1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 36 #include <trace/events/power.h> 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/cpuhp.h> 39 40 #include "smpboot.h" 41 42 /** 43 * cpuhp_cpu_state - Per cpu hotplug state storage 44 * @state: The current cpu state 45 * @target: The target state 46 * @thread: Pointer to the hotplug thread 47 * @should_run: Thread should execute 48 * @rollback: Perform a rollback 49 * @single: Single callback invocation 50 * @bringup: Single callback bringup or teardown selector 51 * @cb_state: The state for a single callback (install/uninstall) 52 * @result: Result of the operation 53 * @done_up: Signal completion to the issuer of the task for cpu-up 54 * @done_down: Signal completion to the issuer of the task for cpu-down 55 */ 56 struct cpuhp_cpu_state { 57 enum cpuhp_state state; 58 enum cpuhp_state target; 59 enum cpuhp_state fail; 60 #ifdef CONFIG_SMP 61 struct task_struct *thread; 62 bool should_run; 63 bool rollback; 64 bool single; 65 bool bringup; 66 int cpu; 67 struct hlist_node *node; 68 struct hlist_node *last; 69 enum cpuhp_state cb_state; 70 int result; 71 struct completion done_up; 72 struct completion done_down; 73 #endif 74 }; 75 76 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 77 .fail = CPUHP_INVALID, 78 }; 79 80 #ifdef CONFIG_SMP 81 cpumask_t cpus_booted_once_mask; 82 #endif 83 84 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 85 static struct lockdep_map cpuhp_state_up_map = 86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 87 static struct lockdep_map cpuhp_state_down_map = 88 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 89 90 91 static inline void cpuhp_lock_acquire(bool bringup) 92 { 93 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 94 } 95 96 static inline void cpuhp_lock_release(bool bringup) 97 { 98 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 99 } 100 #else 101 102 static inline void cpuhp_lock_acquire(bool bringup) { } 103 static inline void cpuhp_lock_release(bool bringup) { } 104 105 #endif 106 107 /** 108 * cpuhp_step - Hotplug state machine step 109 * @name: Name of the step 110 * @startup: Startup function of the step 111 * @teardown: Teardown function of the step 112 * @cant_stop: Bringup/teardown can't be stopped at this step 113 */ 114 struct cpuhp_step { 115 const char *name; 116 union { 117 int (*single)(unsigned int cpu); 118 int (*multi)(unsigned int cpu, 119 struct hlist_node *node); 120 } startup; 121 union { 122 int (*single)(unsigned int cpu); 123 int (*multi)(unsigned int cpu, 124 struct hlist_node *node); 125 } teardown; 126 struct hlist_head list; 127 bool cant_stop; 128 bool multi_instance; 129 }; 130 131 static DEFINE_MUTEX(cpuhp_state_mutex); 132 static struct cpuhp_step cpuhp_hp_states[]; 133 134 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 135 { 136 return cpuhp_hp_states + state; 137 } 138 139 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 140 { 141 return bringup ? !step->startup.single : !step->teardown.single; 142 } 143 144 /** 145 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 146 * @cpu: The cpu for which the callback should be invoked 147 * @state: The state to do callbacks for 148 * @bringup: True if the bringup callback should be invoked 149 * @node: For multi-instance, do a single entry callback for install/remove 150 * @lastp: For multi-instance rollback, remember how far we got 151 * 152 * Called from cpu hotplug and from the state register machinery. 153 */ 154 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 155 bool bringup, struct hlist_node *node, 156 struct hlist_node **lastp) 157 { 158 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 159 struct cpuhp_step *step = cpuhp_get_step(state); 160 int (*cbm)(unsigned int cpu, struct hlist_node *node); 161 int (*cb)(unsigned int cpu); 162 int ret, cnt; 163 164 if (st->fail == state) { 165 st->fail = CPUHP_INVALID; 166 return -EAGAIN; 167 } 168 169 if (cpuhp_step_empty(bringup, step)) { 170 WARN_ON_ONCE(1); 171 return 0; 172 } 173 174 if (!step->multi_instance) { 175 WARN_ON_ONCE(lastp && *lastp); 176 cb = bringup ? step->startup.single : step->teardown.single; 177 178 trace_cpuhp_enter(cpu, st->target, state, cb); 179 ret = cb(cpu); 180 trace_cpuhp_exit(cpu, st->state, state, ret); 181 return ret; 182 } 183 cbm = bringup ? step->startup.multi : step->teardown.multi; 184 185 /* Single invocation for instance add/remove */ 186 if (node) { 187 WARN_ON_ONCE(lastp && *lastp); 188 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 189 ret = cbm(cpu, node); 190 trace_cpuhp_exit(cpu, st->state, state, ret); 191 return ret; 192 } 193 194 /* State transition. Invoke on all instances */ 195 cnt = 0; 196 hlist_for_each(node, &step->list) { 197 if (lastp && node == *lastp) 198 break; 199 200 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 201 ret = cbm(cpu, node); 202 trace_cpuhp_exit(cpu, st->state, state, ret); 203 if (ret) { 204 if (!lastp) 205 goto err; 206 207 *lastp = node; 208 return ret; 209 } 210 cnt++; 211 } 212 if (lastp) 213 *lastp = NULL; 214 return 0; 215 err: 216 /* Rollback the instances if one failed */ 217 cbm = !bringup ? step->startup.multi : step->teardown.multi; 218 if (!cbm) 219 return ret; 220 221 hlist_for_each(node, &step->list) { 222 if (!cnt--) 223 break; 224 225 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 226 ret = cbm(cpu, node); 227 trace_cpuhp_exit(cpu, st->state, state, ret); 228 /* 229 * Rollback must not fail, 230 */ 231 WARN_ON_ONCE(ret); 232 } 233 return ret; 234 } 235 236 #ifdef CONFIG_SMP 237 static bool cpuhp_is_ap_state(enum cpuhp_state state) 238 { 239 /* 240 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 241 * purposes as that state is handled explicitly in cpu_down. 242 */ 243 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 244 } 245 246 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 247 { 248 struct completion *done = bringup ? &st->done_up : &st->done_down; 249 wait_for_completion(done); 250 } 251 252 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 253 { 254 struct completion *done = bringup ? &st->done_up : &st->done_down; 255 complete(done); 256 } 257 258 /* 259 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 260 */ 261 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 262 { 263 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 264 } 265 266 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 267 static DEFINE_MUTEX(cpu_add_remove_lock); 268 bool cpuhp_tasks_frozen; 269 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 270 271 /* 272 * The following two APIs (cpu_maps_update_begin/done) must be used when 273 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 274 */ 275 void cpu_maps_update_begin(void) 276 { 277 mutex_lock(&cpu_add_remove_lock); 278 } 279 280 void cpu_maps_update_done(void) 281 { 282 mutex_unlock(&cpu_add_remove_lock); 283 } 284 285 /* 286 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 287 * Should always be manipulated under cpu_add_remove_lock 288 */ 289 static int cpu_hotplug_disabled; 290 291 #ifdef CONFIG_HOTPLUG_CPU 292 293 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 294 295 void cpus_read_lock(void) 296 { 297 percpu_down_read(&cpu_hotplug_lock); 298 } 299 EXPORT_SYMBOL_GPL(cpus_read_lock); 300 301 int cpus_read_trylock(void) 302 { 303 return percpu_down_read_trylock(&cpu_hotplug_lock); 304 } 305 EXPORT_SYMBOL_GPL(cpus_read_trylock); 306 307 void cpus_read_unlock(void) 308 { 309 percpu_up_read(&cpu_hotplug_lock); 310 } 311 EXPORT_SYMBOL_GPL(cpus_read_unlock); 312 313 void cpus_write_lock(void) 314 { 315 percpu_down_write(&cpu_hotplug_lock); 316 } 317 318 void cpus_write_unlock(void) 319 { 320 percpu_up_write(&cpu_hotplug_lock); 321 } 322 323 void lockdep_assert_cpus_held(void) 324 { 325 /* 326 * We can't have hotplug operations before userspace starts running, 327 * and some init codepaths will knowingly not take the hotplug lock. 328 * This is all valid, so mute lockdep until it makes sense to report 329 * unheld locks. 330 */ 331 if (system_state < SYSTEM_RUNNING) 332 return; 333 334 percpu_rwsem_assert_held(&cpu_hotplug_lock); 335 } 336 337 #ifdef CONFIG_LOCKDEP 338 int lockdep_is_cpus_held(void) 339 { 340 return percpu_rwsem_is_held(&cpu_hotplug_lock); 341 } 342 #endif 343 344 static void lockdep_acquire_cpus_lock(void) 345 { 346 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 347 } 348 349 static void lockdep_release_cpus_lock(void) 350 { 351 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 352 } 353 354 /* 355 * Wait for currently running CPU hotplug operations to complete (if any) and 356 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 357 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 358 * hotplug path before performing hotplug operations. So acquiring that lock 359 * guarantees mutual exclusion from any currently running hotplug operations. 