xref: /linux/kernel/cpu.c (revision 6f87359e8bcaf88381b9c9c038929e0e6872d308)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81 
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87 
88 
89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 
94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99 
100 static inline void cpuhp_lock_acquire(bool bringup) { }
101 static inline void cpuhp_lock_release(bool bringup) { }
102 
103 #endif
104 
105 /**
106  * cpuhp_step - Hotplug state machine step
107  * @name:	Name of the step
108  * @startup:	Startup function of the step
109  * @teardown:	Teardown function of the step
110  * @cant_stop:	Bringup/teardown can't be stopped at this step
111  */
112 struct cpuhp_step {
113 	const char		*name;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} startup;
119 	union {
120 		int		(*single)(unsigned int cpu);
121 		int		(*multi)(unsigned int cpu,
122 					 struct hlist_node *node);
123 	} teardown;
124 	struct hlist_head	list;
125 	bool			cant_stop;
126 	bool			multi_instance;
127 };
128 
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131 
132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 	return cpuhp_hp_states + state;
135 }
136 
137 /**
138  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139  * @cpu:	The cpu for which the callback should be invoked
140  * @state:	The state to do callbacks for
141  * @bringup:	True if the bringup callback should be invoked
142  * @node:	For multi-instance, do a single entry callback for install/remove
143  * @lastp:	For multi-instance rollback, remember how far we got
144  *
145  * Called from cpu hotplug and from the state register machinery.
146  */
147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 				 bool bringup, struct hlist_node *node,
149 				 struct hlist_node **lastp)
150 {
151 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 	struct cpuhp_step *step = cpuhp_get_step(state);
153 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 	int (*cb)(unsigned int cpu);
155 	int ret, cnt;
156 
157 	if (st->fail == state) {
158 		st->fail = CPUHP_INVALID;
159 
160 		if (!(bringup ? step->startup.single : step->teardown.single))
161 			return 0;
162 
163 		return -EAGAIN;
164 	}
165 
166 	if (!step->multi_instance) {
167 		WARN_ON_ONCE(lastp && *lastp);
168 		cb = bringup ? step->startup.single : step->teardown.single;
169 		if (!cb)
170 			return 0;
171 		trace_cpuhp_enter(cpu, st->target, state, cb);
172 		ret = cb(cpu);
173 		trace_cpuhp_exit(cpu, st->state, state, ret);
174 		return ret;
175 	}
176 	cbm = bringup ? step->startup.multi : step->teardown.multi;
177 	if (!cbm)
178 		return 0;
179 
180 	/* Single invocation for instance add/remove */
181 	if (node) {
182 		WARN_ON_ONCE(lastp && *lastp);
183 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 		ret = cbm(cpu, node);
185 		trace_cpuhp_exit(cpu, st->state, state, ret);
186 		return ret;
187 	}
188 
189 	/* State transition. Invoke on all instances */
190 	cnt = 0;
191 	hlist_for_each(node, &step->list) {
192 		if (lastp && node == *lastp)
193 			break;
194 
195 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 		ret = cbm(cpu, node);
197 		trace_cpuhp_exit(cpu, st->state, state, ret);
198 		if (ret) {
199 			if (!lastp)
200 				goto err;
201 
202 			*lastp = node;
203 			return ret;
204 		}
205 		cnt++;
206 	}
207 	if (lastp)
208 		*lastp = NULL;
209 	return 0;
210 err:
211 	/* Rollback the instances if one failed */
212 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 	if (!cbm)
214 		return ret;
215 
216 	hlist_for_each(node, &step->list) {
217 		if (!cnt--)
218 			break;
219 
220 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 		ret = cbm(cpu, node);
222 		trace_cpuhp_exit(cpu, st->state, state, ret);
223 		/*
224 		 * Rollback must not fail,
225 		 */
226 		WARN_ON_ONCE(ret);
227 	}
228 	return ret;
229 }
230 
231 #ifdef CONFIG_SMP
232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 	/*
235 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 	 * purposes as that state is handled explicitly in cpu_down.
237 	 */
238 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240 
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 	struct completion *done = bringup ? &st->done_up : &st->done_down;
244 	wait_for_completion(done);
245 }
246 
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	complete(done);
251 }
252 
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260 
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
270 void cpu_maps_update_begin(void)
271 {
272 	mutex_lock(&cpu_add_remove_lock);
273 }
274 
275 void cpu_maps_update_done(void)
276 {
277 	mutex_unlock(&cpu_add_remove_lock);
278 }
279 
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289 
290 void cpus_read_lock(void)
291 {
292 	percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295 
296 int cpus_read_trylock(void)
297 {
298 	return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301 
302 void cpus_read_unlock(void)
303 {
304 	percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307 
308 void cpus_write_lock(void)
309 {
310 	percpu_down_write(&cpu_hotplug_lock);
311 }
312 
313 void cpus_write_unlock(void)
314 {
315 	percpu_up_write(&cpu_hotplug_lock);
316 }
317 
318 void lockdep_assert_cpus_held(void)
319 {
320 	/*
321 	 * We can't have hotplug operations before userspace starts running,
322 	 * and some init codepaths will knowingly not take the hotplug lock.
323 	 * This is all valid, so mute lockdep until it makes sense to report
324 	 * unheld locks.
325 	 */
326 	if (system_state < SYSTEM_RUNNING)
327 		return;
328 
329 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331 
332 static void lockdep_acquire_cpus_lock(void)
333 {
334 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335 }
336 
337 static void lockdep_release_cpus_lock(void)
338 {
339 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, _THIS_IP_);
340 }
341 
342 /*
343  * Wait for currently running CPU hotplug operations to complete (if any) and
344  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346  * hotplug path before performing hotplug operations. So acquiring that lock
347  * guarantees mutual exclusion from any currently running hotplug operations.
348  */
349 void cpu_hotplug_disable(void)
350 {
351 	cpu_maps_update_begin();
352 	cpu_hotplug_disabled++;
353 	cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356 
357 static void __cpu_hotplug_enable(void)
358 {
359 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 		return;
361 	cpu_hotplug_disabled--;
362 }
363 
364 void cpu_hotplug_enable(void)
365 {
366 	cpu_maps_update_begin();
367 	__cpu_hotplug_enable();
368 	cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371 
372 #else
373 
374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377 
378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381 
382 #endif	/* CONFIG_HOTPLUG_CPU */
383 
384 /*
385  * Architectures that need SMT-specific errata handling during SMT hotplug
386  * should override this.
