1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 void cpus_read_lock(void) 487 { 488 percpu_down_read(&cpu_hotplug_lock); 489 } 490 EXPORT_SYMBOL_GPL(cpus_read_lock); 491 492 int cpus_read_trylock(void) 493 { 494 return percpu_down_read_trylock(&cpu_hotplug_lock); 495 } 496 EXPORT_SYMBOL_GPL(cpus_read_trylock); 497 498 void cpus_read_unlock(void) 499 { 500 percpu_up_read(&cpu_hotplug_lock); 501 } 502 EXPORT_SYMBOL_GPL(cpus_read_unlock); 503 504 void cpus_write_lock(void) 505 { 506 percpu_down_write(&cpu_hotplug_lock); 507 } 508 509 void cpus_write_unlock(void) 510 { 511 percpu_up_write(&cpu_hotplug_lock); 512 } 513 514 void lockdep_assert_cpus_held(void) 515 { 516 /* 517 * We can't have hotplug operations before userspace starts running, 518 * and some init codepaths will knowingly not take the hotplug lock. 519 * This is all valid, so mute lockdep until it makes sense to report 520 * unheld locks. 521 */ 522 if (system_state < SYSTEM_RUNNING) 523 return; 524 525 percpu_rwsem_assert_held(&cpu_hotplug_lock); 526 } 527 528 #ifdef CONFIG_LOCKDEP 529 int lockdep_is_cpus_held(void) 530 { 531 return percpu_rwsem_is_held(&cpu_hotplug_lock); 532 } 533 #endif 534 535 static void lockdep_acquire_cpus_lock(void) 536 { 537 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 538 } 539 540 static void lockdep_release_cpus_lock(void) 541 { 542 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 543 } 544 545 /* 546 * Wait for currently running CPU hotplug operations to complete (if any) and 547 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 548 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 549 * hotplug path before performing hotplug operations. So acquiring that lock 550 * guarantees mutual exclusion from any currently running hotplug operations. 551 */ 552 void cpu_hotplug_disable(void) 553 { 554 cpu_maps_update_begin(); 555 cpu_hotplug_disabled++; 556 cpu_maps_update_done(); 557 } 558 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 559 560 static void __cpu_hotplug_enable(void) 561 { 562 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 563 return; 564 cpu_hotplug_disabled--; 565 } 566 567 void cpu_hotplug_enable(void) 568 { 569 cpu_maps_update_begin(); 570 __cpu_hotplug_enable(); 571 cpu_maps_update_done(); 572 } 573 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 574 575 #else 576 577 static void lockdep_acquire_cpus_lock(void) 578 { 579 } 580 581 static void lockdep_release_cpus_lock(void) 582 { 583 } 584 585 #endif /* CONFIG_HOTPLUG_CPU */ 586 587 /* 588 * Architectures that need SMT-specific errata handling during SMT hotplug 589 * should override this. 590 */ 591 void __weak arch_smt_update(void) { } 592 593 #ifdef CONFIG_HOTPLUG_SMT 594 595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 596 static unsigned int cpu_smt_max_threads __ro_after_init; 597 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 598 599 void __init cpu_smt_disable(bool force) 600 { 601 if (!cpu_smt_possible()) 602 return; 603 604 if (force) { 605 pr_info("SMT: Force disabled\n"); 606 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 607 } else { 608 pr_info("SMT: disabled\n"); 609 cpu_smt_control = CPU_SMT_DISABLED; 610 } 611 cpu_smt_num_threads = 1; 612 } 613 614 /* 615 * The decision whether SMT is supported can only be done after the full 616 * CPU identification. Called from architecture code. 617 */ 618 void __init cpu_smt_set_num_threads(unsigned int num_threads, 619 unsigned int max_threads) 620 { 621 WARN_ON(!num_threads || (num_threads > max_threads)); 622 623 if (max_threads == 1) 624 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 625 626 cpu_smt_max_threads = max_threads; 627 628 /* 629 * If SMT has been disabled via the kernel command line or SMT is 630 * not supported, set cpu_smt_num_threads to 1 for consistency. 631 * If enabled, take the architecture requested number of threads 632 * to bring up into account. 633 */ 634 if (cpu_smt_control != CPU_SMT_ENABLED) 635 cpu_smt_num_threads = 1; 636 else if (num_threads < cpu_smt_num_threads) 637 cpu_smt_num_threads = num_threads; 638 } 639 640 static int __init smt_cmdline_disable(char *str) 641 { 642 cpu_smt_disable(str && !strcmp(str, "force")); 643 return 0; 644 } 645 early_param("nosmt", smt_cmdline_disable); 646 647 /* 648 * For Archicture supporting partial SMT states check if the thread is allowed. 649 * Otherwise this has already been checked through cpu_smt_max_threads when 650 * setting the SMT level. 651 */ 652 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 653 { 654 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 655 return topology_smt_thread_allowed(cpu); 656 #else 657 return true; 658 #endif 659 } 660 661 static inline bool cpu_bootable(unsigned int cpu) 662 { 663 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 664 return true; 665 666 /* All CPUs are bootable if controls are not configured */ 667 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 668 return true; 669 670 /* All CPUs are bootable if CPU is not SMT capable */ 671 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 672 return true; 673 674 if (topology_is_primary_thread(cpu)) 675 return true; 676 677 /* 678 * On x86 it's required to boot all logical CPUs at least once so 679 * that the init code can get a chance to set CR4.MCE on each 680 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 681 * core will shutdown the machine. 682 */ 683 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 684 } 685 686 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 687 bool cpu_smt_possible(void) 688 { 689 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 690 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 691 } 692 EXPORT_SYMBOL_GPL(cpu_smt_possible); 693 694 #else 695 static inline bool cpu_bootable(unsigned int cpu) { return true; } 696 #endif 697 698 static inline enum cpuhp_state 699 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 700 { 701 enum cpuhp_state prev_state = st->state; 702 bool bringup = st->state < target; 703 704 st->rollback = false; 705 st->last = NULL; 706 707 st->target = target; 708 st->single = false; 709 st->bringup = bringup; 710 if (cpu_dying(cpu) != !bringup) 711 set_cpu_dying(cpu, !bringup); 712 713 return prev_state; 714 } 715 716 static inline void 717 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 718 enum cpuhp_state prev_state) 719 { 720 bool bringup = !st->bringup; 721 722 st->target = prev_state; 723 724 /* 725 * Already rolling back. No need invert the bringup value or to change 726 * the current state. 727 */ 728 if (st->rollback) 729 return; 730 731 st->rollback = true; 732 733 /* 734 * If we have st->last we need to undo partial multi_instance of this 735 * state first. Otherwise start undo at the previous state. 736 */ 737 if (!st->last) { 738 if (st->bringup) 739 st->state--; 740 else 741 st->state++; 742 } 743 744 st->bringup = bringup; 745 if (cpu_dying(cpu) != !bringup) 746 set_cpu_dying(cpu, !bringup); 747 } 748 749 /* Regular hotplug invocation of the AP hotplug thread */ 750 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 751 { 752 if (!st->single && st->state == st->target) 753 return; 754 755 st->result = 0; 756 /* 757 * Make sure the above stores are visible before should_run becomes 758 * true. Paired with the mb() above in cpuhp_thread_fun() 759 */ 760 smp_mb(); 761 st->should_run = true; 762 wake_up_process(st->thread); 763 wait_for_ap_thread(st, st->bringup); 764 } 765 766 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 767 enum cpuhp_state target) 768 { 769 enum cpuhp_state prev_state; 770 int ret; 771 772 prev_state = cpuhp_set_state(cpu, st, target); 773 __cpuhp_kick_ap(st); 774 if ((ret = st->result)) { 775 cpuhp_reset_state(cpu, st, prev_state); 776 __cpuhp_kick_ap(st); 777 } 778 779 return ret; 780 } 781 782 static int bringup_wait_for_ap_online(unsigned int cpu) 783 { 784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 785 786 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 787 wait_for_ap_thread(st, true); 788 if (WARN_ON_ONCE((!cpu_online(cpu)))) 789 return -ECANCELED; 790 791 /* Unpark the hotplug thread of the target cpu */ 792 kthread_unpark(st->thread); 793 794 /* 795 * SMT soft disabling on X86 requires to bring the CPU out of the 796 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 797 * CPU marked itself as booted_once in notify_cpu_starting() so the 798 * cpu_bootable() check will now return false if this is not the 799 * primary sibling. 800 */ 801 if (!cpu_bootable(cpu)) 802 return -ECANCELED; 803 return 0; 804 } 805 806 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 807 static int cpuhp_kick_ap_alive(unsigned int cpu) 808 { 809 if (!cpuhp_can_boot_ap(cpu)) 810 return -EAGAIN; 811 812 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 813 } 814 815 static int cpuhp_bringup_ap(unsigned int cpu) 816 { 817 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 818 int ret; 819 820 /* 821 * Some architectures have to walk the irq descriptors to 822 * setup the vector space for the cpu which comes online. 823 * Prevent irq alloc/free across the bringup. 824 */ 825 irq_lock_sparse(); 826 827 ret = cpuhp_bp_sync_alive(cpu); 828 if (ret) 829 goto out_unlock; 830 831 ret = bringup_wait_for_ap_online(cpu); 832 if (ret) 833 goto out_unlock; 834 835 irq_unlock_sparse(); 836 837 if (st->target <= CPUHP_AP_ONLINE_IDLE) 838 return 0; 839 840 return cpuhp_kick_ap(cpu, st, st->target); 841 842 out_unlock: 843 irq_unlock_sparse(); 844 return ret; 845 } 846 #else 847 static int bringup_cpu(unsigned int cpu) 848 { 849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 850 struct task_struct *idle = idle_thread_get(cpu); 851 int ret; 852 853 if (!cpuhp_can_boot_ap(cpu)) 854 return -EAGAIN; 855 856 /* 857 * Some architectures have to walk the irq descriptors to 858 * setup the vector space for the cpu which comes online. 