360 */ 361 void cpu_hotplug_disable(void) 362 { 363 cpu_maps_update_begin(); 364 cpu_hotplug_disabled++; 365 cpu_maps_update_done(); 366 } 367 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 368 369 static void __cpu_hotplug_enable(void) 370 { 371 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 372 return; 373 cpu_hotplug_disabled--; 374 } 375 376 void cpu_hotplug_enable(void) 377 { 378 cpu_maps_update_begin(); 379 __cpu_hotplug_enable(); 380 cpu_maps_update_done(); 381 } 382 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 383 384 #else 385 386 static void lockdep_acquire_cpus_lock(void) 387 { 388 } 389 390 static void lockdep_release_cpus_lock(void) 391 { 392 } 393 394 #endif /* CONFIG_HOTPLUG_CPU */ 395 396 /* 397 * Architectures that need SMT-specific errata handling during SMT hotplug 398 * should override this. 399 */ 400 void __weak arch_smt_update(void) { } 401 402 #ifdef CONFIG_HOTPLUG_SMT 403 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 404 405 void __init cpu_smt_disable(bool force) 406 { 407 if (!cpu_smt_possible()) 408 return; 409 410 if (force) { 411 pr_info("SMT: Force disabled\n"); 412 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 413 } else { 414 pr_info("SMT: disabled\n"); 415 cpu_smt_control = CPU_SMT_DISABLED; 416 } 417 } 418 419 /* 420 * The decision whether SMT is supported can only be done after the full 421 * CPU identification. Called from architecture code. 422 */ 423 void __init cpu_smt_check_topology(void) 424 { 425 if (!topology_smt_supported()) 426 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 427 } 428 429 static int __init smt_cmdline_disable(char *str) 430 { 431 cpu_smt_disable(str && !strcmp(str, "force")); 432 return 0; 433 } 434 early_param("nosmt", smt_cmdline_disable); 435 436 static inline bool cpu_smt_allowed(unsigned int cpu) 437 { 438 if (cpu_smt_control == CPU_SMT_ENABLED) 439 return true; 440 441 if (topology_is_primary_thread(cpu)) 442 return true; 443 444 /* 445 * On x86 it's required to boot all logical CPUs at least once so 446 * that the init code can get a chance to set CR4.MCE on each 447 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 448 * core will shutdown the machine. 449 */ 450 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 451 } 452 453 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 454 bool cpu_smt_possible(void) 455 { 456 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 457 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 458 } 459 EXPORT_SYMBOL_GPL(cpu_smt_possible); 460 #else 461 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 462 #endif 463 464 static inline enum cpuhp_state 465 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 466 { 467 enum cpuhp_state prev_state = st->state; 468 bool bringup = st->state < target; 469 470 st->rollback = false; 471 st->last = NULL; 472 473 st->target = target; 474 st->single = false; 475 st->bringup = bringup; 476 if (cpu_dying(st->cpu) != !bringup) 477 set_cpu_dying(st->cpu, !bringup); 478 479 return prev_state; 480 } 481 482 static inline void 483 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 484 { 485 bool bringup = !st->bringup; 486 487 st->target = prev_state; 488 489 /* 490 * Already rolling back. No need invert the bringup value or to change 491 * the current state. 492 */ 493 if (st->rollback) 494 return; 495 496 st->rollback = true; 497 498 /* 499 * If we have st->last we need to undo partial multi_instance of this 500 * state first. Otherwise start undo at the previous state. 501 */ 502 if (!st->last) { 503 if (st->bringup) 504 st->state--; 505 else 506 st->state++; 507 } 508 509 st->bringup = bringup; 510 if (cpu_dying(st->cpu) != !bringup) 511 set_cpu_dying(st->cpu, !bringup); 512 } 513 514 /* Regular hotplug invocation of the AP hotplug thread */ 515 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 516 { 517 if (!st->single && st->state == st->target) 518 return; 519 520 st->result = 0; 521 /* 522 * Make sure the above stores are visible before should_run becomes 523 * true. Paired with the mb() above in cpuhp_thread_fun() 524 */ 525 smp_mb(); 526 st->should_run = true; 527 wake_up_process(st->thread); 528 wait_for_ap_thread(st, st->bringup); 529 } 530 531 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 532 { 533 enum cpuhp_state prev_state; 534 int ret; 535 536 prev_state = cpuhp_set_state(st, target); 537 __cpuhp_kick_ap(st); 538 if ((ret = st->result)) { 539 cpuhp_reset_state(st, prev_state); 540 __cpuhp_kick_ap(st); 541 } 542 543 return ret; 544 } 545 546 static int bringup_wait_for_ap(unsigned int cpu) 547 { 548 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 549 550 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 551 wait_for_ap_thread(st, true); 552 if (WARN_ON_ONCE((!cpu_online(cpu)))) 553 return -ECANCELED; 554 555 /* Unpark the hotplug thread of the target cpu */ 556 kthread_unpark(st->thread); 557 558 /* 559 * SMT soft disabling on X86 requires to bring the CPU out of the 560 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 561 * CPU marked itself as booted_once in notify_cpu_starting() so the 562 * cpu_smt_allowed() check will now return false if this is not the 563 * primary sibling. 564 */ 565 if (!cpu_smt_allowed(cpu)) 566 return -ECANCELED; 567 568 if (st->target <= CPUHP_AP_ONLINE_IDLE) 569 return 0; 570 571 return cpuhp_kick_ap(st, st->target); 572 } 573 574 static int bringup_cpu(unsigned int cpu) 575 { 576 struct task_struct *idle = idle_thread_get(cpu); 577 int ret; 578 579 /* 580 * Some architectures have to walk the irq descriptors to 581 * setup the vector space for the cpu which comes online. 582 * Prevent irq alloc/free across the bringup. 583 */ 584 irq_lock_sparse(); 585 586 /* Arch-specific enabling code. */ 587 ret = __cpu_up(cpu, idle); 588 irq_unlock_sparse(); 589 if (ret) 590 return ret; 591 return bringup_wait_for_ap(cpu); 592 } 593 594 static int finish_cpu(unsigned int cpu) 595 { 596 struct task_struct *idle = idle_thread_get(cpu); 597 struct mm_struct *mm = idle->active_mm; 598 599 /* 600 * idle_task_exit() will have switched to &init_mm, now 601 * clean up any remaining active_mm state. 602 */ 603 if (mm != &init_mm) 604 idle->active_mm = &init_mm; 605 mmdrop(mm); 606 return 0; 607 } 608 609 /* 610 * Hotplug state machine related functions 611 */ 612 613 /* 614 * Get the next state to run. Empty ones will be skipped. Returns true if a 615 * state must be run. 616 * 617 * st->state will be modified ahead of time, to match state_to_run, as if it 618 * has already ran. 619 */ 620 static bool cpuhp_next_state(bool bringup, 621 enum cpuhp_state *state_to_run, 622 struct cpuhp_cpu_state *st, 623 enum cpuhp_state target) 624 { 625 do { 626 if (bringup) { 627 if (st->state >= target) 628 return false; 629 630 *state_to_run = ++st->state; 631 } else { 632 if (st->state <= target) 633 return false; 634 635 *state_to_run = st->state--; 636 } 637 638 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 639 break; 640 } while (true); 641 642 return true; 643 } 644 645 static int cpuhp_invoke_callback_range(bool bringup, 646 unsigned int cpu, 647 struct cpuhp_cpu_state *st, 648 enum cpuhp_state target) 649 { 650 enum cpuhp_state state; 651 int err = 0; 652 653 while (cpuhp_next_state(bringup, &state, st, target)) { 654 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 655 if (err) 656 break; 657 } 658 659 return err; 660 } 661 662 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 663 { 664 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 665 return true; 666 /* 667 * When CPU hotplug is disabled, then taking the CPU down is not 668 * possible because takedown_cpu() and the architecture and 669 * subsystem specific mechanisms are not available. So the CPU 670 * which would be completely unplugged again needs to stay around 671 * in the current state. 672 */ 673 return st->state <= CPUHP_BRINGUP_CPU; 674 } 675 676 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 677 enum cpuhp_state target) 678 { 679 enum cpuhp_state prev_state = st->state; 680 int ret = 0; 681 682 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 683 if (ret) { 684 cpuhp_reset_state(st, prev_state); 685 if (can_rollback_cpu(st)) 686 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 687 prev_state)); 688 } 689 return ret; 690 } 691 692 /* 693 * The cpu hotplug threads manage the bringup and teardown of the cpus 694 */ 695 static void cpuhp_create(unsigned int cpu) 696 { 697 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 698 699 init_completion(&st->done_up); 700 init_completion(&st->done_down); 701 st->cpu = cpu; 702 } 703 704 static int cpuhp_should_run(unsigned int cpu) 705 { 706 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 707 708 return st->should_run; 709 } 710 711 /* 712 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 713 * callbacks when a state gets [un]installed at runtime. 