xref: /linux/kernel/cpu.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39 
40 #include "smpboot.h"
41 
42 /**
43  * cpuhp_cpu_state - Per cpu hotplug state storage
44  * @state:	The current cpu state
45  * @target:	The target state
46  * @thread:	Pointer to the hotplug thread
47  * @should_run:	Thread should execute
48  * @rollback:	Perform a rollback
49  * @single:	Single callback invocation
50  * @bringup:	Single callback bringup or teardown selector
51  * @cb_state:	The state for a single callback (install/uninstall)
52  * @result:	Result of the operation
53  * @done_up:	Signal completion to the issuer of the task for cpu-up
54  * @done_down:	Signal completion to the issuer of the task for cpu-down
55  */
56 struct cpuhp_cpu_state {
57 	enum cpuhp_state	state;
58 	enum cpuhp_state	target;
59 	enum cpuhp_state	fail;
60 #ifdef CONFIG_SMP
61 	struct task_struct	*thread;
62 	bool			should_run;
63 	bool			rollback;
64 	bool			single;
65 	bool			bringup;
66 	struct hlist_node	*node;
67 	struct hlist_node	*last;
68 	enum cpuhp_state	cb_state;
69 	int			result;
70 	struct completion	done_up;
71 	struct completion	done_down;
72 #endif
73 };
74 
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 	.fail = CPUHP_INVALID,
77 };
78 
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
82 
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88 
89 
90 static inline void cpuhp_lock_acquire(bool bringup)
91 {
92 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 
95 static inline void cpuhp_lock_release(bool bringup)
96 {
97 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98 }
99 #else
100 
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
103 
104 #endif
105 
106 /**
107  * cpuhp_step - Hotplug state machine step
108  * @name:	Name of the step
109  * @startup:	Startup function of the step
110  * @teardown:	Teardown function of the step
111  * @cant_stop:	Bringup/teardown can't be stopped at this step
112  */
113 struct cpuhp_step {
114 	const char		*name;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} startup;
120 	union {
121 		int		(*single)(unsigned int cpu);
122 		int		(*multi)(unsigned int cpu,
123 					 struct hlist_node *node);
124 	} teardown;
125 	struct hlist_head	list;
126 	bool			cant_stop;
127 	bool			multi_instance;
128 };
129 
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
132 
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134 {
135 	return cpuhp_hp_states + state;
136 }
137 
138 /**
139  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140  * @cpu:	The cpu for which the callback should be invoked
141  * @state:	The state to do callbacks for
142  * @bringup:	True if the bringup callback should be invoked
143  * @node:	For multi-instance, do a single entry callback for install/remove
144  * @lastp:	For multi-instance rollback, remember how far we got
145  *
146  * Called from cpu hotplug and from the state register machinery.
147  */
148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 				 bool bringup, struct hlist_node *node,
150 				 struct hlist_node **lastp)
151 {
152 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 	struct cpuhp_step *step = cpuhp_get_step(state);
154 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 	int (*cb)(unsigned int cpu);
156 	int ret, cnt;
157 
158 	if (st->fail == state) {
159 		st->fail = CPUHP_INVALID;
160 
161 		if (!(bringup ? step->startup.single : step->teardown.single))
162 			return 0;
163 
164 		return -EAGAIN;
165 	}
166 
167 	if (!step->multi_instance) {
168 		WARN_ON_ONCE(lastp && *lastp);
169 		cb = bringup ? step->startup.single : step->teardown.single;
170 		if (!cb)
171 			return 0;
172 		trace_cpuhp_enter(cpu, st->target, state, cb);
173 		ret = cb(cpu);
174 		trace_cpuhp_exit(cpu, st->state, state, ret);
175 		return ret;
176 	}
177 	cbm = bringup ? step->startup.multi : step->teardown.multi;
178 	if (!cbm)
179 		return 0;
180 
181 	/* Single invocation for instance add/remove */
182 	if (node) {
183 		WARN_ON_ONCE(lastp && *lastp);
184 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 		ret = cbm(cpu, node);
186 		trace_cpuhp_exit(cpu, st->state, state, ret);
187 		return ret;
188 	}
189 
190 	/* State transition. Invoke on all instances */
191 	cnt = 0;
192 	hlist_for_each(node, &step->list) {
193 		if (lastp && node == *lastp)
194 			break;
195 
196 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 		ret = cbm(cpu, node);
198 		trace_cpuhp_exit(cpu, st->state, state, ret);
199 		if (ret) {
200 			if (!lastp)
201 				goto err;
202 
203 			*lastp = node;
204 			return ret;
205 		}
206 		cnt++;
207 	}
208 	if (lastp)
209 		*lastp = NULL;
210 	return 0;
211 err:
212 	/* Rollback the instances if one failed */
213 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 	if (!cbm)
215 		return ret;
216 
217 	hlist_for_each(node, &step->list) {
218 		if (!cnt--)
219 			break;
220 
221 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 		ret = cbm(cpu, node);
223 		trace_cpuhp_exit(cpu, st->state, state, ret);
224 		/*
225 		 * Rollback must not fail,
226 		 */
227 		WARN_ON_ONCE(ret);
228 	}
229 	return ret;
230 }
231 
232 #ifdef CONFIG_SMP
233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
234 {
235 	/*
236 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 	 * purposes as that state is handled explicitly in cpu_down.
238 	 */
239 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240 }
241 
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	wait_for_completion(done);
246 }
247 
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 	struct completion *done = bringup ? &st->done_up : &st->done_down;
251 	complete(done);
252 }
253 
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261 
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266 
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273 	mutex_lock(&cpu_add_remove_lock);
274 }
275 
276 void cpu_maps_update_done(void)
277 {
278 	mutex_unlock(&cpu_add_remove_lock);
279 }
280 
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290 
291 void cpus_read_lock(void)
292 {
293 	percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296 
297 int cpus_read_trylock(void)
298 {
299 	return percpu_down_read_trylock(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
302 
303 void cpus_read_unlock(void)
304 {
305 	percpu_up_read(&cpu_hotplug_lock);
306 }
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
308 
309 void cpus_write_lock(void)
310 {
311 	percpu_down_write(&cpu_hotplug_lock);
312 }
313 
314 void cpus_write_unlock(void)
315 {
316 	percpu_up_write(&cpu_hotplug_lock);
317 }
318 
319 void lockdep_assert_cpus_held(void)
320 {
321 	/*
322 	 * We can't have hotplug operations before userspace starts running,
323 	 * and some init codepaths will knowingly not take the hotplug lock.
324 	 * This is all valid, so mute lockdep until it makes sense to report
325 	 * unheld locks.
326 	 */
327 	if (system_state < SYSTEM_RUNNING)
328 		return;
329 
330 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
331 }
332 
333 #ifdef CONFIG_LOCKDEP
334 int lockdep_is_cpus_held(void)
335 {
336 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
337 }
338 #endif
339 
340 static void lockdep_acquire_cpus_lock(void)
341 {
342 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
343 }
344 
345 static void lockdep_release_cpus_lock(void)
346 {
347 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
348 }
349 
350 /*
351  * Wait for currently running CPU hotplug operations to complete (if any) and
352  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
353  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
354  * hotplug path before performing hotplug operations. So acquiring that lock
355  * guarantees mutual exclusion from any currently running hotplug operations.
356  */
357 void cpu_hotplug_disable(void)
358 {
359 	cpu_maps_update_begin();
360 	cpu_hotplug_disabled++;
361 	cpu_maps_update_done();
362 }
363 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
364 
365 static void __cpu_hotplug_enable(void)
366 {
367 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
368 		return;
369 	cpu_hotplug_disabled--;
370 }
371 
372 void cpu_hotplug_enable(void)
373 {
374 	cpu_maps_update_begin();
375 	__cpu_hotplug_enable();
376 	cpu_maps_update_done();
377 }
378 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
379 
380 #else
381 
382 static void lockdep_acquire_cpus_lock(void)
383 {
384 }
385 
386 static void lockdep_release_cpus_lock(void)
387 {
388 }
389 
390 #endif	/* CONFIG_HOTPLUG_CPU */
391 
392 /*
393  * Architectures that need SMT-specific errata handling during SMT hotplug
394  * should override this.
395  */
396 void __weak arch_smt_update(void) { }
397 
398 #ifdef CONFIG_HOTPLUG_SMT
399 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
400 
401 void __init cpu_smt_disable(bool force)
402 {
403 	if (!cpu_smt_possible())
404 		return;
405 
406 	if (force) {
407 		pr_info("SMT: Force disabled\n");
408 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
409 	} else {
410 		pr_info("SMT: disabled\n");
411 		cpu_smt_control = CPU_SMT_DISABLED;
412 	}
413 }
414 
415 /*
416  * The decision whether SMT is supported can only be done after the full
417  * CPU identification. Called from architecture code.