859 * 860 * Prevent irq alloc/free across the bringup by acquiring the 861 * sparse irq lock. Hold it until the upcoming CPU completes the 862 * startup in cpuhp_online_idle() which allows to avoid 863 * intermediate synchronization points in the architecture code. 864 */ 865 irq_lock_sparse(); 866 867 ret = __cpu_up(cpu, idle); 868 if (ret) 869 goto out_unlock; 870 871 ret = cpuhp_bp_sync_alive(cpu); 872 if (ret) 873 goto out_unlock; 874 875 ret = bringup_wait_for_ap_online(cpu); 876 if (ret) 877 goto out_unlock; 878 879 irq_unlock_sparse(); 880 881 if (st->target <= CPUHP_AP_ONLINE_IDLE) 882 return 0; 883 884 return cpuhp_kick_ap(cpu, st, st->target); 885 886 out_unlock: 887 irq_unlock_sparse(); 888 return ret; 889 } 890 #endif 891 892 static int finish_cpu(unsigned int cpu) 893 { 894 struct task_struct *idle = idle_thread_get(cpu); 895 struct mm_struct *mm = idle->active_mm; 896 897 /* 898 * idle_task_exit() will have switched to &init_mm, now 899 * clean up any remaining active_mm state. 900 */ 901 if (mm != &init_mm) 902 idle->active_mm = &init_mm; 903 mmdrop_lazy_tlb(mm); 904 return 0; 905 } 906 907 /* 908 * Hotplug state machine related functions 909 */ 910 911 /* 912 * Get the next state to run. Empty ones will be skipped. Returns true if a 913 * state must be run. 914 * 915 * st->state will be modified ahead of time, to match state_to_run, as if it 916 * has already ran. 917 */ 918 static bool cpuhp_next_state(bool bringup, 919 enum cpuhp_state *state_to_run, 920 struct cpuhp_cpu_state *st, 921 enum cpuhp_state target) 922 { 923 do { 924 if (bringup) { 925 if (st->state >= target) 926 return false; 927 928 *state_to_run = ++st->state; 929 } else { 930 if (st->state <= target) 931 return false; 932 933 *state_to_run = st->state--; 934 } 935 936 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 937 break; 938 } while (true); 939 940 return true; 941 } 942 943 static int __cpuhp_invoke_callback_range(bool bringup, 944 unsigned int cpu, 945 struct cpuhp_cpu_state *st, 946 enum cpuhp_state target, 947 bool nofail) 948 { 949 enum cpuhp_state state; 950 int ret = 0; 951 952 while (cpuhp_next_state(bringup, &state, st, target)) { 953 int err; 954 955 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 956 if (!err) 957 continue; 958 959 if (nofail) { 960 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 961 cpu, bringup ? "UP" : "DOWN", 962 cpuhp_get_step(st->state)->name, 963 st->state, err); 964 ret = -1; 965 } else { 966 ret = err; 967 break; 968 } 969 } 970 971 return ret; 972 } 973 974 static inline int cpuhp_invoke_callback_range(bool bringup, 975 unsigned int cpu, 976 struct cpuhp_cpu_state *st, 977 enum cpuhp_state target) 978 { 979 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 980 } 981 982 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 983 unsigned int cpu, 984 struct cpuhp_cpu_state *st, 985 enum cpuhp_state target) 986 { 987 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 988 } 989 990 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 991 { 992 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 993 return true; 994 /* 995 * When CPU hotplug is disabled, then taking the CPU down is not 996 * possible because takedown_cpu() and the architecture and 997 * subsystem specific mechanisms are not available. So the CPU 998 * which would be completely unplugged again needs to stay around 999 * in the current state. 1000 */ 1001 return st->state <= CPUHP_BRINGUP_CPU; 1002 } 1003 1004 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1005 enum cpuhp_state target) 1006 { 1007 enum cpuhp_state prev_state = st->state; 1008 int ret = 0; 1009 1010 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1011 if (ret) { 1012 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1013 ret, cpu, cpuhp_get_step(st->state)->name, 1014 st->state); 1015 1016 cpuhp_reset_state(cpu, st, prev_state); 1017 if (can_rollback_cpu(st)) 1018 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1019 prev_state)); 1020 } 1021 return ret; 1022 } 1023 1024 /* 1025 * The cpu hotplug threads manage the bringup and teardown of the cpus 1026 */ 1027 static int cpuhp_should_run(unsigned int cpu) 1028 { 1029 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1030 1031 return st->should_run; 1032 } 1033 1034 /* 1035 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1036 * callbacks when a state gets [un]installed at runtime. 1037 * 1038 * Each invocation of this function by the smpboot thread does a single AP 1039 * state callback. 1040 * 1041 * It has 3 modes of operation: 1042 * - single: runs st->cb_state 1043 * - up: runs ++st->state, while st->state < st->target 1044 * - down: runs st->state--, while st->state > st->target 1045 * 1046 * When complete or on error, should_run is cleared and the completion is fired. 1047 */ 1048 static void cpuhp_thread_fun(unsigned int cpu) 1049 { 1050 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1051 bool bringup = st->bringup; 1052 enum cpuhp_state state; 1053 1054 if (WARN_ON_ONCE(!st->should_run)) 1055 return; 1056 1057 /* 1058 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1059 * that if we see ->should_run we also see the rest of the state. 1060 */ 1061 smp_mb(); 1062 1063 /* 1064 * The BP holds the hotplug lock, but we're now running on the AP, 1065 * ensure that anybody asserting the lock is held, will actually find 1066 * it so. 1067 */ 1068 lockdep_acquire_cpus_lock(); 1069 cpuhp_lock_acquire(bringup); 1070 1071 if (st->single) { 1072 state = st->cb_state; 1073 st->should_run = false; 1074 } else { 1075 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1076 if (!st->should_run) 1077 goto end; 1078 } 1079 1080 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1081 1082 if (cpuhp_is_atomic_state(state)) { 1083 local_irq_disable(); 1084 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1085 local_irq_enable(); 1086 1087 /* 1088 * STARTING/DYING must not fail! 1089 */ 1090 WARN_ON_ONCE(st->result); 1091 } else { 1092 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1093 } 1094 1095 if (st->result) { 1096 /* 1097 * If we fail on a rollback, we're up a creek without no 1098 * paddle, no way forward, no way back. We loose, thanks for 1099 * playing. 1100 */ 1101 WARN_ON_ONCE(st->rollback); 1102 st->should_run = false; 1103 } 1104 1105 end: 1106 cpuhp_lock_release(bringup); 1107 lockdep_release_cpus_lock(); 1108 1109 if (!st->should_run) 1110 complete_ap_thread(st, bringup); 1111 } 1112 1113 /* Invoke a single callback on a remote cpu */ 1114 static int 1115 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1116 struct hlist_node *node) 1117 { 1118 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1119 int ret; 1120 1121 if (!cpu_online(cpu)) 1122 return 0; 1123 1124 cpuhp_lock_acquire(false); 1125 cpuhp_lock_release(false); 1126 1127 cpuhp_lock_acquire(true); 1128 cpuhp_lock_release(true); 1129 1130 /* 1131 * If we are up and running, use the hotplug thread. For early calls 1132 * we invoke the thread function directly. 1133 */ 1134 if (!st->thread) 1135 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1136 1137 st->rollback = false; 1138 st->last = NULL; 1139 1140 st->node = node; 1141 st->bringup = bringup; 1142 st->cb_state = state; 1143 st->single = true; 1144 1145 __cpuhp_kick_ap(st); 1146 1147 /* 1148 * If we failed and did a partial, do a rollback. 1149 */ 1150 if ((ret = st->result) && st->last) { 1151 st->rollback = true; 1152 st->bringup = !bringup; 1153 1154 __cpuhp_kick_ap(st); 1155 } 1156 1157 /* 1158 * Clean up the leftovers so the next hotplug operation wont use stale 1159 * data. 1160 */ 1161 st->node = st->last = NULL; 1162 return ret; 1163 } 1164 1165 static int cpuhp_kick_ap_work(unsigned int cpu) 1166 { 1167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1168 enum cpuhp_state prev_state = st->state; 1169 int ret; 1170 1171 cpuhp_lock_acquire(false); 1172 cpuhp_lock_release(false); 1173 1174 cpuhp_lock_acquire(true); 1175 cpuhp_lock_release(true); 1176 1177 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1178 ret = cpuhp_kick_ap(cpu, st, st->target); 1179 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1180 1181 return ret; 1182 } 1183 1184 static struct smp_hotplug_thread cpuhp_threads = { 1185 .store = &cpuhp_state.thread, 1186 .thread_should_run = cpuhp_should_run, 1187 .thread_fn = cpuhp_thread_fun, 1188 .thread_comm = "cpuhp/%u", 1189 .selfparking = true, 1190 }; 1191 1192 static __init void cpuhp_init_state(void) 1193 { 1194 struct cpuhp_cpu_state *st; 1195 int cpu; 1196 1197 for_each_possible_cpu(cpu) { 1198 st = per_cpu_ptr(&cpuhp_state, cpu); 1199 init_completion(&st->done_up); 1200 init_completion(&st->done_down); 1201 } 1202 } 1203 1204 void __init cpuhp_threads_init(void) 1205 { 1206 cpuhp_init_state(); 1207 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1208 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1209 } 1210 1211 /* 1212 * 1213 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 1214 * protected region. 1215 * 1216 * The operation is still serialized against concurrent CPU hotplug via 1217 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 1218 * serialized against other hotplug related activity like adding or 1219 * removing of state callbacks and state instances, which invoke either the 1220 * startup or the teardown callback of the affected state. 