down is not 996 * possible because takedown_cpu() and the architecture and 997 * subsystem specific mechanisms are not available. So the CPU 998 * which would be completely unplugged again needs to stay around 999 * in the current state. 1000 */ 1001 return st->state <= CPUHP_BRINGUP_CPU; 1002 } 1003 1004 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1005 enum cpuhp_state target) 1006 { 1007 enum cpuhp_state prev_state = st->state; 1008 int ret = 0; 1009 1010 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1011 if (ret) { 1012 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1013 ret, cpu, cpuhp_get_step(st->state)->name, 1014 st->state); 1015 1016 cpuhp_reset_state(cpu, st, prev_state); 1017 if (can_rollback_cpu(st)) 1018 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1019 prev_state)); 1020 } 1021 return ret; 1022 } 1023 1024 /* 1025 * The cpu hotplug threads manage the bringup and teardown of the cpus 1026 */ 1027 static int cpuhp_should_run(unsigned int cpu) 1028 { 1029 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1030 1031 return st->should_run; 1032 } 1033 1034 /* 1035 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1036 * callbacks when a state gets [un]installed at runtime. 1037 * 1038 * Each invocation of this function by the smpboot thread does a single AP 1039 * state callback. 1040 * 1041 * It has 3 modes of operation: 1042 * - single: runs st->cb_state 1043 * - up: runs ++st->state, while st->state < st->target 1044 * - down: runs st->state--, while st->state > st->target 1045 * 1046 * When complete or on error, should_run is cleared and the completion is fired. 1047 */ 1048 static void cpuhp_thread_fun(unsigned int cpu) 1049 { 1050 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1051 bool bringup = st->bringup; 1052 enum cpuhp_state state; 1053 1054 if (WARN_ON_ONCE(!st->should_run)) 1055 return; 1056 1057 /* 1058 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1059 * that if we see ->should_run we also see the rest of the state. 1060 */ 1061 smp_mb(); 1062 1063 /* 1064 * The BP holds the hotplug lock, but we're now running on the AP, 1065 * ensure that anybody asserting the lock is held, will actually find 1066 * it so. 1067 */ 1068 lockdep_acquire_cpus_lock(); 1069 cpuhp_lock_acquire(bringup); 1070 1071 if (st->single) { 1072 state = st->cb_state; 1073 st->should_run = false; 1074 } else { 1075 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1076 if (!st->should_run) 1077 goto end; 1078 } 1079 1080 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1081 1082 if (cpuhp_is_atomic_state(state)) { 1083 local_irq_disable(); 1084 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1085 local_irq_enable(); 1086 1087 /* 1088 * STARTING/DYING must not fail! 1089 */ 1090 WARN_ON_ONCE(st->result); 1091 } else { 1092 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1093 } 1094 1095 if (st->result) { 1096 /* 1097 * If we fail on a rollback, we're up a creek without no 1098 * paddle, no way forward, no way back. We loose, thanks for 1099 * playing. 1100 */ 1101 WARN_ON_ONCE(st->rollback); 1102 st->should_run = false; 1103 } 1104 1105 end: 1106 cpuhp_lock_release(bringup); 1107 lockdep_release_cpus_lock(); 1108 1109 if (!st->should_run) 1110 complete_ap_thread(st, bringup); 1111 } 1112 1113 /* Invoke a single callback on a remote cpu */ 1114 static int 1115 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1116 struct hlist_node *node) 1117 { 1118 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1119 int ret; 1120 1121 if (!cpu_online(cpu)) 1122 return 0; 1123 1124 cpuhp_lock_acquire(false); 1125 cpuhp_lock_release(false); 1126 1127 cpuhp_lock_acquire(true); 1128 cpuhp_lock_release(true); 1129 1130 /* 1131 * If we are up and running, use the hotplug thread. For early calls 1132 * we invoke the thread function directly. 1133 */ 1134 if (!st->thread) 1135 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1136 1137 st->rollback = false; 1138 st->last = NULL; 1139 1140 st->node = node; 1141 st->bringup = bringup; 1142 st->cb_state = state; 1143 st->single = true; 1144 1145 __cpuhp_kick_ap(st); 1146 1147 /* 1148 * If we failed and did a partial, do a rollback. 1149 */ 1150 if ((ret = st->result) && st->last) { 1151 st->rollback = true; 1152 st->bringup = !bringup; 1153 1154 __cpuhp_kick_ap(st); 1155 } 1156 1157 /* 1158 * Clean up the leftovers so the next hotplug operation wont use stale 1159 * data. 1160 */ 1161 st->node = st->last = NULL; 1162 return ret; 1163 } 1164 1165 static int cpuhp_kick_ap_work(unsigned int cpu) 1166 { 1167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1168 enum cpuhp_state prev_state = st->state; 1169 int ret; 1170 1171 cpuhp_lock_acquire(false); 1172 cpuhp_lock_release(false); 1173 1174 cpuhp_lock_acquire(true); 1175 cpuhp_lock_release(true); 1176 1177 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1178 ret = cpuhp_kick_ap(cpu, st, st->target); 1179 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1180 1181 return ret; 1182 } 1183 1184 static struct smp_hotplug_thread cpuhp_threads = { 1185 .store = &cpuhp_state.thread, 1186 .thread_should_run = cpuhp_should_run, 1187 .thread_fn = cpuhp_thread_fun, 1188 .thread_comm = "cpuhp/%u", 1189 .selfparking = true, 1190 }; 1191 1192 static __init void cpuhp_init_state(void) 1193 { 1194 struct cpuhp_cpu_state *st; 1195 int cpu; 1196 1197 for_each_possible_cpu(cpu) { 1198 st = per_cpu_ptr(&cpuhp_state, cpu); 1199 init_completion(&st->done_up); 1200 init_completion(&st->done_down); 1201 } 1202 } 1203 1204 void __init cpuhp_threads_init(void) 1205 { 1206 cpuhp_init_state(); 1207 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1208 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1209 } 1210 1211 #ifdef CONFIG_HOTPLUG_CPU 1212 #ifndef arch_clear_mm_cpumask_cpu 1213 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1214 #endif 1215 1216 /** 1217 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1218 * @cpu: a CPU id 1219 * 1220 * This function walks all processes, finds a valid mm struct for each one and 1221 * then clears a corresponding bit in mm's cpumask. While this all sounds 1222 * trivial, there are various non-obvious corner cases, which this function 1223 * tries to solve in a safe manner. 1224 * 1225 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1226 * be called only for an already offlined CPU. 1227 */ 1228 void clear_tasks_mm_cpumask(int cpu) 1229 { 1230 struct task_struct *p; 1231 1232 /* 1233 * This function is called after the cpu is taken down and marked 1234 * offline, so its not like new tasks will ever get this cpu set in 1235 * their mm mask. -- Peter Zijlstra 1236 * Thus, we may use rcu_read_lock() here, instead of grabbing 1237 * full-fledged tasklist_lock. 1238 */ 1239 WARN_ON(cpu_online(cpu)); 1240 rcu_read_lock(); 1241 for_each_process(p) { 1242 struct task_struct *t; 1243 1244 /* 1245 * Main thread might exit, but other threads may still have 1246 * a valid mm. Find one. 1247 */ 1248 t = find_lock_task_mm(p); 1249 if (!t) 1250 continue; 1251 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1252 task_unlock(t); 1253 } 1254 rcu_read_unlock(); 1255 } 1256 1257 /* Take this CPU down. */ 1258 static int take_cpu_down(void *_param) 1259 { 1260 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1261 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1262 int err, cpu = smp_processor_id(); 1263 1264 /* Ensure this CPU doesn't handle any more interrupts. */ 1265 err = __cpu_disable(); 1266 if (err < 0) 1267 return err; 1268 1269 /* 1270 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1271 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1272 */ 1273 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1274 1275 /* 1276 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1277 */ 1278 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1279 1280 /* Park the stopper thread */ 1281 stop_machine_park(cpu); 1282 return 0; 1283 } 1284 1285 static int takedown_cpu(unsigned int cpu) 1286 { 1287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1288 int err; 1289 1290 /* Park the smpboot threads */ 1291 kthread_park(st->thread); 1292 1293 /* 1294 * Prevent irq alloc/free while the dying cpu reorganizes the 1295 * interrupt affinities. 