1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/nmi.h> 28 #include <linux/smpboot.h> 29 #include <linux/relay.h> 30 #include <linux/slab.h> 31 #include <linux/percpu-rwsem.h> 32 33 #include <trace/events/power.h> 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/cpuhp.h> 36 37 #include "smpboot.h" 38 39 /** 40 * cpuhp_cpu_state - Per cpu hotplug state storage 41 * @state: The current cpu state 42 * @target: The target state 43 * @thread: Pointer to the hotplug thread 44 * @should_run: Thread should execute 45 * @rollback: Perform a rollback 46 * @single: Single callback invocation 47 * @bringup: Single callback bringup or teardown selector 48 * @cb_state: The state for a single callback (install/uninstall) 49 * @result: Result of the operation 50 * @done_up: Signal completion to the issuer of the task for cpu-up 51 * @done_down: Signal completion to the issuer of the task for cpu-down 52 */ 53 struct cpuhp_cpu_state { 54 enum cpuhp_state state; 55 enum cpuhp_state target; 56 enum cpuhp_state fail; 57 #ifdef CONFIG_SMP 58 struct task_struct *thread; 59 bool should_run; 60 bool rollback; 61 bool single; 62 bool bringup; 63 struct hlist_node *node; 64 struct hlist_node *last; 65 enum cpuhp_state cb_state; 66 int result; 67 struct completion done_up; 68 struct completion done_down; 69 #endif 70 }; 71 72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 73 .fail = CPUHP_INVALID, 74 }; 75 76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 77 static struct lockdep_map cpuhp_state_up_map = 78 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 79 static struct lockdep_map cpuhp_state_down_map = 80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 81 82 83 static inline void cpuhp_lock_acquire(bool bringup) 84 { 85 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 86 } 87 88 static inline void cpuhp_lock_release(bool bringup) 89 { 90 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 91 } 92 #else 93 94 static inline void cpuhp_lock_acquire(bool bringup) { } 95 static inline void cpuhp_lock_release(bool bringup) { } 96 97 #endif 98 99 /** 100 * cpuhp_step - Hotplug state machine step 101 * @name: Name of the step 102 * @startup: Startup function of the step 103 * @teardown: Teardown function of the step 104 * @skip_onerr: Do not invoke the functions on error rollback 105 * Will go away once the notifiers are gone 106 * @cant_stop: Bringup/teardown can't be stopped at this step 107 */ 108 struct cpuhp_step { 109 const char *name; 110 union { 111 int (*single)(unsigned int cpu); 112 int (*multi)(unsigned int cpu, 113 struct hlist_node *node); 114 } startup; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } teardown; 120 struct hlist_head list; 121 bool skip_onerr; 122 bool cant_stop; 123 bool multi_instance; 124 }; 125 126 static DEFINE_MUTEX(cpuhp_state_mutex); 127 static struct cpuhp_step cpuhp_hp_states[]; 128 129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 130 { 131 return cpuhp_hp_states + state; 132 } 133 134 /** 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 136 * @cpu: The cpu for which the callback should be invoked 137 * @state: The state to do callbacks for 138 * @bringup: True if the bringup callback should be invoked 139 * @node: For multi-instance, do a single entry callback for install/remove 140 * @lastp: For multi-instance rollback, remember how far we got 141 * 142 * Called from cpu hotplug and from the state register machinery. 143 */ 144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 145 bool bringup, struct hlist_node *node, 146 struct hlist_node **lastp) 147 { 148 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 149 struct cpuhp_step *step = cpuhp_get_step(state); 150 int (*cbm)(unsigned int cpu, struct hlist_node *node); 151 int (*cb)(unsigned int cpu); 152 int ret, cnt; 153 154 if (st->fail == state) { 155 st->fail = CPUHP_INVALID; 156 157 if (!(bringup ? step->startup.single : step->teardown.single)) 158 return 0; 159 160 return -EAGAIN; 161 } 162 163 if (!step->multi_instance) { 164 WARN_ON_ONCE(lastp && *lastp); 165 cb = bringup ? step->startup.single : step->teardown.single; 166 if (!cb) 167 return 0; 168 trace_cpuhp_enter(cpu, st->target, state, cb); 169 ret = cb(cpu); 170 trace_cpuhp_exit(cpu, st->state, state, ret); 171 return ret; 172 } 173 cbm = bringup ? step->startup.multi : step->teardown.multi; 174 if (!cbm) 175 return 0; 176 177 /* Single invocation for instance add/remove */ 178 if (node) { 179 WARN_ON_ONCE(lastp && *lastp); 180 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 181 ret = cbm(cpu, node); 182 trace_cpuhp_exit(cpu, st->state, state, ret); 183 return ret; 184 } 185 186 /* State transition. Invoke on all instances */ 187 cnt = 0; 188 hlist_for_each(node, &step->list) { 189 if (lastp && node == *lastp) 190 break; 191 192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 193 ret = cbm(cpu, node); 194 trace_cpuhp_exit(cpu, st->state, state, ret); 195 if (ret) { 196 if (!lastp) 197 goto err; 198 199 *lastp = node; 200 return ret; 201 } 202 cnt++; 203 } 204 if (lastp) 205 *lastp = NULL; 206 return 0; 207 err: 208 /* Rollback the instances if one failed */ 209 cbm = !bringup ? step->startup.multi : step->teardown.multi; 210 if (!cbm) 211 return ret; 212 213 hlist_for_each(node, &step->list) { 214 if (!cnt--) 215 break; 216 217 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 218 ret = cbm(cpu, node); 219 trace_cpuhp_exit(cpu, st->state, state, ret); 220 /* 221 * Rollback must not fail, 222 */ 223 WARN_ON_ONCE(ret); 224 } 225 return ret; 226 } 227 228 #ifdef CONFIG_SMP 229 static bool cpuhp_is_ap_state(enum cpuhp_state state) 230 { 231 /* 232 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 233 * purposes as that state is handled explicitly in cpu_down. 234 */ 235 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 236 } 237 238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 239 { 240 struct completion *done = bringup ? &st->done_up : &st->done_down; 241 wait_for_completion(done); 242 } 243 244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 245 { 246 struct completion *done = bringup ? &st->done_up : &st->done_down; 247 complete(done); 248 } 249 250 /* 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 252 */ 253 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 254 { 255 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 256 } 257 258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 259 static DEFINE_MUTEX(cpu_add_remove_lock); 260 bool cpuhp_tasks_frozen; 261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 262 263 /* 264 * The following two APIs (cpu_maps_update_begin/done) must be used