387  */
388 void __weak arch_smt_update(void) { }
389 
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392 
393 void __init cpu_smt_disable(bool force)
394 {
395 	if (!cpu_smt_possible())
396 		return;
397 
398 	if (force) {
399 		pr_info("SMT: Force disabled\n");
400 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 	} else {
402 		pr_info("SMT: disabled\n");
403 		cpu_smt_control = CPU_SMT_DISABLED;
404 	}
405 }
406 
407 /*
408  * The decision whether SMT is supported can only be done after the full
409  * CPU identification. Called from architecture code.
410  */
411 void __init cpu_smt_check_topology(void)
412 {
413 	if (!topology_smt_supported())
414 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415 }
416 
417 static int __init smt_cmdline_disable(char *str)
418 {
419 	cpu_smt_disable(str && !strcmp(str, "force"));
420 	return 0;
421 }
422 early_param("nosmt", smt_cmdline_disable);
423 
424 static inline bool cpu_smt_allowed(unsigned int cpu)
425 {
426 	if (cpu_smt_control == CPU_SMT_ENABLED)
427 		return true;
428 
429 	if (topology_is_primary_thread(cpu))
430 		return true;
431 
432 	/*
433 	 * On x86 it's required to boot all logical CPUs at least once so
434 	 * that the init code can get a chance to set CR4.MCE on each
435 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
436 	 * core will shutdown the machine.
437 	 */
438 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439 }
440 
441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
442 bool cpu_smt_possible(void)
443 {
444 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446 }
447 EXPORT_SYMBOL_GPL(cpu_smt_possible);
448 #else
449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450 #endif
451 
452 static inline enum cpuhp_state
453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454 {
455 	enum cpuhp_state prev_state = st->state;
456 
457 	st->rollback = false;
458 	st->last = NULL;
459 
460 	st->target = target;
461 	st->single = false;
462 	st->bringup = st->state < target;
463 
464 	return prev_state;
465 }
466 
467 static inline void
468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469 {
470 	st->rollback = true;
471 
472 	/*
473 	 * If we have st->last we need to undo partial multi_instance of this
474 	 * state first. Otherwise start undo at the previous state.
475 	 */
476 	if (!st->last) {
477 		if (st->bringup)
478 			st->state--;
479 		else
480 			st->state++;
481 	}
482 
483 	st->target = prev_state;
484 	st->bringup = !st->bringup;
485 }
486 
487 /* Regular hotplug invocation of the AP hotplug thread */
488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489 {
490 	if (!st->single && st->state == st->target)
491 		return;
492 
493 	st->result = 0;
494 	/*
495 	 * Make sure the above stores are visible before should_run becomes
496 	 * true. Paired with the mb() above in cpuhp_thread_fun()
497 	 */
498 	smp_mb();
499 	st->should_run = true;
500 	wake_up_process(st->thread);
501 	wait_for_ap_thread(st, st->bringup);
502 }
503 
504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505 {
506 	enum cpuhp_state prev_state;
507 	int ret;
508 
509 	prev_state = cpuhp_set_state(st, target);
510 	__cpuhp_kick_ap(st);
511 	if ((ret = st->result)) {
512 		cpuhp_reset_state(st, prev_state);
513 		__cpuhp_kick_ap(st);
514 	}
515 
516 	return ret;
517 }
518 
519 static int bringup_wait_for_ap(unsigned int cpu)
520 {
521 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522 
523 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 	wait_for_ap_thread(st, true);
525 	if (WARN_ON_ONCE((!cpu_online(cpu))))
526 		return -ECANCELED;
527 
528 	/* Unpark the hotplug thread of the target cpu */
529 	kthread_unpark(st->thread);
530 
531 	/*
532 	 * SMT soft disabling on X86 requires to bring the CPU out of the
533 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
534 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
535 	 * cpu_smt_allowed() check will now return false if this is not the
536 	 * primary sibling.
537 	 */
538 	if (!cpu_smt_allowed(cpu))
539 		return -ECANCELED;
540 
541 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
542 		return 0;
543 
544 	return cpuhp_kick_ap(st, st->target);
545 }
546 
547 static int bringup_cpu(unsigned int cpu)
548 {
549 	struct task_struct *idle = idle_thread_get(cpu);
550 	int ret;
551 
552 	/*
553 	 * Some architectures have to walk the irq descriptors to
554 	 * setup the vector space for the cpu which comes online.
555 	 * Prevent irq alloc/free across the bringup.
556 	 */
557 	irq_lock_sparse();
558 
559 	/* Arch-specific enabling code. */
560 	ret = __cpu_up(cpu, idle);
561 	irq_unlock_sparse();
562 	if (ret)
563 		return ret;
564 	return bringup_wait_for_ap(cpu);
565 }
566 
567 /*
568  * Hotplug state machine related functions
569  */
570 
571 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
572 {
573 	for (st->state--; st->state > st->target; st->state--)
574 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
575 }
576 
577 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
578 {
579 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
580 		return true;
581 	/*
582 	 * When CPU hotplug is disabled, then taking the CPU down is not
583 	 * possible because takedown_cpu() and the architecture and
584 	 * subsystem specific mechanisms are not available. So the CPU
585 	 * which would be completely unplugged again needs to stay around
586 	 * in the current state.
587 	 */
588 	return st->state <= CPUHP_BRINGUP_CPU;
589 }
590 
591 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
592 			      enum cpuhp_state target)
593 {
594 	enum cpuhp_state prev_state = st->state;
595 	int ret = 0;
596 
597 	while (st->state < target) {
598 		st->state++;
599 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
600 		if (ret) {
601 			if (can_rollback_cpu(st)) {
602 				st->target = prev_state;
603 				undo_cpu_up(cpu, st);
604 			}
605 			break;
606 		}
607 	}
608 	return ret;
609 }
610 
611 /*
612  * The cpu hotplug threads manage the bringup and teardown of the cpus
613  */
614 static void cpuhp_create(unsigned int cpu)
615 {
616 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
617 
618 	init_completion(&st->done_up);
619 	init_completion(&st->done_down);
620 }
621 
622 static int cpuhp_should_run(unsigned int cpu)
623 {
624 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
625 
626 	return st->should_run;
627 }
628 
629 /*
630  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
631  * callbacks when a state gets [un]installed at runtime.