1221 * 1222 * This is required for subsystems which are unfixable vs. CPU hotplug and 1223 * evade lock inversion problems by scheduling work which has to be 1224 * completed _before_ cpu_up()/_cpu_down() returns. 1225 * 1226 * Don't even think about adding anything to this for any new code or even 1227 * drivers. It's only purpose is to keep existing lock order trainwrecks 1228 * working. 1229 * 1230 * For cpu_down() there might be valid reasons to finish cleanups which are 1231 * not required to be done under cpu_hotplug_lock, but that's a different 1232 * story and would be not invoked via this. 1233 */ 1234 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 1235 { 1236 /* 1237 * cpusets delegate hotplug operations to a worker to "solve" the 1238 * lock order problems. Wait for the worker, but only if tasks are 1239 * _not_ frozen (suspend, hibernate) as that would wait forever. 1240 * 1241 * The wait is required because otherwise the hotplug operation 1242 * returns with inconsistent state, which could even be observed in 1243 * user space when a new CPU is brought up. The CPU plug uevent 1244 * would be delivered and user space reacting on it would fail to 1245 * move tasks to the newly plugged CPU up to the point where the 1246 * work has finished because up to that point the newly plugged CPU 1247 * is not assignable in cpusets/cgroups. On unplug that's not 1248 * necessarily a visible issue, but it is still inconsistent state, 1249 * which is the real problem which needs to be "fixed". This can't 1250 * prevent the transient state between scheduling the work and 1251 * returning from waiting for it. 1252 */ 1253 if (!tasks_frozen) 1254 cpuset_wait_for_hotplug(); 1255 } 1256 1257 #ifdef CONFIG_HOTPLUG_CPU 1258 #ifndef arch_clear_mm_cpumask_cpu 1259 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1260 #endif 1261 1262 /** 1263 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1264 * @cpu: a CPU id 1265 * 1266 * This function walks all processes, finds a valid mm struct for each one and 1267 * then clears a corresponding bit in mm's cpumask. While this all sounds 1268 * trivial, there are various non-obvious corner cases, which this function 1269 * tries to solve in a safe manner. 1270 * 1271 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1272 * be called only for an already offlined CPU. 1273 */ 1274 void clear_tasks_mm_cpumask(int cpu) 1275 { 1276 struct task_struct *p; 1277 1278 /* 1279 * This function is called after the cpu is taken down and marked 1280 * offline, so its not like new tasks will ever get this cpu set in 1281 * their mm mask. -- Peter Zijlstra 1282 * Thus, we may use rcu_read_lock() here, instead of grabbing 1283 * full-fledged tasklist_lock. 1284 */ 1285 WARN_ON(cpu_online(cpu)); 1286 rcu_read_lock(); 1287 for_each_process(p) { 1288 struct task_struct *t; 1289 1290 /* 1291 * Main thread might exit, but other threads may still have 1292 * a valid mm. Find one. 1293 */ 1294 t = find_lock_task_mm(p); 1295 if (!t) 1296 continue; 1297 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1298 task_unlock(t); 1299 } 1300 rcu_read_unlock(); 1301 } 1302 1303 /* Take this CPU down. */ 1304 static int take_cpu_down(void *_param) 1305 { 1306 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1307 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1308 int err, cpu = smp_processor_id(); 1309 1310 /* Ensure this CPU doesn't handle any more interrupts. */ 1311 err = __cpu_disable(); 1312 if (err < 0) 1313 return err; 1314 1315 /* 1316 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1317 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1318 */ 1319 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1320 1321 /* 1322 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1323 */ 1324 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1325 1326 /* Park the stopper thread */ 1327 stop_machine_park(cpu); 1328 return 0; 1329 } 1330 1331 static int takedown_cpu(unsigned int cpu) 1332 { 1333 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1334 int err; 1335 1336 /* Park the smpboot threads */ 1337 kthread_park(st->thread); 1338 1339 /* 1340 * Prevent irq alloc/free while the dying cpu reorganizes the 1341 * interrupt affinities. 1342 */ 1343 irq_lock_sparse(); 1344 1345 /* 1346 * So now all preempt/rcu users must observe !cpu_active(). 1347 */ 1348 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1349 if (err) { 1350 /* CPU refused to die */ 1351 irq_unlock_sparse(); 1352 /* Unpark the hotplug thread so we can rollback there */ 1353 kthread_unpark(st->thread); 1354 return err; 1355 } 1356 BUG_ON(cpu_online(cpu)); 1357 1358 /* 1359 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1360 * all runnable tasks from the CPU, there's only the idle task left now 1361 * that the migration thread is done doing the stop_machine thing. 1362 * 1363 * Wait for the stop thread to go away. 1364 */ 1365 wait_for_ap_thread(st, false); 1366 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1367 1368 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1369 irq_unlock_sparse(); 1370 1371 hotplug_cpu__broadcast_tick_pull(cpu); 1372 /* This actually kills the CPU. */ 1373 __cpu_die(cpu); 1374 1375 cpuhp_bp_sync_dead(cpu); 1376 1377 tick_cleanup_dead_cpu(cpu); 1378 1379 /* 1380 * Callbacks must be re-integrated right away to the RCU state machine. 1381 * Otherwise an RCU callback could block a further teardown function 1382 * waiting for its completion. 1383 */ 1384 rcutree_migrate_callbacks(cpu); 1385 1386 return 0; 1387 } 1388 1389 static void cpuhp_complete_idle_dead(void *arg) 1390 { 1391 struct cpuhp_cpu_state *st = arg; 1392 1393 complete_ap_thread(st, false); 1394 } 1395 1396 void cpuhp_report_idle_dead(void) 1397 { 1398 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1399 1400 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1401 tick_assert_timekeeping_handover(); 1402 rcutree_report_cpu_dead(); 1403 st->state = CPUHP_AP_IDLE_DEAD; 1404 /* 1405 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1406 * to an online cpu. 1407 */ 1408 smp_call_function_single(cpumask_first(cpu_online_mask), 1409 cpuhp_complete_idle_dead, st, 0); 1410 } 1411 1412 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1413 enum cpuhp_state target) 1414 { 1415 enum cpuhp_state prev_state = st->state; 1416 int ret = 0; 1417 1418 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1419 if (ret) { 1420 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1421 ret, cpu, cpuhp_get_step(st->state)->name, 1422 st->state); 1423 1424 cpuhp_reset_state(cpu, st, prev_state); 1425 1426 if (st->state < prev_state) 1427 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1428 prev_state)); 1429 } 1430 1431 return ret; 1432 } 1433 1434 /* Requires cpu_add_remove_lock to be held */ 1435 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1436 enum cpuhp_state target) 1437 { 1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1439 int prev_state, ret = 0; 1440 1441 if (num_online_cpus() == 1) 1442 return -EBUSY; 1443 1444 if (!cpu_present(cpu)) 1445 return -EINVAL; 1446 1447 cpus_write_lock(); 1448 1449 cpuhp_tasks_frozen = tasks_frozen; 1450 1451 prev_state = cpuhp_set_state(cpu, st, target); 1452 /* 1453 * If the current CPU state is in the range of the AP hotplug thread, 1454 * then we need to kick the thread. 1455 */ 1456 if (st->state > CPUHP_TEARDOWN_CPU) { 1457 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1458 ret = cpuhp_kick_ap_work(cpu); 1459 /* 1460 * The AP side has done the error rollback already. Just 1461 * return the error code.. 1462 */ 1463 if (ret) 1464 goto out; 1465 1466 /* 1467 * We might have stopped still in the range of the AP hotplug 1468 * thread. Nothing to do anymore. 1469 */ 1470 if (st->state > CPUHP_TEARDOWN_CPU) 1471 goto out; 1472 1473 st->target = target; 1474 } 1475 /* 1476 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1477 * to do the further cleanups. 1478 */ 1479 ret = cpuhp_down_callbacks(cpu, st, target); 1480 if (ret && st->state < prev_state) { 1481 if (st->state == CPUHP_TEARDOWN_CPU) { 1482 cpuhp_reset_state(cpu, st, prev_state); 1483 __cpuhp_kick_ap(st); 1484 } else { 1485 WARN(1, "DEAD callback error for CPU%d", cpu); 1486 } 1487 } 1488 1489 out: 1490 cpus_write_unlock(); 1491 /* 1492 * Do post unplug cleanup. This is still protected against 1493 * concurrent CPU hotplug via cpu_add_remove_lock. 1494 */ 1495 lockup_detector_cleanup(); 1496 arch_smt_update(); 1497 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1498 return ret; 1499 } 1500 1501 struct cpu_down_work { 1502 unsigned int cpu; 1503 enum cpuhp_state target; 1504 }; 1505 1506 static long __cpu_down_maps_locked(void *arg) 1507 { 1508 struct cpu_down_work *work = arg; 1509 1510 return _cpu_down(work->cpu, 0, work->target); 1511 } 1512 1513 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1514 { 1515 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1516 1517 /* 1518 * If the platform does not support hotplug, report it explicitly to 1519 * differentiate it from a transient offlining failure. 1520 */ 1521 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1522 return -EOPNOTSUPP; 1523 if (cpu_hotplug_disabled) 1524 return -EBUSY; 1525 1526 /* 1527 * Ensure that the control task does not run on the to be offlined 1528 * CPU to prevent a deadlock against cfs_b->period_timer. 