when 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 266 */ 267 void cpu_maps_update_begin(void) 268 { 269 mutex_lock(&cpu_add_remove_lock); 270 } 271 272 void cpu_maps_update_done(void) 273 { 274 mutex_unlock(&cpu_add_remove_lock); 275 } 276 277 /* 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 279 * Should always be manipulated under cpu_add_remove_lock 280 */ 281 static int cpu_hotplug_disabled; 282 283 #ifdef CONFIG_HOTPLUG_CPU 284 285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 286 287 void cpus_read_lock(void) 288 { 289 percpu_down_read(&cpu_hotplug_lock); 290 } 291 EXPORT_SYMBOL_GPL(cpus_read_lock); 292 293 void cpus_read_unlock(void) 294 { 295 percpu_up_read(&cpu_hotplug_lock); 296 } 297 EXPORT_SYMBOL_GPL(cpus_read_unlock); 298 299 void cpus_write_lock(void) 300 { 301 percpu_down_write(&cpu_hotplug_lock); 302 } 303 304 void cpus_write_unlock(void) 305 { 306 percpu_up_write(&cpu_hotplug_lock); 307 } 308 309 void lockdep_assert_cpus_held(void) 310 { 311 percpu_rwsem_assert_held(&cpu_hotplug_lock); 312 } 313 314 /* 315 * Wait for currently running CPU hotplug operations to complete (if any) and 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 318 * hotplug path before performing hotplug operations. So acquiring that lock 319 * guarantees mutual exclusion from any currently running hotplug operations. 320 */ 321 void cpu_hotplug_disable(void) 322 { 323 cpu_maps_update_begin(); 324 cpu_hotplug_disabled++; 325 cpu_maps_update_done(); 326 } 327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 328 329 static void __cpu_hotplug_enable(void) 330 { 331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 332 return; 333 cpu_hotplug_disabled--; 334 } 335 336 void cpu_hotplug_enable(void) 337 { 338 cpu_maps_update_begin(); 339 __cpu_hotplug_enable(); 340 cpu_maps_update_done(); 341 } 342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 343 #endif /* CONFIG_HOTPLUG_CPU */ 344 345 static inline enum cpuhp_state 346 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 347 { 348 enum cpuhp_state prev_state = st->state; 349 350 st->rollback = false; 351 st->last = NULL; 352 353 st->target = target; 354 st->single = false; 355 st->bringup = st->state < target; 356 357 return prev_state; 358 } 359 360 static inline void 361 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 362 { 363 st->rollback = true; 364 365 /* 366 * If we have st->last we need to undo partial multi_instance of this 367 * state first. Otherwise start undo at the previous state. 368 */ 369 if (!st->last) { 370 if (st->bringup) 371 st->state--; 372 else 373 st->state++; 374 } 375 376 st->target = prev_state; 377 st->bringup = !st->bringup; 378 } 379 380 /* Regular hotplug invocation of the AP hotplug thread */ 381 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 382 { 383 if (!st->single && st->state == st->target) 384 return; 385 386 st->result = 0; 387 /* 388 * Make sure the above stores are visible before should_run becomes 389 * true. Paired with the mb() above in cpuhp_thread_fun() 390 */ 391 smp_mb(); 392 st->should_run = true; 393 wake_up_process(st->thread); 394 wait_for_ap_thread(st, st->bringup); 395 } 396 397 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 398 { 399 enum cpuhp_state prev_state; 400 int ret; 401 402 prev_state = cpuhp_set_state(st, target); 403 __cpuhp_kick_ap(st); 404 if ((ret = st->result)) { 405 cpuhp_reset_state(st, prev_state); 406 __cpuhp_kick_ap(st); 407 } 408 409 return ret; 410 } 411 412 static int bringup_wait_for_ap(unsigned int cpu) 413 { 414 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 415 416 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 417 wait_for_ap_thread(st, true); 418 if (WARN_ON_ONCE((!cpu_online(cpu)))) 419 return -ECANCELED; 420 421 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 422 stop_machine_unpark(cpu); 423 kthread_unpark(st->thread); 424 425 if (st->target <= CPUHP_AP_ONLINE_IDLE) 426 return 0; 427 428 return cpuhp_kick_ap(st, st->target); 429 } 430 431 static int bringup_cpu(unsigned int cpu) 432 { 433 struct task_struct *idle = idle_thread_get(cpu); 434 int ret; 435 436 /* 437 * Some architectures have to walk the irq descriptors to 438 * setup the vector space for the cpu which comes online. 439 * Prevent irq alloc/free across the bringup. 440 */ 441 irq_lock_sparse(); 442 443 /* Arch-specific enabling code. */ 444 ret = __cpu_up(cpu, idle); 445 irq_unlock_sparse(); 446 if (ret) 447 return ret; 448 return bringup_wait_for_ap(cpu); 449 } 450 451 /* 452 * Hotplug state machine related functions 453 */ 454 455 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 456 { 457 for (st->state--; st->state > st->target; st->state--) { 458 struct cpuhp_step *step = cpuhp_get_step(st->state); 459 460 if (!step->skip_onerr) 461 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 462 } 463 } 464 465 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 466 enum cpuhp_state target) 467 { 468 enum cpuhp_state prev_state = st->state; 469 int ret = 0; 470 471 while (st->state < target) { 472 st->state++; 473 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 474 if (ret) { 475 st->target = prev_state; 476 undo_cpu_up(cpu, st); 477 break; 478 } 479 } 480 return ret; 481 } 482 483 /* 484 * The cpu hotplug threads manage the bringup and teardown of the cpus 485 */ 486 static void cpuhp_create(unsigned int cpu) 487 { 488 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 489 490 init_completion(&st->done_up); 491 init_completion(&st->done_down); 492 } 493 494 static int cpuhp_should_run(unsigned int cpu) 495 { 496 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 497 498 return st->should_run; 499 } 500 501 /* 502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 503 * callbacks when a state gets [un]installed at runtime. 504 * 505 * Each invocation of this function by the smpboot thread does a single AP 506 * state callback. 507 * 508 * It has 3 modes of operation: 509 * - single: runs st->cb_state 510 * - up: runs ++st->state, while st->state < st->target 511 * - down: runs st->state--, while st->state > st->target 512 * 513 * When complete or on error, should_run is cleared and the completion is fired. 514 */ 515 static void cpuhp_thread_fun(unsigned int cpu) 516 { 517 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 518 bool bringup = st->bringup; 519 enum cpuhp_state state; 520 521 /* 522 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 523 * that if we see ->should_run we also see the rest of the state. 