418  */
419 void __init cpu_smt_check_topology(void)
420 {
421 	if (!topology_smt_supported())
422 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
423 }
424 
425 static int __init smt_cmdline_disable(char *str)
426 {
427 	cpu_smt_disable(str && !strcmp(str, "force"));
428 	return 0;
429 }
430 early_param("nosmt", smt_cmdline_disable);
431 
432 static inline bool cpu_smt_allowed(unsigned int cpu)
433 {
434 	if (cpu_smt_control == CPU_SMT_ENABLED)
435 		return true;
436 
437 	if (topology_is_primary_thread(cpu))
438 		return true;
439 
440 	/*
441 	 * On x86 it's required to boot all logical CPUs at least once so
442 	 * that the init code can get a chance to set CR4.MCE on each
443 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
444 	 * core will shutdown the machine.
445 	 */
446 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
447 }
448 
449 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
450 bool cpu_smt_possible(void)
451 {
452 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
453 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
454 }
455 EXPORT_SYMBOL_GPL(cpu_smt_possible);
456 #else
457 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
458 #endif
459 
460 static inline enum cpuhp_state
461 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
462 {
463 	enum cpuhp_state prev_state = st->state;
464 
465 	st->rollback = false;
466 	st->last = NULL;
467 
468 	st->target = target;
469 	st->single = false;
470 	st->bringup = st->state < target;
471 
472 	return prev_state;
473 }
474 
475 static inline void
476 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
477 {
478 	st->rollback = true;
479 
480 	/*
481 	 * If we have st->last we need to undo partial multi_instance of this
482 	 * state first. Otherwise start undo at the previous state.
483 	 */
484 	if (!st->last) {
485 		if (st->bringup)
486 			st->state--;
487 		else
488 			st->state++;
489 	}
490 
491 	st->target = prev_state;
492 	st->bringup = !st->bringup;
493 }
494 
495 /* Regular hotplug invocation of the AP hotplug thread */
496 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
497 {
498 	if (!st->single && st->state == st->target)
499 		return;
500 
501 	st->result = 0;
502 	/*
503 	 * Make sure the above stores are visible before should_run becomes
504 	 * true. Paired with the mb() above in cpuhp_thread_fun()
505 	 */
506 	smp_mb();
507 	st->should_run = true;
508 	wake_up_process(st->thread);
509 	wait_for_ap_thread(st, st->bringup);
510 }
511 
512 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
513 {
514 	enum cpuhp_state prev_state;
515 	int ret;
516 
517 	prev_state = cpuhp_set_state(st, target);
518 	__cpuhp_kick_ap(st);
519 	if ((ret = st->result)) {
520 		cpuhp_reset_state(st, prev_state);
521 		__cpuhp_kick_ap(st);
522 	}
523 
524 	return ret;
525 }
526 
527 static int bringup_wait_for_ap(unsigned int cpu)
528 {
529 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
530 
531 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
532 	wait_for_ap_thread(st, true);
533 	if (WARN_ON_ONCE((!cpu_online(cpu))))
534 		return -ECANCELED;
535 
536 	/* Unpark the hotplug thread of the target cpu */
537 	kthread_unpark(st->thread);
538 
539 	/*
540 	 * SMT soft disabling on X86 requires to bring the CPU out of the
541 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
542 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
543 	 * cpu_smt_allowed() check will now return false if this is not the
544 	 * primary sibling.
545 	 */
546 	if (!cpu_smt_allowed(cpu))
547 		return -ECANCELED;
548 
549 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
550 		return 0;
551 
552 	return cpuhp_kick_ap(st, st->target);
553 }
554 
555 static int bringup_cpu(unsigned int cpu)
556 {
557 	struct task_struct *idle = idle_thread_get(cpu);
558 	int ret;
559 
560 	/*
561 	 * Some architectures have to walk the irq descriptors to
562 	 * setup the vector space for the cpu which comes online.
563 	 * Prevent irq alloc/free across the bringup.
564 	 */
565 	irq_lock_sparse();
566 
567 	/* Arch-specific enabling code. */
568 	ret = __cpu_up(cpu, idle);
569 	irq_unlock_sparse();
570 	if (ret)
571 		return ret;
572 	return bringup_wait_for_ap(cpu);
573 }
574 
575 static int finish_cpu(unsigned int cpu)
576 {
577 	struct task_struct *idle = idle_thread_get(cpu);
578 	struct mm_struct *mm = idle->active_mm;
579 
580 	/*
581 	 * idle_task_exit() will have switched to &init_mm, now
582 	 * clean up any remaining active_mm state.
583 	 */
584 	if (mm != &init_mm)
585 		idle->active_mm = &init_mm;
586 	mmdrop(mm);
587 	return 0;
588 }
589 
590 /*
591  * Hotplug state machine related functions
592  */
593 
594 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
595 {
596 	for (st->state--; st->state > st->target; st->state--)
597 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
598 }
599 
600 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
601 {
602 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
603 		return true;
604 	/*
605 	 * When CPU hotplug is disabled, then taking the CPU down is not
606 	 * possible because takedown_cpu() and the architecture and
607 	 * subsystem specific mechanisms are not available. So the CPU
608 	 * which would be completely unplugged again needs to stay around
609 	 * in the current state.
610 	 */
611 	return st->state <= CPUHP_BRINGUP_CPU;
612 }
613 
614 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
615 			      enum cpuhp_state target)
616 {
617 	enum cpuhp_state prev_state = st->state;
618 	int ret = 0;
619 
620 	while (st->state < target) {
621 		st->state++;
622 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
623 		if (ret) {
624 			if (can_rollback_cpu(st)) {
625 				st->target = prev_state;
626 				undo_cpu_up(cpu, st);
627 			}
628 			break;
629 		}
630 	}
631 	return ret;
632 }
633 
634 /*
635  * The cpu hotplug threads manage the bringup and teardown of the cpus
636  */
637 static void cpuhp_create(unsigned int cpu)
638 {
639 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
640 
641 	init_completion(&st->done_up);
642 	init_completion(&st->done_down);
643 }
644 
645 static int cpuhp_should_run(unsigned int cpu)
646 {
647 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
648 
649 	return st->should_run;
650 }
651 
652 /*
653  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
654  * callbacks when a state gets [un]installed at runtime.
655  *
656  * Each invocation of this function by the smpboot thread does a single AP
657  * state callback.
658  *
659  * It has 3 modes of operation:
660  *  - single: runs st->cb_state
661  *  - up:     runs ++st->state, while st->state < st->target
662  *  - down:   runs st->state--, while st->state > st->target
663  *
664  * When complete or on error, should_run is cleared and the completion is fired.
665  */
666 static void cpuhp_thread_fun(unsigned int cpu)
667 {
668 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
669 	bool bringup = st->bringup;
670 	enum cpuhp_state state;
671 
672 	if (WARN_ON_ONCE(!st->should_run))
673 		return;
674 
675 	/*
676 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
677 	 * that if we see ->should_run we also see the rest of the state.
678 	 */
679 	smp_mb();
680 
681 	/*
682 	 * The BP holds the hotplug lock, but we're now running on the AP,
683 	 * ensure that anybody asserting the lock is held, will actually find
684 	 * it so.
685 	 */
686 	lockdep_acquire_cpus_lock();
687 	cpuhp_lock_acquire(bringup);
688 
689 	if (st->single) {
690 		state = st->cb_state;
691 		st->should_run = false;
692 	} else {
693 		if (bringup) {
694 			st->state++;
695 			state = st->state;
696 			st->should_run = (st->state < st->target);
697 			WARN_ON_ONCE(st->state > st->target);
698 		} else {
699 			state = st->state;
700 			st->state--;
701 			st->should_run = (st->state > st->target);
702 			WARN_ON_ONCE(st->state < st->target);
703 		}
704 	}
705 
706 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
707 
708 	if (cpuhp_is_atomic_state(state)) {
709 		local_irq_disable();
710 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
711 		local_irq_enable();
712 
713 		/*
714 		 * STARTING/DYING must not fail!
715 		 */
716 		WARN_ON_ONCE(st->result);
717 	} else {
718 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
719 	}
720 
721 	if (st->result) {
722 		/*
723 		 * If we fail on a rollback, we're up a creek without no
724 		 * paddle, no way forward, no way back. We loose, thanks for
725 		 * playing.
726 		 */
727 		WARN_ON_ONCE(st->rollback);
728 		st->should_run = false;
729 	}
730 
731 	cpuhp_lock_release(bringup);
732 	lockdep_release_cpus_lock();
733 
734 	if (!st->should_run)
735 		complete_ap_thread(st, bringup);
736 }
737 
738 /* Invoke a single callback on a remote cpu */
739 static int
740 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
741 			 struct hlist_node *node)
742 {
743 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
744 	int ret;
745 
746 	if (!cpu_online(cpu))
747 		return 0;
748 
749 	cpuhp_lock_acquire(false);
750 	cpuhp_lock_release(false);
751 
752 	cpuhp_lock_acquire(true);
753 	cpuhp_lock_release(true);
754 
755 	/*
756 	 * If we are up and running, use the hotplug thread. For early calls
757 	 * we invoke the thread function directly.
758 	 */
759 	if (!st->thread)
760 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
761 
762 	st->rollback = false;
763 	st->last = NULL;
764 
765 	st->node = node;
766 	st->bringup = bringup;
767 	st->cb_state = state;
768 	st->single = true;
769 
770 	__cpuhp_kick_ap(st);
771 
772 	/*
773 	 * If we failed and did a partial, do a rollback.