1296 */ 1297 irq_lock_sparse(); 1298 1299 /* 1300 * So now all preempt/rcu users must observe !cpu_active(). 1301 */ 1302 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1303 if (err) { 1304 /* CPU refused to die */ 1305 irq_unlock_sparse(); 1306 /* Unpark the hotplug thread so we can rollback there */ 1307 kthread_unpark(st->thread); 1308 return err; 1309 } 1310 BUG_ON(cpu_online(cpu)); 1311 1312 /* 1313 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1314 * all runnable tasks from the CPU, there's only the idle task left now 1315 * that the migration thread is done doing the stop_machine thing. 1316 * 1317 * Wait for the stop thread to go away. 1318 */ 1319 wait_for_ap_thread(st, false); 1320 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1321 1322 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1323 irq_unlock_sparse(); 1324 1325 hotplug_cpu__broadcast_tick_pull(cpu); 1326 /* This actually kills the CPU. */ 1327 __cpu_die(cpu); 1328 1329 cpuhp_bp_sync_dead(cpu); 1330 1331 tick_cleanup_dead_cpu(cpu); 1332 1333 /* 1334 * Callbacks must be re-integrated right away to the RCU state machine. 1335 * Otherwise an RCU callback could block a further teardown function 1336 * waiting for its completion. 1337 */ 1338 rcutree_migrate_callbacks(cpu); 1339 1340 return 0; 1341 } 1342 1343 static void cpuhp_complete_idle_dead(void *arg) 1344 { 1345 struct cpuhp_cpu_state *st = arg; 1346 1347 complete_ap_thread(st, false); 1348 } 1349 1350 void cpuhp_report_idle_dead(void) 1351 { 1352 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1353 1354 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1355 tick_assert_timekeeping_handover(); 1356 rcutree_report_cpu_dead(); 1357 st->state = CPUHP_AP_IDLE_DEAD; 1358 /* 1359 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1360 * to an online cpu. 1361 */ 1362 smp_call_function_single(cpumask_first(cpu_online_mask), 1363 cpuhp_complete_idle_dead, st, 0); 1364 } 1365 1366 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1367 enum cpuhp_state target) 1368 { 1369 enum cpuhp_state prev_state = st->state; 1370 int ret = 0; 1371 1372 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1373 if (ret) { 1374 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1375 ret, cpu, cpuhp_get_step(st->state)->name, 1376 st->state); 1377 1378 cpuhp_reset_state(cpu, st, prev_state); 1379 1380 if (st->state < prev_state) 1381 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1382 prev_state)); 1383 } 1384 1385 return ret; 1386 } 1387 1388 /* Requires cpu_add_remove_lock to be held */ 1389 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1390 enum cpuhp_state target) 1391 { 1392 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1393 int prev_state, ret = 0; 1394 1395 if (num_online_cpus() == 1) 1396 return -EBUSY; 1397 1398 if (!cpu_present(cpu)) 1399 return -EINVAL; 1400 1401 cpus_write_lock(); 1402 1403 cpuhp_tasks_frozen = tasks_frozen; 1404 1405 prev_state = cpuhp_set_state(cpu, st, target); 1406 /* 1407 * If the current CPU state is in the range of the AP hotplug thread, 1408 * then we need to kick the thread. 1409 */ 1410 if (st->state > CPUHP_TEARDOWN_CPU) { 1411 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1412 ret = cpuhp_kick_ap_work(cpu); 1413 /* 1414 * The AP side has done the error rollback already. Just 1415 * return the error code.. 1416 */ 1417 if (ret) 1418 goto out; 1419 1420 /* 1421 * We might have stopped still in the range of the AP hotplug 1422 * thread. Nothing to do anymore. 1423 */ 1424 if (st->state > CPUHP_TEARDOWN_CPU) 1425 goto out; 1426 1427 st->target = target; 1428 } 1429 /* 1430 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1431 * to do the further cleanups. 1432 */ 1433 ret = cpuhp_down_callbacks(cpu, st, target); 1434 if (ret && st->state < prev_state) { 1435 if (st->state == CPUHP_TEARDOWN_CPU) { 1436 cpuhp_reset_state(cpu, st, prev_state); 1437 __cpuhp_kick_ap(st); 1438 } else { 1439 WARN(1, "DEAD callback error for CPU%d", cpu); 1440 } 1441 } 1442 1443 out: 1444 cpus_write_unlock(); 1445 /* 1446 * Do post unplug cleanup. This is still protected against 1447 * concurrent CPU hotplug via cpu_add_remove_lock. 1448 */ 1449 lockup_detector_cleanup(); 1450 arch_smt_update(); 1451 return ret; 1452 } 1453 1454 struct cpu_down_work { 1455 unsigned int cpu; 1456 enum cpuhp_state target; 1457 }; 1458 1459 static long __cpu_down_maps_locked(void *arg) 1460 { 1461 struct cpu_down_work *work = arg; 1462 1463 return _cpu_down(work->cpu, 0, work->target); 1464 } 1465 1466 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1467 { 1468 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1469 1470 /* 1471 * If the platform does not support hotplug, report it explicitly to 1472 * differentiate it from a transient offlining failure. 1473 */ 1474 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1475 return -EOPNOTSUPP; 1476 if (cpu_hotplug_disabled) 1477 return -EBUSY; 1478 1479 /* 1480 * Ensure that the control task does not run on the to be offlined 1481 * CPU to prevent a deadlock against cfs_b->period_timer. 1482 * Also keep at least one housekeeping cpu onlined to avoid generating 1483 * an empty sched_domain span. 1484 */ 1485 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1486 if (cpu != work.cpu) 1487 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1488 } 1489 return -EBUSY; 1490 } 1491 1492 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1493 { 1494 int err; 1495 1496 cpu_maps_update_begin(); 1497 err = cpu_down_maps_locked(cpu, target); 1498 cpu_maps_update_done(); 1499 return err; 1500 } 1501 1502 /** 1503 * cpu_device_down - Bring down a cpu device 1504 * @dev: Pointer to the cpu device to offline 1505 * 1506 * This function is meant to be used by device core cpu subsystem only. 1507 * 1508 * Other subsystems should use remove_cpu() instead. 1509 * 1510 * Return: %0 on success or a negative errno code 1511 */ 1512 int cpu_device_down(struct device *dev) 1513 { 1514 return cpu_down(dev->id, CPUHP_OFFLINE); 1515 } 1516 1517 int remove_cpu(unsigned int cpu) 1518 { 1519 int ret; 1520 1521 lock_device_hotplug(); 1522 ret = device_offline(get_cpu_device(cpu)); 1523 unlock_device_hotplug(); 1524 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(remove_cpu); 1528 1529 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1530 { 1531 unsigned int cpu; 1532 int error; 1533 1534 cpu_maps_update_begin(); 1535 1536 /* 1537 * Make certain the cpu I'm about to reboot on is online. 1538 * 1539 * This is inline to what migrate_to_reboot_cpu() already do. 1540 */ 1541 if (!cpu_online(primary_cpu)) 1542 primary_cpu = cpumask_first(cpu_online_mask); 1543 1544 for_each_online_cpu(cpu) { 1545 if (cpu == primary_cpu) 1546 continue; 1547 1548 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1549 if (error) { 1550 pr_err("Failed to offline CPU%d - error=%d", 1551 cpu, error); 1552 break; 1553 } 1554 } 1555 1556 /* 1557 * Ensure all but the reboot CPU are offline. 