1529 * Also keep at least one housekeeping cpu onlined to avoid generating 1530 * an empty sched_domain span. 1531 */ 1532 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1533 if (cpu != work.cpu) 1534 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1535 } 1536 return -EBUSY; 1537 } 1538 1539 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1540 { 1541 int err; 1542 1543 cpu_maps_update_begin(); 1544 err = cpu_down_maps_locked(cpu, target); 1545 cpu_maps_update_done(); 1546 return err; 1547 } 1548 1549 /** 1550 * cpu_device_down - Bring down a cpu device 1551 * @dev: Pointer to the cpu device to offline 1552 * 1553 * This function is meant to be used by device core cpu subsystem only. 1554 * 1555 * Other subsystems should use remove_cpu() instead. 1556 * 1557 * Return: %0 on success or a negative errno code 1558 */ 1559 int cpu_device_down(struct device *dev) 1560 { 1561 return cpu_down(dev->id, CPUHP_OFFLINE); 1562 } 1563 1564 int remove_cpu(unsigned int cpu) 1565 { 1566 int ret; 1567 1568 lock_device_hotplug(); 1569 ret = device_offline(get_cpu_device(cpu)); 1570 unlock_device_hotplug(); 1571 1572 return ret; 1573 } 1574 EXPORT_SYMBOL_GPL(remove_cpu); 1575 1576 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1577 { 1578 unsigned int cpu; 1579 int error; 1580 1581 cpu_maps_update_begin(); 1582 1583 /* 1584 * Make certain the cpu I'm about to reboot on is online. 1585 * 1586 * This is inline to what migrate_to_reboot_cpu() already do. 1587 */ 1588 if (!cpu_online(primary_cpu)) 1589 primary_cpu = cpumask_first(cpu_online_mask); 1590 1591 for_each_online_cpu(cpu) { 1592 if (cpu == primary_cpu) 1593 continue; 1594 1595 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1596 if (error) { 1597 pr_err("Failed to offline CPU%d - error=%d", 1598 cpu, error); 1599 break; 1600 } 1601 } 1602 1603 /* 1604 * Ensure all but the reboot CPU are offline. 1605 */ 1606 BUG_ON(num_online_cpus() > 1); 1607 1608 /* 1609 * Make sure the CPUs won't be enabled by someone else after this 1610 * point. Kexec will reboot to a new kernel shortly resetting 1611 * everything along the way. 1612 */ 1613 cpu_hotplug_disabled++; 1614 1615 cpu_maps_update_done(); 1616 } 1617 1618 #else 1619 #define takedown_cpu NULL 1620 #endif /*CONFIG_HOTPLUG_CPU*/ 1621 1622 /** 1623 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1624 * @cpu: cpu that just started 1625 * 1626 * It must be called by the arch code on the new cpu, before the new cpu 1627 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1628 */ 1629 void notify_cpu_starting(unsigned int cpu) 1630 { 1631 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1632 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1633 1634 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1635 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1636 1637 /* 1638 * STARTING must not fail! 1639 */ 1640 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1641 } 1642 1643 /* 1644 * Called from the idle task. Wake up the controlling task which brings the 1645 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1646 * online bringup to the hotplug thread. 1647 */ 1648 void cpuhp_online_idle(enum cpuhp_state state) 1649 { 1650 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1651 1652 /* Happens for the boot cpu */ 1653 if (state != CPUHP_AP_ONLINE_IDLE) 1654 return; 1655 1656 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1657 1658 /* 1659 * Unpark the stopper thread before we start the idle loop (and start 1660 * scheduling); this ensures the stopper task is always available. 1661 */ 1662 stop_machine_unpark(smp_processor_id()); 1663 1664 st->state = CPUHP_AP_ONLINE_IDLE; 1665 complete_ap_thread(st, true); 1666 } 1667 1668 /* Requires cpu_add_remove_lock to be held */ 1669 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1670 { 1671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1672 struct task_struct *idle; 1673 int ret = 0; 1674 1675 cpus_write_lock(); 1676 1677 if (!cpu_present(cpu)) { 1678 ret = -EINVAL; 1679 goto out; 1680 } 1681 1682 /* 1683 * The caller of cpu_up() might have raced with another 1684 * caller. Nothing to do. 1685 */ 1686 if (st->state >= target) 1687 goto out; 1688 1689 if (st->state == CPUHP_OFFLINE) { 1690 /* Let it fail before we try to bring the cpu up */ 1691 idle = idle_thread_get(cpu); 1692 if (IS_ERR(idle)) { 1693 ret = PTR_ERR(idle); 1694 goto out; 1695 } 1696 1697 /* 1698 * Reset stale stack state from the last time this CPU was online. 1699 */ 1700 scs_task_reset(idle); 1701 kasan_unpoison_task_stack(idle); 1702 } 1703 1704 cpuhp_tasks_frozen = tasks_frozen; 1705 1706 cpuhp_set_state(cpu, st, target); 1707 /* 1708 * If the current CPU state is in the range of the AP hotplug thread, 1709 * then we need to kick the thread once more. 1710 */ 1711 if (st->state > CPUHP_BRINGUP_CPU) { 1712 ret = cpuhp_kick_ap_work(cpu); 1713 /* 1714 * The AP side has done the error rollback already. Just 1715 * return the error code.. 1716 */ 1717 if (ret) 1718 goto out; 1719 } 1720 1721 /* 1722 * Try to reach the target state. We max out on the BP at 1723 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1724 * responsible for bringing it up to the target state. 1725 */ 1726 target = min((int)target, CPUHP_BRINGUP_CPU); 1727 ret = cpuhp_up_callbacks(cpu, st, target); 1728 out: 1729 cpus_write_unlock(); 1730 arch_smt_update(); 1731 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1732 return ret; 1733 } 1734 1735 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1736 { 1737 int err = 0; 1738 1739 if (!cpu_possible(cpu)) { 1740 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1741 cpu); 1742 return -EINVAL; 1743 } 1744 1745 err = try_online_node(cpu_to_node(cpu)); 1746 if (err) 1747 return err; 1748 1749 cpu_maps_update_begin(); 1750 1751 if (cpu_hotplug_disabled) { 1752 err = -EBUSY; 1753 goto out; 1754 } 1755 if (!cpu_bootable(cpu)) { 1756 err = -EPERM; 1757 goto out; 1758 } 1759 1760 err = _cpu_up(cpu, 0, target); 1761 out: 1762 cpu_maps_update_done(); 1763 return err; 1764 } 1765 1766 /** 1767 * cpu_device_up - Bring up a cpu device 1768 * @dev: Pointer to the cpu device to online 1769 * 1770 * This function is meant to be used by device core cpu subsystem only. 1771 * 1772 * Other subsystems should use add_cpu() instead. 1773 * 1774 * Return: %0 on success or a negative errno code 1775 */ 1776 int cpu_device_up(struct device *dev) 1777 { 1778 return cpu_up(dev->id, CPUHP_ONLINE); 1779 } 1780 1781 int add_cpu(unsigned int cpu) 1782 { 1783 int ret; 1784 1785 lock_device_hotplug(); 1786 ret = device_online(get_cpu_device(cpu)); 1787 unlock_device_hotplug(); 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(add_cpu); 1792 1793 /** 1794 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1795 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1796 * 1797 * On some architectures like arm64, we can hibernate on any CPU, but on 1798 * wake up the CPU we hibernated on might be offline as a side effect of 1799 * using maxcpus= for example. 1800 * 1801 * Return: %0 on success or a negative errno code 1802 */ 1803 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1804 { 1805 int ret; 1806 1807 if (!cpu_online(sleep_cpu)) { 1808 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1809 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1810 if (ret) { 1811 pr_err("Failed to bring hibernate-CPU up!\n"); 1812 return ret; 1813 } 1814 } 1815 return 0; 1816 } 1817 1818 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1819 enum cpuhp_state target) 1820 { 1821 unsigned int cpu; 1822 1823 for_each_cpu(cpu, mask) { 1824 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1825 1826 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1827 /* 1828 * If this failed then cpu_up() might have only 1829 * rolled back to CPUHP_BP_KICK_AP for the final 1830 * online. Clean it up. NOOP if already rolled back. 1831 */ 1832 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1833 } 1834 1835 if (!--ncpus) 1836 break; 1837 } 1838 } 1839 1840 #ifdef CONFIG_HOTPLUG_PARALLEL 1841 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1842 1843 static int __init parallel_bringup_parse_param(char *arg) 1844 { 1845 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1846 } 1847 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1848 1849 static inline bool cpuhp_smt_aware(void) 1850 { 1851 return cpu_smt_max_threads > 1; 1852 } 1853 1854 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1855 { 1856 return cpu_primary_thread_mask; 1857 } 1858 1859 /* 1860 * On architectures which have enabled parallel bringup this invokes all BP 1861 * prepare states for each of the to be onlined APs first. The last state 1862 * sends the startup IPI to the APs. The APs proceed through the low level 1863 * bringup code in parallel and then wait for the control CPU to release 1864 * them one by one for the final onlining procedure. 1865 * 1866 * This avoids waiting for each AP to respond to the startup IPI in 1867 * CPUHP_BRINGUP_CPU. 1868 */ 1869 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1870 { 1871 const struct cpumask *mask = cpu_present_mask; 1872 1873 if (__cpuhp_parallel_bringup) 1874 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1875 if (!__cpuhp_parallel_bringup) 1876 return false; 1877 1878 if (cpuhp_smt_aware()) { 1879 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1880 static struct cpumask tmp_mask __initdata; 1881 1882 /* 1883 * X86 requires to prevent that SMT siblings stopped while 1884 * the primary thread does a microcode update for various 1885 * reasons. Bring the primary threads up first. 