632  *
633  * Each invocation of this function by the smpboot thread does a single AP
634  * state callback.
635  *
636  * It has 3 modes of operation:
637  *  - single: runs st->cb_state
638  *  - up:     runs ++st->state, while st->state < st->target
639  *  - down:   runs st->state--, while st->state > st->target
640  *
641  * When complete or on error, should_run is cleared and the completion is fired.
642  */
643 static void cpuhp_thread_fun(unsigned int cpu)
644 {
645 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
646 	bool bringup = st->bringup;
647 	enum cpuhp_state state;
648 
649 	if (WARN_ON_ONCE(!st->should_run))
650 		return;
651 
652 	/*
653 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
654 	 * that if we see ->should_run we also see the rest of the state.
655 	 */
656 	smp_mb();
657 
658 	/*
659 	 * The BP holds the hotplug lock, but we're now running on the AP,
660 	 * ensure that anybody asserting the lock is held, will actually find
661 	 * it so.
662 	 */
663 	lockdep_acquire_cpus_lock();
664 	cpuhp_lock_acquire(bringup);
665 
666 	if (st->single) {
667 		state = st->cb_state;
668 		st->should_run = false;
669 	} else {
670 		if (bringup) {
671 			st->state++;
672 			state = st->state;
673 			st->should_run = (st->state < st->target);
674 			WARN_ON_ONCE(st->state > st->target);
675 		} else {
676 			state = st->state;
677 			st->state--;
678 			st->should_run = (st->state > st->target);
679 			WARN_ON_ONCE(st->state < st->target);
680 		}
681 	}
682 
683 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
684 
685 	if (cpuhp_is_atomic_state(state)) {
686 		local_irq_disable();
687 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
688 		local_irq_enable();
689 
690 		/*
691 		 * STARTING/DYING must not fail!
692 		 */
693 		WARN_ON_ONCE(st->result);
694 	} else {
695 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
696 	}
697 
698 	if (st->result) {
699 		/*
700 		 * If we fail on a rollback, we're up a creek without no
701 		 * paddle, no way forward, no way back. We loose, thanks for
702 		 * playing.
703 		 */
704 		WARN_ON_ONCE(st->rollback);
705 		st->should_run = false;
706 	}
707 
708 	cpuhp_lock_release(bringup);
709 	lockdep_release_cpus_lock();
710 
711 	if (!st->should_run)
712 		complete_ap_thread(st, bringup);
713 }
714 
715 /* Invoke a single callback on a remote cpu */
716 static int
717 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
718 			 struct hlist_node *node)
719 {
720 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
721 	int ret;
722 
723 	if (!cpu_online(cpu))
724 		return 0;
725 
726 	cpuhp_lock_acquire(false);
727 	cpuhp_lock_release(false);
728 
729 	cpuhp_lock_acquire(true);
730 	cpuhp_lock_release(true);
731 
732 	/*
733 	 * If we are up and running, use the hotplug thread. For early calls
734 	 * we invoke the thread function directly.
735 	 */
736 	if (!st->thread)
737 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
738 
739 	st->rollback = false;
740 	st->last = NULL;
741 
742 	st->node = node;
743 	st->bringup = bringup;
744 	st->cb_state = state;
745 	st->single = true;
746 
747 	__cpuhp_kick_ap(st);
748 
749 	/*
750 	 * If we failed and did a partial, do a rollback.
751 	 */
752 	if ((ret = st->result) && st->last) {
753 		st->rollback = true;
754 		st->bringup = !bringup;
755 
756 		__cpuhp_kick_ap(st);
757 	}
758 
759 	/*
760 	 * Clean up the leftovers so the next hotplug operation wont use stale
761 	 * data.
762 	 */
763 	st->node = st->last = NULL;
764 	return ret;
765 }
766 
767 static int cpuhp_kick_ap_work(unsigned int cpu)
768 {
769 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
770 	enum cpuhp_state prev_state = st->state;
771 	int ret;
772 
773 	cpuhp_lock_acquire(false);
774 	cpuhp_lock_release(false);
775 
776 	cpuhp_lock_acquire(true);
777 	cpuhp_lock_release(true);
778 
779 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
780 	ret = cpuhp_kick_ap(st, st->target);
781 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
782 
783 	return ret;
784 }
785 
786 static struct smp_hotplug_thread cpuhp_threads = {
787 	.store			= &cpuhp_state.thread,
788 	.create			= &cpuhp_create,
789 	.thread_should_run	= cpuhp_should_run,
790 	.thread_fn		= cpuhp_thread_fun,
791 	.thread_comm		= "cpuhp/%u",
792 	.selfparking		= true,
793 };
794 
795 void __init cpuhp_threads_init(void)
796 {
797 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
798 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
799 }
800 
801 #ifdef CONFIG_HOTPLUG_CPU
802 /**
803  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
804  * @cpu: a CPU id
805  *
806  * This function walks all processes, finds a valid mm struct for each one and
807  * then clears a corresponding bit in mm's cpumask.  While this all sounds
808  * trivial, there are various non-obvious corner cases, which this function
809  * tries to solve in a safe manner.
810  *
811  * Also note that the function uses a somewhat relaxed locking scheme, so it may
812  * be called only for an already offlined CPU.
813  */
814 void clear_tasks_mm_cpumask(int cpu)
815 {
816 	struct task_struct *p;
817 
818 	/*
819 	 * This function is called after the cpu is taken down and marked
820 	 * offline, so its not like new tasks will ever get this cpu set in
821 	 * their mm mask. -- Peter Zijlstra
822 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
823 	 * full-fledged tasklist_lock.
824 	 */
825 	WARN_ON(cpu_online(cpu));
826 	rcu_read_lock();
827 	for_each_process(p) {
828 		struct task_struct *t;
829 
830 		/*
831 		 * Main thread might exit, but other threads may still have
832 		 * a valid mm. Find one.
833 		 */
834 		t = find_lock_task_mm(p);
835 		if (!t)
836 			continue;
837 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
838 		task_unlock(t);
839 	}
840 	rcu_read_unlock();
841 }
842 
843 /* Take this CPU down. */
844 static int take_cpu_down(void *_param)
845 {
846 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
847 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
848 	int err, cpu = smp_processor_id();
849 	int ret;
850 
851 	/* Ensure this CPU doesn't handle any more interrupts. */
852 	err = __cpu_disable();
853 	if (err < 0)
854 		return err;
855 
856 	/*
857 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
858 	 * do this step again.