1558 */ 1559 BUG_ON(num_online_cpus() > 1); 1560 1561 /* 1562 * Make sure the CPUs won't be enabled by someone else after this 1563 * point. Kexec will reboot to a new kernel shortly resetting 1564 * everything along the way. 1565 */ 1566 cpu_hotplug_disabled++; 1567 1568 cpu_maps_update_done(); 1569 } 1570 1571 #else 1572 #define takedown_cpu NULL 1573 #endif /*CONFIG_HOTPLUG_CPU*/ 1574 1575 /** 1576 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1577 * @cpu: cpu that just started 1578 * 1579 * It must be called by the arch code on the new cpu, before the new cpu 1580 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1581 */ 1582 void notify_cpu_starting(unsigned int cpu) 1583 { 1584 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1585 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1586 1587 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1588 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1589 1590 /* 1591 * STARTING must not fail! 1592 */ 1593 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1594 } 1595 1596 /* 1597 * Called from the idle task. Wake up the controlling task which brings the 1598 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1599 * online bringup to the hotplug thread. 1600 */ 1601 void cpuhp_online_idle(enum cpuhp_state state) 1602 { 1603 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1604 1605 /* Happens for the boot cpu */ 1606 if (state != CPUHP_AP_ONLINE_IDLE) 1607 return; 1608 1609 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1610 1611 /* 1612 * Unpark the stopper thread before we start the idle loop (and start 1613 * scheduling); this ensures the stopper task is always available. 1614 */ 1615 stop_machine_unpark(smp_processor_id()); 1616 1617 st->state = CPUHP_AP_ONLINE_IDLE; 1618 complete_ap_thread(st, true); 1619 } 1620 1621 /* Requires cpu_add_remove_lock to be held */ 1622 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1623 { 1624 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1625 struct task_struct *idle; 1626 int ret = 0; 1627 1628 cpus_write_lock(); 1629 1630 if (!cpu_present(cpu)) { 1631 ret = -EINVAL; 1632 goto out; 1633 } 1634 1635 /* 1636 * The caller of cpu_up() might have raced with another 1637 * caller. Nothing to do. 1638 */ 1639 if (st->state >= target) 1640 goto out; 1641 1642 if (st->state == CPUHP_OFFLINE) { 1643 /* Let it fail before we try to bring the cpu up */ 1644 idle = idle_thread_get(cpu); 1645 if (IS_ERR(idle)) { 1646 ret = PTR_ERR(idle); 1647 goto out; 1648 } 1649 1650 /* 1651 * Reset stale stack state from the last time this CPU was online. 1652 */ 1653 scs_task_reset(idle); 1654 kasan_unpoison_task_stack(idle); 1655 } 1656 1657 cpuhp_tasks_frozen = tasks_frozen; 1658 1659 cpuhp_set_state(cpu, st, target); 1660 /* 1661 * If the current CPU state is in the range of the AP hotplug thread, 1662 * then we need to kick the thread once more. 1663 */ 1664 if (st->state > CPUHP_BRINGUP_CPU) { 1665 ret = cpuhp_kick_ap_work(cpu); 1666 /* 1667 * The AP side has done the error rollback already. Just 1668 * return the error code.. 1669 */ 1670 if (ret) 1671 goto out; 1672 } 1673 1674 /* 1675 * Try to reach the target state. We max out on the BP at 1676 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1677 * responsible for bringing it up to the target state. 1678 */ 1679 target = min((int)target, CPUHP_BRINGUP_CPU); 1680 ret = cpuhp_up_callbacks(cpu, st, target); 1681 out: 1682 cpus_write_unlock(); 1683 arch_smt_update(); 1684 return ret; 1685 } 1686 1687 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1688 { 1689 int err = 0; 1690 1691 if (!cpu_possible(cpu)) { 1692 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1693 cpu); 1694 return -EINVAL; 1695 } 1696 1697 err = try_online_node(cpu_to_node(cpu)); 1698 if (err) 1699 return err; 1700 1701 cpu_maps_update_begin(); 1702 1703 if (cpu_hotplug_disabled) { 1704 err = -EBUSY; 1705 goto out; 1706 } 1707 if (!cpu_bootable(cpu)) { 1708 err = -EPERM; 1709 goto out; 1710 } 1711 1712 err = _cpu_up(cpu, 0, target); 1713 out: 1714 cpu_maps_update_done(); 1715 return err; 1716 } 1717 1718 /** 1719 * cpu_device_up - Bring up a cpu device 1720 * @dev: Pointer to the cpu device to online 1721 * 1722 * This function is meant to be used by device core cpu subsystem only. 1723 * 1724 * Other subsystems should use add_cpu() instead. 1725 * 1726 * Return: %0 on success or a negative errno code 1727 */ 1728 int cpu_device_up(struct device *dev) 1729 { 1730 return cpu_up(dev->id, CPUHP_ONLINE); 1731 } 1732 1733 int add_cpu(unsigned int cpu) 1734 { 1735 int ret; 1736 1737 lock_device_hotplug(); 1738 ret = device_online(get_cpu_device(cpu)); 1739 unlock_device_hotplug(); 1740 1741 return ret; 1742 } 1743 EXPORT_SYMBOL_GPL(add_cpu); 1744 1745 /** 1746 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1747 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1748 * 1749 * On some architectures like arm64, we can hibernate on any CPU, but on 1750 * wake up the CPU we hibernated on might be offline as a side effect of 1751 * using maxcpus= for example. 1752 * 1753 * Return: %0 on success or a negative errno code 1754 */ 1755 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1756 { 1757 int ret; 1758 1759 if (!cpu_online(sleep_cpu)) { 1760 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1761 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1762 if (ret) { 1763 pr_err("Failed to bring hibernate-CPU up!\n"); 1764 return ret; 1765 } 1766 } 1767 return 0; 1768 } 1769 1770 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1771 enum cpuhp_state target) 1772 { 1773 unsigned int cpu; 1774 1775 for_each_cpu(cpu, mask) { 1776 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1777 1778 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1779 /* 1780 * If this failed then cpu_up() might have only 1781 * rolled back to CPUHP_BP_KICK_AP for the final 1782 * online. Clean it up. NOOP if already rolled back. 1783 */ 1784 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1785 } 1786 1787 if (!--ncpus) 1788 break; 1789 } 1790 } 1791 1792 #ifdef CONFIG_HOTPLUG_PARALLEL 1793 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1794 1795 static int __init parallel_bringup_parse_param(char *arg) 1796 { 1797 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1798 } 1799 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1800 1801 static inline bool cpuhp_smt_aware(void) 1802 { 1803 return cpu_smt_max_threads > 1; 1804 } 1805 1806 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1807 { 1808 return cpu_primary_thread_mask; 1809 } 1810 1811 /* 1812 * On architectures which have enabled parallel bringup this invokes all BP 1813 * prepare states for each of the to be onlined APs first. The last state 1814 * sends the startup IPI to the APs. The APs proceed through the low level 1815 * bringup code in parallel and then wait for the control CPU to release 1816 * them one by one for the final onlining procedure. 1817 * 1818 * This avoids waiting for each AP to respond to the startup IPI in 1819 * CPUHP_BRINGUP_CPU. 1820 */ 1821 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1822 { 1823 const struct cpumask *mask = cpu_present_mask; 1824 1825 if (__cpuhp_parallel_bringup) 1826 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1827 if (!__cpuhp_parallel_bringup) 1828 return false; 1829 1830 if (cpuhp_smt_aware()) { 1831 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1832 static struct cpumask tmp_mask __initdata; 1833 1834 /* 1835 * X86 requires to prevent that SMT siblings stopped while 1836 * the primary thread does a microcode update for various 1837 * reasons. Bring the primary threads up first. 