1886 */ 1887 cpumask_and(&tmp_mask, mask, pmask); 1888 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1889 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1890 /* Account for the online CPUs */ 1891 ncpus -= num_online_cpus(); 1892 if (!ncpus) 1893 return true; 1894 /* Create the mask for secondary CPUs */ 1895 cpumask_andnot(&tmp_mask, mask, pmask); 1896 mask = &tmp_mask; 1897 } 1898 1899 /* Bring the not-yet started CPUs up */ 1900 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1901 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1902 return true; 1903 } 1904 #else 1905 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1906 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1907 1908 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1909 { 1910 /* Try parallel bringup optimization if enabled */ 1911 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1912 return; 1913 1914 /* Full per CPU serialized bringup */ 1915 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1916 } 1917 1918 #ifdef CONFIG_PM_SLEEP_SMP 1919 static cpumask_var_t frozen_cpus; 1920 1921 int freeze_secondary_cpus(int primary) 1922 { 1923 int cpu, error = 0; 1924 1925 cpu_maps_update_begin(); 1926 if (primary == -1) { 1927 primary = cpumask_first(cpu_online_mask); 1928 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1929 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1930 } else { 1931 if (!cpu_online(primary)) 1932 primary = cpumask_first(cpu_online_mask); 1933 } 1934 1935 /* 1936 * We take down all of the non-boot CPUs in one shot to avoid races 1937 * with the userspace trying to use the CPU hotplug at the same time 1938 */ 1939 cpumask_clear(frozen_cpus); 1940 1941 pr_info("Disabling non-boot CPUs ...\n"); 1942 for_each_online_cpu(cpu) { 1943 if (cpu == primary) 1944 continue; 1945 1946 if (pm_wakeup_pending()) { 1947 pr_info("Wakeup pending. Abort CPU freeze\n"); 1948 error = -EBUSY; 1949 break; 1950 } 1951 1952 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1953 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1954 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1955 if (!error) 1956 cpumask_set_cpu(cpu, frozen_cpus); 1957 else { 1958 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1959 break; 1960 } 1961 } 1962 1963 if (!error) 1964 BUG_ON(num_online_cpus() > 1); 1965 else 1966 pr_err("Non-boot CPUs are not disabled\n"); 1967 1968 /* 1969 * Make sure the CPUs won't be enabled by someone else. We need to do 1970 * this even in case of failure as all freeze_secondary_cpus() users are 1971 * supposed to do thaw_secondary_cpus() on the failure path. 1972 */ 1973 cpu_hotplug_disabled++; 1974 1975 cpu_maps_update_done(); 1976 return error; 1977 } 1978 1979 void __weak arch_thaw_secondary_cpus_begin(void) 1980 { 1981 } 1982 1983 void __weak arch_thaw_secondary_cpus_end(void) 1984 { 1985 } 1986 1987 void thaw_secondary_cpus(void) 1988 { 1989 int cpu, error; 1990 1991 /* Allow everyone to use the CPU hotplug again */ 1992 cpu_maps_update_begin(); 1993 __cpu_hotplug_enable(); 1994 if (cpumask_empty(frozen_cpus)) 1995 goto out; 1996 1997 pr_info("Enabling non-boot CPUs ...\n"); 1998 1999 arch_thaw_secondary_cpus_begin(); 2000 2001 for_each_cpu(cpu, frozen_cpus) { 2002 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 2003 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 2004 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 2005 if (!error) { 2006 pr_info("CPU%d is up\n", cpu); 2007 continue; 2008 } 2009 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 2010 } 2011 2012 arch_thaw_secondary_cpus_end(); 2013 2014 cpumask_clear(frozen_cpus); 2015 out: 2016 cpu_maps_update_done(); 2017 } 2018 2019 static int __init alloc_frozen_cpus(void) 2020 { 2021 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2022 return -ENOMEM; 2023 return 0; 2024 } 2025 core_initcall(alloc_frozen_cpus); 2026 2027 /* 2028 * When callbacks for CPU hotplug notifications are being executed, we must 2029 * ensure that the state of the system with respect to the tasks being frozen 2030 * or not, as reported by the notification, remains unchanged *throughout the 2031 * duration* of the execution of the callbacks. 2032 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2033 * 2034 * This synchronization is implemented by mutually excluding regular CPU 2035 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2036 * Hibernate notifications. 2037 */ 2038 static int 2039 cpu_hotplug_pm_callback(struct notifier_block *nb, 2040 unsigned long action, void *ptr) 2041 { 2042 switch (action) { 2043 2044 case PM_SUSPEND_PREPARE: 2045 case PM_HIBERNATION_PREPARE: 2046 cpu_hotplug_disable(); 2047 break; 2048 2049 case PM_POST_SUSPEND: 2050 case PM_POST_HIBERNATION: 2051 cpu_hotplug_enable(); 2052 break; 2053 2054 default: 2055 return NOTIFY_DONE; 2056 } 2057 2058 return NOTIFY_OK; 2059 } 2060 2061 2062 static int __init cpu_hotplug_pm_sync_init(void) 2063 { 2064 /* 2065 * cpu_hotplug_pm_callback has higher priority than x86 2066 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2067 * to disable cpu hotplug to avoid cpu hotplug race. 2068 */ 2069 pm_notifier(cpu_hotplug_pm_callback, 0); 2070 return 0; 2071 } 2072 core_initcall(cpu_hotplug_pm_sync_init); 2073 2074 #endif /* CONFIG_PM_SLEEP_SMP */ 2075 2076 int __boot_cpu_id; 2077 2078 #endif /* CONFIG_SMP */ 2079 2080 /* Boot processor state steps */ 2081 static struct cpuhp_step cpuhp_hp_states[] = { 2082 [CPUHP_OFFLINE] = { 2083 .name = "offline", 2084 .startup.single = NULL, 2085 .teardown.single = NULL, 2086 }, 2087 #ifdef CONFIG_SMP 2088 [CPUHP_CREATE_THREADS]= { 2089 .name = "threads:prepare", 2090 .startup.single = smpboot_create_threads, 2091 .teardown.single = NULL, 2092 .cant_stop = true, 2093 }, 2094 [CPUHP_PERF_PREPARE] = { 2095 .name = "perf:prepare", 2096 .startup.single = perf_event_init_cpu, 2097 .teardown.single = perf_event_exit_cpu, 2098 }, 2099 [CPUHP_RANDOM_PREPARE] = { 2100 .name = "random:prepare", 2101 .startup.single = random_prepare_cpu, 2102 .teardown.single = NULL, 2103 }, 2104 [CPUHP_WORKQUEUE_PREP] = { 2105 .name = "workqueue:prepare", 2106 .startup.single = workqueue_prepare_cpu, 2107 .teardown.single = NULL, 2108 }, 2109 [CPUHP_HRTIMERS_PREPARE] = { 2110 .name = "hrtimers:prepare", 2111 .startup.single = hrtimers_prepare_cpu, 2112 .teardown.single = NULL, 2113 }, 2114 [CPUHP_SMPCFD_PREPARE] = { 2115 .name = "smpcfd:prepare", 2116 .startup.single = smpcfd_prepare_cpu, 2117 .teardown.single = smpcfd_dead_cpu, 2118 }, 2119 [CPUHP_RELAY_PREPARE] = { 2120 .name = "relay:prepare", 2121 .startup.single = relay_prepare_cpu, 2122 .teardown.single = NULL, 2123 }, 2124 [CPUHP_RCUTREE_PREP] = { 2125 .name = "RCU/tree:prepare", 2126 .startup.single = rcutree_prepare_cpu, 2127 .teardown.single = rcutree_dead_cpu, 2128 }, 2129 /* 2130 * On the tear-down path, timers_dead_cpu() must be invoked 2131 * before blk_mq_queue_reinit_notify() from notify_dead(), 2132 * otherwise a RCU stall occurs. 2133 */ 2134 [CPUHP_TIMERS_PREPARE] = { 2135 .name = "timers:prepare", 2136 .startup.single = timers_prepare_cpu, 2137 .teardown.single = timers_dead_cpu, 2138 }, 2139 2140 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2141 /* 2142 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2143 * the next step will release it. 2144 */ 2145 [CPUHP_BP_KICK_AP] = { 2146 .name = "cpu:kick_ap", 2147 .startup.single = cpuhp_kick_ap_alive, 2148 }, 2149 2150 /* 2151 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2152 * releases it for the complete bringup. 2153 */ 2154 [CPUHP_BRINGUP_CPU] = { 2155 .name = "cpu:bringup", 2156 .startup.single = cpuhp_bringup_ap, 2157 .teardown.single = finish_cpu, 2158 .cant_stop = true, 2159 }, 2160 #else 2161 /* 2162 * All-in-one CPU bringup state which includes the kick alive. 2163 */ 2164 [CPUHP_BRINGUP_CPU] = { 2165 .name = "cpu:bringup", 2166 .startup.single = bringup_cpu, 2167 .teardown.single = finish_cpu, 2168 .cant_stop = true, 2169 }, 2170 #endif 2171 /* Final state before CPU kills itself */ 2172 [CPUHP_AP_IDLE_DEAD] = { 2173 .name = "idle:dead", 2174 }, 2175 /* 2176 * Last state before CPU enters the idle loop to die. Transient state 2177 * for synchronization. 2178 */ 2179 [CPUHP_AP_OFFLINE] = { 2180 .name = "ap:offline", 2181 .cant_stop = true, 2182 }, 2183 /* First state is scheduler control. Interrupts are disabled */ 2184 [CPUHP_AP_SCHED_STARTING] = { 2185 .name = "sched:starting", 2186 .startup.single = sched_cpu_starting, 2187 .teardown.single = sched_cpu_dying, 2188 }, 2189 [CPUHP_AP_RCUTREE_DYING] = { 2190 .name = "RCU/tree:dying", 2191 .startup.single = NULL, 2192 .teardown.single = rcutree_dying_cpu, 2193 }, 2194 [CPUHP_AP_SMPCFD_DYING] = { 2195 .name = "smpcfd:dying", 2196 .startup.single = NULL, 2197 .teardown.single = smpcfd_dying_cpu, 2198 }, 2199 [CPUHP_AP_HRTIMERS_DYING] = { 2200 .name = "hrtimers:dying", 2201 .startup.single = NULL, 2202 .teardown.single = hrtimers_cpu_dying, 2203 }, 2204 [CPUHP_AP_TICK_DYING] = { 2205 .name = "tick:dying", 2206 .startup.single = NULL, 2207 .teardown.single = tick_cpu_dying, 2208 }, 2209 /* Entry state on starting. Interrupts enabled from here on. Transient 2210 * state for synchronsization */ 2211 [CPUHP_AP_ONLINE] = { 2212 .name = "ap:online", 2213 }, 2214 /* 2215 * Handled on control processor until the plugged processor manages 2216 * this itself. 