524 */ 525 smp_mb(); 526 527 if (WARN_ON_ONCE(!st->should_run)) 528 return; 529 530 cpuhp_lock_acquire(bringup); 531 532 if (st->single) { 533 state = st->cb_state; 534 st->should_run = false; 535 } else { 536 if (bringup) { 537 st->state++; 538 state = st->state; 539 st->should_run = (st->state < st->target); 540 WARN_ON_ONCE(st->state > st->target); 541 } else { 542 state = st->state; 543 st->state--; 544 st->should_run = (st->state > st->target); 545 WARN_ON_ONCE(st->state < st->target); 546 } 547 } 548 549 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 550 551 if (st->rollback) { 552 struct cpuhp_step *step = cpuhp_get_step(state); 553 if (step->skip_onerr) 554 goto next; 555 } 556 557 if (cpuhp_is_atomic_state(state)) { 558 local_irq_disable(); 559 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 560 local_irq_enable(); 561 562 /* 563 * STARTING/DYING must not fail! 564 */ 565 WARN_ON_ONCE(st->result); 566 } else { 567 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 568 } 569 570 if (st->result) { 571 /* 572 * If we fail on a rollback, we're up a creek without no 573 * paddle, no way forward, no way back. We loose, thanks for 574 * playing. 575 */ 576 WARN_ON_ONCE(st->rollback); 577 st->should_run = false; 578 } 579 580 next: 581 cpuhp_lock_release(bringup); 582 583 if (!st->should_run) 584 complete_ap_thread(st, bringup); 585 } 586 587 /* Invoke a single callback on a remote cpu */ 588 static int 589 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 590 struct hlist_node *node) 591 { 592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 593 int ret; 594 595 if (!cpu_online(cpu)) 596 return 0; 597 598 cpuhp_lock_acquire(false); 599 cpuhp_lock_release(false); 600 601 cpuhp_lock_acquire(true); 602 cpuhp_lock_release(true); 603 604 /* 605 * If we are up and running, use the hotplug thread. For early calls 606 * we invoke the thread function directly. 607 */ 608 if (!st->thread) 609 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 610 611 st->rollback = false; 612 st->last = NULL; 613 614 st->node = node; 615 st->bringup = bringup; 616 st->cb_state = state; 617 st->single = true; 618 619 __cpuhp_kick_ap(st); 620 621 /* 622 * If we failed and did a partial, do a rollback. 623 */ 624 if ((ret = st->result) && st->last) { 625 st->rollback = true; 626 st->bringup = !bringup; 627 628 __cpuhp_kick_ap(st); 629 } 630 631 /* 632 * Clean up the leftovers so the next hotplug operation wont use stale 633 * data. 634 */ 635 st->node = st->last = NULL; 636 return ret; 637 } 638 639 static int cpuhp_kick_ap_work(unsigned int cpu) 640 { 641 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 642 enum cpuhp_state prev_state = st->state; 643 int ret; 644 645 cpuhp_lock_acquire(false); 646 cpuhp_lock_release(false); 647 648 cpuhp_lock_acquire(true); 649 cpuhp_lock_release(true); 650 651 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 652 ret = cpuhp_kick_ap(st, st->target); 653 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 654 655 return ret; 656 } 657 658 static struct smp_hotplug_thread cpuhp_threads = { 659 .store = &cpuhp_state.thread, 660 .create = &cpuhp_create, 661 .thread_should_run = cpuhp_should_run, 662 .thread_fn = cpuhp_thread_fun, 663 .thread_comm = "cpuhp/%u", 664 .selfparking = true, 665 }; 666 667 void __init cpuhp_threads_init(void) 668 { 669 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 670 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 671 } 672 673 #ifdef CONFIG_HOTPLUG_CPU 674 /** 675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 676 * @cpu: a CPU id 677 * 678 * This function walks all processes, finds a valid mm struct for each one and 679 * then clears a corresponding bit in mm's cpumask. While this all sounds 680 * trivial, there are various non-obvious corner cases, which this function 681 * tries to solve in a safe manner. 682 * 683 * Also note that the function uses a somewhat relaxed locking scheme, so it may 684 * be called only for an already offlined CPU. 685 */ 686 void clear_tasks_mm_cpumask(int cpu) 687 { 688 struct task_struct *p; 689 690 /* 691 * This function is called after the cpu is taken down and marked 692 * offline, so its not like new tasks will ever get this cpu set in 693 * their mm mask. -- Peter Zijlstra 694 * Thus, we may use rcu_read_lock() here, instead of grabbing 695 * full-fledged tasklist_lock. 696 */ 697 WARN_ON(cpu_online(cpu)); 698 rcu_read_lock(); 699 for_each_process(p) { 700 struct task_struct *t; 701 702 /* 703 * Main thread might exit, but other threads may still have 704 * a valid mm. Find one. 705 */ 706 t = find_lock_task_mm(p); 707 if (!t) 708 continue; 709 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 710 task_unlock(t); 711 } 712 rcu_read_unlock(); 713 } 714 715 /* Take this CPU down. */ 716 static int take_cpu_down(void *_param) 717 { 718 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 719 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 720 int err, cpu = smp_processor_id(); 721 int ret; 722 723 /* Ensure this CPU doesn't handle any more interrupts. */ 724 err = __cpu_disable(); 725 if (err < 0) 726 return err; 727 728 /* 729 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 730 * do this step again. 731 */ 732 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 733 st->state--; 734 /* Invoke the former CPU_DYING callbacks */ 735 for (; st->state > target; st->state--) { 736 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 737 /* 738 * DYING must not fail! 739 */ 740 WARN_ON_ONCE(ret); 741 } 742 743 /* Give up timekeeping duties */ 744 tick_handover_do_timer(); 745 /* Park the stopper thread */ 746 stop_machine_park(cpu); 747 return 0; 748 } 749 750 static int takedown_cpu(unsigned int cpu) 751 { 752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 753 int err; 754 755 /* Park the smpboot threads */ 756 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 757 smpboot_park_threads(cpu); 758 759 /* 760 * Prevent irq alloc/free while the dying cpu reorganizes the 761 * interrupt affinities. 762 */ 763 irq_lock_sparse(); 764 765 /* 766 * So now all preempt/rcu users must observe !cpu_active(). 767 */ 768 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 769 if (err) { 770 /* CPU refused to die */ 771 irq_unlock_sparse(); 772 /* Unpark the hotplug thread so we can rollback there */ 773 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 774 return err; 775 } 776 BUG_ON(cpu_online(cpu)); 777 778 /* 779 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 780 * all runnable tasks from the CPU, there's only the idle task left now 781 * that the migration thread is done doing the stop_machine thing. 