1838 */ 1839 cpumask_and(&tmp_mask, mask, pmask); 1840 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1841 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1842 /* Account for the online CPUs */ 1843 ncpus -= num_online_cpus(); 1844 if (!ncpus) 1845 return true; 1846 /* Create the mask for secondary CPUs */ 1847 cpumask_andnot(&tmp_mask, mask, pmask); 1848 mask = &tmp_mask; 1849 } 1850 1851 /* Bring the not-yet started CPUs up */ 1852 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1853 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1854 return true; 1855 } 1856 #else 1857 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1858 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1859 1860 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1861 { 1862 if (!max_cpus) 1863 return; 1864 1865 /* Try parallel bringup optimization if enabled */ 1866 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1867 return; 1868 1869 /* Full per CPU serialized bringup */ 1870 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1871 } 1872 1873 #ifdef CONFIG_PM_SLEEP_SMP 1874 static cpumask_var_t frozen_cpus; 1875 1876 int freeze_secondary_cpus(int primary) 1877 { 1878 int cpu, error = 0; 1879 1880 cpu_maps_update_begin(); 1881 if (primary == -1) { 1882 primary = cpumask_first(cpu_online_mask); 1883 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1884 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1885 } else { 1886 if (!cpu_online(primary)) 1887 primary = cpumask_first(cpu_online_mask); 1888 } 1889 1890 /* 1891 * We take down all of the non-boot CPUs in one shot to avoid races 1892 * with the userspace trying to use the CPU hotplug at the same time 1893 */ 1894 cpumask_clear(frozen_cpus); 1895 1896 pr_info("Disabling non-boot CPUs ...\n"); 1897 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1898 if (!cpu_online(cpu) || cpu == primary) 1899 continue; 1900 1901 if (pm_wakeup_pending()) { 1902 pr_info("Wakeup pending. Abort CPU freeze\n"); 1903 error = -EBUSY; 1904 break; 1905 } 1906 1907 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1908 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1909 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1910 if (!error) 1911 cpumask_set_cpu(cpu, frozen_cpus); 1912 else { 1913 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1914 break; 1915 } 1916 } 1917 1918 if (!error) 1919 BUG_ON(num_online_cpus() > 1); 1920 else 1921 pr_err("Non-boot CPUs are not disabled\n"); 1922 1923 /* 1924 * Make sure the CPUs won't be enabled by someone else. We need to do 1925 * this even in case of failure as all freeze_secondary_cpus() users are 1926 * supposed to do thaw_secondary_cpus() on the failure path. 1927 */ 1928 cpu_hotplug_disabled++; 1929 1930 cpu_maps_update_done(); 1931 return error; 1932 } 1933 1934 void __weak arch_thaw_secondary_cpus_begin(void) 1935 { 1936 } 1937 1938 void __weak arch_thaw_secondary_cpus_end(void) 1939 { 1940 } 1941 1942 void thaw_secondary_cpus(void) 1943 { 1944 int cpu, error; 1945 1946 /* Allow everyone to use the CPU hotplug again */ 1947 cpu_maps_update_begin(); 1948 __cpu_hotplug_enable(); 1949 if (cpumask_empty(frozen_cpus)) 1950 goto out; 1951 1952 pr_info("Enabling non-boot CPUs ...\n"); 1953 1954 arch_thaw_secondary_cpus_begin(); 1955 1956 for_each_cpu(cpu, frozen_cpus) { 1957 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1958 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1959 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1960 if (!error) { 1961 pr_info("CPU%d is up\n", cpu); 1962 continue; 1963 } 1964 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1965 } 1966 1967 arch_thaw_secondary_cpus_end(); 1968 1969 cpumask_clear(frozen_cpus); 1970 out: 1971 cpu_maps_update_done(); 1972 } 1973 1974 static int __init alloc_frozen_cpus(void) 1975 { 1976 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1977 return -ENOMEM; 1978 return 0; 1979 } 1980 core_initcall(alloc_frozen_cpus); 1981 1982 /* 1983 * When callbacks for CPU hotplug notifications are being executed, we must 1984 * ensure that the state of the system with respect to the tasks being frozen 1985 * or not, as reported by the notification, remains unchanged *throughout the 1986 * duration* of the execution of the callbacks. 1987 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1988 * 1989 * This synchronization is implemented by mutually excluding regular CPU 1990 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1991 * Hibernate notifications. 1992 */ 1993 static int 1994 cpu_hotplug_pm_callback(struct notifier_block *nb, 1995 unsigned long action, void *ptr) 1996 { 1997 switch (action) { 1998 1999 case PM_SUSPEND_PREPARE: 2000 case PM_HIBERNATION_PREPARE: 2001 cpu_hotplug_disable(); 2002 break; 2003 2004 case PM_POST_SUSPEND: 2005 case PM_POST_HIBERNATION: 2006 cpu_hotplug_enable(); 2007 break; 2008 2009 default: 2010 return NOTIFY_DONE; 2011 } 2012 2013 return NOTIFY_OK; 2014 } 2015 2016 2017 static int __init cpu_hotplug_pm_sync_init(void) 2018 { 2019 /* 2020 * cpu_hotplug_pm_callback has higher priority than x86 2021 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2022 * to disable cpu hotplug to avoid cpu hotplug race. 2023 */ 2024 pm_notifier(cpu_hotplug_pm_callback, 0); 2025 return 0; 2026 } 2027 core_initcall(cpu_hotplug_pm_sync_init); 2028 2029 #endif /* CONFIG_PM_SLEEP_SMP */ 2030 2031 int __boot_cpu_id; 2032 2033 #endif /* CONFIG_SMP */ 2034 2035 /* Boot processor state steps */ 2036 static struct cpuhp_step cpuhp_hp_states[] = { 2037 [CPUHP_OFFLINE] = { 2038 .name = "offline", 2039 .startup.single = NULL, 2040 .teardown.single = NULL, 2041 }, 2042 #ifdef CONFIG_SMP 2043 [CPUHP_CREATE_THREADS]= { 2044 .name = "threads:prepare", 2045 .startup.single = smpboot_create_threads, 2046 .teardown.single = NULL, 2047 .cant_stop = true, 2048 }, 2049 [CPUHP_PERF_PREPARE] = { 2050 .name = "perf:prepare", 2051 .startup.single = perf_event_init_cpu, 2052 .teardown.single = perf_event_exit_cpu, 2053 }, 2054 [CPUHP_RANDOM_PREPARE] = { 2055 .name = "random:prepare", 2056 .startup.single = random_prepare_cpu, 2057 .teardown.single = NULL, 2058 }, 2059 [CPUHP_WORKQUEUE_PREP] = { 2060 .name = "workqueue:prepare", 2061 .startup.single = workqueue_prepare_cpu, 2062 .teardown.single = NULL, 2063 }, 2064 [CPUHP_HRTIMERS_PREPARE] = { 2065 .name = "hrtimers:prepare", 2066 .startup.single = hrtimers_prepare_cpu, 2067 .teardown.single = NULL, 2068 }, 2069 [CPUHP_SMPCFD_PREPARE] = { 2070 .name = "smpcfd:prepare", 2071 .startup.single = smpcfd_prepare_cpu, 2072 .teardown.single = smpcfd_dead_cpu, 2073 }, 2074 [CPUHP_RELAY_PREPARE] = { 2075 .name = "relay:prepare", 2076 .startup.single = relay_prepare_cpu, 2077 .teardown.single = NULL, 2078 }, 2079 [CPUHP_RCUTREE_PREP] = { 2080 .name = "RCU/tree:prepare", 2081 .startup.single = rcutree_prepare_cpu, 2082 .teardown.single = rcutree_dead_cpu, 2083 }, 2084 /* 2085 * On the tear-down path, timers_dead_cpu() must be invoked 2086 * before blk_mq_queue_reinit_notify() from notify_dead(), 2087 * otherwise a RCU stall occurs. 2088 */ 2089 [CPUHP_TIMERS_PREPARE] = { 2090 .name = "timers:prepare", 2091 .startup.single = timers_prepare_cpu, 2092 .teardown.single = timers_dead_cpu, 2093 }, 2094 2095 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2096 /* 2097 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2098 * the next step will release it. 2099 */ 2100 [CPUHP_BP_KICK_AP] = { 2101 .name = "cpu:kick_ap", 2102 .startup.single = cpuhp_kick_ap_alive, 2103 }, 2104 2105 /* 2106 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2107 * releases it for the complete bringup. 2108 */ 2109 [CPUHP_BRINGUP_CPU] = { 2110 .name = "cpu:bringup", 2111 .startup.single = cpuhp_bringup_ap, 2112 .teardown.single = finish_cpu, 2113 .cant_stop = true, 2114 }, 2115 #else 2116 /* 2117 * All-in-one CPU bringup state which includes the kick alive. 