774 	 */
775 	if ((ret = st->result) && st->last) {
776 		st->rollback = true;
777 		st->bringup = !bringup;
778 
779 		__cpuhp_kick_ap(st);
780 	}
781 
782 	/*
783 	 * Clean up the leftovers so the next hotplug operation wont use stale
784 	 * data.
785 	 */
786 	st->node = st->last = NULL;
787 	return ret;
788 }
789 
790 static int cpuhp_kick_ap_work(unsigned int cpu)
791 {
792 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
793 	enum cpuhp_state prev_state = st->state;
794 	int ret;
795 
796 	cpuhp_lock_acquire(false);
797 	cpuhp_lock_release(false);
798 
799 	cpuhp_lock_acquire(true);
800 	cpuhp_lock_release(true);
801 
802 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
803 	ret = cpuhp_kick_ap(st, st->target);
804 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
805 
806 	return ret;
807 }
808 
809 static struct smp_hotplug_thread cpuhp_threads = {
810 	.store			= &cpuhp_state.thread,
811 	.create			= &cpuhp_create,
812 	.thread_should_run	= cpuhp_should_run,
813 	.thread_fn		= cpuhp_thread_fun,
814 	.thread_comm		= "cpuhp/%u",
815 	.selfparking		= true,
816 };
817 
818 void __init cpuhp_threads_init(void)
819 {
820 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
821 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
822 }
823 
824 #ifdef CONFIG_HOTPLUG_CPU
825 #ifndef arch_clear_mm_cpumask_cpu
826 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
827 #endif
828 
829 /**
830  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
831  * @cpu: a CPU id
832  *
833  * This function walks all processes, finds a valid mm struct for each one and
834  * then clears a corresponding bit in mm's cpumask.  While this all sounds
835  * trivial, there are various non-obvious corner cases, which this function
836  * tries to solve in a safe manner.
837  *
838  * Also note that the function uses a somewhat relaxed locking scheme, so it may
839  * be called only for an already offlined CPU.
840  */
841 void clear_tasks_mm_cpumask(int cpu)
842 {
843 	struct task_struct *p;
844 
845 	/*
846 	 * This function is called after the cpu is taken down and marked
847 	 * offline, so its not like new tasks will ever get this cpu set in
848 	 * their mm mask. -- Peter Zijlstra
849 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
850 	 * full-fledged tasklist_lock.
851 	 */
852 	WARN_ON(cpu_online(cpu));
853 	rcu_read_lock();
854 	for_each_process(p) {
855 		struct task_struct *t;
856 
857 		/*
858 		 * Main thread might exit, but other threads may still have
859 		 * a valid mm. Find one.
860 		 */
861 		t = find_lock_task_mm(p);
862 		if (!t)
863 			continue;
864 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
865 		task_unlock(t);
866 	}
867 	rcu_read_unlock();
868 }
869 
870 /* Take this CPU down. */
871 static int take_cpu_down(void *_param)
872 {
873 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
874 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
875 	int err, cpu = smp_processor_id();
876 	int ret;
877 
878 	/* Ensure this CPU doesn't handle any more interrupts. */
879 	err = __cpu_disable();
880 	if (err < 0)
881 		return err;
882 
883 	/*
884 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
885 	 * do this step again.
886 	 */
887 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
888 	st->state--;
889 	/* Invoke the former CPU_DYING callbacks */
890 	for (; st->state > target; st->state--) {
891 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
892 		/*
893 		 * DYING must not fail!
894 		 */
895 		WARN_ON_ONCE(ret);
896 	}
897 
898 	/* Give up timekeeping duties */
899 	tick_handover_do_timer();
900 	/* Remove CPU from timer broadcasting */
901 	tick_offline_cpu(cpu);
902 	/* Park the stopper thread */
903 	stop_machine_park(cpu);
904 	return 0;
905 }
906 
907 static int takedown_cpu(unsigned int cpu)
908 {
909 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
910 	int err;
911 
912 	/* Park the smpboot threads */
913 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
914 
915 	/*
916 	 * Prevent irq alloc/free while the dying cpu reorganizes the
917 	 * interrupt affinities.
918 	 */
919 	irq_lock_sparse();
920 
921 	/*
922 	 * So now all preempt/rcu users must observe !cpu_active().
923 	 */
924 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
925 	if (err) {
926 		/* CPU refused to die */
927 		irq_unlock_sparse();
928 		/* Unpark the hotplug thread so we can rollback there */
929 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
930 		return err;
931 	}
932 	BUG_ON(cpu_online(cpu));
933 
934 	/*
935 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
936 	 * all runnable tasks from the CPU, there's only the idle task left now
937 	 * that the migration thread is done doing the stop_machine thing.
938 	 *
939 	 * Wait for the stop thread to go away.
940 	 */
941 	wait_for_ap_thread(st, false);
942 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
943 
944 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
945 	irq_unlock_sparse();
946 
947 	hotplug_cpu__broadcast_tick_pull(cpu);
948 	/* This actually kills the CPU. */
949 	__cpu_die(cpu);
950 
951 	tick_cleanup_dead_cpu(cpu);
952 	rcutree_migrate_callbacks(cpu);
953 	return 0;
954 }
955 
956 static void cpuhp_complete_idle_dead(void *arg)
957 {
958 	struct cpuhp_cpu_state *st = arg;
959 
960 	complete_ap_thread(st, false);
961 }
962 
963 void cpuhp_report_idle_dead(void)
964 {
965 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
966 
967 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
968 	rcu_report_dead(smp_processor_id());
969 	st->state = CPUHP_AP_IDLE_DEAD;
970 	/*
971 	 * We cannot call complete after rcu_report_dead() so we delegate it
972 	 * to an online cpu.
973 	 */
974 	smp_call_function_single(cpumask_first(cpu_online_mask),
975 				 cpuhp_complete_idle_dead, st, 0);
976 }
977 
978 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
979 {
980 	for (st->state++; st->state < st->target; st->state++)
981 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
982 }
983 
984 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
985 				enum cpuhp_state target)
986 {
987 	enum cpuhp_state prev_state = st->state;
988 	int ret = 0;
989 
990 	for (; st->state > target; st->state--) {
991 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
992 		if (ret) {
993 			st->target = prev_state;
994 			if (st->state < prev_state)
995 				undo_cpu_down(cpu, st);
996 			break;
997 		}
998 	}
999 	return ret;
1000 }
1001 
1002 /* Requires cpu_add_remove_lock to be held */
1003 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1004 			   enum cpuhp_state target)
1005 {
1006 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1007 	int prev_state, ret = 0;
1008 
1009 	if (num_online_cpus() == 1)
1010 		return -EBUSY;
1011 
1012 	if (!cpu_present(cpu))
1013 		return -EINVAL;
1014 
1015 	cpus_write_lock();
1016 
1017 	cpuhp_tasks_frozen = tasks_frozen;
1018 
1019 	prev_state = cpuhp_set_state(st, target);
1020 	/*
1021 	 * If the current CPU state is in the range of the AP hotplug thread,
1022 	 * then we need to kick the thread.
1023 	 */
1024 	if (st->state > CPUHP_TEARDOWN_CPU) {
1025 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1026 		ret = cpuhp_kick_ap_work(cpu);
1027 		/*
1028 		 * The AP side has done the error rollback already. Just
1029 		 * return the error code..
1030 		 */
1031 		if (ret)
1032 			goto out;
1033 
1034 		/*
1035 		 * We might have stopped still in the range of the AP hotplug
1036 		 * thread. Nothing to do anymore.
1037 		 */
1038 		if (st->state > CPUHP_TEARDOWN_CPU)
1039 			goto out;
1040 
1041 		st->target = target;
1042 	}
1043 	/*
1044 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1045 	 * to do the further cleanups.
1046 	 */
1047 	ret = cpuhp_down_callbacks(cpu, st, target);
1048 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1049 		cpuhp_reset_state(st, prev_state);
1050 		__cpuhp_kick_ap(st);
1051 	}
1052 
1053 out:
1054 	cpus_write_unlock();
1055 	/*
1056 	 * Do post unplug cleanup. This is still protected against
1057 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1058 	 */
1059 	lockup_detector_cleanup();
1060 	arch_smt_update();
1061 	return ret;
1062 }
1063 
1064 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1065 {
1066 	if (cpu_hotplug_disabled)
1067 		return -EBUSY;
1068 	return _cpu_down(cpu, 0, target);
1069 }
1070 
1071 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1072 {
1073 	int err;
1074 
1075 	cpu_maps_update_begin();
1076 	err = cpu_down_maps_locked(cpu, target);
1077 	cpu_maps_update_done();
1078 	return err;
1079 }
1080 
1081 /**
1082  * cpu_device_down - Bring down a cpu device
1083  * @dev: Pointer to the cpu device to offline
1084  *
1085  * This function is meant to be used by device core cpu subsystem only.
1086  *
1087  * Other subsystems should use remove_cpu() instead.