714 * 715 * Each invocation of this function by the smpboot thread does a single AP 716 * state callback. 717 * 718 * It has 3 modes of operation: 719 * - single: runs st->cb_state 720 * - up: runs ++st->state, while st->state < st->target 721 * - down: runs st->state--, while st->state > st->target 722 * 723 * When complete or on error, should_run is cleared and the completion is fired. 724 */ 725 static void cpuhp_thread_fun(unsigned int cpu) 726 { 727 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 728 bool bringup = st->bringup; 729 enum cpuhp_state state; 730 731 if (WARN_ON_ONCE(!st->should_run)) 732 return; 733 734 /* 735 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 736 * that if we see ->should_run we also see the rest of the state. 737 */ 738 smp_mb(); 739 740 /* 741 * The BP holds the hotplug lock, but we're now running on the AP, 742 * ensure that anybody asserting the lock is held, will actually find 743 * it so. 744 */ 745 lockdep_acquire_cpus_lock(); 746 cpuhp_lock_acquire(bringup); 747 748 if (st->single) { 749 state = st->cb_state; 750 st->should_run = false; 751 } else { 752 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 753 if (!st->should_run) 754 goto end; 755 } 756 757 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 758 759 if (cpuhp_is_atomic_state(state)) { 760 local_irq_disable(); 761 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 762 local_irq_enable(); 763 764 /* 765 * STARTING/DYING must not fail! 766 */ 767 WARN_ON_ONCE(st->result); 768 } else { 769 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 770 } 771 772 if (st->result) { 773 /* 774 * If we fail on a rollback, we're up a creek without no 775 * paddle, no way forward, no way back. We loose, thanks for 776 * playing. 777 */ 778 WARN_ON_ONCE(st->rollback); 779 st->should_run = false; 780 } 781 782 end: 783 cpuhp_lock_release(bringup); 784 lockdep_release_cpus_lock(); 785 786 if (!st->should_run) 787 complete_ap_thread(st, bringup); 788 } 789 790 /* Invoke a single callback on a remote cpu */ 791 static int 792 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 793 struct hlist_node *node) 794 { 795 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 796 int ret; 797 798 if (!cpu_online(cpu)) 799 return 0; 800 801 cpuhp_lock_acquire(false); 802 cpuhp_lock_release(false); 803 804 cpuhp_lock_acquire(true); 805 cpuhp_lock_release(true); 806 807 /* 808 * If we are up and running, use the hotplug thread. For early calls 809 * we invoke the thread function directly. 810 */ 811 if (!st->thread) 812 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 813 814 st->rollback = false; 815 st->last = NULL; 816 817 st->node = node; 818 st->bringup = bringup; 819 st->cb_state = state; 820 st->single = true; 821 822 __cpuhp_kick_ap(st); 823 824 /* 825 * If we failed and did a partial, do a rollback. 826 */ 827 if ((ret = st->result) && st->last) { 828 st->rollback = true; 829 st->bringup = !bringup; 830 831 __cpuhp_kick_ap(st); 832 } 833 834 /* 835 * Clean up the leftovers so the next hotplug operation wont use stale 836 * data. 837 */ 838 st->node = st->last = NULL; 839 return ret; 840 } 841 842 static int cpuhp_kick_ap_work(unsigned int cpu) 843 { 844 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 845 enum cpuhp_state prev_state = st->state; 846 int ret; 847 848 cpuhp_lock_acquire(false); 849 cpuhp_lock_release(false); 850 851 cpuhp_lock_acquire(true); 852 cpuhp_lock_release(true); 853 854 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 855 ret = cpuhp_kick_ap(st, st->target); 856 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 857 858 return ret; 859 } 860 861 static struct smp_hotplug_thread cpuhp_threads = { 862 .store = &cpuhp_state.thread, 863 .create = &cpuhp_create, 864 .thread_should_run = cpuhp_should_run, 865 .thread_fn = cpuhp_thread_fun, 866 .thread_comm = "cpuhp/%u", 867 .selfparking = true, 868 }; 869 870 void __init cpuhp_threads_init(void) 871 { 872 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 873 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 874 } 875 876 #ifdef CONFIG_HOTPLUG_CPU 877 #ifndef arch_clear_mm_cpumask_cpu 878 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 879 #endif 880 881 /** 882 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 883 * @cpu: a CPU id 884 * 885 * This function walks all processes, finds a valid mm struct for each one and 886 * then clears a corresponding bit in mm's cpumask. While this all sounds 887 * trivial, there are various non-obvious corner cases, which this function 888 * tries to solve in a safe manner. 889 * 890 * Also note that the function uses a somewhat relaxed locking scheme, so it may 891 * be called only for an already offlined CPU. 892 */ 893 void clear_tasks_mm_cpumask(int cpu) 894 { 895 struct task_struct *p; 896 897 /* 898 * This function is called after the cpu is taken down and marked 899 * offline, so its not like new tasks will ever get this cpu set in 900 * their mm mask. -- Peter Zijlstra 901 * Thus, we may use rcu_read_lock() here, instead of grabbing 902 * full-fledged tasklist_lock. 903 */ 904 WARN_ON(cpu_online(cpu)); 905 rcu_read_lock(); 906 for_each_process(p) { 907 struct task_struct *t; 908 909 /* 910 * Main thread might exit, but other threads may still have 911 * a valid mm. Find one. 912 */ 913 t = find_lock_task_mm(p); 914 if (!t) 915 continue; 916 arch_clear_mm_cpumask_cpu(cpu, t->mm); 917 task_unlock(t); 918 } 919 rcu_read_unlock(); 920 } 921 922 /* Take this CPU down. */ 923 static int take_cpu_down(void *_param) 924 { 925 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 926 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 927 int err, cpu = smp_processor_id(); 928 int ret; 929 930 /* Ensure this CPU doesn't handle any more interrupts. */ 931 err = __cpu_disable(); 932 if (err < 0) 933 return err; 934 935 /* 936 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 937 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 938 */ 939 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 940 941 /* Invoke the former CPU_DYING callbacks */ 942 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 943 944 /* 945 * DYING must not fail! 946 */ 947 WARN_ON_ONCE(ret); 948 949 /* Give up timekeeping duties */ 950 tick_handover_do_timer(); 951 /* Remove CPU from timer broadcasting */ 952 tick_offline_cpu(cpu); 953 /* Park the stopper thread */ 954 stop_machine_park(cpu); 955 return 0; 956 } 957 958 static int takedown_cpu(unsigned int cpu) 959 { 960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 961 int err; 962 963 /* Park the smpboot threads */ 964 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 965 966 /* 967 * Prevent irq alloc/free while the dying cpu reorganizes the 968 * interrupt affinities. 969 */ 970 irq_lock_sparse(); 971 972 /* 973 * So now all preempt/rcu users must observe !cpu_active(). 974 */ 975 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 976 if (err) { 977 /* CPU refused to die */ 978 irq_unlock_sparse(); 979 /* Unpark the hotplug thread so we can rollback there */ 980 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 981 return err; 982 } 983 BUG_ON(cpu_online(cpu)); 984 985 /* 986 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 987 * all runnable tasks from the CPU, there's only the idle task left now 988 * that the migration thread is done doing the stop_machine thing. 989 * 990 * Wait for the stop thread to go away. 991 */ 992 wait_for_ap_thread(st, false); 993 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 994 995 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 996 irq_unlock_sparse(); 997 998 hotplug_cpu__broadcast_tick_pull(cpu); 999 /* This actually kills the CPU. */ 1000 __cpu_die(cpu); 1001 1002 tick_cleanup_dead_cpu(cpu); 1003 rcutree_migrate_callbacks(cpu); 1004 return 0; 1005 } 1006 1007 static void cpuhp_complete_idle_dead(void *arg) 1008 { 1009 struct cpuhp_cpu_state *st = arg; 1010 1011 complete_ap_thread(st, false); 1012 } 1013 1014 void cpuhp_report_idle_dead(void) 1015 { 1016 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1017 1018 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1019 rcu_report_dead(smp_processor_id()); 1020 st->state = CPUHP_AP_IDLE_DEAD; 1021 /* 1022 * We cannot call complete after rcu_report_dead() so we delegate it 1023 * to an online cpu. 1024 */ 1025 smp_call_function_single(cpumask_first(cpu_online_mask), 1026 cpuhp_complete_idle_dead, st, 0); 1027 } 1028 1029 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1030 enum cpuhp_state target) 1031 { 1032 enum cpuhp_state prev_state = st->state; 1033 int ret = 0; 1034 1035 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1036 if (ret) { 1037 1038 cpuhp_reset_state(st, prev_state); 1039 1040 if (st->state < prev_state) 1041 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1042 prev_state)); 1043 } 1044 1045 return ret; 1046 } 1047 1048 /* Requires cpu_add_remove_lock to be held */ 1049 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1050 enum cpuhp_state target) 1051 { 1052 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1053 int prev_state, ret = 0; 1054 1055 if (num_online_cpus() == 1) 1056 return -EBUSY; 1057 1058 if (!cpu_present(cpu)) 1059 return -EINVAL; 1060 1061 cpus_write_lock(); 1062 1063 cpuhp_tasks_frozen = tasks_frozen; 1064 1065 prev_state = cpuhp_set_state(st, target); 1066 /* 1067 * If the current CPU state is in the range of the AP hotplug thread, 1068 * then we need to kick the thread. 