2118 */ 2119 [CPUHP_BRINGUP_CPU] = { 2120 .name = "cpu:bringup", 2121 .startup.single = bringup_cpu, 2122 .teardown.single = finish_cpu, 2123 .cant_stop = true, 2124 }, 2125 #endif 2126 /* Final state before CPU kills itself */ 2127 [CPUHP_AP_IDLE_DEAD] = { 2128 .name = "idle:dead", 2129 }, 2130 /* 2131 * Last state before CPU enters the idle loop to die. Transient state 2132 * for synchronization. 2133 */ 2134 [CPUHP_AP_OFFLINE] = { 2135 .name = "ap:offline", 2136 .cant_stop = true, 2137 }, 2138 /* First state is scheduler control. Interrupts are disabled */ 2139 [CPUHP_AP_SCHED_STARTING] = { 2140 .name = "sched:starting", 2141 .startup.single = sched_cpu_starting, 2142 .teardown.single = sched_cpu_dying, 2143 }, 2144 [CPUHP_AP_RCUTREE_DYING] = { 2145 .name = "RCU/tree:dying", 2146 .startup.single = NULL, 2147 .teardown.single = rcutree_dying_cpu, 2148 }, 2149 [CPUHP_AP_SMPCFD_DYING] = { 2150 .name = "smpcfd:dying", 2151 .startup.single = NULL, 2152 .teardown.single = smpcfd_dying_cpu, 2153 }, 2154 [CPUHP_AP_HRTIMERS_DYING] = { 2155 .name = "hrtimers:dying", 2156 .startup.single = NULL, 2157 .teardown.single = hrtimers_cpu_dying, 2158 }, 2159 [CPUHP_AP_TICK_DYING] = { 2160 .name = "tick:dying", 2161 .startup.single = NULL, 2162 .teardown.single = tick_cpu_dying, 2163 }, 2164 /* Entry state on starting. Interrupts enabled from here on. Transient 2165 * state for synchronsization */ 2166 [CPUHP_AP_ONLINE] = { 2167 .name = "ap:online", 2168 }, 2169 /* 2170 * Handled on control processor until the plugged processor manages 2171 * this itself. 2172 */ 2173 [CPUHP_TEARDOWN_CPU] = { 2174 .name = "cpu:teardown", 2175 .startup.single = NULL, 2176 .teardown.single = takedown_cpu, 2177 .cant_stop = true, 2178 }, 2179 2180 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2181 .name = "sched:waitempty", 2182 .startup.single = NULL, 2183 .teardown.single = sched_cpu_wait_empty, 2184 }, 2185 2186 /* Handle smpboot threads park/unpark */ 2187 [CPUHP_AP_SMPBOOT_THREADS] = { 2188 .name = "smpboot/threads:online", 2189 .startup.single = smpboot_unpark_threads, 2190 .teardown.single = smpboot_park_threads, 2191 }, 2192 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2193 .name = "irq/affinity:online", 2194 .startup.single = irq_affinity_online_cpu, 2195 .teardown.single = NULL, 2196 }, 2197 [CPUHP_AP_PERF_ONLINE] = { 2198 .name = "perf:online", 2199 .startup.single = perf_event_init_cpu, 2200 .teardown.single = perf_event_exit_cpu, 2201 }, 2202 [CPUHP_AP_WATCHDOG_ONLINE] = { 2203 .name = "lockup_detector:online", 2204 .startup.single = lockup_detector_online_cpu, 2205 .teardown.single = lockup_detector_offline_cpu, 2206 }, 2207 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2208 .name = "workqueue:online", 2209 .startup.single = workqueue_online_cpu, 2210 .teardown.single = workqueue_offline_cpu, 2211 }, 2212 [CPUHP_AP_RANDOM_ONLINE] = { 2213 .name = "random:online", 2214 .startup.single = random_online_cpu, 2215 .teardown.single = NULL, 2216 }, 2217 [CPUHP_AP_RCUTREE_ONLINE] = { 2218 .name = "RCU/tree:online", 2219 .startup.single = rcutree_online_cpu, 2220 .teardown.single = rcutree_offline_cpu, 2221 }, 2222 #endif 2223 /* 2224 * The dynamically registered state space is here 2225 */ 2226 2227 #ifdef CONFIG_SMP 2228 /* Last state is scheduler control setting the cpu active */ 2229 [CPUHP_AP_ACTIVE] = { 2230 .name = "sched:active", 2231 .startup.single = sched_cpu_activate, 2232 .teardown.single = sched_cpu_deactivate, 2233 }, 2234 #endif 2235 2236 /* CPU is fully up and running. */ 2237 [CPUHP_ONLINE] = { 2238 .name = "online", 2239 .startup.single = NULL, 2240 .teardown.single = NULL, 2241 }, 2242 }; 2243 2244 /* Sanity check for callbacks */ 2245 static int cpuhp_cb_check(enum cpuhp_state state) 2246 { 2247 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2248 return -EINVAL; 2249 return 0; 2250 } 2251 2252 /* 2253 * Returns a free for dynamic slot assignment of the Online state. The states 2254 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2255 * by having no name assigned. 2256 */ 2257 static int cpuhp_reserve_state(enum cpuhp_state state) 2258 { 2259 enum cpuhp_state i, end; 2260 struct cpuhp_step *step; 2261 2262 switch (state) { 2263 case CPUHP_AP_ONLINE_DYN: 2264 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2265 end = CPUHP_AP_ONLINE_DYN_END; 2266 break; 2267 case CPUHP_BP_PREPARE_DYN: 2268 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2269 end = CPUHP_BP_PREPARE_DYN_END; 2270 break; 2271 default: 2272 return -EINVAL; 2273 } 2274 2275 for (i = state; i <= end; i++, step++) { 2276 if (!step->name) 2277 return i; 2278 } 2279 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2280 return -ENOSPC; 2281 } 2282 2283 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2284 int (*startup)(unsigned int cpu), 2285 int (*teardown)(unsigned int cpu), 2286 bool multi_instance) 2287 { 2288 /* (Un)Install the callbacks for further cpu hotplug operations */ 2289 struct cpuhp_step *sp; 2290 int ret = 0; 2291 2292 /* 2293 * If name is NULL, then the state gets removed. 2294 * 2295 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2296 * the first allocation from these dynamic ranges, so the removal 2297 * would trigger a new allocation and clear the wrong (already 2298 * empty) state, leaving the callbacks of the to be cleared state 2299 * dangling, which causes wreckage on the next hotplug operation. 2300 */ 2301 if (name && (state == CPUHP_AP_ONLINE_DYN || 2302 state == CPUHP_BP_PREPARE_DYN)) { 2303 ret = cpuhp_reserve_state(state); 2304 if (ret < 0) 2305 return ret; 2306 state = ret; 2307 } 2308 sp = cpuhp_get_step(state); 2309 if (name && sp->name) 2310 return -EBUSY; 2311 2312 sp->startup.single = startup; 2313 sp->teardown.single = teardown; 2314 sp->name = name; 2315 sp->multi_instance = multi_instance; 2316 INIT_HLIST_HEAD(&sp->list); 2317 return ret; 2318 } 2319 2320 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2321 { 2322 return cpuhp_get_step(state)->teardown.single; 2323 } 2324 2325 /* 2326 * Call the startup/teardown function for a step either on the AP or 2327 * on the current CPU. 2328 */ 2329 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2330 struct hlist_node *node) 2331 { 2332 struct cpuhp_step *sp = cpuhp_get_step(state); 2333 int ret; 2334 2335 /* 2336 * If there's nothing to do, we done. 2337 * Relies on the union for multi_instance. 2338 */ 2339 if (cpuhp_step_empty(bringup, sp)) 2340 return 0; 2341 /* 2342 * The non AP bound callbacks can fail on bringup. On teardown 2343 * e.g. module removal we crash for now. 2344 */ 2345 #ifdef CONFIG_SMP 2346 if (cpuhp_is_ap_state(state)) 2347 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2348 else 2349 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2350 #else 2351 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2352 #endif 2353 BUG_ON(ret && !bringup); 2354 return ret; 2355 } 2356 2357 /* 2358 * Called from __cpuhp_setup_state on a recoverable failure. 