1088  */
1089 int cpu_device_down(struct device *dev)
1090 {
1091 	return cpu_down(dev->id, CPUHP_OFFLINE);
1092 }
1093 
1094 int remove_cpu(unsigned int cpu)
1095 {
1096 	int ret;
1097 
1098 	lock_device_hotplug();
1099 	ret = device_offline(get_cpu_device(cpu));
1100 	unlock_device_hotplug();
1101 
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(remove_cpu);
1105 
1106 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1107 {
1108 	unsigned int cpu;
1109 	int error;
1110 
1111 	cpu_maps_update_begin();
1112 
1113 	/*
1114 	 * Make certain the cpu I'm about to reboot on is online.
1115 	 *
1116 	 * This is inline to what migrate_to_reboot_cpu() already do.
1117 	 */
1118 	if (!cpu_online(primary_cpu))
1119 		primary_cpu = cpumask_first(cpu_online_mask);
1120 
1121 	for_each_online_cpu(cpu) {
1122 		if (cpu == primary_cpu)
1123 			continue;
1124 
1125 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1126 		if (error) {
1127 			pr_err("Failed to offline CPU%d - error=%d",
1128 				cpu, error);
1129 			break;
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Ensure all but the reboot CPU are offline.
1135 	 */
1136 	BUG_ON(num_online_cpus() > 1);
1137 
1138 	/*
1139 	 * Make sure the CPUs won't be enabled by someone else after this
1140 	 * point. Kexec will reboot to a new kernel shortly resetting
1141 	 * everything along the way.
1142 	 */
1143 	cpu_hotplug_disabled++;
1144 
1145 	cpu_maps_update_done();
1146 }
1147 
1148 #else
1149 #define takedown_cpu		NULL
1150 #endif /*CONFIG_HOTPLUG_CPU*/
1151 
1152 /**
1153  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1154  * @cpu: cpu that just started
1155  *
1156  * It must be called by the arch code on the new cpu, before the new cpu
1157  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1158  */
1159 void notify_cpu_starting(unsigned int cpu)
1160 {
1161 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1162 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1163 	int ret;
1164 
1165 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1166 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1167 	while (st->state < target) {
1168 		st->state++;
1169 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1170 		/*
1171 		 * STARTING must not fail!
1172 		 */
1173 		WARN_ON_ONCE(ret);
1174 	}
1175 }
1176 
1177 /*
1178  * Called from the idle task. Wake up the controlling task which brings the
1179  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1180  * online bringup to the hotplug thread.
1181  */
1182 void cpuhp_online_idle(enum cpuhp_state state)
1183 {
1184 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1185 
1186 	/* Happens for the boot cpu */
1187 	if (state != CPUHP_AP_ONLINE_IDLE)
1188 		return;
1189 
1190 	/*
1191 	 * Unpart the stopper thread before we start the idle loop (and start
1192 	 * scheduling); this ensures the stopper task is always available.
1193 	 */
1194 	stop_machine_unpark(smp_processor_id());
1195 
1196 	st->state = CPUHP_AP_ONLINE_IDLE;
1197 	complete_ap_thread(st, true);
1198 }
1199 
1200 /* Requires cpu_add_remove_lock to be held */
1201 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1202 {
1203 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1204 	struct task_struct *idle;
1205 	int ret = 0;
1206 
1207 	cpus_write_lock();
1208 
1209 	if (!cpu_present(cpu)) {
1210 		ret = -EINVAL;
1211 		goto out;
1212 	}
1213 
1214 	/*
1215 	 * The caller of cpu_up() might have raced with another
1216 	 * caller. Nothing to do.
1217 	 */
1218 	if (st->state >= target)
1219 		goto out;
1220 
1221 	if (st->state == CPUHP_OFFLINE) {
1222 		/* Let it fail before we try to bring the cpu up */
1223 		idle = idle_thread_get(cpu);
1224 		if (IS_ERR(idle)) {
1225 			ret = PTR_ERR(idle);
1226 			goto out;
1227 		}
1228 	}
1229 
1230 	cpuhp_tasks_frozen = tasks_frozen;
1231 
1232 	cpuhp_set_state(st, target);
1233 	/*
1234 	 * If the current CPU state is in the range of the AP hotplug thread,
1235 	 * then we need to kick the thread once more.
1236 	 */
1237 	if (st->state > CPUHP_BRINGUP_CPU) {
1238 		ret = cpuhp_kick_ap_work(cpu);
1239 		/*
1240 		 * The AP side has done the error rollback already. Just
1241 		 * return the error code..
1242 		 */
1243 		if (ret)
1244 			goto out;
1245 	}
1246 
1247 	/*
1248 	 * Try to reach the target state. We max out on the BP at
1249 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1250 	 * responsible for bringing it up to the target state.
1251 	 */
1252 	target = min((int)target, CPUHP_BRINGUP_CPU);
1253 	ret = cpuhp_up_callbacks(cpu, st, target);
1254 out:
1255 	cpus_write_unlock();
1256 	arch_smt_update();
1257 	return ret;
1258 }
1259 
1260 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1261 {
1262 	int err = 0;
1263 
1264 	if (!cpu_possible(cpu)) {
1265 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1266 		       cpu);
1267 #if defined(CONFIG_IA64)
1268 		pr_err("please check additional_cpus= boot parameter\n");
1269 #endif
1270 		return -EINVAL;
1271 	}
1272 
1273 	err = try_online_node(cpu_to_node(cpu));
1274 	if (err)
1275 		return err;
1276 
1277 	cpu_maps_update_begin();
1278 
1279 	if (cpu_hotplug_disabled) {
1280 		err = -EBUSY;
1281 		goto out;
1282 	}
1283 	if (!cpu_smt_allowed(cpu)) {
1284 		err = -EPERM;
1285 		goto out;
1286 	}
1287 
1288 	err = _cpu_up(cpu, 0, target);
1289 out:
1290 	cpu_maps_update_done();
1291 	return err;
1292 }
1293 
1294 /**
1295  * cpu_device_up - Bring up a cpu device
1296  * @dev: Pointer to the cpu device to online
1297  *
1298  * This function is meant to be used by device core cpu subsystem only.
1299  *
1300  * Other subsystems should use add_cpu() instead.
1301  */
1302 int cpu_device_up(struct device *dev)
1303 {
1304 	return cpu_up(dev->id, CPUHP_ONLINE);
1305 }
1306 
1307 int add_cpu(unsigned int cpu)
1308 {
1309 	int ret;
1310 
1311 	lock_device_hotplug();
1312 	ret = device_online(get_cpu_device(cpu));
1313 	unlock_device_hotplug();
1314 
1315 	return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(add_cpu);
1318 
1319 /**
1320  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1321  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1322  *
1323  * On some architectures like arm64, we can hibernate on any CPU, but on
1324  * wake up the CPU we hibernated on might be offline as a side effect of
1325  * using maxcpus= for example.
1326  */
1327 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1328 {
1329 	int ret;
1330 
1331 	if (!cpu_online(sleep_cpu)) {
1332 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1333 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1334 		if (ret) {
1335 			pr_err("Failed to bring hibernate-CPU up!\n");
1336 			return ret;
1337 		}
1338 	}
1339 	return 0;
1340 }
1341 
1342 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1343 {
1344 	unsigned int cpu;
1345 
1346 	for_each_present_cpu(cpu) {
1347 		if (num_online_cpus() >= setup_max_cpus)
1348 			break;
1349 		if (!cpu_online(cpu))
1350 			cpu_up(cpu, CPUHP_ONLINE);
1351 	}
1352 }
1353 
1354 #ifdef CONFIG_PM_SLEEP_SMP
1355 static cpumask_var_t frozen_cpus;
1356 
1357 int freeze_secondary_cpus(int primary)
1358 {
1359 	int cpu, error = 0;
1360 
1361 	cpu_maps_update_begin();
1362 	if (primary == -1) {
1363 		primary = cpumask_first(cpu_online_mask);
1364 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1365 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1366 	} else {
1367 		if (!cpu_online(primary))
1368 			primary = cpumask_first(cpu_online_mask);
1369 	}
1370 
1371 	/*
1372 	 * We take down all of the non-boot CPUs in one shot to avoid races
1373 	 * with the userspace trying to use the CPU hotplug at the same time
1374 	 */
1375 	cpumask_clear(frozen_cpus);
1376 
1377 	pr_info("Disabling non-boot CPUs ...\n");
1378 	for_each_online_cpu(cpu) {
1379 		if (cpu == primary)
1380 			continue;
1381 
1382 		if (pm_wakeup_pending()) {
1383 			pr_info("Wakeup pending. Abort CPU freeze\n");
1384 			error = -EBUSY;
1385 			break;
1386 		}
1387 
1388 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1389 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1390 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1391 		if (!error)
1392 			cpumask_set_cpu(cpu, frozen_cpus);
1393 		else {
1394 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1395 			break;
1396 		}
1397 	}
1398 
1399 	if (!error)
1400 		BUG_ON(num_online_cpus() > 1);
1401 	else
1402 		pr_err("Non-boot CPUs are not disabled\n");
1403 
1404 	/*
1405 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1406 	 * this even in case of failure as all freeze_secondary_cpus() users are
1407 	 * supposed to do thaw_secondary_cpus() on the failure path.