2217 */ 2218 [CPUHP_TEARDOWN_CPU] = { 2219 .name = "cpu:teardown", 2220 .startup.single = NULL, 2221 .teardown.single = takedown_cpu, 2222 .cant_stop = true, 2223 }, 2224 2225 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2226 .name = "sched:waitempty", 2227 .startup.single = NULL, 2228 .teardown.single = sched_cpu_wait_empty, 2229 }, 2230 2231 /* Handle smpboot threads park/unpark */ 2232 [CPUHP_AP_SMPBOOT_THREADS] = { 2233 .name = "smpboot/threads:online", 2234 .startup.single = smpboot_unpark_threads, 2235 .teardown.single = smpboot_park_threads, 2236 }, 2237 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2238 .name = "irq/affinity:online", 2239 .startup.single = irq_affinity_online_cpu, 2240 .teardown.single = NULL, 2241 }, 2242 [CPUHP_AP_PERF_ONLINE] = { 2243 .name = "perf:online", 2244 .startup.single = perf_event_init_cpu, 2245 .teardown.single = perf_event_exit_cpu, 2246 }, 2247 [CPUHP_AP_WATCHDOG_ONLINE] = { 2248 .name = "lockup_detector:online", 2249 .startup.single = lockup_detector_online_cpu, 2250 .teardown.single = lockup_detector_offline_cpu, 2251 }, 2252 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2253 .name = "workqueue:online", 2254 .startup.single = workqueue_online_cpu, 2255 .teardown.single = workqueue_offline_cpu, 2256 }, 2257 [CPUHP_AP_RANDOM_ONLINE] = { 2258 .name = "random:online", 2259 .startup.single = random_online_cpu, 2260 .teardown.single = NULL, 2261 }, 2262 [CPUHP_AP_RCUTREE_ONLINE] = { 2263 .name = "RCU/tree:online", 2264 .startup.single = rcutree_online_cpu, 2265 .teardown.single = rcutree_offline_cpu, 2266 }, 2267 #endif 2268 /* 2269 * The dynamically registered state space is here 2270 */ 2271 2272 #ifdef CONFIG_SMP 2273 /* Last state is scheduler control setting the cpu active */ 2274 [CPUHP_AP_ACTIVE] = { 2275 .name = "sched:active", 2276 .startup.single = sched_cpu_activate, 2277 .teardown.single = sched_cpu_deactivate, 2278 }, 2279 #endif 2280 2281 /* CPU is fully up and running. */ 2282 [CPUHP_ONLINE] = { 2283 .name = "online", 2284 .startup.single = NULL, 2285 .teardown.single = NULL, 2286 }, 2287 }; 2288 2289 /* Sanity check for callbacks */ 2290 static int cpuhp_cb_check(enum cpuhp_state state) 2291 { 2292 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2293 return -EINVAL; 2294 return 0; 2295 } 2296 2297 /* 2298 * Returns a free for dynamic slot assignment of the Online state. The states 2299 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2300 * by having no name assigned. 2301 */ 2302 static int cpuhp_reserve_state(enum cpuhp_state state) 2303 { 2304 enum cpuhp_state i, end; 2305 struct cpuhp_step *step; 2306 2307 switch (state) { 2308 case CPUHP_AP_ONLINE_DYN: 2309 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2310 end = CPUHP_AP_ONLINE_DYN_END; 2311 break; 2312 case CPUHP_BP_PREPARE_DYN: 2313 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2314 end = CPUHP_BP_PREPARE_DYN_END; 2315 break; 2316 default: 2317 return -EINVAL; 2318 } 2319 2320 for (i = state; i <= end; i++, step++) { 2321 if (!step->name) 2322 return i; 2323 } 2324 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2325 return -ENOSPC; 2326 } 2327 2328 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2329 int (*startup)(unsigned int cpu), 2330 int (*teardown)(unsigned int cpu), 2331 bool multi_instance) 2332 { 2333 /* (Un)Install the callbacks for further cpu hotplug operations */ 2334 struct cpuhp_step *sp; 2335 int ret = 0; 2336 2337 /* 2338 * If name is NULL, then the state gets removed. 2339 * 2340 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2341 * the first allocation from these dynamic ranges, so the removal 2342 * would trigger a new allocation and clear the wrong (already 2343 * empty) state, leaving the callbacks of the to be cleared state 2344 * dangling, which causes wreckage on the next hotplug operation. 2345 */ 2346 if (name && (state == CPUHP_AP_ONLINE_DYN || 2347 state == CPUHP_BP_PREPARE_DYN)) { 2348 ret = cpuhp_reserve_state(state); 2349 if (ret < 0) 2350 return ret; 2351 state = ret; 2352 } 2353 sp = cpuhp_get_step(state); 2354 if (name && sp->name) 2355 return -EBUSY; 2356 2357 sp->startup.single = startup; 2358 sp->teardown.single = teardown; 2359 sp->name = name; 2360 sp->multi_instance = multi_instance; 2361 INIT_HLIST_HEAD(&sp->list); 2362 return ret; 2363 } 2364 2365 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2366 { 2367 return cpuhp_get_step(state)->teardown.single; 2368 } 2369 2370 /* 2371 * Call the startup/teardown function for a step either on the AP or 2372 * on the current CPU. 2373 */ 2374 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2375 struct hlist_node *node) 2376 { 2377 struct cpuhp_step *sp = cpuhp_get_step(state); 2378 int ret; 2379 2380 /* 2381 * If there's nothing to do, we done. 2382 * Relies on the union for multi_instance. 2383 */ 2384 if (cpuhp_step_empty(bringup, sp)) 2385 return 0; 2386 /* 2387 * The non AP bound callbacks can fail on bringup. On teardown 2388 * e.g. module removal we crash for now. 2389 */ 2390 #ifdef CONFIG_SMP 2391 if (cpuhp_is_ap_state(state)) 2392 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2393 else 2394 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2395 #else 2396 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2397 #endif 2398 BUG_ON(ret && !bringup); 2399 return ret; 2400 } 2401 2402 /* 2403 * Called from __cpuhp_setup_state on a recoverable failure. 2404 * 2405 * Note: The teardown callbacks for rollback are not allowed to fail! 2406 */ 2407 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2408 struct hlist_node *node) 2409 { 2410 int cpu; 2411 2412 /* Roll back the already executed steps on the other cpus */ 2413 for_each_present_cpu(cpu) { 2414 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2415 int cpustate = st->state; 2416 2417 if (cpu >= failedcpu) 2418 break; 2419 2420 /* Did we invoke the startup call on that cpu ? */ 2421 if (cpustate >= state) 2422 cpuhp_issue_call(cpu, state, false, node); 2423 } 2424 } 2425 2426 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2427 struct hlist_node *node, 2428 bool invoke) 2429 { 2430 struct cpuhp_step *sp; 2431 int cpu; 2432 int ret; 2433 2434 lockdep_assert_cpus_held(); 2435 2436 sp = cpuhp_get_step(state); 2437 if (sp->multi_instance == false) 2438 return -EINVAL; 2439 2440 mutex_lock(&cpuhp_state_mutex); 2441 2442 if (!invoke || !sp->startup.multi) 2443 goto add_node; 2444 2445 /* 2446 * Try to call the startup callback for each present cpu 2447 * depending on the hotplug state of the cpu. 2448 */ 2449 for_each_present_cpu(cpu) { 2450 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2451 int cpustate = st->state; 2452 2453 if (cpustate < state) 2454 continue; 2455 2456 ret = cpuhp_issue_call(cpu, state, true, node); 2457 if (ret) { 2458 if (sp->teardown.multi) 2459 cpuhp_rollback_install(cpu, state, node); 2460 goto unlock; 2461 } 2462 } 2463 add_node: 2464 ret = 0; 2465 hlist_add_head(node, &sp->list); 2466 unlock: 2467 mutex_unlock(&cpuhp_state_mutex); 2468 return ret; 2469 } 2470 2471 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2472 bool invoke) 2473 { 2474 int ret; 2475 2476 cpus_read_lock(); 2477 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2478 cpus_read_unlock(); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2482 2483 /** 2484 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2485 * @state: The state to setup 2486 * @name: Name of the step 2487 * @invoke: If true, the startup function is invoked for cpus where 2488 * cpu state >= @state 2489 * @startup: startup callback function 2490 * @teardown: teardown callback function 2491 * @multi_instance: State is set up for multiple instances which get 2492 * added afterwards. 2493 * 2494 * The caller needs to hold cpus read locked while calling this function. 2495 * Return: 2496 * On success: 2497 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2498 * 0 for all other states 2499 * On failure: proper (negative) error code 2500 */ 2501 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2502 const char *name, bool invoke, 2503 int (*startup)(unsigned int cpu), 2504 int (*teardown)(unsigned int cpu), 2505 bool multi_instance) 2506 { 2507 int cpu, ret = 0; 2508 bool dynstate; 2509 2510 lockdep_assert_cpus_held(); 2511 2512 if (cpuhp_cb_check(state) || !name) 2513 return -EINVAL; 2514 2515 mutex_lock(&cpuhp_state_mutex); 2516 2517 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2518 multi_instance); 2519 2520 dynstate = state == CPUHP_AP_ONLINE_DYN; 2521 if (ret > 0 && dynstate) { 2522 state = ret; 2523 ret = 0; 2524 } 2525 2526 if (ret || !invoke || !startup) 2527 goto out; 2528 2529 /* 2530 * Try to call the startup callback for each present cpu 2531 * depending on the hotplug state of the cpu. 2532 */ 2533 for_each_present_cpu(cpu) { 2534 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2535 int cpustate = st->state; 2536 2537 if (cpustate < state) 2538 continue; 2539 2540 ret = cpuhp_issue_call(cpu, state, true, NULL); 2541 if (ret) { 2542 if (teardown) 2543 cpuhp_rollback_install(cpu, state, NULL); 2544 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2545 goto out; 2546 } 2547 } 2548 out: 2549 mutex_unlock(&cpuhp_state_mutex); 2550 /* 2551 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2552 * dynamically allocated state in case of success. 