2359 * 2360 * Note: The teardown callbacks for rollback are not allowed to fail! 2361 */ 2362 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2363 struct hlist_node *node) 2364 { 2365 int cpu; 2366 2367 /* Roll back the already executed steps on the other cpus */ 2368 for_each_present_cpu(cpu) { 2369 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2370 int cpustate = st->state; 2371 2372 if (cpu >= failedcpu) 2373 break; 2374 2375 /* Did we invoke the startup call on that cpu ? */ 2376 if (cpustate >= state) 2377 cpuhp_issue_call(cpu, state, false, node); 2378 } 2379 } 2380 2381 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2382 struct hlist_node *node, 2383 bool invoke) 2384 { 2385 struct cpuhp_step *sp; 2386 int cpu; 2387 int ret; 2388 2389 lockdep_assert_cpus_held(); 2390 2391 sp = cpuhp_get_step(state); 2392 if (sp->multi_instance == false) 2393 return -EINVAL; 2394 2395 mutex_lock(&cpuhp_state_mutex); 2396 2397 if (!invoke || !sp->startup.multi) 2398 goto add_node; 2399 2400 /* 2401 * Try to call the startup callback for each present cpu 2402 * depending on the hotplug state of the cpu. 2403 */ 2404 for_each_present_cpu(cpu) { 2405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2406 int cpustate = st->state; 2407 2408 if (cpustate < state) 2409 continue; 2410 2411 ret = cpuhp_issue_call(cpu, state, true, node); 2412 if (ret) { 2413 if (sp->teardown.multi) 2414 cpuhp_rollback_install(cpu, state, node); 2415 goto unlock; 2416 } 2417 } 2418 add_node: 2419 ret = 0; 2420 hlist_add_head(node, &sp->list); 2421 unlock: 2422 mutex_unlock(&cpuhp_state_mutex); 2423 return ret; 2424 } 2425 2426 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2427 bool invoke) 2428 { 2429 int ret; 2430 2431 cpus_read_lock(); 2432 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2433 cpus_read_unlock(); 2434 return ret; 2435 } 2436 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2437 2438 /** 2439 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2440 * @state: The state to setup 2441 * @name: Name of the step 2442 * @invoke: If true, the startup function is invoked for cpus where 2443 * cpu state >= @state 2444 * @startup: startup callback function 2445 * @teardown: teardown callback function 2446 * @multi_instance: State is set up for multiple instances which get 2447 * added afterwards. 2448 * 2449 * The caller needs to hold cpus read locked while calling this function. 2450 * Return: 2451 * On success: 2452 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2453 * 0 for all other states 2454 * On failure: proper (negative) error code 2455 */ 2456 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2457 const char *name, bool invoke, 2458 int (*startup)(unsigned int cpu), 2459 int (*teardown)(unsigned int cpu), 2460 bool multi_instance) 2461 { 2462 int cpu, ret = 0; 2463 bool dynstate; 2464 2465 lockdep_assert_cpus_held(); 2466 2467 if (cpuhp_cb_check(state) || !name) 2468 return -EINVAL; 2469 2470 mutex_lock(&cpuhp_state_mutex); 2471 2472 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2473 multi_instance); 2474 2475 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2476 if (ret > 0 && dynstate) { 2477 state = ret; 2478 ret = 0; 2479 } 2480 2481 if (ret || !invoke || !startup) 2482 goto out; 2483 2484 /* 2485 * Try to call the startup callback for each present cpu 2486 * depending on the hotplug state of the cpu. 2487 */ 2488 for_each_present_cpu(cpu) { 2489 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2490 int cpustate = st->state; 2491 2492 if (cpustate < state) 2493 continue; 2494 2495 ret = cpuhp_issue_call(cpu, state, true, NULL); 2496 if (ret) { 2497 if (teardown) 2498 cpuhp_rollback_install(cpu, state, NULL); 2499 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2500 goto out; 2501 } 2502 } 2503 out: 2504 mutex_unlock(&cpuhp_state_mutex); 2505 /* 2506 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2507 * return the dynamically allocated state in case of success. 2508 */ 2509 if (!ret && dynstate) 2510 return state; 2511 return ret; 2512 } 2513 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2514 2515 int __cpuhp_setup_state(enum cpuhp_state state, 2516 const char *name, bool invoke, 2517 int (*startup)(unsigned int cpu), 2518 int (*teardown)(unsigned int cpu), 2519 bool multi_instance) 2520 { 2521 int ret; 2522 2523 cpus_read_lock(); 2524 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2525 teardown, multi_instance); 2526 cpus_read_unlock(); 2527 return ret; 2528 } 2529 EXPORT_SYMBOL(__cpuhp_setup_state); 2530 2531 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2532 struct hlist_node *node, bool invoke) 2533 { 2534 struct cpuhp_step *sp = cpuhp_get_step(state); 2535 int cpu; 2536 2537 BUG_ON(cpuhp_cb_check(state)); 2538 2539 if (!sp->multi_instance) 2540 return -EINVAL; 2541 2542 cpus_read_lock(); 2543 mutex_lock(&cpuhp_state_mutex); 2544 2545 if (!invoke || !cpuhp_get_teardown_cb(state)) 2546 goto remove; 2547 /* 2548 * Call the teardown callback for each present cpu depending 2549 * on the hotplug state of the cpu. This function is not 2550 * allowed to fail currently! 2551 */ 2552 for_each_present_cpu(cpu) { 2553 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2554 int cpustate = st->state; 2555 2556 if (cpustate >= state) 2557 cpuhp_issue_call(cpu, state, false, node); 2558 } 2559 2560 remove: 2561 hlist_del(node); 2562 mutex_unlock(&cpuhp_state_mutex); 2563 cpus_read_unlock(); 2564 2565 return 0; 2566 } 2567 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2568 2569 /** 2570 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2571 * @state: The state to remove 2572 * @invoke: If true, the teardown function is invoked for cpus where 2573 * cpu state >= @state 2574 * 2575 * The caller needs to hold cpus read locked while calling this function. 2576 * The teardown callback is currently not allowed to fail. Think 2577 * about module removal! 2578 */ 2579 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2580 { 2581 struct cpuhp_step *sp = cpuhp_get_step(state); 2582 int cpu; 2583 2584 BUG_ON(cpuhp_cb_check(state)); 2585 2586 lockdep_assert_cpus_held(); 2587 2588 mutex_lock(&cpuhp_state_mutex); 2589 if (sp->multi_instance) { 2590 WARN(!hlist_empty(&sp->list), 2591 "Error: Removing state %d which has instances left.\n", 2592 state); 2593 goto remove; 2594 } 2595 2596 if (!invoke || !cpuhp_get_teardown_cb(state)) 2597 goto remove; 2598 2599 /* 2600 * Call the teardown callback for each present cpu depending 2601 * on the hotplug state of the cpu. This function is not 2602 * allowed to fail currently! 2603 */ 2604 for_each_present_cpu(cpu) { 2605 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2606 int cpustate = st->state; 2607 2608 if (cpustate >= state) 2609 cpuhp_issue_call(cpu, state, false, NULL); 2610 } 2611 remove: 2612 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2613 mutex_unlock(&cpuhp_state_mutex); 2614 } 2615 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2616 2617 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2618 { 2619 cpus_read_lock(); 2620 __cpuhp_remove_state_cpuslocked(state, invoke); 2621 cpus_read_unlock(); 2622 } 2623 EXPORT_SYMBOL(__cpuhp_remove_state); 2624 2625 #ifdef CONFIG_HOTPLUG_SMT 2626 static void cpuhp_offline_cpu_device(unsigned int cpu) 2627 { 2628 struct device *dev = get_cpu_device(cpu); 2629 2630 dev->offline = true; 2631 /* Tell user space about the state change */ 2632 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2633 } 2634 2635 static void cpuhp_online_cpu_device(unsigned int cpu) 2636 { 2637 struct device *dev = get_cpu_device(cpu); 2638 2639 dev->offline = false; 2640 /* Tell user space about the state change */ 2641 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2642 } 2643 2644 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2645 { 2646 int cpu, ret = 0; 2647 2648 cpu_maps_update_begin(); 2649 for_each_online_cpu(cpu) { 2650 if (topology_is_primary_thread(cpu)) 2651 continue; 2652 /* 2653 * Disable can be called with CPU_SMT_ENABLED when changing 2654 * from a higher to lower number of SMT threads per core. 2655 */ 2656 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2657 continue; 2658 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2659 if (ret) 2660 break; 2661 /* 2662 * As this needs to hold the cpu maps lock it's impossible 2663 * to call device_offline() because that ends up calling 2664 * cpu_down() which takes cpu maps lock. cpu maps lock 2665 * needs to be held as this might race against in kernel 2666 * abusers of the hotplug machinery (thermal management). 