859 	 */
860 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
861 	st->state--;
862 	/* Invoke the former CPU_DYING callbacks */
863 	for (; st->state > target; st->state--) {
864 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
865 		/*
866 		 * DYING must not fail!
867 		 */
868 		WARN_ON_ONCE(ret);
869 	}
870 
871 	/* Give up timekeeping duties */
872 	tick_handover_do_timer();
873 	/* Remove CPU from timer broadcasting */
874 	tick_offline_cpu(cpu);
875 	/* Park the stopper thread */
876 	stop_machine_park(cpu);
877 	return 0;
878 }
879 
880 static int takedown_cpu(unsigned int cpu)
881 {
882 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
883 	int err;
884 
885 	/* Park the smpboot threads */
886 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
887 
888 	/*
889 	 * Prevent irq alloc/free while the dying cpu reorganizes the
890 	 * interrupt affinities.
891 	 */
892 	irq_lock_sparse();
893 
894 	/*
895 	 * So now all preempt/rcu users must observe !cpu_active().
896 	 */
897 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
898 	if (err) {
899 		/* CPU refused to die */
900 		irq_unlock_sparse();
901 		/* Unpark the hotplug thread so we can rollback there */
902 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
903 		return err;
904 	}
905 	BUG_ON(cpu_online(cpu));
906 
907 	/*
908 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
909 	 * all runnable tasks from the CPU, there's only the idle task left now
910 	 * that the migration thread is done doing the stop_machine thing.
911 	 *
912 	 * Wait for the stop thread to go away.
913 	 */
914 	wait_for_ap_thread(st, false);
915 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
916 
917 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
918 	irq_unlock_sparse();
919 
920 	hotplug_cpu__broadcast_tick_pull(cpu);
921 	/* This actually kills the CPU. */
922 	__cpu_die(cpu);
923 
924 	tick_cleanup_dead_cpu(cpu);
925 	rcutree_migrate_callbacks(cpu);
926 	return 0;
927 }
928 
929 static void cpuhp_complete_idle_dead(void *arg)
930 {
931 	struct cpuhp_cpu_state *st = arg;
932 
933 	complete_ap_thread(st, false);
934 }
935 
936 void cpuhp_report_idle_dead(void)
937 {
938 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
939 
940 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
941 	rcu_report_dead(smp_processor_id());
942 	st->state = CPUHP_AP_IDLE_DEAD;
943 	/*
944 	 * We cannot call complete after rcu_report_dead() so we delegate it
945 	 * to an online cpu.
946 	 */
947 	smp_call_function_single(cpumask_first(cpu_online_mask),
948 				 cpuhp_complete_idle_dead, st, 0);
949 }
950 
951 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
952 {
953 	for (st->state++; st->state < st->target; st->state++)
954 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
955 }
956 
957 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
958 				enum cpuhp_state target)
959 {
960 	enum cpuhp_state prev_state = st->state;
961 	int ret = 0;
962 
963 	for (; st->state > target; st->state--) {
964 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
965 		if (ret) {
966 			st->target = prev_state;
967 			if (st->state < prev_state)
968 				undo_cpu_down(cpu, st);
969 			break;
970 		}
971 	}
972 	return ret;
973 }
974 
975 /* Requires cpu_add_remove_lock to be held */
976 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
977 			   enum cpuhp_state target)
978 {
979 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
980 	int prev_state, ret = 0;
981 
982 	if (num_online_cpus() == 1)
983 		return -EBUSY;
984 
985 	if (!cpu_present(cpu))
986 		return -EINVAL;
987 
988 	cpus_write_lock();
989 
990 	cpuhp_tasks_frozen = tasks_frozen;
991 
992 	prev_state = cpuhp_set_state(st, target);
993 	/*
994 	 * If the current CPU state is in the range of the AP hotplug thread,
995 	 * then we need to kick the thread.
996 	 */
997 	if (st->state > CPUHP_TEARDOWN_CPU) {
998 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
999 		ret = cpuhp_kick_ap_work(cpu);
1000 		/*
1001 		 * The AP side has done the error rollback already. Just
1002 		 * return the error code..
1003 		 */
1004 		if (ret)
1005 			goto out;
1006 
1007 		/*
1008 		 * We might have stopped still in the range of the AP hotplug
1009 		 * thread. Nothing to do anymore.
1010 		 */
1011 		if (st->state > CPUHP_TEARDOWN_CPU)
1012 			goto out;
1013 
1014 		st->target = target;
1015 	}
1016 	/*
1017 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1018 	 * to do the further cleanups.
1019 	 */
1020 	ret = cpuhp_down_callbacks(cpu, st, target);
1021 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1022 		cpuhp_reset_state(st, prev_state);
1023 		__cpuhp_kick_ap(st);
1024 	}
1025 
1026 out:
1027 	cpus_write_unlock();
1028 	/*
1029 	 * Do post unplug cleanup. This is still protected against
1030 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1031 	 */
1032 	lockup_detector_cleanup();
1033 	arch_smt_update();
1034 	return ret;
1035 }
1036 
1037 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1038 {
1039 	if (cpu_hotplug_disabled)
1040 		return -EBUSY;
1041 	return _cpu_down(cpu, 0, target);
1042 }
1043 
1044 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1045 {
1046 	int err;
1047 
1048 	cpu_maps_update_begin();
1049 	err = cpu_down_maps_locked(cpu, target);
1050 	cpu_maps_update_done();
1051 	return err;
1052 }
1053 
1054 int cpu_down(unsigned int cpu)
1055 {
1056 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1057 }
1058 EXPORT_SYMBOL(cpu_down);
1059 
1060 #else
1061 #define takedown_cpu		NULL
1062 #endif /*CONFIG_HOTPLUG_CPU*/
1063 
1064 /**
1065  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1066  * @cpu: cpu that just started
1067  *
1068  * It must be called by the arch code on the new cpu, before the new cpu
1069  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1070  */
1071 void notify_cpu_starting(unsigned int cpu)
1072 {
1073 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1074 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1075 	int ret;
1076 
1077 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1078 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1079 	while (st->state < target) {
1080 		st->state++;
1081 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1082 		/*
1083 		 * STARTING must not fail!