2553 */ 2554 if (!ret && dynstate) 2555 return state; 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2559 2560 int __cpuhp_setup_state(enum cpuhp_state state, 2561 const char *name, bool invoke, 2562 int (*startup)(unsigned int cpu), 2563 int (*teardown)(unsigned int cpu), 2564 bool multi_instance) 2565 { 2566 int ret; 2567 2568 cpus_read_lock(); 2569 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2570 teardown, multi_instance); 2571 cpus_read_unlock(); 2572 return ret; 2573 } 2574 EXPORT_SYMBOL(__cpuhp_setup_state); 2575 2576 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2577 struct hlist_node *node, bool invoke) 2578 { 2579 struct cpuhp_step *sp = cpuhp_get_step(state); 2580 int cpu; 2581 2582 BUG_ON(cpuhp_cb_check(state)); 2583 2584 if (!sp->multi_instance) 2585 return -EINVAL; 2586 2587 cpus_read_lock(); 2588 mutex_lock(&cpuhp_state_mutex); 2589 2590 if (!invoke || !cpuhp_get_teardown_cb(state)) 2591 goto remove; 2592 /* 2593 * Call the teardown callback for each present cpu depending 2594 * on the hotplug state of the cpu. This function is not 2595 * allowed to fail currently! 2596 */ 2597 for_each_present_cpu(cpu) { 2598 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2599 int cpustate = st->state; 2600 2601 if (cpustate >= state) 2602 cpuhp_issue_call(cpu, state, false, node); 2603 } 2604 2605 remove: 2606 hlist_del(node); 2607 mutex_unlock(&cpuhp_state_mutex); 2608 cpus_read_unlock(); 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2613 2614 /** 2615 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2616 * @state: The state to remove 2617 * @invoke: If true, the teardown function is invoked for cpus where 2618 * cpu state >= @state 2619 * 2620 * The caller needs to hold cpus read locked while calling this function. 2621 * The teardown callback is currently not allowed to fail. Think 2622 * about module removal! 2623 */ 2624 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2625 { 2626 struct cpuhp_step *sp = cpuhp_get_step(state); 2627 int cpu; 2628 2629 BUG_ON(cpuhp_cb_check(state)); 2630 2631 lockdep_assert_cpus_held(); 2632 2633 mutex_lock(&cpuhp_state_mutex); 2634 if (sp->multi_instance) { 2635 WARN(!hlist_empty(&sp->list), 2636 "Error: Removing state %d which has instances left.\n", 2637 state); 2638 goto remove; 2639 } 2640 2641 if (!invoke || !cpuhp_get_teardown_cb(state)) 2642 goto remove; 2643 2644 /* 2645 * Call the teardown callback for each present cpu depending 2646 * on the hotplug state of the cpu. This function is not 2647 * allowed to fail currently! 2648 */ 2649 for_each_present_cpu(cpu) { 2650 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2651 int cpustate = st->state; 2652 2653 if (cpustate >= state) 2654 cpuhp_issue_call(cpu, state, false, NULL); 2655 } 2656 remove: 2657 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2658 mutex_unlock(&cpuhp_state_mutex); 2659 } 2660 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2661 2662 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2663 { 2664 cpus_read_lock(); 2665 __cpuhp_remove_state_cpuslocked(state, invoke); 2666 cpus_read_unlock(); 2667 } 2668 EXPORT_SYMBOL(__cpuhp_remove_state); 2669 2670 #ifdef CONFIG_HOTPLUG_SMT 2671 static void cpuhp_offline_cpu_device(unsigned int cpu) 2672 { 2673 struct device *dev = get_cpu_device(cpu); 2674 2675 dev->offline = true; 2676 /* Tell user space about the state change */ 2677 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2678 } 2679 2680 static void cpuhp_online_cpu_device(unsigned int cpu) 2681 { 2682 struct device *dev = get_cpu_device(cpu); 2683 2684 dev->offline = false; 2685 /* Tell user space about the state change */ 2686 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2687 } 2688 2689 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2690 { 2691 int cpu, ret = 0; 2692 2693 cpu_maps_update_begin(); 2694 for_each_online_cpu(cpu) { 2695 if (topology_is_primary_thread(cpu)) 2696 continue; 2697 /* 2698 * Disable can be called with CPU_SMT_ENABLED when changing 2699 * from a higher to lower number of SMT threads per core. 2700 */ 2701 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2702 continue; 2703 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2704 if (ret) 2705 break; 2706 /* 2707 * As this needs to hold the cpu maps lock it's impossible 2708 * to call device_offline() because that ends up calling 2709 * cpu_down() which takes cpu maps lock. cpu maps lock 2710 * needs to be held as this might race against in kernel 2711 * abusers of the hotplug machinery (thermal management). 2712 * 2713 * So nothing would update device:offline state. That would 2714 * leave the sysfs entry stale and prevent onlining after 2715 * smt control has been changed to 'off' again. This is 2716 * called under the sysfs hotplug lock, so it is properly 2717 * serialized against the regular offline usage. 2718 */ 2719 cpuhp_offline_cpu_device(cpu); 2720 } 2721 if (!ret) 2722 cpu_smt_control = ctrlval; 2723 cpu_maps_update_done(); 2724 return ret; 2725 } 2726 2727 int cpuhp_smt_enable(void) 2728 { 2729 int cpu, ret = 0; 2730 2731 cpu_maps_update_begin(); 2732 cpu_smt_control = CPU_SMT_ENABLED; 2733 for_each_present_cpu(cpu) { 2734 /* Skip online CPUs and CPUs on offline nodes */ 2735 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2736 continue; 2737 if (!cpu_smt_thread_allowed(cpu)) 2738 continue; 2739 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2740 if (ret) 2741 break; 2742 /* See comment in cpuhp_smt_disable() */ 2743 cpuhp_online_cpu_device(cpu); 2744 } 2745 cpu_maps_update_done(); 2746 return ret; 2747 } 2748 #endif 2749 2750 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2751 static ssize_t state_show(struct device *dev, 2752 struct device_attribute *attr, char *buf) 2753 { 2754 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2755 2756 return sprintf(buf, "%d\n", st->state); 2757 } 2758 static DEVICE_ATTR_RO(state); 2759 2760 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2761 const char *buf, size_t count) 2762 { 2763 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2764 struct cpuhp_step *sp; 2765 int target, ret; 2766 2767 ret = kstrtoint(buf, 10, &target); 2768 if (ret) 2769 return ret; 2770 2771 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2772 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2773 return -EINVAL; 2774 #else 2775 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2776 return -EINVAL; 2777 #endif 2778 2779 ret = lock_device_hotplug_sysfs(); 2780 if (ret) 2781 return ret; 2782 2783 mutex_lock(&cpuhp_state_mutex); 2784 sp = cpuhp_get_step(target); 2785 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2786 mutex_unlock(&cpuhp_state_mutex); 2787 if (ret) 2788 goto out; 2789 2790 if (st->state < target) 2791 ret = cpu_up(dev->id, target); 2792 else if (st->state > target) 2793 ret = cpu_down(dev->id, target); 2794 else if (WARN_ON(st->target != target)) 2795 st->target = target; 2796 out: 2797 unlock_device_hotplug(); 2798 return ret ? ret : count; 2799 } 2800 2801 static ssize_t target_show(struct device *dev, 2802 struct device_attribute *attr, char *buf) 2803 { 2804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2805 2806 return sprintf(buf, "%d\n", st->target); 2807 } 2808 static DEVICE_ATTR_RW(target); 2809 2810 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2811 const char *buf, size_t count) 2812 { 2813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2814 struct cpuhp_step *sp; 2815 int fail, ret; 2816 2817 ret = kstrtoint(buf, 10, &fail); 2818 if (ret) 2819 return ret; 2820 2821 if (fail == CPUHP_INVALID) { 2822 st->fail = fail; 2823 return count; 2824 } 2825 2826 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2827 return -EINVAL; 2828 2829 /* 2830 * Cannot fail STARTING/DYING callbacks. 2831 */ 2832 if (cpuhp_is_atomic_state(fail)) 2833 return -EINVAL; 2834 2835 /* 2836 * DEAD callbacks cannot fail... 2837 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2838 * triggering STARTING callbacks, a failure in this state would 2839 * hinder rollback. 2840 */ 2841 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2842 return -EINVAL; 2843 2844 /* 2845 * Cannot fail anything that doesn't have callbacks. 2846 */ 2847 mutex_lock(&cpuhp_state_mutex); 2848 sp = cpuhp_get_step(fail); 2849 if (!sp->startup.single && !sp->teardown.single) 2850 ret = -EINVAL; 2851 mutex_unlock(&cpuhp_state_mutex); 2852 if (ret) 2853 return ret; 2854 2855 st->fail = fail; 2856 2857 return count; 2858 } 2859 2860 static ssize_t fail_show(struct device *dev, 2861 struct device_attribute *attr, char *buf) 2862 { 2863 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2864 2865 return sprintf(buf, "%d\n", st->fail); 2866 } 2867 2868 static DEVICE_ATTR_RW(fail); 2869 2870 static struct attribute *cpuhp_cpu_attrs[] = { 2871 &dev_attr_state.attr, 2872 &dev_attr_target.attr, 2873 &dev_attr_fail.attr, 2874 NULL 2875 }; 2876 2877 static const struct attribute_group cpuhp_cpu_attr_group = { 2878 .attrs = cpuhp_cpu_attrs, 2879 .name = "hotplug", 2880 NULL 2881 }; 2882 2883 static ssize_t states_show(struct device *dev, 2884 struct device_attribute *attr, char *buf) 2885 { 2886 ssize_t cur, res = 0; 2887 int i; 2888 2889 mutex_lock(&cpuhp_state_mutex); 2890 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2891 struct cpuhp_step *sp = cpuhp_get_step(i); 2892 2893 if (sp->name) { 2894 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2895 buf += cur; 2896 res += cur; 2897 } 2898 } 2899 mutex_unlock(&cpuhp_state_mutex); 2900 return res; 2901 } 2902 static DEVICE_ATTR_RO(states); 2903 2904 static struct attribute *cpuhp_cpu_root_attrs[] = { 2905 &dev_attr_states.attr, 2906 NULL 2907 }; 2908 2909 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2910 .attrs = cpuhp_cpu_root_attrs, 2911 .name = "hotplug", 2912 NULL 2913 }; 2914 2915 #ifdef CONFIG_HOTPLUG_SMT 2916 2917 static bool