1069 */ 1070 if (st->state > CPUHP_TEARDOWN_CPU) { 1071 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1072 ret = cpuhp_kick_ap_work(cpu); 1073 /* 1074 * The AP side has done the error rollback already. Just 1075 * return the error code.. 1076 */ 1077 if (ret) 1078 goto out; 1079 1080 /* 1081 * We might have stopped still in the range of the AP hotplug 1082 * thread. Nothing to do anymore. 1083 */ 1084 if (st->state > CPUHP_TEARDOWN_CPU) 1085 goto out; 1086 1087 st->target = target; 1088 } 1089 /* 1090 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1091 * to do the further cleanups. 1092 */ 1093 ret = cpuhp_down_callbacks(cpu, st, target); 1094 if (ret && st->state < prev_state) { 1095 if (st->state == CPUHP_TEARDOWN_CPU) { 1096 cpuhp_reset_state(st, prev_state); 1097 __cpuhp_kick_ap(st); 1098 } else { 1099 WARN(1, "DEAD callback error for CPU%d", cpu); 1100 } 1101 } 1102 1103 out: 1104 cpus_write_unlock(); 1105 /* 1106 * Do post unplug cleanup. This is still protected against 1107 * concurrent CPU hotplug via cpu_add_remove_lock. 1108 */ 1109 lockup_detector_cleanup(); 1110 arch_smt_update(); 1111 return ret; 1112 } 1113 1114 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1115 { 1116 if (cpu_hotplug_disabled) 1117 return -EBUSY; 1118 return _cpu_down(cpu, 0, target); 1119 } 1120 1121 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1122 { 1123 int err; 1124 1125 cpu_maps_update_begin(); 1126 err = cpu_down_maps_locked(cpu, target); 1127 cpu_maps_update_done(); 1128 return err; 1129 } 1130 1131 /** 1132 * cpu_device_down - Bring down a cpu device 1133 * @dev: Pointer to the cpu device to offline 1134 * 1135 * This function is meant to be used by device core cpu subsystem only. 1136 * 1137 * Other subsystems should use remove_cpu() instead. 1138 */ 1139 int cpu_device_down(struct device *dev) 1140 { 1141 return cpu_down(dev->id, CPUHP_OFFLINE); 1142 } 1143 1144 int remove_cpu(unsigned int cpu) 1145 { 1146 int ret; 1147 1148 lock_device_hotplug(); 1149 ret = device_offline(get_cpu_device(cpu)); 1150 unlock_device_hotplug(); 1151 1152 return ret; 1153 } 1154 EXPORT_SYMBOL_GPL(remove_cpu); 1155 1156 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1157 { 1158 unsigned int cpu; 1159 int error; 1160 1161 cpu_maps_update_begin(); 1162 1163 /* 1164 * Make certain the cpu I'm about to reboot on is online. 1165 * 1166 * This is inline to what migrate_to_reboot_cpu() already do. 1167 */ 1168 if (!cpu_online(primary_cpu)) 1169 primary_cpu = cpumask_first(cpu_online_mask); 1170 1171 for_each_online_cpu(cpu) { 1172 if (cpu == primary_cpu) 1173 continue; 1174 1175 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1176 if (error) { 1177 pr_err("Failed to offline CPU%d - error=%d", 1178 cpu, error); 1179 break; 1180 } 1181 } 1182 1183 /* 1184 * Ensure all but the reboot CPU are offline. 1185 */ 1186 BUG_ON(num_online_cpus() > 1); 1187 1188 /* 1189 * Make sure the CPUs won't be enabled by someone else after this 1190 * point. Kexec will reboot to a new kernel shortly resetting 1191 * everything along the way. 1192 */ 1193 cpu_hotplug_disabled++; 1194 1195 cpu_maps_update_done(); 1196 } 1197 1198 #else 1199 #define takedown_cpu NULL 1200 #endif /*CONFIG_HOTPLUG_CPU*/ 1201 1202 /** 1203 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1204 * @cpu: cpu that just started 1205 * 1206 * It must be called by the arch code on the new cpu, before the new cpu 1207 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1208 */ 1209 void notify_cpu_starting(unsigned int cpu) 1210 { 1211 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1212 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1213 int ret; 1214 1215 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1216 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1217 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1218 1219 /* 1220 * STARTING must not fail! 1221 */ 1222 WARN_ON_ONCE(ret); 1223 } 1224 1225 /* 1226 * Called from the idle task. Wake up the controlling task which brings the 1227 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1228 * online bringup to the hotplug thread. 1229 */ 1230 void cpuhp_online_idle(enum cpuhp_state state) 1231 { 1232 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1233 1234 /* Happens for the boot cpu */ 1235 if (state != CPUHP_AP_ONLINE_IDLE) 1236 return; 1237 1238 /* 1239 * Unpart the stopper thread before we start the idle loop (and start 1240 * scheduling); this ensures the stopper task is always available. 1241 */ 1242 stop_machine_unpark(smp_processor_id()); 1243 1244 st->state = CPUHP_AP_ONLINE_IDLE; 1245 complete_ap_thread(st, true); 1246 } 1247 1248 /* Requires cpu_add_remove_lock to be held */ 1249 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1250 { 1251 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1252 struct task_struct *idle; 1253 int ret = 0; 1254 1255 cpus_write_lock(); 1256 1257 if (!cpu_present(cpu)) { 1258 ret = -EINVAL; 1259 goto out; 1260 } 1261 1262 /* 1263 * The caller of cpu_up() might have raced with another 1264 * caller. Nothing to do. 1265 */ 1266 if (st->state >= target) 1267 goto out; 1268 1269 if (st->state == CPUHP_OFFLINE) { 1270 /* Let it fail before we try to bring the cpu up */ 1271 idle = idle_thread_get(cpu); 1272 if (IS_ERR(idle)) { 1273 ret = PTR_ERR(idle); 1274 goto out; 1275 } 1276 } 1277 1278 cpuhp_tasks_frozen = tasks_frozen; 1279 1280 cpuhp_set_state(st, target); 1281 /* 1282 * If the current CPU state is in the range of the AP hotplug thread, 1283 * then we need to kick the thread once more. 1284 */ 1285 if (st->state > CPUHP_BRINGUP_CPU) { 1286 ret = cpuhp_kick_ap_work(cpu); 1287 /* 1288 * The AP side has done the error rollback already. Just 1289 * return the error code.. 1290 */ 1291 if (ret) 1292 goto out; 1293 } 1294 1295 /* 1296 * Try to reach the target state. We max out on the BP at 1297 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1298 * responsible for bringing it up to the target state. 1299 */ 1300 target = min((int)target, CPUHP_BRINGUP_CPU); 1301 ret = cpuhp_up_callbacks(cpu, st, target); 1302 out: 1303 cpus_write_unlock(); 1304 arch_smt_update(); 1305 return ret; 1306 } 1307 1308 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1309 { 1310 int err = 0; 1311 1312 if (!cpu_possible(cpu)) { 1313 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1314 cpu); 1315 #if defined(CONFIG_IA64) 1316 pr_err("please check additional_cpus= boot parameter\n"); 1317 #endif 1318 return -EINVAL; 1319 } 1320 1321 err = try_online_node(cpu_to_node(cpu)); 1322 if (err) 1323 return err; 1324 1325 cpu_maps_update_begin(); 1326 1327 if (cpu_hotplug_disabled) { 1328 err = -EBUSY; 1329 goto out; 1330 } 1331 if (!cpu_smt_allowed(cpu)) { 1332 err = -EPERM; 1333 goto out; 1334 } 1335 1336 err = _cpu_up(cpu, 0, target); 1337 out: 1338 cpu_maps_update_done(); 1339 return err; 1340 } 1341 1342 /** 1343 * cpu_device_up - Bring up a cpu device 1344 * @dev: Pointer to the cpu device to online 1345 * 1346 * This function is meant to be used by device core cpu subsystem only. 1347 * 1348 * Other subsystems should use add_cpu() instead. 1349 */ 1350 int cpu_device_up(struct device *dev) 1351 { 1352 return cpu_up(dev->id, CPUHP_ONLINE); 1353 } 1354 1355 int add_cpu(unsigned int cpu) 1356 { 1357 int ret; 1358 1359 lock_device_hotplug(); 1360 ret = device_online(get_cpu_device(cpu)); 1361 unlock_device_hotplug(); 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(add_cpu); 1366 1367 /** 1368 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1369 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1370 * 1371 * On some architectures like arm64, we can hibernate on any CPU, but on 1372 * wake up the CPU we hibernated on might be offline as a side effect of 1373 * using maxcpus= for example. 