2667 * 2668 * So nothing would update device:offline state. That would 2669 * leave the sysfs entry stale and prevent onlining after 2670 * smt control has been changed to 'off' again. This is 2671 * called under the sysfs hotplug lock, so it is properly 2672 * serialized against the regular offline usage. 2673 */ 2674 cpuhp_offline_cpu_device(cpu); 2675 } 2676 if (!ret) 2677 cpu_smt_control = ctrlval; 2678 cpu_maps_update_done(); 2679 return ret; 2680 } 2681 2682 int cpuhp_smt_enable(void) 2683 { 2684 int cpu, ret = 0; 2685 2686 cpu_maps_update_begin(); 2687 cpu_smt_control = CPU_SMT_ENABLED; 2688 for_each_present_cpu(cpu) { 2689 /* Skip online CPUs and CPUs on offline nodes */ 2690 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2691 continue; 2692 if (!cpu_smt_thread_allowed(cpu)) 2693 continue; 2694 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2695 if (ret) 2696 break; 2697 /* See comment in cpuhp_smt_disable() */ 2698 cpuhp_online_cpu_device(cpu); 2699 } 2700 cpu_maps_update_done(); 2701 return ret; 2702 } 2703 #endif 2704 2705 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2706 static ssize_t state_show(struct device *dev, 2707 struct device_attribute *attr, char *buf) 2708 { 2709 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2710 2711 return sprintf(buf, "%d\n", st->state); 2712 } 2713 static DEVICE_ATTR_RO(state); 2714 2715 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2716 const char *buf, size_t count) 2717 { 2718 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2719 struct cpuhp_step *sp; 2720 int target, ret; 2721 2722 ret = kstrtoint(buf, 10, &target); 2723 if (ret) 2724 return ret; 2725 2726 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2727 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2728 return -EINVAL; 2729 #else 2730 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2731 return -EINVAL; 2732 #endif 2733 2734 ret = lock_device_hotplug_sysfs(); 2735 if (ret) 2736 return ret; 2737 2738 mutex_lock(&cpuhp_state_mutex); 2739 sp = cpuhp_get_step(target); 2740 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2741 mutex_unlock(&cpuhp_state_mutex); 2742 if (ret) 2743 goto out; 2744 2745 if (st->state < target) 2746 ret = cpu_up(dev->id, target); 2747 else if (st->state > target) 2748 ret = cpu_down(dev->id, target); 2749 else if (WARN_ON(st->target != target)) 2750 st->target = target; 2751 out: 2752 unlock_device_hotplug(); 2753 return ret ? ret : count; 2754 } 2755 2756 static ssize_t target_show(struct device *dev, 2757 struct device_attribute *attr, char *buf) 2758 { 2759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2760 2761 return sprintf(buf, "%d\n", st->target); 2762 } 2763 static DEVICE_ATTR_RW(target); 2764 2765 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2766 const char *buf, size_t count) 2767 { 2768 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2769 struct cpuhp_step *sp; 2770 int fail, ret; 2771 2772 ret = kstrtoint(buf, 10, &fail); 2773 if (ret) 2774 return ret; 2775 2776 if (fail == CPUHP_INVALID) { 2777 st->fail = fail; 2778 return count; 2779 } 2780 2781 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2782 return -EINVAL; 2783 2784 /* 2785 * Cannot fail STARTING/DYING callbacks. 2786 */ 2787 if (cpuhp_is_atomic_state(fail)) 2788 return -EINVAL; 2789 2790 /* 2791 * DEAD callbacks cannot fail... 2792 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2793 * triggering STARTING callbacks, a failure in this state would 2794 * hinder rollback. 2795 */ 2796 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2797 return -EINVAL; 2798 2799 /* 2800 * Cannot fail anything that doesn't have callbacks. 2801 */ 2802 mutex_lock(&cpuhp_state_mutex); 2803 sp = cpuhp_get_step(fail); 2804 if (!sp->startup.single && !sp->teardown.single) 2805 ret = -EINVAL; 2806 mutex_unlock(&cpuhp_state_mutex); 2807 if (ret) 2808 return ret; 2809 2810 st->fail = fail; 2811 2812 return count; 2813 } 2814 2815 static ssize_t fail_show(struct device *dev, 2816 struct device_attribute *attr, char *buf) 2817 { 2818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2819 2820 return sprintf(buf, "%d\n", st->fail); 2821 } 2822 2823 static DEVICE_ATTR_RW(fail); 2824 2825 static struct attribute *cpuhp_cpu_attrs[] = { 2826 &dev_attr_state.attr, 2827 &dev_attr_target.attr, 2828 &dev_attr_fail.attr, 2829 NULL 2830 }; 2831 2832 static const struct attribute_group cpuhp_cpu_attr_group = { 2833 .attrs = cpuhp_cpu_attrs, 2834 .name = "hotplug", 2835 NULL 2836 }; 2837 2838 static ssize_t states_show(struct device *dev, 2839 struct device_attribute *attr, char *buf) 2840 { 2841 ssize_t cur, res = 0; 2842 int i; 2843 2844 mutex_lock(&cpuhp_state_mutex); 2845 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2846 struct cpuhp_step *sp = cpuhp_get_step(i); 2847 2848 if (sp->name) { 2849 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2850 buf += cur; 2851 res += cur; 2852 } 2853 } 2854 mutex_unlock(&cpuhp_state_mutex); 2855 return res; 2856 } 2857 static DEVICE_ATTR_RO(states); 2858 2859 static struct attribute *cpuhp_cpu_root_attrs[] = { 2860 &dev_attr_states.attr, 2861 NULL 2862 }; 2863 2864 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2865 .attrs = cpuhp_cpu_root_attrs, 2866 .name = "hotplug", 2867 NULL 2868 }; 2869 2870 #ifdef CONFIG_HOTPLUG_SMT 2871 2872 static bool cpu_smt_num_threads_valid(unsigned int threads) 2873 { 2874 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2875 return threads >= 1 && threads <= cpu_smt_max_threads; 2876 return threads == 1 || threads == cpu_smt_max_threads; 2877 } 2878 2879 static ssize_t 2880 __store_smt_control(struct device *dev, struct device_attribute *attr, 2881 const char *buf, size_t count) 2882 { 2883 int ctrlval, ret, num_threads, orig_threads; 2884 bool force_off; 2885 2886 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2887 return -EPERM; 2888 2889 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2890 return -ENODEV; 2891 2892 if (sysfs_streq(buf, "on")) { 2893 ctrlval = CPU_SMT_ENABLED; 2894 num_threads = cpu_smt_max_threads; 2895 } else if (sysfs_streq(buf, "off")) { 2896 ctrlval = CPU_SMT_DISABLED; 2897 num_threads = 1; 2898 } else if (sysfs_streq(buf, "forceoff")) { 2899 ctrlval = CPU_SMT_FORCE_DISABLED; 2900 num_threads = 1; 2901 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2902 if (num_threads == 1) 2903 ctrlval = CPU_SMT_DISABLED; 2904 else if (cpu_smt_num_threads_valid(num_threads)) 2905 ctrlval = CPU_SMT_ENABLED; 2906 else 2907 return -EINVAL; 2908 } else { 2909 return -EINVAL; 2910 } 2911 2912 ret = lock_device_hotplug_sysfs(); 2913 if (ret) 2914 return ret; 2915 2916 orig_threads = cpu_smt_num_threads; 2917 cpu_smt_num_threads = num_threads; 2918 2919 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2920 2921 if (num_threads > orig_threads) 2922 ret = cpuhp_smt_enable(); 2923 else if (num_threads < orig_threads || force_off) 2924 ret = cpuhp_smt_disable(ctrlval); 2925 2926 unlock_device_hotplug(); 2927 return ret ? ret : count; 2928 } 2929 2930 #else /* !CONFIG_HOTPLUG_SMT */ 2931 static ssize_t 2932 __store_smt_control(struct device *dev, struct device_attribute *attr, 2933 const char *buf, size_t count) 2934 { 2935 return -ENODEV; 2936 } 2937 #endif /* CONFIG_HOTPLUG_SMT */ 2938 2939 static const char *smt_states[] = { 2940 [CPU_SMT_ENABLED] = "on", 2941 [CPU_SMT_DISABLED] = "off", 2942 