cpu_smt_num_threads_valid(unsigned int threads) 2918 { 2919 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2920 return threads >= 1 && threads <= cpu_smt_max_threads; 2921 return threads == 1 || threads == cpu_smt_max_threads; 2922 } 2923 2924 static ssize_t 2925 __store_smt_control(struct device *dev, struct device_attribute *attr, 2926 const char *buf, size_t count) 2927 { 2928 int ctrlval, ret, num_threads, orig_threads; 2929 bool force_off; 2930 2931 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2932 return -EPERM; 2933 2934 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2935 return -ENODEV; 2936 2937 if (sysfs_streq(buf, "on")) { 2938 ctrlval = CPU_SMT_ENABLED; 2939 num_threads = cpu_smt_max_threads; 2940 } else if (sysfs_streq(buf, "off")) { 2941 ctrlval = CPU_SMT_DISABLED; 2942 num_threads = 1; 2943 } else if (sysfs_streq(buf, "forceoff")) { 2944 ctrlval = CPU_SMT_FORCE_DISABLED; 2945 num_threads = 1; 2946 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2947 if (num_threads == 1) 2948 ctrlval = CPU_SMT_DISABLED; 2949 else if (cpu_smt_num_threads_valid(num_threads)) 2950 ctrlval = CPU_SMT_ENABLED; 2951 else 2952 return -EINVAL; 2953 } else { 2954 return -EINVAL; 2955 } 2956 2957 ret = lock_device_hotplug_sysfs(); 2958 if (ret) 2959 return ret; 2960 2961 orig_threads = cpu_smt_num_threads; 2962 cpu_smt_num_threads = num_threads; 2963 2964 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2965 2966 if (num_threads > orig_threads) 2967 ret = cpuhp_smt_enable(); 2968 else if (num_threads < orig_threads || force_off) 2969 ret = cpuhp_smt_disable(ctrlval); 2970 2971 unlock_device_hotplug(); 2972 return ret ? ret : count; 2973 } 2974 2975 #else /* !CONFIG_HOTPLUG_SMT */ 2976 static ssize_t 2977 __store_smt_control(struct device *dev, struct device_attribute *attr, 2978 const char *buf, size_t count) 2979 { 2980 return -ENODEV; 2981 } 2982 #endif /* CONFIG_HOTPLUG_SMT */ 2983 2984 static const char *smt_states[] = { 2985 [CPU_SMT_ENABLED] = "on", 2986 [CPU_SMT_DISABLED] = "off", 2987 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2988 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2989 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2990 }; 2991 2992 static ssize_t control_show(struct device *dev, 2993 struct device_attribute *attr, char *buf) 2994 { 2995 const char *state = smt_states[cpu_smt_control]; 2996 2997 #ifdef CONFIG_HOTPLUG_SMT 2998 /* 2999 * If SMT is enabled but not all threads are enabled then show the 3000 * number of threads. If all threads are enabled show "on". Otherwise 3001 * show the state name. 3002 */ 3003 if (cpu_smt_control == CPU_SMT_ENABLED && 3004 cpu_smt_num_threads != cpu_smt_max_threads) 3005 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 3006 #endif 3007 3008 return sysfs_emit(buf, "%s\n", state); 3009 } 3010 3011 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 3012 const char *buf, size_t count) 3013 { 3014 return __store_smt_control(dev, attr, buf, count); 3015 } 3016 static DEVICE_ATTR_RW(control); 3017 3018 static ssize_t active_show(struct device *dev, 3019 struct device_attribute *attr, char *buf) 3020 { 3021 return sysfs_emit(buf, "%d\n", sched_smt_active()); 3022 } 3023 static DEVICE_ATTR_RO(active); 3024 3025 static struct attribute *cpuhp_smt_attrs[] = { 3026 &dev_attr_control.attr, 3027 &dev_attr_active.attr, 3028 NULL 3029 }; 3030 3031 static const struct attribute_group cpuhp_smt_attr_group = { 3032 .attrs = cpuhp_smt_attrs, 3033 .name = "smt", 3034 NULL 3035 }; 3036 3037 static int __init cpu_smt_sysfs_init(void) 3038 { 3039 struct device *dev_root; 3040 int ret = -ENODEV; 3041 3042 dev_root = bus_get_dev_root(&cpu_subsys); 3043 if (dev_root) { 3044 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3045 put_device(dev_root); 3046 } 3047 return ret; 3048 } 3049 3050 static int __init cpuhp_sysfs_init(void) 3051 { 3052 struct device *dev_root; 3053 int cpu, ret; 3054 3055 ret = cpu_smt_sysfs_init(); 3056 if (ret) 3057 return ret; 3058 3059 dev_root = bus_get_dev_root(&cpu_subsys); 3060 if (dev_root) { 3061 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3062 put_device(dev_root); 3063 if (ret) 3064 return ret; 3065 } 3066 3067 for_each_possible_cpu(cpu) { 3068 struct device *dev = get_cpu_device(cpu); 3069 3070 if (!dev) 3071 continue; 3072 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3073 if (ret) 3074 return ret; 3075 } 3076 return 0; 3077 } 3078 device_initcall(cpuhp_sysfs_init); 3079 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3080 3081 /* 3082 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3083 * represents all NR_CPUS bits binary values of 1<<nr. 3084 * 3085 * It is used by cpumask_of() to get a constant address to a CPU 3086 * mask value that has a single bit set only. 3087 */ 3088 3089 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3090 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3091 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3092 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3093 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3094 3095 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3096 3097 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3098 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3099 #if BITS_PER_LONG > 32 3100 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3101 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3102 #endif 3103 }; 3104 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3105 3106 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3107 EXPORT_SYMBOL(cpu_all_bits); 3108 3109 #ifdef CONFIG_INIT_ALL_POSSIBLE 3110 struct cpumask __cpu_possible_mask __ro_after_init 3111 = {CPU_BITS_ALL}; 3112 #else 3113 struct cpumask __cpu_possible_mask __ro_after_init; 3114 #endif 3115 EXPORT_SYMBOL(__cpu_possible_mask); 3116 3117 struct cpumask __cpu_online_mask __read_mostly; 3118 EXPORT_SYMBOL(__cpu_online_mask); 3119 3120 struct cpumask __cpu_present_mask __read_mostly; 3121 EXPORT_SYMBOL(__cpu_present_mask); 3122 3123 struct cpumask __cpu_active_mask __read_mostly; 3124 EXPORT_SYMBOL(__cpu_active_mask); 3125 3126 struct cpumask __cpu_dying_mask __read_mostly; 3127 EXPORT_SYMBOL(__cpu_dying_mask); 3128 3129 atomic_t __num_online_cpus __read_mostly; 3130 EXPORT_SYMBOL(__num_online_cpus); 3131 3132 void init_cpu_present(const struct cpumask *src) 3133 { 3134 cpumask_copy(&__cpu_present_mask, src); 3135 } 3136 3137 void init_cpu_possible(const struct cpumask *src) 3138 { 3139 cpumask_copy(&__cpu_possible_mask, src); 3140 } 3141 3142 void init_cpu_online(const struct cpumask *src) 3143 { 3144 cpumask_copy(&__cpu_online_mask, src); 3145 } 3146 3147 void set_cpu_online(unsigned int cpu, bool online) 3148 { 3149 /* 3150 * atomic_inc/dec() is required to handle the horrid abuse of this 3151 * function by the reboot and kexec code which invoke it from 3152 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3153 * regular CPU hotplug is properly serialized. 3154 * 3155 * Note, that the fact that __num_online_cpus is of type atomic_t 3156 * does not protect readers which are not serialized against 3157 * concurrent hotplug operations. 3158 */ 3159 if (online) { 3160 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3161 atomic_inc(&__num_online_cpus); 3162 } else { 3163 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3164 atomic_dec(&__num_online_cpus); 3165 } 3166 } 3167 3168 /* 3169 * Activate the first processor. 3170 */ 3171 void __init boot_cpu_init(void) 3172 { 3173 int cpu = smp_processor_id(); 3174 3175 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3176 set_cpu_online(cpu, true); 3177 set_cpu_active(cpu, true); 3178 set_cpu_present(cpu, true); 3179 set_cpu_possible(cpu, true); 3180 3181 #ifdef CONFIG_SMP 3182 __boot_cpu_id = cpu; 3183 #endif 3184 } 3185 3186 /* 3187 * Must be called _AFTER_ setting up the per_cpu areas 3188 */ 3189 void __init boot_cpu_hotplug_init(void) 3190 { 3191 #ifdef CONFIG_SMP 3192 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3193 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3194 #endif 3195 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3196 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3197 } 3198 3199 /* 3200 * These are used for a global "mitigations=" cmdline option for toggling 3201 * optional CPU mitigations. 3202 */ 3203 enum cpu_mitigations { 3204 CPU_MITIGATIONS_OFF, 3205 CPU_MITIGATIONS_AUTO, 3206 CPU_MITIGATIONS_AUTO_NOSMT, 3207 }; 3208 3209 static enum cpu_mitigations cpu_mitigations __ro_after_init = 3210 IS_ENABLED(CONFIG_SPECULATION_MITIGATIONS) ? CPU_MITIGATIONS_AUTO : 3211 CPU_MITIGATIONS_OFF; 3212 3213 static int __init mitigations_parse_cmdline(char *arg) 3214 { 3215 if (!strcmp(arg, "off")) 3216 cpu_mitigations = CPU_MITIGATIONS_OFF; 3217 else if (!strcmp(arg, "auto")) 3218 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3219 else if (!strcmp(arg, "auto,nosmt")) 3220 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3221 else 3222 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3223 arg); 3224 3225 return 0; 3226 } 3227 early_param("mitigations", mitigations_parse_cmdline); 3228 3229 /* mitigations=off */ 3230 bool cpu_mitigations_off(void) 3231 { 3232 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3233 } 3234 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3235 3236 /* mitigations=auto,nosmt */ 3237 bool cpu_mitigations_auto_nosmt(void) 3238 { 3239 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3240 } 3241 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3242