782 * 783 * Wait for the stop thread to go away. 784 */ 785 wait_for_ap_thread(st, false); 786 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 787 788 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 789 irq_unlock_sparse(); 790 791 hotplug_cpu__broadcast_tick_pull(cpu); 792 /* This actually kills the CPU. */ 793 __cpu_die(cpu); 794 795 tick_cleanup_dead_cpu(cpu); 796 rcutree_migrate_callbacks(cpu); 797 return 0; 798 } 799 800 static void cpuhp_complete_idle_dead(void *arg) 801 { 802 struct cpuhp_cpu_state *st = arg; 803 804 complete_ap_thread(st, false); 805 } 806 807 void cpuhp_report_idle_dead(void) 808 { 809 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 810 811 BUG_ON(st->state != CPUHP_AP_OFFLINE); 812 rcu_report_dead(smp_processor_id()); 813 st->state = CPUHP_AP_IDLE_DEAD; 814 /* 815 * We cannot call complete after rcu_report_dead() so we delegate it 816 * to an online cpu. 817 */ 818 smp_call_function_single(cpumask_first(cpu_online_mask), 819 cpuhp_complete_idle_dead, st, 0); 820 } 821 822 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 823 { 824 for (st->state++; st->state < st->target; st->state++) { 825 struct cpuhp_step *step = cpuhp_get_step(st->state); 826 827 if (!step->skip_onerr) 828 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 829 } 830 } 831 832 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 833 enum cpuhp_state target) 834 { 835 enum cpuhp_state prev_state = st->state; 836 int ret = 0; 837 838 for (; st->state > target; st->state--) { 839 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 840 if (ret) { 841 st->target = prev_state; 842 undo_cpu_down(cpu, st); 843 break; 844 } 845 } 846 return ret; 847 } 848 849 /* Requires cpu_add_remove_lock to be held */ 850 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 851 enum cpuhp_state target) 852 { 853 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 854 int prev_state, ret = 0; 855 856 if (num_online_cpus() == 1) 857 return -EBUSY; 858 859 if (!cpu_present(cpu)) 860 return -EINVAL; 861 862 cpus_write_lock(); 863 864 cpuhp_tasks_frozen = tasks_frozen; 865 866 prev_state = cpuhp_set_state(st, target); 867 /* 868 * If the current CPU state is in the range of the AP hotplug thread, 869 * then we need to kick the thread. 870 */ 871 if (st->state > CPUHP_TEARDOWN_CPU) { 872 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 873 ret = cpuhp_kick_ap_work(cpu); 874 /* 875 * The AP side has done the error rollback already. Just 876 * return the error code.. 877 */ 878 if (ret) 879 goto out; 880 881 /* 882 * We might have stopped still in the range of the AP hotplug 883 * thread. Nothing to do anymore. 884 */ 885 if (st->state > CPUHP_TEARDOWN_CPU) 886 goto out; 887 888 st->target = target; 889 } 890 /* 891 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 892 * to do the further cleanups. 893 */ 894 ret = cpuhp_down_callbacks(cpu, st, target); 895 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 896 cpuhp_reset_state(st, prev_state); 897 __cpuhp_kick_ap(st); 898 } 899 900 out: 901 cpus_write_unlock(); 902 /* 903 * Do post unplug cleanup. This is still protected against 904 * concurrent CPU hotplug via cpu_add_remove_lock. 905 */ 906 lockup_detector_cleanup(); 907 return ret; 908 } 909 910 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 911 { 912 int err; 913 914 cpu_maps_update_begin(); 915 916 if (cpu_hotplug_disabled) { 917 err = -EBUSY; 918 goto out; 919 } 920 921 err = _cpu_down(cpu, 0, target); 922 923 out: 924 cpu_maps_update_done(); 925 return err; 926 } 927 928 int cpu_down(unsigned int cpu) 929 { 930 return do_cpu_down(cpu, CPUHP_OFFLINE); 931 } 932 EXPORT_SYMBOL(cpu_down); 933 934 #else 935 #define takedown_cpu NULL 936 #endif /*CONFIG_HOTPLUG_CPU*/ 937 938 /** 939 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 940 * @cpu: cpu that just started 941 * 942 * It must be called by the arch code on the new cpu, before the new cpu 943 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 944 */ 945 void notify_cpu_starting(unsigned int cpu) 946 { 947 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 948 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 949 int ret; 950 951 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 952 while (st->state < target) { 953 st->state++; 954 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 955 /* 956 * STARTING must not fail! 957 */ 958 WARN_ON_ONCE(ret); 959 } 960 } 961 962 /* 963 * Called from the idle task. Wake up the controlling task which brings the 964 * stopper and the hotplug thread of the upcoming CPU up and then delegates 965 * the rest of the online bringup to the hotplug thread. 966 */ 967 void cpuhp_online_idle(enum cpuhp_state state) 968 { 969 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 970 971 /* Happens for the boot cpu */ 972 if (state != CPUHP_AP_ONLINE_IDLE) 973 return; 974 975 st->state = CPUHP_AP_ONLINE_IDLE; 976 complete_ap_thread(st, true); 977 } 978 979 /* Requires cpu_add_remove_lock to be held */ 980 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 981 { 982 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 983 struct task_struct *idle; 984 int ret = 0; 985 986 cpus_write_lock(); 987 988 if (!cpu_present(cpu)) { 989 ret = -EINVAL; 990 goto out; 991 } 992 993 /* 994 * The caller of do_cpu_up might have raced with another 995 * caller. Ignore it for now. 996 */ 997 if (st->state >= target) 998 goto out; 999 1000 if (st->state == CPUHP_OFFLINE) { 1001 /* Let it fail before we try to bring the cpu up */ 1002 idle = idle_thread_get(cpu); 1003 if (IS_ERR(idle)) { 1004 ret = PTR_ERR(idle); 1005 goto out; 1006 } 1007 } 1008 1009 cpuhp_tasks_frozen = tasks_frozen; 1010 1011 cpuhp_set_state(st, target); 1012 /* 1013 * If the current CPU state is in the range of the AP hotplug thread, 1014 * then we need to kick the thread once more. 1015 */ 1016 if (st->state > CPUHP_BRINGUP_CPU) { 1017 ret = cpuhp_kick_ap_work(cpu); 1018 /* 1019 * The AP side has done the error rollback already. Just 1020 * return the error code.. 1021 */ 1022 if (ret) 1023 goto out; 1024 } 1025 1026 /* 1027 * Try to reach the target state. We max out on the BP at 1028 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1029 * responsible for bringing it up to the target state. 