1084 		 */
1085 		WARN_ON_ONCE(ret);
1086 	}
1087 }
1088 
1089 /*
1090  * Called from the idle task. Wake up the controlling task which brings the
1091  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1092  * online bringup to the hotplug thread.
1093  */
1094 void cpuhp_online_idle(enum cpuhp_state state)
1095 {
1096 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1097 
1098 	/* Happens for the boot cpu */
1099 	if (state != CPUHP_AP_ONLINE_IDLE)
1100 		return;
1101 
1102 	/*
1103 	 * Unpart the stopper thread before we start the idle loop (and start
1104 	 * scheduling); this ensures the stopper task is always available.
1105 	 */
1106 	stop_machine_unpark(smp_processor_id());
1107 
1108 	st->state = CPUHP_AP_ONLINE_IDLE;
1109 	complete_ap_thread(st, true);
1110 }
1111 
1112 /* Requires cpu_add_remove_lock to be held */
1113 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1114 {
1115 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1116 	struct task_struct *idle;
1117 	int ret = 0;
1118 
1119 	cpus_write_lock();
1120 
1121 	if (!cpu_present(cpu)) {
1122 		ret = -EINVAL;
1123 		goto out;
1124 	}
1125 
1126 	/*
1127 	 * The caller of do_cpu_up might have raced with another
1128 	 * caller. Ignore it for now.
1129 	 */
1130 	if (st->state >= target)
1131 		goto out;
1132 
1133 	if (st->state == CPUHP_OFFLINE) {
1134 		/* Let it fail before we try to bring the cpu up */
1135 		idle = idle_thread_get(cpu);
1136 		if (IS_ERR(idle)) {
1137 			ret = PTR_ERR(idle);
1138 			goto out;
1139 		}
1140 	}
1141 
1142 	cpuhp_tasks_frozen = tasks_frozen;
1143 
1144 	cpuhp_set_state(st, target);
1145 	/*
1146 	 * If the current CPU state is in the range of the AP hotplug thread,
1147 	 * then we need to kick the thread once more.
1148 	 */
1149 	if (st->state > CPUHP_BRINGUP_CPU) {
1150 		ret = cpuhp_kick_ap_work(cpu);
1151 		/*
1152 		 * The AP side has done the error rollback already. Just
1153 		 * return the error code..
1154 		 */
1155 		if (ret)
1156 			goto out;
1157 	}
1158 
1159 	/*
1160 	 * Try to reach the target state. We max out on the BP at
1161 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1162 	 * responsible for bringing it up to the target state.
1163 	 */
1164 	target = min((int)target, CPUHP_BRINGUP_CPU);
1165 	ret = cpuhp_up_callbacks(cpu, st, target);
1166 out:
1167 	cpus_write_unlock();
1168 	arch_smt_update();
1169 	return ret;
1170 }
1171 
1172 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1173 {
1174 	int err = 0;
1175 
1176 	if (!cpu_possible(cpu)) {
1177 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1178 		       cpu);
1179 #if defined(CONFIG_IA64)
1180 		pr_err("please check additional_cpus= boot parameter\n");
1181 #endif
1182 		return -EINVAL;
1183 	}
1184 
1185 	err = try_online_node(cpu_to_node(cpu));
1186 	if (err)
1187 		return err;
1188 
1189 	cpu_maps_update_begin();
1190 
1191 	if (cpu_hotplug_disabled) {
1192 		err = -EBUSY;
1193 		goto out;
1194 	}
1195 	if (!cpu_smt_allowed(cpu)) {
1196 		err = -EPERM;
1197 		goto out;
1198 	}
1199 
1200 	err = _cpu_up(cpu, 0, target);
1201 out:
1202 	cpu_maps_update_done();
1203 	return err;
1204 }
1205 
1206 int cpu_up(unsigned int cpu)
1207 {
1208 	return do_cpu_up(cpu, CPUHP_ONLINE);
1209 }
1210 EXPORT_SYMBOL_GPL(cpu_up);
1211 
1212 #ifdef CONFIG_PM_SLEEP_SMP
1213 static cpumask_var_t frozen_cpus;
1214 
1215 int freeze_secondary_cpus(int primary)
1216 {
1217 	int cpu, error = 0;
1218 
1219 	cpu_maps_update_begin();
1220 	if (primary == -1) {
1221 		primary = cpumask_first(cpu_online_mask);
1222 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1223 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1224 	} else {
1225 		if (!cpu_online(primary))
1226 			primary = cpumask_first(cpu_online_mask);
1227 	}
1228 
1229 	/*
1230 	 * We take down all of the non-boot CPUs in one shot to avoid races
1231 	 * with the userspace trying to use the CPU hotplug at the same time
1232 	 */
1233 	cpumask_clear(frozen_cpus);
1234 
1235 	pr_info("Disabling non-boot CPUs ...\n");
1236 	for_each_online_cpu(cpu) {
1237 		if (cpu == primary)
1238 			continue;
1239 
1240 		if (pm_wakeup_pending()) {
1241 			pr_info("Wakeup pending. Abort CPU freeze\n");
1242 			error = -EBUSY;
1243 			break;
1244 		}
1245 
1246 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1247 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1248 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1249 		if (!error)
1250 			cpumask_set_cpu(cpu, frozen_cpus);
1251 		else {
1252 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1253 			break;
1254 		}
1255 	}
1256 
1257 	if (!error)
1258 		BUG_ON(num_online_cpus() > 1);
1259 	else
1260 		pr_err("Non-boot CPUs are not disabled\n");
1261 
1262 	/*
1263 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1264 	 * this even in case of failure as all disable_nonboot_cpus() users are
1265 	 * supposed to do enable_nonboot_cpus() on the failure path.