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2943 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2944 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2945 }; 2946 2947 static ssize_t control_show(struct device *dev, 2948 struct device_attribute *attr, char *buf) 2949 { 2950 const char *state = smt_states[cpu_smt_control]; 2951 2952 #ifdef CONFIG_HOTPLUG_SMT 2953 /* 2954 * If SMT is enabled but not all threads are enabled then show the 2955 * number of threads. If all threads are enabled show "on". Otherwise 2956 * show the state name. 2957 */ 2958 if (cpu_smt_control == CPU_SMT_ENABLED && 2959 cpu_smt_num_threads != cpu_smt_max_threads) 2960 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2961 #endif 2962 2963 return sysfs_emit(buf, "%s\n", state); 2964 } 2965 2966 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2967 const char *buf, size_t count) 2968 { 2969 return __store_smt_control(dev, attr, buf, count); 2970 } 2971 static DEVICE_ATTR_RW(control); 2972 2973 static ssize_t active_show(struct device *dev, 2974 struct device_attribute *attr, char *buf) 2975 { 2976 return sysfs_emit(buf, "%d\n", sched_smt_active()); 2977 } 2978 static DEVICE_ATTR_RO(active); 2979 2980 static struct attribute *cpuhp_smt_attrs[] = { 2981 &dev_attr_control.attr, 2982 &dev_attr_active.attr, 2983 NULL 2984 }; 2985 2986 static const struct attribute_group cpuhp_smt_attr_group = { 2987 .attrs = cpuhp_smt_attrs, 2988 .name = "smt", 2989 NULL 2990 }; 2991 2992 static int __init cpu_smt_sysfs_init(void) 2993 { 2994 struct device *dev_root; 2995 int ret = -ENODEV; 2996 2997 dev_root = bus_get_dev_root(&cpu_subsys); 2998 if (dev_root) { 2999 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3000 put_device(dev_root); 3001 } 3002 return ret; 3003 } 3004 3005 static int __init cpuhp_sysfs_init(void) 3006 { 3007 struct device *dev_root; 3008 int cpu, ret; 3009 3010 ret = cpu_smt_sysfs_init(); 3011 if (ret) 3012 return ret; 3013 3014 dev_root = bus_get_dev_root(&cpu_subsys); 3015 if (dev_root) { 3016 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3017 put_device(dev_root); 3018 if (ret) 3019 return ret; 3020 } 3021 3022 for_each_possible_cpu(cpu) { 3023 struct device *dev = get_cpu_device(cpu); 3024 3025 if (!dev) 3026 continue; 3027 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3028 if (ret) 3029 return ret; 3030 } 3031 return 0; 3032 } 3033 device_initcall(cpuhp_sysfs_init); 3034 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3035 3036 /* 3037 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3038 * represents all NR_CPUS bits binary values of 1<<nr. 3039 * 3040 * It is used by cpumask_of() to get a constant address to a CPU 3041 * mask value that has a single bit set only. 3042 */ 3043 3044 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3045 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3046 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3047 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3048 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3049 3050 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3051 3052 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3053 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3054 #if BITS_PER_LONG > 32 3055 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3056 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3057 #endif 3058 }; 3059 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3060 3061 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3062 EXPORT_SYMBOL(cpu_all_bits); 3063 3064 #ifdef CONFIG_INIT_ALL_POSSIBLE 3065 struct cpumask __cpu_possible_mask __ro_after_init 3066 = {CPU_BITS_ALL}; 3067 #else 3068 struct cpumask __cpu_possible_mask __ro_after_init; 3069 #endif 3070 EXPORT_SYMBOL(__cpu_possible_mask); 3071 3072 struct cpumask __cpu_online_mask __read_mostly; 3073 EXPORT_SYMBOL(__cpu_online_mask); 3074 3075 struct cpumask __cpu_enabled_mask __read_mostly; 3076 EXPORT_SYMBOL(__cpu_enabled_mask); 3077 3078 struct cpumask __cpu_present_mask __read_mostly; 3079 EXPORT_SYMBOL(__cpu_present_mask); 3080 3081 struct cpumask __cpu_active_mask __read_mostly; 3082 EXPORT_SYMBOL(__cpu_active_mask); 3083 3084 struct cpumask __cpu_dying_mask __read_mostly; 3085 EXPORT_SYMBOL(__cpu_dying_mask); 3086 3087 atomic_t __num_online_cpus __read_mostly; 3088 EXPORT_SYMBOL(__num_online_cpus); 3089 3090 void init_cpu_present(const struct cpumask *src) 3091 { 3092 cpumask_copy(&__cpu_present_mask, src); 3093 } 3094 3095 void init_cpu_possible(const struct cpumask *src) 3096 { 3097 cpumask_copy(&__cpu_possible_mask, src); 3098 } 3099 3100 void init_cpu_online(const struct cpumask *src) 3101 { 3102 cpumask_copy(&__cpu_online_mask, src); 3103 } 3104 3105 void set_cpu_online(unsigned int cpu, bool online) 3106 { 3107 /* 3108 * atomic_inc/dec() is required to handle the horrid abuse of this 3109 * function by the reboot and kexec code which invoke it from 3110 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3111 * regular CPU hotplug is properly serialized. 3112 * 3113 * Note, that the fact that __num_online_cpus is of type atomic_t 3114 * does not protect readers which are not serialized against 3115 * concurrent hotplug operations. 3116 */ 3117 if (online) { 3118 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3119 atomic_inc(&__num_online_cpus); 3120 } else { 3121 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3122 atomic_dec(&__num_online_cpus); 3123 } 3124 } 3125 3126 /* 3127 * Activate the first processor. 3128 */ 3129 void __init boot_cpu_init(void) 3130 { 3131 int cpu = smp_processor_id(); 3132 3133 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3134 set_cpu_online(cpu, true); 3135 set_cpu_active(cpu, true); 3136 set_cpu_present(cpu, true); 3137 set_cpu_possible(cpu, true); 3138 3139 #ifdef CONFIG_SMP 3140 __boot_cpu_id = cpu; 3141 #endif 3142 } 3143 3144 /* 3145 * Must be called _AFTER_ setting up the per_cpu areas 3146 */ 3147 void __init boot_cpu_hotplug_init(void) 3148 { 3149 #ifdef CONFIG_SMP 3150 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3151 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3152 #endif 3153 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3154 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3155 } 3156 3157 #ifdef CONFIG_CPU_MITIGATIONS 3158 /* 3159 * These are used for a global "mitigations=" cmdline option for toggling 3160 * optional CPU mitigations. 3161 */ 3162 enum cpu_mitigations { 3163 CPU_MITIGATIONS_OFF, 3164 CPU_MITIGATIONS_AUTO, 3165 CPU_MITIGATIONS_AUTO_NOSMT, 3166 }; 3167 3168 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3169 3170 static int __init mitigations_parse_cmdline(char *arg) 3171 { 3172 if (!strcmp(arg, "off")) 3173 cpu_mitigations = CPU_MITIGATIONS_OFF; 3174 else if (!strcmp(arg, "auto")) 3175 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3176 else if (!strcmp(arg, "auto,nosmt")) 3177 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3178 else 3179 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3180 arg); 3181 3182 return 0; 3183 } 3184 3185 /* mitigations=off */ 3186 bool cpu_mitigations_off(void) 3187 { 3188 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3189 } 3190 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3191 3192 /* mitigations=auto,nosmt */ 3193 bool cpu_mitigations_auto_nosmt(void) 3194 { 3195 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3196 } 3197 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3198 #else 3199 static int __init mitigations_parse_cmdline(char *arg) 3200 { 3201 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3202 return 0; 3203 } 3204 #endif 3205 early_param("mitigations", mitigations_parse_cmdline); 3206