1030 */ 1031 target = min((int)target, CPUHP_BRINGUP_CPU); 1032 ret = cpuhp_up_callbacks(cpu, st, target); 1033 out: 1034 cpus_write_unlock(); 1035 return ret; 1036 } 1037 1038 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1039 { 1040 int err = 0; 1041 1042 if (!cpu_possible(cpu)) { 1043 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1044 cpu); 1045 #if defined(CONFIG_IA64) 1046 pr_err("please check additional_cpus= boot parameter\n"); 1047 #endif 1048 return -EINVAL; 1049 } 1050 1051 err = try_online_node(cpu_to_node(cpu)); 1052 if (err) 1053 return err; 1054 1055 cpu_maps_update_begin(); 1056 1057 if (cpu_hotplug_disabled) { 1058 err = -EBUSY; 1059 goto out; 1060 } 1061 1062 err = _cpu_up(cpu, 0, target); 1063 out: 1064 cpu_maps_update_done(); 1065 return err; 1066 } 1067 1068 int cpu_up(unsigned int cpu) 1069 { 1070 return do_cpu_up(cpu, CPUHP_ONLINE); 1071 } 1072 EXPORT_SYMBOL_GPL(cpu_up); 1073 1074 #ifdef CONFIG_PM_SLEEP_SMP 1075 static cpumask_var_t frozen_cpus; 1076 1077 int freeze_secondary_cpus(int primary) 1078 { 1079 int cpu, error = 0; 1080 1081 cpu_maps_update_begin(); 1082 if (!cpu_online(primary)) 1083 primary = cpumask_first(cpu_online_mask); 1084 /* 1085 * We take down all of the non-boot CPUs in one shot to avoid races 1086 * with the userspace trying to use the CPU hotplug at the same time 1087 */ 1088 cpumask_clear(frozen_cpus); 1089 1090 pr_info("Disabling non-boot CPUs ...\n"); 1091 for_each_online_cpu(cpu) { 1092 if (cpu == primary) 1093 continue; 1094 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1095 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1096 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1097 if (!error) 1098 cpumask_set_cpu(cpu, frozen_cpus); 1099 else { 1100 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1101 break; 1102 } 1103 } 1104 1105 if (!error) 1106 BUG_ON(num_online_cpus() > 1); 1107 else 1108 pr_err("Non-boot CPUs are not disabled\n"); 1109 1110 /* 1111 * Make sure the CPUs won't be enabled by someone else. We need to do 1112 * this even in case of failure as all disable_nonboot_cpus() users are 1113 * supposed to do enable_nonboot_cpus() on the failure path. 1114 */ 1115 cpu_hotplug_disabled++; 1116 1117 cpu_maps_update_done(); 1118 return error; 1119 } 1120 1121 void __weak arch_enable_nonboot_cpus_begin(void) 1122 { 1123 } 1124 1125 void __weak arch_enable_nonboot_cpus_end(void) 1126 { 1127 } 1128 1129 void enable_nonboot_cpus(void) 1130 { 1131 int cpu, error; 1132 1133 /* Allow everyone to use the CPU hotplug again */ 1134 cpu_maps_update_begin(); 1135 __cpu_hotplug_enable(); 1136 if (cpumask_empty(frozen_cpus)) 1137 goto out; 1138 1139 pr_info("Enabling non-boot CPUs ...\n"); 1140 1141 arch_enable_nonboot_cpus_begin(); 1142 1143 for_each_cpu(cpu, frozen_cpus) { 1144 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1145 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1146 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1147 if (!error) { 1148 pr_info("CPU%d is up\n", cpu); 1149 continue; 1150 } 1151 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1152 } 1153 1154 arch_enable_nonboot_cpus_end(); 1155 1156 cpumask_clear(frozen_cpus); 1157 out: 1158 cpu_maps_update_done(); 1159 } 1160 1161 static int __init alloc_frozen_cpus(void) 1162 { 1163 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1164 return -ENOMEM; 1165 return 0; 1166 } 1167 core_initcall(alloc_frozen_cpus); 1168 1169 /* 1170 * When callbacks for CPU hotplug notifications are being executed, we must 1171 * ensure that the state of the system with respect to the tasks being frozen 1172 * or not, as reported by the notification, remains unchanged *throughout the 1173 * duration* of the execution of the callbacks. 1174 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1175 * 1176 * This synchronization is implemented by mutually excluding regular CPU 1177 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1178 * Hibernate notifications. 1179 */ 1180 static int 1181 cpu_hotplug_pm_callback(struct notifier_block *nb, 1182 unsigned long action, void *ptr) 1183 { 1184 switch (action) { 1185 1186 case PM_SUSPEND_PREPARE: 1187 case PM_HIBERNATION_PREPARE: 1188 cpu_hotplug_disable(); 1189 break; 1190 1191 case PM_POST_SUSPEND: 1192 case PM_POST_HIBERNATION: 1193 cpu_hotplug_enable(); 1194 break; 1195 1196 default: 1197 return NOTIFY_DONE; 1198 } 1199 1200 return NOTIFY_OK; 1201 } 1202 1203 1204 static int __init cpu_hotplug_pm_sync_init(void) 1205 { 1206 /* 1207 * cpu_hotplug_pm_callback has higher priority than x86 1208 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1209 * to disable cpu hotplug to avoid cpu hotplug race. 1210 */ 1211 pm_notifier(cpu_hotplug_pm_callback, 0); 1212 return 0; 1213 } 1214 core_initcall(cpu_hotplug_pm_sync_init); 1215 1216 #endif /* CONFIG_PM_SLEEP_SMP */ 1217 1218 int __boot_cpu_id; 1219 1220 #endif /* CONFIG_SMP */ 1221 1222 /* Boot processor state steps */ 1223 static struct cpuhp_step cpuhp_hp_states[] = { 1224 [CPUHP_OFFLINE] = { 1225 .name = "offline", 1226 .startup.single = NULL, 1227 .teardown.single = NULL, 1228 }, 1229 #ifdef CONFIG_SMP 1230 [CPUHP_CREATE_THREADS]= { 1231 .name = "threads:prepare", 1232 .startup.single = smpboot_create_threads, 1233 .teardown.single = NULL, 1234 .cant_stop = true, 1235 }, 1236 [CPUHP_PERF_PREPARE] = { 1237 .name = "perf:prepare", 1238 .startup.single = perf_event_init_cpu, 1239 .teardown.single = perf_event_exit_cpu, 1240 }, 1241 [CPUHP_WORKQUEUE_PREP] = { 1242 .name = "workqueue:prepare", 1243 .startup.single = workqueue_prepare_cpu, 1244 .teardown.single = NULL, 1245 }, 1246 [CPUHP_HRTIMERS_PREPARE] = { 1247 .name = "hrtimers:prepare", 1248 .startup.single = hrtimers_prepare_cpu, 1249 .teardown.single = hrtimers_dead_cpu, 1250 }, 1251 [CPUHP_SMPCFD_PREPARE] = { 1252 .name = "smpcfd:prepare", 1253 .startup.single = smpcfd_prepare_cpu, 1254 .teardown.single = smpcfd_dead_cpu, 1255 }, 1256 [CPUHP_RELAY_PREPARE] = { 1257 .name = "relay:prepare", 1258 .startup.single = relay_prepare_cpu, 1259 .teardown.single = NULL, 1260 }, 1261 [CPUHP_SLAB_PREPARE] = { 1262 .name = "slab:prepare", 1263 .startup.single = slab_prepare_cpu, 1264 .teardown.single = slab_dead_cpu, 1265 }, 1266 [CPUHP_RCUTREE_PREP] = { 1267 .name = "RCU/tree:prepare", 1268 .startup.single = rcutree_prepare_cpu, 1269 .teardown.single = rcutree_dead_cpu, 1270 }, 1271 /* 1272 * On the tear-down path, timers_dead_cpu() must be invoked 1273 * before blk_mq_queue_reinit_notify() from notify_dead(), 1274 * otherwise a RCU stall occurs. 1275 */ 1276 [CPUHP_TIMERS_PREPARE] = { 1277 .name = "timers:dead", 1278 .startup.single = timers_prepare_cpu, 1279 .teardown.single = timers_dead_cpu, 1280 }, 1281 /* Kicks the plugged cpu into life */ 1282 [CPUHP_BRINGUP_CPU] = { 1283 .name = "cpu:bringup", 1284 .startup.single = bringup_cpu, 1285 .teardown.single = NULL, 1286 .cant_stop = true, 1287 }, 1288 /* Final state before CPU kills itself */ 1289 [CPUHP_AP_IDLE_DEAD] = { 1290 .name = "idle:dead", 1291 }, 1292 /* 1293 * Last state before CPU enters the idle loop to die. Transient state 1294 * for synchronization. 