1266 	 */
1267 	cpu_hotplug_disabled++;
1268 
1269 	cpu_maps_update_done();
1270 	return error;
1271 }
1272 
1273 void __weak arch_enable_nonboot_cpus_begin(void)
1274 {
1275 }
1276 
1277 void __weak arch_enable_nonboot_cpus_end(void)
1278 {
1279 }
1280 
1281 void enable_nonboot_cpus(void)
1282 {
1283 	int cpu, error;
1284 
1285 	/* Allow everyone to use the CPU hotplug again */
1286 	cpu_maps_update_begin();
1287 	__cpu_hotplug_enable();
1288 	if (cpumask_empty(frozen_cpus))
1289 		goto out;
1290 
1291 	pr_info("Enabling non-boot CPUs ...\n");
1292 
1293 	arch_enable_nonboot_cpus_begin();
1294 
1295 	for_each_cpu(cpu, frozen_cpus) {
1296 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1297 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1298 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1299 		if (!error) {
1300 			pr_info("CPU%d is up\n", cpu);
1301 			continue;
1302 		}
1303 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1304 	}
1305 
1306 	arch_enable_nonboot_cpus_end();
1307 
1308 	cpumask_clear(frozen_cpus);
1309 out:
1310 	cpu_maps_update_done();
1311 }
1312 
1313 static int __init alloc_frozen_cpus(void)
1314 {
1315 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1316 		return -ENOMEM;
1317 	return 0;
1318 }
1319 core_initcall(alloc_frozen_cpus);
1320 
1321 /*
1322  * When callbacks for CPU hotplug notifications are being executed, we must
1323  * ensure that the state of the system with respect to the tasks being frozen
1324  * or not, as reported by the notification, remains unchanged *throughout the
1325  * duration* of the execution of the callbacks.
1326  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1327  *
1328  * This synchronization is implemented by mutually excluding regular CPU
1329  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1330  * Hibernate notifications.
1331  */
1332 static int
1333 cpu_hotplug_pm_callback(struct notifier_block *nb,
1334 			unsigned long action, void *ptr)
1335 {
1336 	switch (action) {
1337 
1338 	case PM_SUSPEND_PREPARE:
1339 	case PM_HIBERNATION_PREPARE:
1340 		cpu_hotplug_disable();
1341 		break;
1342 
1343 	case PM_POST_SUSPEND:
1344 	case PM_POST_HIBERNATION:
1345 		cpu_hotplug_enable();
1346 		break;
1347 
1348 	default:
1349 		return NOTIFY_DONE;
1350 	}
1351 
1352 	return NOTIFY_OK;
1353 }
1354 
1355 
1356 static int __init cpu_hotplug_pm_sync_init(void)
1357 {
1358 	/*
1359 	 * cpu_hotplug_pm_callback has higher priority than x86
1360 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1361 	 * to disable cpu hotplug to avoid cpu hotplug race.
1362 	 */
1363 	pm_notifier(cpu_hotplug_pm_callback, 0);
1364 	return 0;
1365 }
1366 core_initcall(cpu_hotplug_pm_sync_init);
1367 
1368 #endif /* CONFIG_PM_SLEEP_SMP */
1369 
1370 int __boot_cpu_id;
1371 
1372 #endif /* CONFIG_SMP */
1373 
1374 /* Boot processor state steps */
1375 static struct cpuhp_step cpuhp_hp_states[] = {
1376 	[CPUHP_OFFLINE] = {
1377 		.name			= "offline",
1378 		.startup.single		= NULL,
1379 		.teardown.single	= NULL,
1380 	},
1381 #ifdef CONFIG_SMP
1382 	[CPUHP_CREATE_THREADS]= {
1383 		.name			= "threads:prepare",
1384 		.startup.single		= smpboot_create_threads,
1385 		.teardown.single	= NULL,
1386 		.cant_stop		= true,
1387 	},
1388 	[CPUHP_PERF_PREPARE] = {
1389 		.name			= "perf:prepare",
1390 		.startup.single		= perf_event_init_cpu,
1391 		.teardown.single	= perf_event_exit_cpu,
1392 	},
1393 	[CPUHP_WORKQUEUE_PREP] = {
1394 		.name			= "workqueue:prepare",
1395 		.startup.single		= workqueue_prepare_cpu,
1396 		.teardown.single	= NULL,
1397 	},
1398 	[CPUHP_HRTIMERS_PREPARE] = {
1399 		.name			= "hrtimers:prepare",
1400 		.startup.single		= hrtimers_prepare_cpu,
1401 		.teardown.single	= hrtimers_dead_cpu,
1402 	},
1403 	[CPUHP_SMPCFD_PREPARE] = {
1404 		.name			= "smpcfd:prepare",
1405 		.startup.single		= smpcfd_prepare_cpu,
1406 		.teardown.single	= smpcfd_dead_cpu,
1407 	},
1408 	[CPUHP_RELAY_PREPARE] = {
1409 		.name			= "relay:prepare",
1410 		.startup.single		= relay_prepare_cpu,
1411 		.teardown.single	= NULL,
1412 	},
1413 	[CPUHP_SLAB_PREPARE] = {
1414 		.name			= "slab:prepare",
1415 		.startup.single		= slab_prepare_cpu,
1416 		.teardown.single	= slab_dead_cpu,
1417 	},
1418 	[CPUHP_RCUTREE_PREP] = {
1419 		.name			= "RCU/tree:prepare",
1420 		.startup.single		= rcutree_prepare_cpu,
1421 		.teardown.single	= rcutree_dead_cpu,
1422 	},
1423 	/*
1424 	 * On the tear-down path, timers_dead_cpu() must be invoked
1425 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1426 	 * otherwise a RCU stall occurs.
1427 	 */
1428 	[CPUHP_TIMERS_PREPARE] = {
1429 		.name			= "timers:prepare",
1430 		.startup.single		= timers_prepare_cpu,
1431 		.teardown.single	= timers_dead_cpu,
1432 	},
1433 	/* Kicks the plugged cpu into life */
1434 	[CPUHP_BRINGUP_CPU] = {
1435 		.name			= "cpu:bringup",
1436 		.startup.single		= bringup_cpu,
1437 		.teardown.single	= NULL,
1438 		.cant_stop		= true,
1439 	},
1440 	/* Final state before CPU kills itself */
1441 	[CPUHP_AP_IDLE_DEAD] = {
1442 		.name			= "idle:dead",
1443 	},
1444 	/*
1445 	 * Last state before CPU enters the idle loop to die. Transient state
1446 	 * for synchronization.