1374 */ 1375 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1376 { 1377 int ret; 1378 1379 if (!cpu_online(sleep_cpu)) { 1380 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1381 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1382 if (ret) { 1383 pr_err("Failed to bring hibernate-CPU up!\n"); 1384 return ret; 1385 } 1386 } 1387 return 0; 1388 } 1389 1390 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1391 { 1392 unsigned int cpu; 1393 1394 for_each_present_cpu(cpu) { 1395 if (num_online_cpus() >= setup_max_cpus) 1396 break; 1397 if (!cpu_online(cpu)) 1398 cpu_up(cpu, CPUHP_ONLINE); 1399 } 1400 } 1401 1402 #ifdef CONFIG_PM_SLEEP_SMP 1403 static cpumask_var_t frozen_cpus; 1404 1405 int freeze_secondary_cpus(int primary) 1406 { 1407 int cpu, error = 0; 1408 1409 cpu_maps_update_begin(); 1410 if (primary == -1) { 1411 primary = cpumask_first(cpu_online_mask); 1412 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1413 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1414 } else { 1415 if (!cpu_online(primary)) 1416 primary = cpumask_first(cpu_online_mask); 1417 } 1418 1419 /* 1420 * We take down all of the non-boot CPUs in one shot to avoid races 1421 * with the userspace trying to use the CPU hotplug at the same time 1422 */ 1423 cpumask_clear(frozen_cpus); 1424 1425 pr_info("Disabling non-boot CPUs ...\n"); 1426 for_each_online_cpu(cpu) { 1427 if (cpu == primary) 1428 continue; 1429 1430 if (pm_wakeup_pending()) { 1431 pr_info("Wakeup pending. Abort CPU freeze\n"); 1432 error = -EBUSY; 1433 break; 1434 } 1435 1436 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1437 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1438 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1439 if (!error) 1440 cpumask_set_cpu(cpu, frozen_cpus); 1441 else { 1442 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1443 break; 1444 } 1445 } 1446 1447 if (!error) 1448 BUG_ON(num_online_cpus() > 1); 1449 else 1450 pr_err("Non-boot CPUs are not disabled\n"); 1451 1452 /* 1453 * Make sure the CPUs won't be enabled by someone else. We need to do 1454 * this even in case of failure as all freeze_secondary_cpus() users are 1455 * supposed to do thaw_secondary_cpus() on the failure path. 1456 */ 1457 cpu_hotplug_disabled++; 1458 1459 cpu_maps_update_done(); 1460 return error; 1461 } 1462 1463 void __weak arch_thaw_secondary_cpus_begin(void) 1464 { 1465 } 1466 1467 void __weak arch_thaw_secondary_cpus_end(void) 1468 { 1469 } 1470 1471 void thaw_secondary_cpus(void) 1472 { 1473 int cpu, error; 1474 1475 /* Allow everyone to use the CPU hotplug again */ 1476 cpu_maps_update_begin(); 1477 __cpu_hotplug_enable(); 1478 if (cpumask_empty(frozen_cpus)) 1479 goto out; 1480 1481 pr_info("Enabling non-boot CPUs ...\n"); 1482 1483 arch_thaw_secondary_cpus_begin(); 1484 1485 for_each_cpu(cpu, frozen_cpus) { 1486 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1487 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1488 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1489 if (!error) { 1490 pr_info("CPU%d is up\n", cpu); 1491 continue; 1492 } 1493 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1494 } 1495 1496 arch_thaw_secondary_cpus_end(); 1497 1498 cpumask_clear(frozen_cpus); 1499 out: 1500 cpu_maps_update_done(); 1501 } 1502 1503 static int __init alloc_frozen_cpus(void) 1504 { 1505 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1506 return -ENOMEM; 1507 return 0; 1508 } 1509 core_initcall(alloc_frozen_cpus); 1510 1511 /* 1512 * When callbacks for CPU hotplug notifications are being executed, we must 1513 * ensure that the state of the system with respect to the tasks being frozen 1514 * or not, as reported by the notification, remains unchanged *throughout the 1515 * duration* of the execution of the callbacks. 1516 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1517 * 1518 * This synchronization is implemented by mutually excluding regular CPU 1519 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1520 * Hibernate notifications. 1521 */ 1522 static int 1523 cpu_hotplug_pm_callback(struct notifier_block *nb, 1524 unsigned long action, void *ptr) 1525 { 1526 switch (action) { 1527 1528 case PM_SUSPEND_PREPARE: 1529 case PM_HIBERNATION_PREPARE: 1530 cpu_hotplug_disable(); 1531 break; 1532 1533 case PM_POST_SUSPEND: 1534 case PM_POST_HIBERNATION: 1535 cpu_hotplug_enable(); 1536 break; 1537 1538 default: 1539 return NOTIFY_DONE; 1540 } 1541 1542 return NOTIFY_OK; 1543 } 1544 1545 1546 static int __init cpu_hotplug_pm_sync_init(void) 1547 { 1548 /* 1549 * cpu_hotplug_pm_callback has higher priority than x86 1550 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1551 * to disable cpu hotplug to avoid cpu hotplug race. 1552 */ 1553 pm_notifier(cpu_hotplug_pm_callback, 0); 1554 return 0; 1555 } 1556 core_initcall(cpu_hotplug_pm_sync_init); 1557 1558 #endif /* CONFIG_PM_SLEEP_SMP */ 1559 1560 int __boot_cpu_id; 1561 1562 #endif /* CONFIG_SMP */ 1563 1564 /* Boot processor state steps */ 1565 static struct cpuhp_step cpuhp_hp_states[] = { 1566 [CPUHP_OFFLINE] = { 1567 .name = "offline", 1568 .startup.single = NULL, 1569 .teardown.single = NULL, 1570 }, 1571 #ifdef CONFIG_SMP 1572 [CPUHP_CREATE_THREADS]= { 1573 .name = "threads:prepare", 1574 .startup.single = smpboot_create_threads, 1575 .teardown.single = NULL, 1576 .cant_stop = true, 1577 }, 1578 [CPUHP_PERF_PREPARE] = { 1579 .name = "perf:prepare", 1580 .startup.single = perf_event_init_cpu, 1581 .teardown.single = perf_event_exit_cpu, 1582 }, 1583 [CPUHP_WORKQUEUE_PREP] = { 1584 .name = "workqueue:prepare", 1585 .startup.single = workqueue_prepare_cpu, 1586 .teardown.single = NULL, 1587 }, 1588 [CPUHP_HRTIMERS_PREPARE] = { 1589 .name = "hrtimers:prepare", 1590 .startup.single = hrtimers_prepare_cpu, 1591 .teardown.single = hrtimers_dead_cpu, 1592 }, 1593 [CPUHP_SMPCFD_PREPARE] = { 1594 .name = "smpcfd:prepare", 1595 .startup.single = smpcfd_prepare_cpu, 1596 .teardown.single = smpcfd_dead_cpu, 1597 }, 1598 [CPUHP_RELAY_PREPARE] = { 1599 .name = "relay:prepare", 1600 .startup.single = relay_prepare_cpu, 1601 .teardown.single = NULL, 1602 }, 1603 [CPUHP_SLAB_PREPARE] = { 1604 .name = "slab:prepare", 1605 .startup.single = slab_prepare_cpu, 1606 .teardown.single = slab_dead_cpu, 1607 }, 1608 [CPUHP_RCUTREE_PREP] = { 1609 .name = "RCU/tree:prepare", 1610 .startup.single = rcutree_prepare_cpu, 1611 .teardown.single = rcutree_dead_cpu, 1612 }, 1613 /* 1614 * On the tear-down path, timers_dead_cpu() must be invoked 1615 * before blk_mq_queue_reinit_notify() from notify_dead(), 1616 * otherwise a RCU stall occurs. 1617 */ 1618 [CPUHP_TIMERS_PREPARE] = { 1619 .name = "timers:prepare", 1620 .startup.single = timers_prepare_cpu, 1621 .teardown.single = timers_dead_cpu, 1622 }, 1623 /* Kicks the plugged cpu into life */ 1624 [CPUHP_BRINGUP_CPU] = { 1625 .name = "cpu:bringup", 1626 .startup.single = bringup_cpu, 1627 .teardown.single = finish_cpu, 1628 .cant_stop = true, 1629 }, 1630 /* Final state before CPU kills itself */ 1631 [CPUHP_AP_IDLE_DEAD] = { 1632 .name = "idle:dead", 1633 }, 1634 /* 1635 * Last state before CPU enters the idle loop to die. Transient state 1636 * for synchronization. 1637 */ 1638 [CPUHP_AP_OFFLINE] = { 1639 .name = "ap:offline", 1640 .cant_stop = true, 1641 }, 1642 /* First state is scheduler control. Interrupts are disabled */ 1643 [CPUHP_AP_SCHED_STARTING] = { 1644 .name = "sched:starting", 1645 .startup.single = sched_cpu_starting, 1646 .teardown.single = sched_cpu_dying, 1647 }, 1648 [CPUHP_AP_RCUTREE_DYING] = { 1649 .name = "RCU/tree:dying", 1650 .startup.single = NULL, 1651 .teardown.single = rcutree_dying_cpu, 1652 }, 1653 [CPUHP_AP_SMPCFD_DYING] = { 1654 .name = "smpcfd:dying", 1655 .startup.single = NULL, 1656 .teardown.single = smpcfd_dying_cpu, 1657 }, 1658 /* Entry state on starting. Interrupts enabled from here on. Transient 1659 * state for synchronsization */ 1660 [CPUHP_AP_ONLINE] = { 1661 .name = "ap:online", 1662 }, 1663 /* 1664 * Handled on control processor until the plugged processor manages 1665 * this itself. 