1295 */ 1296 [CPUHP_AP_OFFLINE] = { 1297 .name = "ap:offline", 1298 .cant_stop = true, 1299 }, 1300 /* First state is scheduler control. Interrupts are disabled */ 1301 [CPUHP_AP_SCHED_STARTING] = { 1302 .name = "sched:starting", 1303 .startup.single = sched_cpu_starting, 1304 .teardown.single = sched_cpu_dying, 1305 }, 1306 [CPUHP_AP_RCUTREE_DYING] = { 1307 .name = "RCU/tree:dying", 1308 .startup.single = NULL, 1309 .teardown.single = rcutree_dying_cpu, 1310 }, 1311 [CPUHP_AP_SMPCFD_DYING] = { 1312 .name = "smpcfd:dying", 1313 .startup.single = NULL, 1314 .teardown.single = smpcfd_dying_cpu, 1315 }, 1316 /* Entry state on starting. Interrupts enabled from here on. Transient 1317 * state for synchronsization */ 1318 [CPUHP_AP_ONLINE] = { 1319 .name = "ap:online", 1320 }, 1321 /* 1322 * Handled on controll processor until the plugged processor manages 1323 * this itself. 1324 */ 1325 [CPUHP_TEARDOWN_CPU] = { 1326 .name = "cpu:teardown", 1327 .startup.single = NULL, 1328 .teardown.single = takedown_cpu, 1329 .cant_stop = true, 1330 }, 1331 /* Handle smpboot threads park/unpark */ 1332 [CPUHP_AP_SMPBOOT_THREADS] = { 1333 .name = "smpboot/threads:online", 1334 .startup.single = smpboot_unpark_threads, 1335 .teardown.single = NULL, 1336 }, 1337 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1338 .name = "irq/affinity:online", 1339 .startup.single = irq_affinity_online_cpu, 1340 .teardown.single = NULL, 1341 }, 1342 [CPUHP_AP_PERF_ONLINE] = { 1343 .name = "perf:online", 1344 .startup.single = perf_event_init_cpu, 1345 .teardown.single = perf_event_exit_cpu, 1346 }, 1347 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1348 .name = "workqueue:online", 1349 .startup.single = workqueue_online_cpu, 1350 .teardown.single = workqueue_offline_cpu, 1351 }, 1352 [CPUHP_AP_RCUTREE_ONLINE] = { 1353 .name = "RCU/tree:online", 1354 .startup.single = rcutree_online_cpu, 1355 .teardown.single = rcutree_offline_cpu, 1356 }, 1357 #endif 1358 /* 1359 * The dynamically registered state space is here 1360 */ 1361 1362 #ifdef CONFIG_SMP 1363 /* Last state is scheduler control setting the cpu active */ 1364 [CPUHP_AP_ACTIVE] = { 1365 .name = "sched:active", 1366 .startup.single = sched_cpu_activate, 1367 .teardown.single = sched_cpu_deactivate, 1368 }, 1369 #endif 1370 1371 /* CPU is fully up and running. */ 1372 [CPUHP_ONLINE] = { 1373 .name = "online", 1374 .startup.single = NULL, 1375 .teardown.single = NULL, 1376 }, 1377 }; 1378 1379 /* Sanity check for callbacks */ 1380 static int cpuhp_cb_check(enum cpuhp_state state) 1381 { 1382 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1383 return -EINVAL; 1384 return 0; 1385 } 1386 1387 /* 1388 * Returns a free for dynamic slot assignment of the Online state. The states 1389 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1390 * by having no name assigned. 1391 */ 1392 static int cpuhp_reserve_state(enum cpuhp_state state) 1393 { 1394 enum cpuhp_state i, end; 1395 struct cpuhp_step *step; 1396 1397 switch (state) { 1398 case CPUHP_AP_ONLINE_DYN: 1399 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1400 end = CPUHP_AP_ONLINE_DYN_END; 1401 break; 1402 case CPUHP_BP_PREPARE_DYN: 1403 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1404 end = CPUHP_BP_PREPARE_DYN_END; 1405 break; 1406 default: 1407 return -EINVAL; 1408 } 1409 1410 for (i = state; i <= end; i++, step++) { 1411 if (!step->name) 1412 return i; 1413 } 1414 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1415 return -ENOSPC; 1416 } 1417 1418 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1419 int (*startup)(unsigned int cpu), 1420 int (*teardown)(unsigned int cpu), 1421 bool multi_instance) 1422 { 1423 /* (Un)Install the callbacks for further cpu hotplug operations */ 1424 struct cpuhp_step *sp; 1425 int ret = 0; 1426 1427 /* 1428 * If name is NULL, then the state gets removed. 1429 * 1430 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1431 * the first allocation from these dynamic ranges, so the removal 1432 * would trigger a new allocation and clear the wrong (already 1433 * empty) state, leaving the callbacks of the to be cleared state 1434 * dangling, which causes wreckage on the next hotplug operation. 1435 */ 1436 if (name && (state == CPUHP_AP_ONLINE_DYN || 1437 state == CPUHP_BP_PREPARE_DYN)) { 1438 ret = cpuhp_reserve_state(state); 1439 if (ret < 0) 1440 return ret; 1441 state = ret; 1442 } 1443 sp = cpuhp_get_step(state); 1444 if (name && sp->name) 1445 return -EBUSY; 1446 1447 sp->startup.single = startup; 1448 sp->teardown.single = teardown; 1449 sp->name = name; 1450 sp->multi_instance = multi_instance; 1451 INIT_HLIST_HEAD(&sp->list); 1452 return ret; 1453 } 1454 1455 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1456 { 1457 return cpuhp_get_step(state)->teardown.single; 1458 } 1459 1460 /* 1461 * Call the startup/teardown function for a step either on the AP or 1462 * on the current CPU. 1463 */ 1464 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1465 struct hlist_node *node) 1466 { 1467 struct cpuhp_step *sp = cpuhp_get_step(state); 1468 int ret; 1469 1470 /* 1471 * If there's nothing to do, we done. 1472 * Relies on the union for multi_instance. 1473 */ 1474 if ((bringup && !sp->startup.single) || 1475 (!bringup && !sp->teardown.single)) 1476 return 0; 1477 /* 1478 * The non AP bound callbacks can fail on bringup. On teardown 1479 * e.g. module removal we crash for now. 1480 */ 1481 #ifdef CONFIG_SMP 1482 if (cpuhp_is_ap_state(state)) 1483 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1484 else 1485 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1486 #else 1487 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1488 #endif 1489 BUG_ON(ret && !bringup); 1490 return ret; 1491 } 1492 1493 /* 1494 * Called from __cpuhp_setup_state on a recoverable failure. 