1447 	 */
1448 	[CPUHP_AP_OFFLINE] = {
1449 		.name			= "ap:offline",
1450 		.cant_stop		= true,
1451 	},
1452 	/* First state is scheduler control. Interrupts are disabled */
1453 	[CPUHP_AP_SCHED_STARTING] = {
1454 		.name			= "sched:starting",
1455 		.startup.single		= sched_cpu_starting,
1456 		.teardown.single	= sched_cpu_dying,
1457 	},
1458 	[CPUHP_AP_RCUTREE_DYING] = {
1459 		.name			= "RCU/tree:dying",
1460 		.startup.single		= NULL,
1461 		.teardown.single	= rcutree_dying_cpu,
1462 	},
1463 	[CPUHP_AP_SMPCFD_DYING] = {
1464 		.name			= "smpcfd:dying",
1465 		.startup.single		= NULL,
1466 		.teardown.single	= smpcfd_dying_cpu,
1467 	},
1468 	/* Entry state on starting. Interrupts enabled from here on. Transient
1469 	 * state for synchronsization */
1470 	[CPUHP_AP_ONLINE] = {
1471 		.name			= "ap:online",
1472 	},
1473 	/*
1474 	 * Handled on controll processor until the plugged processor manages
1475 	 * this itself.
1476 	 */
1477 	[CPUHP_TEARDOWN_CPU] = {
1478 		.name			= "cpu:teardown",
1479 		.startup.single		= NULL,
1480 		.teardown.single	= takedown_cpu,
1481 		.cant_stop		= true,
1482 	},
1483 	/* Handle smpboot threads park/unpark */
1484 	[CPUHP_AP_SMPBOOT_THREADS] = {
1485 		.name			= "smpboot/threads:online",
1486 		.startup.single		= smpboot_unpark_threads,
1487 		.teardown.single	= smpboot_park_threads,
1488 	},
1489 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1490 		.name			= "irq/affinity:online",
1491 		.startup.single		= irq_affinity_online_cpu,
1492 		.teardown.single	= NULL,
1493 	},
1494 	[CPUHP_AP_PERF_ONLINE] = {
1495 		.name			= "perf:online",
1496 		.startup.single		= perf_event_init_cpu,
1497 		.teardown.single	= perf_event_exit_cpu,
1498 	},
1499 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1500 		.name			= "lockup_detector:online",
1501 		.startup.single		= lockup_detector_online_cpu,
1502 		.teardown.single	= lockup_detector_offline_cpu,
1503 	},
1504 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1505 		.name			= "workqueue:online",
1506 		.startup.single		= workqueue_online_cpu,
1507 		.teardown.single	= workqueue_offline_cpu,
1508 	},
1509 	[CPUHP_AP_RCUTREE_ONLINE] = {
1510 		.name			= "RCU/tree:online",
1511 		.startup.single		= rcutree_online_cpu,
1512 		.teardown.single	= rcutree_offline_cpu,
1513 	},
1514 #endif
1515 	/*
1516 	 * The dynamically registered state space is here
1517 	 */
1518 
1519 #ifdef CONFIG_SMP
1520 	/* Last state is scheduler control setting the cpu active */
1521 	[CPUHP_AP_ACTIVE] = {
1522 		.name			= "sched:active",
1523 		.startup.single		= sched_cpu_activate,
1524 		.teardown.single	= sched_cpu_deactivate,
1525 	},
1526 #endif
1527 
1528 	/* CPU is fully up and running. */
1529 	[CPUHP_ONLINE] = {
1530 		.name			= "online",
1531 		.startup.single		= NULL,
1532 		.teardown.single	= NULL,
1533 	},
1534 };
1535 
1536 /* Sanity check for callbacks */
1537 static int cpuhp_cb_check(enum cpuhp_state state)
1538 {
1539 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1540 		return -EINVAL;
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Returns a free for dynamic slot assignment of the Online state. The states
1546  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1547  * by having no name assigned.
1548  */
1549 static int cpuhp_reserve_state(enum cpuhp_state state)
1550 {
1551 	enum cpuhp_state i, end;
1552 	struct cpuhp_step *step;
1553 
1554 	switch (state) {
1555 	case CPUHP_AP_ONLINE_DYN:
1556 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1557 		end = CPUHP_AP_ONLINE_DYN_END;
1558 		break;
1559 	case CPUHP_BP_PREPARE_DYN:
1560 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1561 		end = CPUHP_BP_PREPARE_DYN_END;
1562 		break;
1563 	default:
1564 		return -EINVAL;
1565 	}
1566 
1567 	for (i = state; i <= end; i++, step++) {
1568 		if (!step->name)
1569 			return i;
1570 	}
1571 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1572 	return -ENOSPC;
1573 }
1574 
1575 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1576 				 int (*startup)(unsigned int cpu),
1577 				 int (*teardown)(unsigned int cpu),
1578 				 bool multi_instance)
1579 {
1580 	/* (Un)Install the callbacks for further cpu hotplug operations */
1581 	struct cpuhp_step *sp;
1582 	int ret = 0;
1583 
1584 	/*
1585 	 * If name is NULL, then the state gets removed.
1586 	 *
1587 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1588 	 * the first allocation from these dynamic ranges, so the removal
1589 	 * would trigger a new allocation and clear the wrong (already
1590 	 * empty) state, leaving the callbacks of the to be cleared state
1591 	 * dangling, which causes wreckage on the next hotplug operation.
1592 	 */
1593 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1594 		     state == CPUHP_BP_PREPARE_DYN)) {
1595 		ret = cpuhp_reserve_state(state);
1596 		if (ret < 0)
1597 			return ret;
1598 		state = ret;
1599 	}
1600 	sp = cpuhp_get_step(state);
1601 	if (name && sp->name)
1602 		return -EBUSY;
1603 
1604 	sp->startup.single = startup;
1605 	sp->teardown.single = teardown;
1606 	sp->name = name;
1607 	sp->multi_instance = multi_instance;
1608 	INIT_HLIST_HEAD(&sp->list);
1609 	return ret;
1610 }
1611 
1612 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1613 {
1614 	return cpuhp_get_step(state)->teardown.single;
1615 }
1616 
1617 /*
1618  * Call the startup/teardown function for a step either on the AP or
1619  * on the current CPU.
1620  */
1621 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1622 			    struct hlist_node *node)
1623 {
1624 	struct cpuhp_step *sp = cpuhp_get_step(state);
1625 	int ret;
1626 
1627 	/*
1628 	 * If there's nothing to do, we done.
1629 	 * Relies on the union for multi_instance.
1630 	 */
1631 	if ((bringup && !sp->startup.single) ||
1632 	    (!bringup && !sp->teardown.single))
1633 		return 0;
1634 	/*
1635 	 * The non AP bound callbacks can fail on bringup. On teardown
1636 	 * e.g. module removal we crash for now.