1666 */ 1667 [CPUHP_TEARDOWN_CPU] = { 1668 .name = "cpu:teardown", 1669 .startup.single = NULL, 1670 .teardown.single = takedown_cpu, 1671 .cant_stop = true, 1672 }, 1673 1674 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1675 .name = "sched:waitempty", 1676 .startup.single = NULL, 1677 .teardown.single = sched_cpu_wait_empty, 1678 }, 1679 1680 /* Handle smpboot threads park/unpark */ 1681 [CPUHP_AP_SMPBOOT_THREADS] = { 1682 .name = "smpboot/threads:online", 1683 .startup.single = smpboot_unpark_threads, 1684 .teardown.single = smpboot_park_threads, 1685 }, 1686 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1687 .name = "irq/affinity:online", 1688 .startup.single = irq_affinity_online_cpu, 1689 .teardown.single = NULL, 1690 }, 1691 [CPUHP_AP_PERF_ONLINE] = { 1692 .name = "perf:online", 1693 .startup.single = perf_event_init_cpu, 1694 .teardown.single = perf_event_exit_cpu, 1695 }, 1696 [CPUHP_AP_WATCHDOG_ONLINE] = { 1697 .name = "lockup_detector:online", 1698 .startup.single = lockup_detector_online_cpu, 1699 .teardown.single = lockup_detector_offline_cpu, 1700 }, 1701 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1702 .name = "workqueue:online", 1703 .startup.single = workqueue_online_cpu, 1704 .teardown.single = workqueue_offline_cpu, 1705 }, 1706 [CPUHP_AP_RCUTREE_ONLINE] = { 1707 .name = "RCU/tree:online", 1708 .startup.single = rcutree_online_cpu, 1709 .teardown.single = rcutree_offline_cpu, 1710 }, 1711 #endif 1712 /* 1713 * The dynamically registered state space is here 1714 */ 1715 1716 #ifdef CONFIG_SMP 1717 /* Last state is scheduler control setting the cpu active */ 1718 [CPUHP_AP_ACTIVE] = { 1719 .name = "sched:active", 1720 .startup.single = sched_cpu_activate, 1721 .teardown.single = sched_cpu_deactivate, 1722 }, 1723 #endif 1724 1725 /* CPU is fully up and running. */ 1726 [CPUHP_ONLINE] = { 1727 .name = "online", 1728 .startup.single = NULL, 1729 .teardown.single = NULL, 1730 }, 1731 }; 1732 1733 /* Sanity check for callbacks */ 1734 static int cpuhp_cb_check(enum cpuhp_state state) 1735 { 1736 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1737 return -EINVAL; 1738 return 0; 1739 } 1740 1741 /* 1742 * Returns a free for dynamic slot assignment of the Online state. The states 1743 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1744 * by having no name assigned. 1745 */ 1746 static int cpuhp_reserve_state(enum cpuhp_state state) 1747 { 1748 enum cpuhp_state i, end; 1749 struct cpuhp_step *step; 1750 1751 switch (state) { 1752 case CPUHP_AP_ONLINE_DYN: 1753 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1754 end = CPUHP_AP_ONLINE_DYN_END; 1755 break; 1756 case CPUHP_BP_PREPARE_DYN: 1757 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1758 end = CPUHP_BP_PREPARE_DYN_END; 1759 break; 1760 default: 1761 return -EINVAL; 1762 } 1763 1764 for (i = state; i <= end; i++, step++) { 1765 if (!step->name) 1766 return i; 1767 } 1768 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1769 return -ENOSPC; 1770 } 1771 1772 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1773 int (*startup)(unsigned int cpu), 1774 int (*teardown)(unsigned int cpu), 1775 bool multi_instance) 1776 { 1777 /* (Un)Install the callbacks for further cpu hotplug operations */ 1778 struct cpuhp_step *sp; 1779 int ret = 0; 1780 1781 /* 1782 * If name is NULL, then the state gets removed. 1783 * 1784 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1785 * the first allocation from these dynamic ranges, so the removal 1786 * would trigger a new allocation and clear the wrong (already 1787 * empty) state, leaving the callbacks of the to be cleared state 1788 * dangling, which causes wreckage on the next hotplug operation. 1789 */ 1790 if (name && (state == CPUHP_AP_ONLINE_DYN || 1791 state == CPUHP_BP_PREPARE_DYN)) { 1792 ret = cpuhp_reserve_state(state); 1793 if (ret < 0) 1794 return ret; 1795 state = ret; 1796 } 1797 sp = cpuhp_get_step(state); 1798 if (name && sp->name) 1799 return -EBUSY; 1800 1801 sp->startup.single = startup; 1802 sp->teardown.single = teardown; 1803 sp->name = name; 1804 sp->multi_instance = multi_instance; 1805 INIT_HLIST_HEAD(&sp->list); 1806 return ret; 1807 } 1808 1809 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1810 { 1811 return cpuhp_get_step(state)->teardown.single; 1812 } 1813 1814 /* 1815 * Call the startup/teardown function for a step either on the AP or 1816 * on the current CPU. 1817 */ 1818 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1819 struct hlist_node *node) 1820 { 1821 struct cpuhp_step *sp = cpuhp_get_step(state); 1822 int ret; 1823 1824 /* 1825 * If there's nothing to do, we done. 1826 * Relies on the union for multi_instance. 1827 */ 1828 if (cpuhp_step_empty(bringup, sp)) 1829 return 0; 1830 /* 1831 * The non AP bound callbacks can fail on bringup. On teardown 1832 * e.g. module removal we crash for now. 1833 */ 1834 #ifdef CONFIG_SMP 1835 if (cpuhp_is_ap_state(state)) 1836 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1837 else 1838 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1839 #else 1840 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1841 #endif 1842 BUG_ON(ret && !bringup); 1843 return ret; 1844 } 1845 1846 /* 1847 * Called from __cpuhp_setup_state on a recoverable failure. 1848 * 1849 * Note: The teardown callbacks for rollback are not allowed to fail! 1850 */ 1851 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1852 struct hlist_node *node) 1853 { 1854 int cpu; 1855 1856 /* Roll back the already executed steps on the other cpus */ 1857 for_each_present_cpu(cpu) { 1858 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1859 int cpustate = st->state; 1860 1861 if (cpu >= failedcpu) 1862 break; 1863 1864 /* Did we invoke the startup call on that cpu ? */ 1865 if (cpustate >= state) 1866 cpuhp_issue_call(cpu, state, false, node); 1867 } 1868 } 1869 1870 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1871 struct hlist_node *node, 1872 bool invoke) 1873 { 1874 struct cpuhp_step *sp; 1875 int cpu; 1876 int ret; 1877 1878 lockdep_assert_cpus_held(); 1879 1880 sp = cpuhp_get_step(state); 1881 if (sp->multi_instance == false) 1882 return -EINVAL; 1883 1884 mutex_lock(&cpuhp_state_mutex); 1885 1886 if (!invoke || !sp->startup.multi) 1887 goto add_node; 1888 1889 /* 1890 * Try to call the startup callback for each present cpu 1891 * depending on the hotplug state of the cpu. 1892 */ 1893 for_each_present_cpu(cpu) { 1894 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1895 int cpustate = st->state; 1896 1897 if (cpustate < state) 1898 continue; 1899 1900 ret = cpuhp_issue_call(cpu, state, true, node); 1901 if (ret) { 1902 if (sp->teardown.multi) 1903 cpuhp_rollback_install(cpu, state, node); 1904 goto unlock; 1905 } 1906 } 1907 add_node: 1908 ret = 0; 1909 hlist_add_head(node, &sp->list); 1910 unlock: 1911 mutex_unlock(&cpuhp_state_mutex); 1912 return ret; 1913 } 1914 1915 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1916 bool invoke) 1917 { 1918 int ret; 1919 1920 cpus_read_lock(); 1921 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1922 cpus_read_unlock(); 1923 return ret; 1924 } 1925 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1926 1927 /** 1928 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1929 * @state: The state to setup 1930 * @invoke: If true, the startup function is invoked for cpus where 1931 * cpu state >= @state 1932 * @startup: startup callback function 1933 * @teardown: teardown callback function 1934 * @multi_instance: State is set up for multiple instances which get 1935 * added afterwards. 1936 * 1937 * The caller needs to hold cpus read locked while calling this function. 1938 * Returns: 1939 * On success: 1940 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1941 * 0 for all other states 1942 * On failure: proper (negative) error code 1943 */ 1944 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1945 const char *name, bool invoke, 1946 int (*startup)(unsigned int cpu), 1947 int (*teardown)(unsigned int cpu), 1948 bool multi_instance) 1949 { 1950 int cpu, ret = 0; 1951 bool dynstate; 1952 1953 lockdep_assert_cpus_held(); 1954 1955 if (cpuhp_cb_check(state) || !name) 1956 return -EINVAL; 1957 1958 mutex_lock(&cpuhp_state_mutex); 1959 1960 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1961 multi_instance); 1962 1963 dynstate = state == CPUHP_AP_ONLINE_DYN; 1964 if (ret > 0 && dynstate) { 1965 state = ret; 1966 ret = 0; 1967 } 1968 1969 if (ret || !invoke || !startup) 1970 goto out; 1971 1972 /* 1973 * Try to call the startup callback for each present cpu 1974 * depending on the hotplug state of the cpu. 1975 */ 1976 for_each_present_cpu(cpu) { 1977 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1978 int cpustate = st->state; 1979 1980 if (cpustate < state) 1981 continue; 1982 1983 ret = cpuhp_issue_call(cpu, state, true, NULL); 1984 if (ret) { 1985 if (teardown) 1986 cpuhp_rollback_install(cpu, state, NULL); 1987 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1988 goto out; 1989 } 1990 } 1991 out: 1992 mutex_unlock(&cpuhp_state_mutex); 1993 /* 1994 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1995 * dynamically allocated state in case of success. 