1495 * 1496 * Note: The teardown callbacks for rollback are not allowed to fail! 1497 */ 1498 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1499 struct hlist_node *node) 1500 { 1501 int cpu; 1502 1503 /* Roll back the already executed steps on the other cpus */ 1504 for_each_present_cpu(cpu) { 1505 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1506 int cpustate = st->state; 1507 1508 if (cpu >= failedcpu) 1509 break; 1510 1511 /* Did we invoke the startup call on that cpu ? */ 1512 if (cpustate >= state) 1513 cpuhp_issue_call(cpu, state, false, node); 1514 } 1515 } 1516 1517 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1518 struct hlist_node *node, 1519 bool invoke) 1520 { 1521 struct cpuhp_step *sp; 1522 int cpu; 1523 int ret; 1524 1525 lockdep_assert_cpus_held(); 1526 1527 sp = cpuhp_get_step(state); 1528 if (sp->multi_instance == false) 1529 return -EINVAL; 1530 1531 mutex_lock(&cpuhp_state_mutex); 1532 1533 if (!invoke || !sp->startup.multi) 1534 goto add_node; 1535 1536 /* 1537 * Try to call the startup callback for each present cpu 1538 * depending on the hotplug state of the cpu. 1539 */ 1540 for_each_present_cpu(cpu) { 1541 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1542 int cpustate = st->state; 1543 1544 if (cpustate < state) 1545 continue; 1546 1547 ret = cpuhp_issue_call(cpu, state, true, node); 1548 if (ret) { 1549 if (sp->teardown.multi) 1550 cpuhp_rollback_install(cpu, state, node); 1551 goto unlock; 1552 } 1553 } 1554 add_node: 1555 ret = 0; 1556 hlist_add_head(node, &sp->list); 1557 unlock: 1558 mutex_unlock(&cpuhp_state_mutex); 1559 return ret; 1560 } 1561 1562 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1563 bool invoke) 1564 { 1565 int ret; 1566 1567 cpus_read_lock(); 1568 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1569 cpus_read_unlock(); 1570 return ret; 1571 } 1572 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1573 1574 /** 1575 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1576 * @state: The state to setup 1577 * @invoke: If true, the startup function is invoked for cpus where 1578 * cpu state >= @state 1579 * @startup: startup callback function 1580 * @teardown: teardown callback function 1581 * @multi_instance: State is set up for multiple instances which get 1582 * added afterwards. 1583 * 1584 * The caller needs to hold cpus read locked while calling this function. 1585 * Returns: 1586 * On success: 1587 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1588 * 0 for all other states 1589 * On failure: proper (negative) error code 1590 */ 1591 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1592 const char *name, bool invoke, 1593 int (*startup)(unsigned int cpu), 1594 int (*teardown)(unsigned int cpu), 1595 bool multi_instance) 1596 { 1597 int cpu, ret = 0; 1598 bool dynstate; 1599 1600 lockdep_assert_cpus_held(); 1601 1602 if (cpuhp_cb_check(state) || !name) 1603 return -EINVAL; 1604 1605 mutex_lock(&cpuhp_state_mutex); 1606 1607 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1608 multi_instance); 1609 1610 dynstate = state == CPUHP_AP_ONLINE_DYN; 1611 if (ret > 0 && dynstate) { 1612 state = ret; 1613 ret = 0; 1614 } 1615 1616 if (ret || !invoke || !startup) 1617 goto out; 1618 1619 /* 1620 * Try to call the startup callback for each present cpu 1621 * depending on the hotplug state of the cpu. 1622 */ 1623 for_each_present_cpu(cpu) { 1624 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1625 int cpustate = st->state; 1626 1627 if (cpustate < state) 1628 continue; 1629 1630 ret = cpuhp_issue_call(cpu, state, true, NULL); 1631 if (ret) { 1632 if (teardown) 1633 cpuhp_rollback_install(cpu, state, NULL); 1634 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1635 goto out; 1636 } 1637 } 1638 out: 1639 mutex_unlock(&cpuhp_state_mutex); 1640 /* 1641 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1642 * dynamically allocated state in case of success. 1643 */ 1644 if (!ret && dynstate) 1645 return state; 1646 return ret; 1647 } 1648 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1649 1650 int __cpuhp_setup_state(enum cpuhp_state state, 1651 const char *name, bool invoke, 1652 int (*startup)(unsigned int cpu), 1653 int (*teardown)(unsigned int cpu), 1654 bool multi_instance) 1655 { 1656 int ret; 1657 1658 cpus_read_lock(); 1659 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1660 teardown, multi_instance); 1661 cpus_read_unlock(); 1662 return ret; 1663 } 1664 EXPORT_SYMBOL(__cpuhp_setup_state); 1665 1666 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1667 struct hlist_node *node, bool invoke) 1668 { 1669 struct cpuhp_step *sp = cpuhp_get_step(state); 1670 int cpu; 1671 1672 BUG_ON(cpuhp_cb_check(state)); 1673 1674 if (!sp->multi_instance) 1675 return -EINVAL; 1676 1677 cpus_read_lock(); 1678 mutex_lock(&cpuhp_state_mutex); 1679 1680 if (!invoke || !cpuhp_get_teardown_cb(state)) 1681 goto remove; 1682 /* 1683 * Call the teardown callback for each present cpu depending 1684 * on the hotplug state of the cpu. This function is not 1685 * allowed to fail currently! 1686 */ 1687 for_each_present_cpu(cpu) { 1688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1689 int cpustate = st->state; 1690 1691 if (cpustate >= state) 1692 cpuhp_issue_call(cpu, state, false, node); 1693 } 1694 1695 remove: 1696 hlist_del(node); 1697 mutex_unlock(&cpuhp_state_mutex); 1698 cpus_read_unlock(); 1699 1700 return 0; 1701 } 1702 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1703 1704 /** 1705 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1706 * @state: The state to remove 1707 * @invoke: If true, the teardown function is invoked for cpus where 1708 * cpu state >= @state 1709 * 1710 * The caller needs to hold cpus read locked while calling this function. 1711 * The teardown callback is currently not allowed to fail. Think 1712 * about module removal! 1713 */ 1714 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1715 { 1716 struct cpuhp_step *sp = cpuhp_get_step(state); 1717 int cpu; 1718 1719 BUG_ON(cpuhp_cb_check(state)); 1720 1721 lockdep_assert_cpus_held(); 1722 1723 mutex_lock(&cpuhp_state_mutex); 1724 if (sp->multi_instance) { 1725 WARN(!hlist_empty(&sp->list), 1726 "Error: Removing state %d which has instances left.\n", 1727 state); 1728 goto remove; 1729 } 1730 1731 if (!invoke || !cpuhp_get_teardown_cb(state)) 1732 goto remove; 1733 1734 /* 1735 * Call the teardown callback for each present cpu depending 1736 * on the hotplug state of the cpu. This function is not 1737 * allowed to fail currently! 