1408 	 */
1409 	cpu_hotplug_disabled++;
1410 
1411 	cpu_maps_update_done();
1412 	return error;
1413 }
1414 
1415 void __weak arch_thaw_secondary_cpus_begin(void)
1416 {
1417 }
1418 
1419 void __weak arch_thaw_secondary_cpus_end(void)
1420 {
1421 }
1422 
1423 void thaw_secondary_cpus(void)
1424 {
1425 	int cpu, error;
1426 
1427 	/* Allow everyone to use the CPU hotplug again */
1428 	cpu_maps_update_begin();
1429 	__cpu_hotplug_enable();
1430 	if (cpumask_empty(frozen_cpus))
1431 		goto out;
1432 
1433 	pr_info("Enabling non-boot CPUs ...\n");
1434 
1435 	arch_thaw_secondary_cpus_begin();
1436 
1437 	for_each_cpu(cpu, frozen_cpus) {
1438 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1439 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1440 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1441 		if (!error) {
1442 			pr_info("CPU%d is up\n", cpu);
1443 			continue;
1444 		}
1445 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1446 	}
1447 
1448 	arch_thaw_secondary_cpus_end();
1449 
1450 	cpumask_clear(frozen_cpus);
1451 out:
1452 	cpu_maps_update_done();
1453 }
1454 
1455 static int __init alloc_frozen_cpus(void)
1456 {
1457 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1458 		return -ENOMEM;
1459 	return 0;
1460 }
1461 core_initcall(alloc_frozen_cpus);
1462 
1463 /*
1464  * When callbacks for CPU hotplug notifications are being executed, we must
1465  * ensure that the state of the system with respect to the tasks being frozen
1466  * or not, as reported by the notification, remains unchanged *throughout the
1467  * duration* of the execution of the callbacks.
1468  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1469  *
1470  * This synchronization is implemented by mutually excluding regular CPU
1471  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1472  * Hibernate notifications.
1473  */
1474 static int
1475 cpu_hotplug_pm_callback(struct notifier_block *nb,
1476 			unsigned long action, void *ptr)
1477 {
1478 	switch (action) {
1479 
1480 	case PM_SUSPEND_PREPARE:
1481 	case PM_HIBERNATION_PREPARE:
1482 		cpu_hotplug_disable();
1483 		break;
1484 
1485 	case PM_POST_SUSPEND:
1486 	case PM_POST_HIBERNATION:
1487 		cpu_hotplug_enable();
1488 		break;
1489 
1490 	default:
1491 		return NOTIFY_DONE;
1492 	}
1493 
1494 	return NOTIFY_OK;
1495 }
1496 
1497 
1498 static int __init cpu_hotplug_pm_sync_init(void)
1499 {
1500 	/*
1501 	 * cpu_hotplug_pm_callback has higher priority than x86
1502 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1503 	 * to disable cpu hotplug to avoid cpu hotplug race.
1504 	 */
1505 	pm_notifier(cpu_hotplug_pm_callback, 0);
1506 	return 0;
1507 }
1508 core_initcall(cpu_hotplug_pm_sync_init);
1509 
1510 #endif /* CONFIG_PM_SLEEP_SMP */
1511 
1512 int __boot_cpu_id;
1513 
1514 #endif /* CONFIG_SMP */
1515 
1516 /* Boot processor state steps */
1517 static struct cpuhp_step cpuhp_hp_states[] = {
1518 	[CPUHP_OFFLINE] = {
1519 		.name			= "offline",
1520 		.startup.single		= NULL,
1521 		.teardown.single	= NULL,
1522 	},
1523 #ifdef CONFIG_SMP
1524 	[CPUHP_CREATE_THREADS]= {
1525 		.name			= "threads:prepare",
1526 		.startup.single		= smpboot_create_threads,
1527 		.teardown.single	= NULL,
1528 		.cant_stop		= true,
1529 	},
1530 	[CPUHP_PERF_PREPARE] = {
1531 		.name			= "perf:prepare",
1532 		.startup.single		= perf_event_init_cpu,
1533 		.teardown.single	= perf_event_exit_cpu,
1534 	},
1535 	[CPUHP_WORKQUEUE_PREP] = {
1536 		.name			= "workqueue:prepare",
1537 		.startup.single		= workqueue_prepare_cpu,
1538 		.teardown.single	= NULL,
1539 	},
1540 	[CPUHP_HRTIMERS_PREPARE] = {
1541 		.name			= "hrtimers:prepare",
1542 		.startup.single		= hrtimers_prepare_cpu,
1543 		.teardown.single	= hrtimers_dead_cpu,
1544 	},
1545 	[CPUHP_SMPCFD_PREPARE] = {
1546 		.name			= "smpcfd:prepare",
1547 		.startup.single		= smpcfd_prepare_cpu,
1548 		.teardown.single	= smpcfd_dead_cpu,
1549 	},
1550 	[CPUHP_RELAY_PREPARE] = {
1551 		.name			= "relay:prepare",
1552 		.startup.single		= relay_prepare_cpu,
1553 		.teardown.single	= NULL,
1554 	},
1555 	[CPUHP_SLAB_PREPARE] = {
1556 		.name			= "slab:prepare",
1557 		.startup.single		= slab_prepare_cpu,
1558 		.teardown.single	= slab_dead_cpu,
1559 	},
1560 	[CPUHP_RCUTREE_PREP] = {
1561 		.name			= "RCU/tree:prepare",
1562 		.startup.single		= rcutree_prepare_cpu,
1563 		.teardown.single	= rcutree_dead_cpu,
1564 	},
1565 	/*
1566 	 * On the tear-down path, timers_dead_cpu() must be invoked
1567 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1568 	 * otherwise a RCU stall occurs.
1569 	 */
1570 	[CPUHP_TIMERS_PREPARE] = {
1571 		.name			= "timers:prepare",
1572 		.startup.single		= timers_prepare_cpu,
1573 		.teardown.single	= timers_dead_cpu,
1574 	},
1575 	/* Kicks the plugged cpu into life */
1576 	[CPUHP_BRINGUP_CPU] = {
1577 		.name			= "cpu:bringup",
1578 		.startup.single		= bringup_cpu,
1579 		.teardown.single	= finish_cpu,
1580 		.cant_stop		= true,
1581 	},
1582 	/* Final state before CPU kills itself */
1583 	[CPUHP_AP_IDLE_DEAD] = {
1584 		.name			= "idle:dead",
1585 	},
1586 	/*
1587 	 * Last state before CPU enters the idle loop to die. Transient state
1588 	 * for synchronization.
1589 	 */
1590 	[CPUHP_AP_OFFLINE] = {
1591 		.name			= "ap:offline",
1592 		.cant_stop		= true,
1593 	},
1594 	/* First state is scheduler control. Interrupts are disabled */
1595 	[CPUHP_AP_SCHED_STARTING] = {
1596 		.name			= "sched:starting",
1597 		.startup.single		= sched_cpu_starting,
1598 		.teardown.single	= sched_cpu_dying,
1599 	},
1600 	[CPUHP_AP_RCUTREE_DYING] = {
1601 		.name			= "RCU/tree:dying",
1602 		.startup.single		= NULL,
1603 		.teardown.single	= rcutree_dying_cpu,
1604 	},
1605 	[CPUHP_AP_SMPCFD_DYING] = {
1606 		.name			= "smpcfd:dying",
1607 		.startup.single		= NULL,
1608 		.teardown.single	= smpcfd_dying_cpu,
1609 	},
1610 	/* Entry state on starting. Interrupts enabled from here on. Transient
1611 	 * state for synchronsization */
1612 	[CPUHP_AP_ONLINE] = {
1613 		.name			= "ap:online",
1614 	},
1615 	/*
1616 	 * Handled on control processor until the plugged processor manages
1617 	 * this itself.