1996 */ 1997 if (!ret && dynstate) 1998 return state; 1999 return ret; 2000 } 2001 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2002 2003 int __cpuhp_setup_state(enum cpuhp_state state, 2004 const char *name, bool invoke, 2005 int (*startup)(unsigned int cpu), 2006 int (*teardown)(unsigned int cpu), 2007 bool multi_instance) 2008 { 2009 int ret; 2010 2011 cpus_read_lock(); 2012 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2013 teardown, multi_instance); 2014 cpus_read_unlock(); 2015 return ret; 2016 } 2017 EXPORT_SYMBOL(__cpuhp_setup_state); 2018 2019 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2020 struct hlist_node *node, bool invoke) 2021 { 2022 struct cpuhp_step *sp = cpuhp_get_step(state); 2023 int cpu; 2024 2025 BUG_ON(cpuhp_cb_check(state)); 2026 2027 if (!sp->multi_instance) 2028 return -EINVAL; 2029 2030 cpus_read_lock(); 2031 mutex_lock(&cpuhp_state_mutex); 2032 2033 if (!invoke || !cpuhp_get_teardown_cb(state)) 2034 goto remove; 2035 /* 2036 * Call the teardown callback for each present cpu depending 2037 * on the hotplug state of the cpu. This function is not 2038 * allowed to fail currently! 2039 */ 2040 for_each_present_cpu(cpu) { 2041 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2042 int cpustate = st->state; 2043 2044 if (cpustate >= state) 2045 cpuhp_issue_call(cpu, state, false, node); 2046 } 2047 2048 remove: 2049 hlist_del(node); 2050 mutex_unlock(&cpuhp_state_mutex); 2051 cpus_read_unlock(); 2052 2053 return 0; 2054 } 2055 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2056 2057 /** 2058 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2059 * @state: The state to remove 2060 * @invoke: If true, the teardown function is invoked for cpus where 2061 * cpu state >= @state 2062 * 2063 * The caller needs to hold cpus read locked while calling this function. 2064 * The teardown callback is currently not allowed to fail. Think 2065 * about module removal! 2066 */ 2067 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2068 { 2069 struct cpuhp_step *sp = cpuhp_get_step(state); 2070 int cpu; 2071 2072 BUG_ON(cpuhp_cb_check(state)); 2073 2074 lockdep_assert_cpus_held(); 2075 2076 mutex_lock(&cpuhp_state_mutex); 2077 if (sp->multi_instance) { 2078 WARN(!hlist_empty(&sp->list), 2079 "Error: Removing state %d which has instances left.\n", 2080 state); 2081 goto remove; 2082 } 2083 2084 if (!invoke || !cpuhp_get_teardown_cb(state)) 2085 goto remove; 2086 2087 /* 2088 * Call the teardown callback for each present cpu depending 2089 * on the hotplug state of the cpu. This function is not 2090 * allowed to fail currently! 2091 */ 2092 for_each_present_cpu(cpu) { 2093 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2094 int cpustate = st->state; 2095 2096 if (cpustate >= state) 2097 cpuhp_issue_call(cpu, state, false, NULL); 2098 } 2099 remove: 2100 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2101 mutex_unlock(&cpuhp_state_mutex); 2102 } 2103 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2104 2105 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2106 { 2107 cpus_read_lock(); 2108 __cpuhp_remove_state_cpuslocked(state, invoke); 2109 cpus_read_unlock(); 2110 } 2111 EXPORT_SYMBOL(__cpuhp_remove_state); 2112 2113 #ifdef CONFIG_HOTPLUG_SMT 2114 static void cpuhp_offline_cpu_device(unsigned int cpu) 2115 { 2116 struct device *dev = get_cpu_device(cpu); 2117 2118 dev->offline = true; 2119 /* Tell user space about the state change */ 2120 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2121 } 2122 2123 static void cpuhp_online_cpu_device(unsigned int cpu) 2124 { 2125 struct device *dev = get_cpu_device(cpu); 2126 2127 dev->offline = false; 2128 /* Tell user space about the state change */ 2129 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2130 } 2131 2132 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2133 { 2134 int cpu, ret = 0; 2135 2136 cpu_maps_update_begin(); 2137 for_each_online_cpu(cpu) { 2138 if (topology_is_primary_thread(cpu)) 2139 continue; 2140 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2141 if (ret) 2142 break; 2143 /* 2144 * As this needs to hold the cpu maps lock it's impossible 2145 * to call device_offline() because that ends up calling 2146 * cpu_down() which takes cpu maps lock. cpu maps lock 2147 * needs to be held as this might race against in kernel 2148 * abusers of the hotplug machinery (thermal management). 2149 * 2150 * So nothing would update device:offline state. That would 2151 * leave the sysfs entry stale and prevent onlining after 2152 * smt control has been changed to 'off' again. This is 2153 * called under the sysfs hotplug lock, so it is properly 2154 * serialized against the regular offline usage. 2155 */ 2156 cpuhp_offline_cpu_device(cpu); 2157 } 2158 if (!ret) 2159 cpu_smt_control = ctrlval; 2160 cpu_maps_update_done(); 2161 return ret; 2162 } 2163 2164 int cpuhp_smt_enable(void) 2165 { 2166 int cpu, ret = 0; 2167 2168 cpu_maps_update_begin(); 2169 cpu_smt_control = CPU_SMT_ENABLED; 2170 for_each_present_cpu(cpu) { 2171 /* Skip online CPUs and CPUs on offline nodes */ 2172 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2173 continue; 2174 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2175 if (ret) 2176 break; 2177 /* See comment in cpuhp_smt_disable() */ 2178 cpuhp_online_cpu_device(cpu); 2179 } 2180 cpu_maps_update_done(); 2181 return ret; 2182 } 2183 #endif 2184 2185 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2186 static ssize_t show_cpuhp_state(struct device *dev, 2187 struct device_attribute *attr, char *buf) 2188 { 2189 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2190 2191 return sprintf(buf, "%d\n", st->state); 2192 } 2193 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2194 2195 static ssize_t write_cpuhp_target(struct device *dev, 2196 struct device_attribute *attr, 2197 const char *buf, size_t count) 2198 { 2199 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2200 struct cpuhp_step *sp; 2201 int target, ret; 2202 2203 ret = kstrtoint(buf, 10, &target); 2204 if (ret) 2205 return ret; 2206 2207 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2208 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2209 return -EINVAL; 2210 #else 2211 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2212 return -EINVAL; 2213 #endif 2214 2215 ret = lock_device_hotplug_sysfs(); 2216 if (ret) 2217 return ret; 2218 2219 mutex_lock(&cpuhp_state_mutex); 2220 sp = cpuhp_get_step(target); 2221 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2222 mutex_unlock(&cpuhp_state_mutex); 2223 if (ret) 2224 goto out; 2225 2226 if (st->state < target) 2227 ret = cpu_up(dev->id, target); 2228 else 2229 ret = cpu_down(dev->id, target); 2230 out: 2231 unlock_device_hotplug(); 2232 return ret ? ret : count; 2233 } 2234 2235 static ssize_t show_cpuhp_target(struct device *dev, 2236 struct device_attribute *attr, char *buf) 2237 { 2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2239 2240 return sprintf(buf, "%d\n", st->target); 2241 } 2242 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2243 2244 2245 static ssize_t write_cpuhp_fail(struct device *dev, 2246 struct device_attribute *attr, 2247 const char *buf, size_t count) 2248 { 2249 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2250 struct cpuhp_step *sp; 2251 int fail, ret; 2252 2253 ret = kstrtoint(buf, 10, &fail); 2254 if (ret) 2255 return ret; 2256 2257 if (fail == CPUHP_INVALID) { 2258 st->fail = fail; 2259 return count; 2260 } 2261 2262 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2263 return -EINVAL; 2264 2265 /* 2266 * Cannot fail STARTING/DYING callbacks. 2267 */ 2268 if (cpuhp_is_atomic_state(fail)) 2269 return -EINVAL; 2270 2271 /* 2272 * DEAD callbacks cannot fail... 2273 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2274 * triggering STARTING callbacks, a failure in this state would 2275 * hinder rollback. 2276 */ 2277 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2278 return -EINVAL; 2279 2280 /* 2281 * Cannot fail anything that doesn't have callbacks. 