1738 */ 1739 for_each_present_cpu(cpu) { 1740 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1741 int cpustate = st->state; 1742 1743 if (cpustate >= state) 1744 cpuhp_issue_call(cpu, state, false, NULL); 1745 } 1746 remove: 1747 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1748 mutex_unlock(&cpuhp_state_mutex); 1749 } 1750 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1751 1752 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1753 { 1754 cpus_read_lock(); 1755 __cpuhp_remove_state_cpuslocked(state, invoke); 1756 cpus_read_unlock(); 1757 } 1758 EXPORT_SYMBOL(__cpuhp_remove_state); 1759 1760 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1761 static ssize_t show_cpuhp_state(struct device *dev, 1762 struct device_attribute *attr, char *buf) 1763 { 1764 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1765 1766 return sprintf(buf, "%d\n", st->state); 1767 } 1768 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1769 1770 static ssize_t write_cpuhp_target(struct device *dev, 1771 struct device_attribute *attr, 1772 const char *buf, size_t count) 1773 { 1774 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1775 struct cpuhp_step *sp; 1776 int target, ret; 1777 1778 ret = kstrtoint(buf, 10, &target); 1779 if (ret) 1780 return ret; 1781 1782 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1783 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1784 return -EINVAL; 1785 #else 1786 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1787 return -EINVAL; 1788 #endif 1789 1790 ret = lock_device_hotplug_sysfs(); 1791 if (ret) 1792 return ret; 1793 1794 mutex_lock(&cpuhp_state_mutex); 1795 sp = cpuhp_get_step(target); 1796 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1797 mutex_unlock(&cpuhp_state_mutex); 1798 if (ret) 1799 goto out; 1800 1801 if (st->state < target) 1802 ret = do_cpu_up(dev->id, target); 1803 else 1804 ret = do_cpu_down(dev->id, target); 1805 out: 1806 unlock_device_hotplug(); 1807 return ret ? ret : count; 1808 } 1809 1810 static ssize_t show_cpuhp_target(struct device *dev, 1811 struct device_attribute *attr, char *buf) 1812 { 1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1814 1815 return sprintf(buf, "%d\n", st->target); 1816 } 1817 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1818 1819 1820 static ssize_t write_cpuhp_fail(struct device *dev, 1821 struct device_attribute *attr, 1822 const char *buf, size_t count) 1823 { 1824 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1825 struct cpuhp_step *sp; 1826 int fail, ret; 1827 1828 ret = kstrtoint(buf, 10, &fail); 1829 if (ret) 1830 return ret; 1831 1832 /* 1833 * Cannot fail STARTING/DYING callbacks. 1834 */ 1835 if (cpuhp_is_atomic_state(fail)) 1836 return -EINVAL; 1837 1838 /* 1839 * Cannot fail anything that doesn't have callbacks. 1840 */ 1841 mutex_lock(&cpuhp_state_mutex); 1842 sp = cpuhp_get_step(fail); 1843 if (!sp->startup.single && !sp->teardown.single) 1844 ret = -EINVAL; 1845 mutex_unlock(&cpuhp_state_mutex); 1846 if (ret) 1847 return ret; 1848 1849 st->fail = fail; 1850 1851 return count; 1852 } 1853 1854 static ssize_t show_cpuhp_fail(struct device *dev, 1855 struct device_attribute *attr, char *buf) 1856 { 1857 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1858 1859 return sprintf(buf, "%d\n", st->fail); 1860 } 1861 1862 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1863 1864 static struct attribute *cpuhp_cpu_attrs[] = { 1865 &dev_attr_state.attr, 1866 &dev_attr_target.attr, 1867 &dev_attr_fail.attr, 1868 NULL 1869 }; 1870 1871 static const struct attribute_group cpuhp_cpu_attr_group = { 1872 .attrs = cpuhp_cpu_attrs, 1873 .name = "hotplug", 1874 NULL 1875 }; 1876 1877 static ssize_t show_cpuhp_states(struct device *dev, 1878 struct device_attribute *attr, char *buf) 1879 { 1880 ssize_t cur, res = 0; 1881 int i; 1882 1883 mutex_lock(&cpuhp_state_mutex); 1884 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 1885 struct cpuhp_step *sp = cpuhp_get_step(i); 1886 1887 if (sp->name) { 1888 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 1889 buf += cur; 1890 res += cur; 1891 } 1892 } 1893 mutex_unlock(&cpuhp_state_mutex); 1894 return res; 1895 } 1896 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 1897 1898 static struct attribute *cpuhp_cpu_root_attrs[] = { 1899 &dev_attr_states.attr, 1900 NULL 1901 }; 1902 1903 static const struct attribute_group cpuhp_cpu_root_attr_group = { 1904 .attrs = cpuhp_cpu_root_attrs, 1905 .name = "hotplug", 1906 NULL 1907 }; 1908 1909 static int __init cpuhp_sysfs_init(void) 1910 { 1911 int cpu, ret; 1912 1913 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 1914 &cpuhp_cpu_root_attr_group); 1915 if (ret) 1916 return ret; 1917 1918 for_each_possible_cpu(cpu) { 1919 struct device *dev = get_cpu_device(cpu); 1920 1921 if (!dev) 1922 continue; 1923 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 1924 if (ret) 1925 return ret; 1926 } 1927 return 0; 1928 } 1929 device_initcall(cpuhp_sysfs_init); 1930 #endif 1931 1932 /* 1933 * cpu_bit_bitmap[] is a special, "compressed" data structure that 1934 * represents all NR_CPUS bits binary values of 1<<nr. 1935 * 1936 * It is used by cpumask_of() to get a constant address to a CPU 1937 * mask value that has a single bit set only. 1938 */ 1939 1940 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 1941 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 1942 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 1943 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 1944 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 1945 1946 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 1947 1948 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 1949 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 1950 #if BITS_PER_LONG > 32 1951 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 1952 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 1953 #endif 1954 }; 1955 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1956 1957 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 1958 EXPORT_SYMBOL(cpu_all_bits); 1959 1960 #ifdef CONFIG_INIT_ALL_POSSIBLE 1961 struct cpumask __cpu_possible_mask __read_mostly 1962 = {CPU_BITS_ALL}; 1963 #else 1964 struct cpumask __cpu_possible_mask __read_mostly; 1965 #endif 1966 EXPORT_SYMBOL(__cpu_possible_mask); 1967 1968 struct cpumask __cpu_online_mask __read_mostly; 1969 EXPORT_SYMBOL(__cpu_online_mask); 1970 1971 struct cpumask __cpu_present_mask __read_mostly; 1972 EXPORT_SYMBOL(__cpu_present_mask); 1973 1974 struct cpumask __cpu_active_mask __read_mostly; 1975 EXPORT_SYMBOL(__cpu_active_mask); 1976 1977 void init_cpu_present(const struct cpumask *src) 1978 { 1979 cpumask_copy(&__cpu_present_mask, src); 1980 } 1981 1982 void init_cpu_possible(const struct cpumask *src) 1983 { 1984 cpumask_copy(&__cpu_possible_mask, src); 1985 } 1986 1987 void init_cpu_online(const struct cpumask *src) 1988 { 1989 cpumask_copy(&__cpu_online_mask, src); 1990 } 1991 1992 /* 1993 * Activate the first processor. 1994 */ 1995 void __init boot_cpu_init(void) 1996 { 1997 int cpu = smp_processor_id(); 1998 1999 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2000 set_cpu_online(cpu, true); 2001 set_cpu_active(cpu, true); 2002 set_cpu_present(cpu, true); 2003 set_cpu_possible(cpu, true); 2004 2005 #ifdef CONFIG_SMP 2006 __boot_cpu_id = cpu; 2007 #endif 2008 } 2009 2010 /* 2011 * Must be called _AFTER_ setting up the per_cpu areas 2012 */ 2013 void __init boot_cpu_state_init(void) 2014 { 2015 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 2016 } 2017