1618 	 */
1619 	[CPUHP_TEARDOWN_CPU] = {
1620 		.name			= "cpu:teardown",
1621 		.startup.single		= NULL,
1622 		.teardown.single	= takedown_cpu,
1623 		.cant_stop		= true,
1624 	},
1625 
1626 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1627 		.name			= "sched:waitempty",
1628 		.startup.single		= NULL,
1629 		.teardown.single	= sched_cpu_wait_empty,
1630 	},
1631 
1632 	/* Handle smpboot threads park/unpark */
1633 	[CPUHP_AP_SMPBOOT_THREADS] = {
1634 		.name			= "smpboot/threads:online",
1635 		.startup.single		= smpboot_unpark_threads,
1636 		.teardown.single	= smpboot_park_threads,
1637 	},
1638 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1639 		.name			= "irq/affinity:online",
1640 		.startup.single		= irq_affinity_online_cpu,
1641 		.teardown.single	= NULL,
1642 	},
1643 	[CPUHP_AP_PERF_ONLINE] = {
1644 		.name			= "perf:online",
1645 		.startup.single		= perf_event_init_cpu,
1646 		.teardown.single	= perf_event_exit_cpu,
1647 	},
1648 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1649 		.name			= "lockup_detector:online",
1650 		.startup.single		= lockup_detector_online_cpu,
1651 		.teardown.single	= lockup_detector_offline_cpu,
1652 	},
1653 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1654 		.name			= "workqueue:online",
1655 		.startup.single		= workqueue_online_cpu,
1656 		.teardown.single	= workqueue_offline_cpu,
1657 	},
1658 	[CPUHP_AP_RCUTREE_ONLINE] = {
1659 		.name			= "RCU/tree:online",
1660 		.startup.single		= rcutree_online_cpu,
1661 		.teardown.single	= rcutree_offline_cpu,
1662 	},
1663 #endif
1664 	/*
1665 	 * The dynamically registered state space is here
1666 	 */
1667 
1668 #ifdef CONFIG_SMP
1669 	/* Last state is scheduler control setting the cpu active */
1670 	[CPUHP_AP_ACTIVE] = {
1671 		.name			= "sched:active",
1672 		.startup.single		= sched_cpu_activate,
1673 		.teardown.single	= sched_cpu_deactivate,
1674 	},
1675 #endif
1676 
1677 	/* CPU is fully up and running. */
1678 	[CPUHP_ONLINE] = {
1679 		.name			= "online",
1680 		.startup.single		= NULL,
1681 		.teardown.single	= NULL,
1682 	},
1683 };
1684 
1685 /* Sanity check for callbacks */
1686 static int cpuhp_cb_check(enum cpuhp_state state)
1687 {
1688 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1689 		return -EINVAL;
1690 	return 0;
1691 }
1692 
1693 /*
1694  * Returns a free for dynamic slot assignment of the Online state. The states
1695  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1696  * by having no name assigned.
1697  */
1698 static int cpuhp_reserve_state(enum cpuhp_state state)
1699 {
1700 	enum cpuhp_state i, end;
1701 	struct cpuhp_step *step;
1702 
1703 	switch (state) {
1704 	case CPUHP_AP_ONLINE_DYN:
1705 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1706 		end = CPUHP_AP_ONLINE_DYN_END;
1707 		break;
1708 	case CPUHP_BP_PREPARE_DYN:
1709 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1710 		end = CPUHP_BP_PREPARE_DYN_END;
1711 		break;
1712 	default:
1713 		return -EINVAL;
1714 	}
1715 
1716 	for (i = state; i <= end; i++, step++) {
1717 		if (!step->name)
1718 			return i;
1719 	}
1720 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1721 	return -ENOSPC;
1722 }
1723 
1724 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1725 				 int (*startup)(unsigned int cpu),
1726 				 int (*teardown)(unsigned int cpu),
1727 				 bool multi_instance)
1728 {
1729 	/* (Un)Install the callbacks for further cpu hotplug operations */
1730 	struct cpuhp_step *sp;
1731 	int ret = 0;
1732 
1733 	/*
1734 	 * If name is NULL, then the state gets removed.
1735 	 *
1736 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1737 	 * the first allocation from these dynamic ranges, so the removal
1738 	 * would trigger a new allocation and clear the wrong (already
1739 	 * empty) state, leaving the callbacks of the to be cleared state
1740 	 * dangling, which causes wreckage on the next hotplug operation.
1741 	 */
1742 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1743 		     state == CPUHP_BP_PREPARE_DYN)) {
1744 		ret = cpuhp_reserve_state(state);
1745 		if (ret < 0)
1746 			return ret;
1747 		state = ret;
1748 	}
1749 	sp = cpuhp_get_step(state);
1750 	if (name && sp->name)
1751 		return -EBUSY;
1752 
1753 	sp->startup.single = startup;
1754 	sp->teardown.single = teardown;
1755 	sp->name = name;
1756 	sp->multi_instance = multi_instance;
1757 	INIT_HLIST_HEAD(&sp->list);
1758 	return ret;
1759 }
1760 
1761 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1762 {
1763 	return cpuhp_get_step(state)->teardown.single;
1764 }
1765 
1766 /*
1767  * Call the startup/teardown function for a step either on the AP or
1768  * on the current CPU.
1769  */
1770 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1771 			    struct hlist_node *node)
1772 {
1773 	struct cpuhp_step *sp = cpuhp_get_step(state);
1774 	int ret;
1775 
1776 	/*
1777 	 * If there's nothing to do, we done.
1778 	 * Relies on the union for multi_instance.
1779 	 */
1780 	if ((bringup && !sp->startup.single) ||
1781 	    (!bringup && !sp->teardown.single))
1782 		return 0;
1783 	/*
1784 	 * The non AP bound callbacks can fail on bringup. On teardown
1785 	 * e.g. module removal we crash for now.
1786 	 */
1787 #ifdef CONFIG_SMP
1788 	if (cpuhp_is_ap_state(state))
1789 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1790 	else
1791 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1792 #else
1793 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1794 #endif
1795 	BUG_ON(ret && !bringup);
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Called from __cpuhp_setup_state on a recoverable failure.
1801  *
1802  * Note: The teardown callbacks for rollback are not allowed to fail!
1803  */
1804 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1805 				   struct hlist_node *node)
1806 {
1807 	int cpu;
1808 
1809 	/* Roll back the already executed steps on the other cpus */
1810 	for_each_present_cpu(cpu) {
1811 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1812 		int cpustate = st->state;
1813 
1814 		if (cpu >= failedcpu)
1815 			break;
1816 
1817 		/* Did we invoke the startup call on that cpu ? */
1818 		if (cpustate >= state)
1819 			cpuhp_issue_call(cpu, state, false, node);
1820 	}
1821 }
1822 
1823 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1824 					  struct hlist_node *node,
1825 					  bool invoke)
1826 {
1827 	struct cpuhp_step *sp;
1828 	int cpu;
1829 	int ret;
1830 
1831 	lockdep_assert_cpus_held();
1832 
1833 	sp = cpuhp_get_step(state);
1834 	if (sp->multi_instance == false)
1835 		return -EINVAL;
1836 
1837 	mutex_lock(&cpuhp_state_mutex);
1838 
1839 	if (!invoke || !sp->startup.multi)
1840 		goto add_node;
1841 
1842 	/*
1843 	 * Try to call the startup callback for each present cpu
1844 	 * depending on the hotplug state of the cpu.
1845 	 */
1846 	for_each_present_cpu(cpu) {
1847 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1848 		int cpustate = st->state;
1849 
1850 		if (cpustate < state)
1851 			continue;
1852 
1853 		ret = cpuhp_issue_call(cpu, state, true, node);
1854 		if (ret) {
1855 			if (sp->teardown.multi)
1856 				cpuhp_rollback_install(cpu, state, node);
1857 			goto unlock;
1858 		}
1859 	}
1860 add_node:
1861 	ret = 0;
1862 	hlist_add_head(node, &sp->list);
1863 unlock:
1864 	mutex_unlock(&cpuhp_state_mutex);
1865 	return ret;
1866 }
1867 
1868 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1869 			       bool invoke)
1870 {
1871 	int ret;
1872 
1873 	cpus_read_lock();
1874 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1875 	cpus_read_unlock();
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1879 
1880 /**
1881  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1882  * @state:		The state to setup
1883  * @invoke:		If true, the startup function is invoked for cpus where
1884  *			cpu state >= @state
1885  * @startup:		startup callback function
1886  * @teardown:		teardown callback function
1887  * @multi_instance:	State is set up for multiple instances which get
1888  *			added afterwards.
1889  *
1890  * The caller needs to hold cpus read locked while calling this function.
1891  * Returns:
1892  *   On success:
1893  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1894  *      0 for all other states
1895  *   On failure: proper (negative) error code
1896  */
1897 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1898 				   const char *name, bool invoke,
1899 				   int (*startup)(unsigned int cpu),
1900 				   int (*teardown)(unsigned int cpu),
1901 				   bool multi_instance)
1902 {
1903 	int cpu, ret = 0;
1904 	bool dynstate;
1905 
1906 	lockdep_assert_cpus_held();
1907 
1908 	if (cpuhp_cb_check(state) || !name)
1909 		return -EINVAL;
1910 
1911 	mutex_lock(&cpuhp_state_mutex);
1912 
1913 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1914 				    multi_instance);
1915 
1916 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1917 	if (ret > 0 && dynstate) {
1918 		state = ret;
1919 		ret = 0;
1920 	}
1921 
1922 	if (ret || !invoke || !startup)
1923 		goto out;
1924 
1925 	/*
1926 	 * Try to call the startup callback for each present cpu
1927 	 * depending on the hotplug state of the cpu.
1928 	 */
1929 	for_each_present_cpu(cpu) {
1930 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1931 		int cpustate = st->state;
1932 
1933 		if (cpustate < state)
1934 			continue;
1935 
1936 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1937 		if (ret) {
1938 			if (teardown)
1939 				cpuhp_rollback_install(cpu, state, NULL);
1940 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1941 			goto out;
1942 		}
1943 	}
1944 out:
1945 	mutex_unlock(&cpuhp_state_mutex);
1946 	/*
1947 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1948 	 * dynamically allocated state in case of success.