2282 */ 2283 mutex_lock(&cpuhp_state_mutex); 2284 sp = cpuhp_get_step(fail); 2285 if (!sp->startup.single && !sp->teardown.single) 2286 ret = -EINVAL; 2287 mutex_unlock(&cpuhp_state_mutex); 2288 if (ret) 2289 return ret; 2290 2291 st->fail = fail; 2292 2293 return count; 2294 } 2295 2296 static ssize_t show_cpuhp_fail(struct device *dev, 2297 struct device_attribute *attr, char *buf) 2298 { 2299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2300 2301 return sprintf(buf, "%d\n", st->fail); 2302 } 2303 2304 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2305 2306 static struct attribute *cpuhp_cpu_attrs[] = { 2307 &dev_attr_state.attr, 2308 &dev_attr_target.attr, 2309 &dev_attr_fail.attr, 2310 NULL 2311 }; 2312 2313 static const struct attribute_group cpuhp_cpu_attr_group = { 2314 .attrs = cpuhp_cpu_attrs, 2315 .name = "hotplug", 2316 NULL 2317 }; 2318 2319 static ssize_t show_cpuhp_states(struct device *dev, 2320 struct device_attribute *attr, char *buf) 2321 { 2322 ssize_t cur, res = 0; 2323 int i; 2324 2325 mutex_lock(&cpuhp_state_mutex); 2326 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2327 struct cpuhp_step *sp = cpuhp_get_step(i); 2328 2329 if (sp->name) { 2330 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2331 buf += cur; 2332 res += cur; 2333 } 2334 } 2335 mutex_unlock(&cpuhp_state_mutex); 2336 return res; 2337 } 2338 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2339 2340 static struct attribute *cpuhp_cpu_root_attrs[] = { 2341 &dev_attr_states.attr, 2342 NULL 2343 }; 2344 2345 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2346 .attrs = cpuhp_cpu_root_attrs, 2347 .name = "hotplug", 2348 NULL 2349 }; 2350 2351 #ifdef CONFIG_HOTPLUG_SMT 2352 2353 static ssize_t 2354 __store_smt_control(struct device *dev, struct device_attribute *attr, 2355 const char *buf, size_t count) 2356 { 2357 int ctrlval, ret; 2358 2359 if (sysfs_streq(buf, "on")) 2360 ctrlval = CPU_SMT_ENABLED; 2361 else if (sysfs_streq(buf, "off")) 2362 ctrlval = CPU_SMT_DISABLED; 2363 else if (sysfs_streq(buf, "forceoff")) 2364 ctrlval = CPU_SMT_FORCE_DISABLED; 2365 else 2366 return -EINVAL; 2367 2368 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2369 return -EPERM; 2370 2371 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2372 return -ENODEV; 2373 2374 ret = lock_device_hotplug_sysfs(); 2375 if (ret) 2376 return ret; 2377 2378 if (ctrlval != cpu_smt_control) { 2379 switch (ctrlval) { 2380 case CPU_SMT_ENABLED: 2381 ret = cpuhp_smt_enable(); 2382 break; 2383 case CPU_SMT_DISABLED: 2384 case CPU_SMT_FORCE_DISABLED: 2385 ret = cpuhp_smt_disable(ctrlval); 2386 break; 2387 } 2388 } 2389 2390 unlock_device_hotplug(); 2391 return ret ? ret : count; 2392 } 2393 2394 #else /* !CONFIG_HOTPLUG_SMT */ 2395 static ssize_t 2396 __store_smt_control(struct device *dev, struct device_attribute *attr, 2397 const char *buf, size_t count) 2398 { 2399 return -ENODEV; 2400 } 2401 #endif /* CONFIG_HOTPLUG_SMT */ 2402 2403 static const char *smt_states[] = { 2404 [CPU_SMT_ENABLED] = "on", 2405 [CPU_SMT_DISABLED] = "off", 2406 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2407 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2408 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2409 }; 2410 2411 static ssize_t 2412 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2413 { 2414 const char *state = smt_states[cpu_smt_control]; 2415 2416 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2417 } 2418 2419 static ssize_t 2420 store_smt_control(struct device *dev, struct device_attribute *attr, 2421 const char *buf, size_t count) 2422 { 2423 return __store_smt_control(dev, attr, buf, count); 2424 } 2425 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2426 2427 static ssize_t 2428 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2429 { 2430 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2431 } 2432 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2433 2434 static struct attribute *cpuhp_smt_attrs[] = { 2435 &dev_attr_control.attr, 2436 &dev_attr_active.attr, 2437 NULL 2438 }; 2439 2440 static const struct attribute_group cpuhp_smt_attr_group = { 2441 .attrs = cpuhp_smt_attrs, 2442 .name = "smt", 2443 NULL 2444 }; 2445 2446 static int __init cpu_smt_sysfs_init(void) 2447 { 2448 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2449 &cpuhp_smt_attr_group); 2450 } 2451 2452 static int __init cpuhp_sysfs_init(void) 2453 { 2454 int cpu, ret; 2455 2456 ret = cpu_smt_sysfs_init(); 2457 if (ret) 2458 return ret; 2459 2460 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2461 &cpuhp_cpu_root_attr_group); 2462 if (ret) 2463 return ret; 2464 2465 for_each_possible_cpu(cpu) { 2466 struct device *dev = get_cpu_device(cpu); 2467 2468 if (!dev) 2469 continue; 2470 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2471 if (ret) 2472 return ret; 2473 } 2474 return 0; 2475 } 2476 device_initcall(cpuhp_sysfs_init); 2477 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2478 2479 /* 2480 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2481 * represents all NR_CPUS bits binary values of 1<<nr. 2482 * 2483 * It is used by cpumask_of() to get a constant address to a CPU 2484 * mask value that has a single bit set only. 2485 */ 2486 2487 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2488 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2489 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2490 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2491 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2492 2493 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2494 2495 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2496 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2497 #if BITS_PER_LONG > 32 2498 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2499 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2500 #endif 2501 }; 2502 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2503 2504 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2505 EXPORT_SYMBOL(cpu_all_bits); 2506 2507 #ifdef CONFIG_INIT_ALL_POSSIBLE 2508 struct cpumask __cpu_possible_mask __read_mostly 2509 = {CPU_BITS_ALL}; 2510 #else 2511 struct cpumask __cpu_possible_mask __read_mostly; 2512 #endif 2513 EXPORT_SYMBOL(__cpu_possible_mask); 2514 2515 struct cpumask __cpu_online_mask __read_mostly; 2516 EXPORT_SYMBOL(__cpu_online_mask); 2517 2518 struct cpumask __cpu_present_mask __read_mostly; 2519 EXPORT_SYMBOL(__cpu_present_mask); 2520 2521 struct cpumask __cpu_active_mask __read_mostly; 2522 EXPORT_SYMBOL(__cpu_active_mask); 2523 2524 struct cpumask __cpu_dying_mask __read_mostly; 2525 EXPORT_SYMBOL(__cpu_dying_mask); 2526 2527 atomic_t __num_online_cpus __read_mostly; 2528 EXPORT_SYMBOL(__num_online_cpus); 2529 2530 void init_cpu_present(const struct cpumask *src) 2531 { 2532 cpumask_copy(&__cpu_present_mask, src); 2533 } 2534 2535 void init_cpu_possible(const struct cpumask *src) 2536 { 2537 cpumask_copy(&__cpu_possible_mask, src); 2538 } 2539 2540 void init_cpu_online(const struct cpumask *src) 2541 { 2542 cpumask_copy(&__cpu_online_mask, src); 2543 } 2544 2545 void set_cpu_online(unsigned int cpu, bool online) 2546 { 2547 /* 2548 * atomic_inc/dec() is required to handle the horrid abuse of this 2549 * function by the reboot and kexec code which invoke it from 2550 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2551 * regular CPU hotplug is properly serialized. 2552 * 2553 * Note, that the fact that __num_online_cpus is of type atomic_t 2554 * does not protect readers which are not serialized against 2555 * concurrent hotplug operations. 2556 */ 2557 if (online) { 2558 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2559 atomic_inc(&__num_online_cpus); 2560 } else { 2561 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2562 atomic_dec(&__num_online_cpus); 2563 } 2564 } 2565 2566 /* 2567 * Activate the first processor. 2568 */ 2569 void __init boot_cpu_init(void) 2570 { 2571 int cpu = smp_processor_id(); 2572 2573 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2574 set_cpu_online(cpu, true); 2575 set_cpu_active(cpu, true); 2576 set_cpu_present(cpu, true); 2577 set_cpu_possible(cpu, true); 2578 2579 #ifdef CONFIG_SMP 2580 __boot_cpu_id = cpu; 2581 #endif 2582 } 2583 2584 /* 2585 * Must be called _AFTER_ setting up the per_cpu areas 2586 */ 2587 void __init boot_cpu_hotplug_init(void) 2588 { 2589 #ifdef CONFIG_SMP 2590 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2591 #endif 2592 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2593 } 2594 2595 /* 2596 * These are used for a global "mitigations=" cmdline option for toggling 2597 * optional CPU mitigations. 2598 */ 2599 enum cpu_mitigations { 2600 CPU_MITIGATIONS_OFF, 2601 CPU_MITIGATIONS_AUTO, 2602 CPU_MITIGATIONS_AUTO_NOSMT, 2603 }; 2604 2605 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2606 CPU_MITIGATIONS_AUTO; 2607 2608 static int __init mitigations_parse_cmdline(char *arg) 2609 { 2610 if (!strcmp(arg, "off")) 2611 cpu_mitigations = CPU_MITIGATIONS_OFF; 2612 else if (!strcmp(arg, "auto")) 2613 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2614 else if (!strcmp(arg, "auto,nosmt")) 2615 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2616 else 2617 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2618 arg); 2619 2620 return 0; 2621 } 2622 early_param("mitigations", mitigations_parse_cmdline); 2623 2624 /* mitigations=off */ 2625 bool cpu_mitigations_off(void) 2626 { 2627 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2628 } 2629 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2630 2631 /* mitigations=auto,nosmt */ 2632 bool cpu_mitigations_auto_nosmt(void) 2633 { 2634 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2635 } 2636 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2637