1949 	 */
1950 	if (!ret && dynstate)
1951 		return state;
1952 	return ret;
1953 }
1954 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1955 
1956 int __cpuhp_setup_state(enum cpuhp_state state,
1957 			const char *name, bool invoke,
1958 			int (*startup)(unsigned int cpu),
1959 			int (*teardown)(unsigned int cpu),
1960 			bool multi_instance)
1961 {
1962 	int ret;
1963 
1964 	cpus_read_lock();
1965 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1966 					     teardown, multi_instance);
1967 	cpus_read_unlock();
1968 	return ret;
1969 }
1970 EXPORT_SYMBOL(__cpuhp_setup_state);
1971 
1972 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1973 				  struct hlist_node *node, bool invoke)
1974 {
1975 	struct cpuhp_step *sp = cpuhp_get_step(state);
1976 	int cpu;
1977 
1978 	BUG_ON(cpuhp_cb_check(state));
1979 
1980 	if (!sp->multi_instance)
1981 		return -EINVAL;
1982 
1983 	cpus_read_lock();
1984 	mutex_lock(&cpuhp_state_mutex);
1985 
1986 	if (!invoke || !cpuhp_get_teardown_cb(state))
1987 		goto remove;
1988 	/*
1989 	 * Call the teardown callback for each present cpu depending
1990 	 * on the hotplug state of the cpu. This function is not
1991 	 * allowed to fail currently!
1992 	 */
1993 	for_each_present_cpu(cpu) {
1994 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1995 		int cpustate = st->state;
1996 
1997 		if (cpustate >= state)
1998 			cpuhp_issue_call(cpu, state, false, node);
1999 	}
2000 
2001 remove:
2002 	hlist_del(node);
2003 	mutex_unlock(&cpuhp_state_mutex);
2004 	cpus_read_unlock();
2005 
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2009 
2010 /**
2011  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2012  * @state:	The state to remove
2013  * @invoke:	If true, the teardown function is invoked for cpus where
2014  *		cpu state >= @state
2015  *
2016  * The caller needs to hold cpus read locked while calling this function.
2017  * The teardown callback is currently not allowed to fail. Think
2018  * about module removal!
2019  */
2020 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2021 {
2022 	struct cpuhp_step *sp = cpuhp_get_step(state);
2023 	int cpu;
2024 
2025 	BUG_ON(cpuhp_cb_check(state));
2026 
2027 	lockdep_assert_cpus_held();
2028 
2029 	mutex_lock(&cpuhp_state_mutex);
2030 	if (sp->multi_instance) {
2031 		WARN(!hlist_empty(&sp->list),
2032 		     "Error: Removing state %d which has instances left.\n",
2033 		     state);
2034 		goto remove;
2035 	}
2036 
2037 	if (!invoke || !cpuhp_get_teardown_cb(state))
2038 		goto remove;
2039 
2040 	/*
2041 	 * Call the teardown callback for each present cpu depending
2042 	 * on the hotplug state of the cpu. This function is not
2043 	 * allowed to fail currently!
2044 	 */
2045 	for_each_present_cpu(cpu) {
2046 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2047 		int cpustate = st->state;
2048 
2049 		if (cpustate >= state)
2050 			cpuhp_issue_call(cpu, state, false, NULL);
2051 	}
2052 remove:
2053 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2054 	mutex_unlock(&cpuhp_state_mutex);
2055 }
2056 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2057 
2058 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2059 {
2060 	cpus_read_lock();
2061 	__cpuhp_remove_state_cpuslocked(state, invoke);
2062 	cpus_read_unlock();
2063 }
2064 EXPORT_SYMBOL(__cpuhp_remove_state);
2065 
2066 #ifdef CONFIG_HOTPLUG_SMT
2067 static void cpuhp_offline_cpu_device(unsigned int cpu)
2068 {
2069 	struct device *dev = get_cpu_device(cpu);
2070 
2071 	dev->offline = true;
2072 	/* Tell user space about the state change */
2073 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2074 }
2075 
2076 static void cpuhp_online_cpu_device(unsigned int cpu)
2077 {
2078 	struct device *dev = get_cpu_device(cpu);
2079 
2080 	dev->offline = false;
2081 	/* Tell user space about the state change */
2082 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2083 }
2084 
2085 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2086 {
2087 	int cpu, ret = 0;
2088 
2089 	cpu_maps_update_begin();
2090 	for_each_online_cpu(cpu) {
2091 		if (topology_is_primary_thread(cpu))
2092 			continue;
2093 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2094 		if (ret)
2095 			break;
2096 		/*
2097 		 * As this needs to hold the cpu maps lock it's impossible
2098 		 * to call device_offline() because that ends up calling
2099 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2100 		 * needs to be held as this might race against in kernel
2101 		 * abusers of the hotplug machinery (thermal management).
2102 		 *
2103 		 * So nothing would update device:offline state. That would
2104 		 * leave the sysfs entry stale and prevent onlining after
2105 		 * smt control has been changed to 'off' again. This is
2106 		 * called under the sysfs hotplug lock, so it is properly
2107 		 * serialized against the regular offline usage.
2108 		 */
2109 		cpuhp_offline_cpu_device(cpu);
2110 	}
2111 	if (!ret)
2112 		cpu_smt_control = ctrlval;
2113 	cpu_maps_update_done();
2114 	return ret;
2115 }
2116 
2117 int cpuhp_smt_enable(void)
2118 {
2119 	int cpu, ret = 0;
2120 
2121 	cpu_maps_update_begin();
2122 	cpu_smt_control = CPU_SMT_ENABLED;
2123 	for_each_present_cpu(cpu) {
2124 		/* Skip online CPUs and CPUs on offline nodes */
2125 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2126 			continue;
2127 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2128 		if (ret)
2129 			break;
2130 		/* See comment in cpuhp_smt_disable() */
2131 		cpuhp_online_cpu_device(cpu);
2132 	}
2133 	cpu_maps_update_done();
2134 	return ret;
2135 }
2136 #endif
2137 
2138 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2139 static ssize_t show_cpuhp_state(struct device *dev,
2140 				struct device_attribute *attr, char *buf)
2141 {
2142 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2143 
2144 	return sprintf(buf, "%d\n", st->state);
2145 }
2146 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2147 
2148 static ssize_t write_cpuhp_target(struct device *dev,
2149 				  struct device_attribute *attr,
2150 				  const char *buf, size_t count)
2151 {
2152 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2153 	struct cpuhp_step *sp;
2154 	int target, ret;
2155 
2156 	ret = kstrtoint(buf, 10, &target);
2157 	if (ret)
2158 		return ret;
2159 
2160 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2161 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2162 		return -EINVAL;
2163 #else
2164 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2165 		return -EINVAL;
2166 #endif
2167 
2168 	ret = lock_device_hotplug_sysfs();
2169 	if (ret)
2170 		return ret;
2171 
2172 	mutex_lock(&cpuhp_state_mutex);
2173 	sp = cpuhp_get_step(target);
2174 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2175 	mutex_unlock(&cpuhp_state_mutex);
2176 	if (ret)
2177 		goto out;
2178 
2179 	if (st->state < target)
2180 		ret = cpu_up(dev->id, target);
2181 	else
2182 		ret = cpu_down(dev->id, target);
2183 out:
2184 	unlock_device_hotplug();
2185 	return ret ? ret : count;
2186 }
2187 
2188 static ssize_t show_cpuhp_target(struct device *dev,
2189 				 struct device_attribute *attr, char *buf)
2190 {
2191 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2192 
2193 	return sprintf(buf, "%d\n", st->target);
2194 }
2195 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2196 
2197 
2198 static ssize_t write_cpuhp_fail(struct device *dev,
2199 				struct device_attribute *attr,
2200 				const char *buf, size_t count)
2201 {
2202 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2203 	struct cpuhp_step *sp;
2204 	int fail, ret;
2205 
2206 	ret = kstrtoint(buf, 10, &fail);
2207 	if (ret)
2208 		return ret;
2209 
2210 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2211 		return -EINVAL;
2212 
2213 	/*
2214 	 * Cannot fail STARTING/DYING callbacks.
2215 	 */
2216 	if (cpuhp_is_atomic_state(fail))
2217 		return -EINVAL;
2218 
2219 	/*
2220 	 * Cannot fail anything that doesn't have callbacks.
2221 	 */
2222 	mutex_lock(&cpuhp_state_mutex);
2223 	sp = cpuhp_get_step(fail);
2224 	if (!sp->startup.single && !sp->teardown.single)
2225 		ret = -EINVAL;
2226 	mutex_unlock(&cpuhp_state_mutex);
2227 	if (ret)
2228 		return ret;
2229 
2230 	st->fail = fail;
2231 
2232 	return count;
2233 }
2234 
2235 static ssize_t show_cpuhp_fail(struct device *dev,
2236 			       struct device_attribute *attr, char *buf)
2237 {
2238 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239 
2240 	return sprintf(buf, "%d\n", st->fail);
2241 }
2242 
2243 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2244 
2245 static struct attribute *cpuhp_cpu_attrs[] = {
2246 	&dev_attr_state.attr,
2247 	&dev_attr_target.attr,
2248 	&dev_attr_fail.attr,
2249 	NULL
2250 };
2251 
2252 static const struct attribute_group cpuhp_cpu_attr_group = {
2253 	.attrs = cpuhp_cpu_attrs,
2254 	.name = "hotplug",
2255 	NULL
2256 };
2257 
2258 static ssize_t show_cpuhp_states(struct device *dev,
2259 				 struct device_attribute *attr, char *buf)
2260 {
2261 	ssize_t cur, res = 0;
2262 	int i;
2263 
2264 	mutex_lock(&cpuhp_state_mutex);
2265 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2266 		struct cpuhp_step *sp = cpuhp_get_step(i);
2267 
2268 		if (sp->name) {
2269 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2270 			buf += cur;
2271 			res += cur;
2272 		}
2273 	}
2274 	mutex_unlock(&cpuhp_state_mutex);
2275 	return res;
2276 }
2277 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2278 
2279 static struct attribute *cpuhp_cpu_root_attrs[] = {
2280 	&dev_attr_states.attr,
2281 	NULL
2282 };
2283 
2284 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2285 	.attrs = cpuhp_cpu_root_attrs,
2286 	.name = "hotplug",
2287 	NULL
2288 };
2289 
2290 #ifdef CONFIG_HOTPLUG_SMT
2291 
2292 static ssize_t
2293 __store_smt_control(struct device *dev, struct device_attribute *attr,
2294 		    const char *buf, size_t count)
2295 {
2296 	int ctrlval, ret;
2297 
2298 	if (sysfs_streq(buf, "on"))
2299 		ctrlval = CPU_SMT_ENABLED;
2300 	else if (sysfs_streq(buf, "off"))
2301 		ctrlval = CPU_SMT_DISABLED;
2302 	else if (sysfs_streq(buf, "forceoff"))
2303 		ctrlval = CPU_SMT_FORCE_DISABLED;
2304 	else
2305 		return -EINVAL;
2306 
2307 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2308 		return -EPERM;
2309 
2310 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2311 		return -ENODEV;
2312 
2313 	ret = lock_device_hotplug_sysfs();
2314 	if (ret)
2315 		return ret;
2316 
2317 	if (ctrlval != cpu_smt_control) {
2318 		switch (ctrlval) {
2319 		case CPU_SMT_ENABLED:
2320 			ret = cpuhp_smt_enable();
2321 			break;
2322 		case CPU_SMT_DISABLED:
2323 		case CPU_SMT_FORCE_DISABLED:
2324 			ret = cpuhp_smt_disable(ctrlval);
2325 			break;
2326 		}
2327 	}
2328 
2329 	unlock_device_hotplug();
2330 	return ret ? ret : count;
2331 }
2332 
2333 #else /* !CONFIG_HOTPLUG_SMT */
2334 static ssize_t
2335 __store_smt_control(struct device *dev, struct device_attribute *attr,
2336 		    const char *buf, size_t count)
2337 {
2338 	return -ENODEV;
2339 }
2340 #endif /* CONFIG_HOTPLUG_SMT */
2341 
2342 static const char *smt_states[] = {
2343 	[CPU_SMT_ENABLED]		= "on",
2344 	[CPU_SMT_DISABLED]		= "off",
2345 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2346 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2347 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2348 };
2349 
2350 static ssize_t
2351 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2352 {
2353 	const char *state = smt_states[cpu_smt_control];
2354 
2355 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2356 }
2357 
2358 static ssize_t
2359 store_smt_control(struct device *dev, struct device_attribute *attr,
2360 		  const char *buf, size_t count)
2361 {
2362 	return __store_smt_control(dev, attr, buf, count);
2363 }
2364 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2365 
2366 static ssize_t
2367 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2368 {
2369 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2370 }
2371 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2372 
2373 static struct attribute *cpuhp_smt_attrs[] = {
2374 	&dev_attr_control.attr,
2375 	&dev_attr_active.attr,
2376 	NULL
2377 };
2378 
2379 static const struct attribute_group cpuhp_smt_attr_group = {
2380 	.attrs = cpuhp_smt_attrs,
2381 	.name = "smt",
2382 	NULL
2383 };
2384 
2385 static int __init cpu_smt_sysfs_init(void)
2386 {
2387 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2388 				  &cpuhp_smt_attr_group);
2389 }
2390 
2391 static int __init cpuhp_sysfs_init(void)
2392 {
2393 	int cpu, ret;
2394 
2395 	ret = cpu_smt_sysfs_init();
2396 	if (ret)
2397 		return ret;
2398 
2399 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2400 				 &cpuhp_cpu_root_attr_group);
2401 	if (ret)
2402 		return ret;
2403 
2404 	for_each_possible_cpu(cpu) {
2405 		struct device *dev = get_cpu_device(cpu);
2406 
2407 		if (!dev)
2408 			continue;
2409 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2410 		if (ret)
2411 			return ret;
2412 	}
2413 	return 0;
2414 }
2415 device_initcall(cpuhp_sysfs_init);
2416 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2417 
2418 /*
2419  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2420  * represents all NR_CPUS bits binary values of 1<<nr.
2421  *
2422  * It is used by cpumask_of() to get a constant address to a CPU
2423  * mask value that has a single bit set only.
2424  */
2425 
2426 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2427 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2428 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2429 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2430 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2431 
2432 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2433 
2434 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2435 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2436 #if BITS_PER_LONG > 32
2437 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2438 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2439 #endif
2440 };
2441 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2442 
2443 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2444 EXPORT_SYMBOL(cpu_all_bits);
2445 
2446 #ifdef CONFIG_INIT_ALL_POSSIBLE
2447 struct cpumask __cpu_possible_mask __read_mostly
2448 	= {CPU_BITS_ALL};
2449 #else
2450 struct cpumask __cpu_possible_mask __read_mostly;
2451 #endif
2452 EXPORT_SYMBOL(__cpu_possible_mask);
2453 
2454 struct cpumask __cpu_online_mask __read_mostly;
2455 EXPORT_SYMBOL(__cpu_online_mask);
2456 
2457 struct cpumask __cpu_present_mask __read_mostly;
2458 EXPORT_SYMBOL(__cpu_present_mask);
2459 
2460 struct cpumask __cpu_active_mask __read_mostly;
2461 EXPORT_SYMBOL(__cpu_active_mask);
2462 
2463 atomic_t __num_online_cpus __read_mostly;
2464 EXPORT_SYMBOL(__num_online_cpus);
2465 
2466 void init_cpu_present(const struct cpumask *src)
2467 {
2468 	cpumask_copy(&__cpu_present_mask, src);
2469 }
2470 
2471 void init_cpu_possible(const struct cpumask *src)
2472 {
2473 	cpumask_copy(&__cpu_possible_mask, src);
2474 }
2475 
2476 void init_cpu_online(const struct cpumask *src)
2477 {
2478 	cpumask_copy(&__cpu_online_mask, src);
2479 }
2480 
2481 void set_cpu_online(unsigned int cpu, bool online)
2482 {
2483 	/*
2484 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2485 	 * function by the reboot and kexec code which invoke it from
2486 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2487 	 * regular CPU hotplug is properly serialized.
2488 	 *
2489 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2490 	 * does not protect readers which are not serialized against
2491 	 * concurrent hotplug operations.
2492 	 */
2493 	if (online) {
2494 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2495 			atomic_inc(&__num_online_cpus);
2496 	} else {
2497 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2498 			atomic_dec(&__num_online_cpus);
2499 	}
2500 }
2501 
2502 /*
2503  * Activate the first processor.
2504  */
2505 void __init boot_cpu_init(void)
2506 {
2507 	int cpu = smp_processor_id();
2508 
2509 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2510 	set_cpu_online(cpu, true);
2511 	set_cpu_active(cpu, true);
2512 	set_cpu_present(cpu, true);
2513 	set_cpu_possible(cpu, true);
2514 
2515 #ifdef CONFIG_SMP
2516 	__boot_cpu_id = cpu;
2517 #endif
2518 }
2519 
2520 /*
2521  * Must be called _AFTER_ setting up the per_cpu areas
2522  */
2523 void __init boot_cpu_hotplug_init(void)
2524 {
2525 #ifdef CONFIG_SMP
2526 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2527 #endif
2528 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2529 }
2530 
2531 /*
2532  * These are used for a global "mitigations=" cmdline option for toggling
2533  * optional CPU mitigations.
2534  */
2535 enum cpu_mitigations {
2536 	CPU_MITIGATIONS_OFF,
2537 	CPU_MITIGATIONS_AUTO,
2538 	CPU_MITIGATIONS_AUTO_NOSMT,
2539 };
2540 
2541 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2542 	CPU_MITIGATIONS_AUTO;
2543 
2544 static int __init mitigations_parse_cmdline(char *arg)
2545 {
2546 	if (!strcmp(arg, "off"))
2547 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2548 	else if (!strcmp(arg, "auto"))
2549 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2550 	else if (!strcmp(arg, "auto,nosmt"))
2551 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2552 	else
2553 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2554 			arg);
2555 
2556 	return 0;
2557 }
2558 early_param("mitigations", mitigations_parse_cmdline);
2559 
2560 /* mitigations=off */
2561 bool cpu_mitigations_off(void)
2562 {
2563 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2564 }
2565 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2566 
2567 /* mitigations=auto,nosmt */
2568 bool cpu_mitigations_auto_nosmt(void)
2569 {
2570 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2571 }
2572 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2573