1637 	 */
1638 #ifdef CONFIG_SMP
1639 	if (cpuhp_is_ap_state(state))
1640 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1641 	else
1642 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1643 #else
1644 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1645 #endif
1646 	BUG_ON(ret && !bringup);
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Called from __cpuhp_setup_state on a recoverable failure.
1652  *
1653  * Note: The teardown callbacks for rollback are not allowed to fail!
1654  */
1655 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1656 				   struct hlist_node *node)
1657 {
1658 	int cpu;
1659 
1660 	/* Roll back the already executed steps on the other cpus */
1661 	for_each_present_cpu(cpu) {
1662 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1663 		int cpustate = st->state;
1664 
1665 		if (cpu >= failedcpu)
1666 			break;
1667 
1668 		/* Did we invoke the startup call on that cpu ? */
1669 		if (cpustate >= state)
1670 			cpuhp_issue_call(cpu, state, false, node);
1671 	}
1672 }
1673 
1674 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1675 					  struct hlist_node *node,
1676 					  bool invoke)
1677 {
1678 	struct cpuhp_step *sp;
1679 	int cpu;
1680 	int ret;
1681 
1682 	lockdep_assert_cpus_held();
1683 
1684 	sp = cpuhp_get_step(state);
1685 	if (sp->multi_instance == false)
1686 		return -EINVAL;
1687 
1688 	mutex_lock(&cpuhp_state_mutex);
1689 
1690 	if (!invoke || !sp->startup.multi)
1691 		goto add_node;
1692 
1693 	/*
1694 	 * Try to call the startup callback for each present cpu
1695 	 * depending on the hotplug state of the cpu.
1696 	 */
1697 	for_each_present_cpu(cpu) {
1698 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1699 		int cpustate = st->state;
1700 
1701 		if (cpustate < state)
1702 			continue;
1703 
1704 		ret = cpuhp_issue_call(cpu, state, true, node);
1705 		if (ret) {
1706 			if (sp->teardown.multi)
1707 				cpuhp_rollback_install(cpu, state, node);
1708 			goto unlock;
1709 		}
1710 	}
1711 add_node:
1712 	ret = 0;
1713 	hlist_add_head(node, &sp->list);
1714 unlock:
1715 	mutex_unlock(&cpuhp_state_mutex);
1716 	return ret;
1717 }
1718 
1719 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1720 			       bool invoke)
1721 {
1722 	int ret;
1723 
1724 	cpus_read_lock();
1725 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1726 	cpus_read_unlock();
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1730 
1731 /**
1732  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1733  * @state:		The state to setup
1734  * @invoke:		If true, the startup function is invoked for cpus where
1735  *			cpu state >= @state
1736  * @startup:		startup callback function
1737  * @teardown:		teardown callback function
1738  * @multi_instance:	State is set up for multiple instances which get
1739  *			added afterwards.
1740  *
1741  * The caller needs to hold cpus read locked while calling this function.
1742  * Returns:
1743  *   On success:
1744  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1745  *      0 for all other states
1746  *   On failure: proper (negative) error code
1747  */
1748 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1749 				   const char *name, bool invoke,
1750 				   int (*startup)(unsigned int cpu),
1751 				   int (*teardown)(unsigned int cpu),
1752 				   bool multi_instance)
1753 {
1754 	int cpu, ret = 0;
1755 	bool dynstate;
1756 
1757 	lockdep_assert_cpus_held();
1758 
1759 	if (cpuhp_cb_check(state) || !name)
1760 		return -EINVAL;
1761 
1762 	mutex_lock(&cpuhp_state_mutex);
1763 
1764 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1765 				    multi_instance);
1766 
1767 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1768 	if (ret > 0 && dynstate) {
1769 		state = ret;
1770 		ret = 0;
1771 	}
1772 
1773 	if (ret || !invoke || !startup)
1774 		goto out;
1775 
1776 	/*
1777 	 * Try to call the startup callback for each present cpu
1778 	 * depending on the hotplug state of the cpu.
1779 	 */
1780 	for_each_present_cpu(cpu) {
1781 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1782 		int cpustate = st->state;
1783 
1784 		if (cpustate < state)
1785 			continue;
1786 
1787 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1788 		if (ret) {
1789 			if (teardown)
1790 				cpuhp_rollback_install(cpu, state, NULL);
1791 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1792 			goto out;
1793 		}
1794 	}
1795 out:
1796 	mutex_unlock(&cpuhp_state_mutex);
1797 	/*
1798 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1799 	 * dynamically allocated state in case of success.
1800 	 */
1801 	if (!ret && dynstate)
1802 		return state;
1803 	return ret;
1804 }
1805 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1806 
1807 int __cpuhp_setup_state(enum cpuhp_state state,
1808 			const char *name, bool invoke,
1809 			int (*startup)(unsigned int cpu),
1810 			int (*teardown)(unsigned int cpu),
1811 			bool multi_instance)
1812 {
1813 	int ret;
1814 
1815 	cpus_read_lock();
1816 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1817 					     teardown, multi_instance);
1818 	cpus_read_unlock();
1819 	return ret;
1820 }
1821 EXPORT_SYMBOL(__cpuhp_setup_state);
1822 
1823 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1824 				  struct hlist_node *node, bool invoke)
1825 {
1826 	struct cpuhp_step *sp = cpuhp_get_step(state);
1827 	int cpu;
1828 
1829 	BUG_ON(cpuhp_cb_check(state));
1830 
1831 	if (!sp->multi_instance)
1832 		return -EINVAL;
1833 
1834 	cpus_read_lock();
1835 	mutex_lock(&cpuhp_state_mutex);
1836 
1837 	if (!invoke || !cpuhp_get_teardown_cb(state))
1838 		goto remove;
1839 	/*
1840 	 * Call the teardown callback for each present cpu depending
1841 	 * on the hotplug state of the cpu. This function is not
1842 	 * allowed to fail currently!
1843 	 */
1844 	for_each_present_cpu(cpu) {
1845 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1846 		int cpustate = st->state;
1847 
1848 		if (cpustate >= state)
1849 			cpuhp_issue_call(cpu, state, false, node);
1850 	}
1851 
1852 remove:
1853 	hlist_del(node);
1854 	mutex_unlock(&cpuhp_state_mutex);
1855 	cpus_read_unlock();
1856 
1857 	return 0;
1858 }
1859 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1860 
1861 /**
1862  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1863  * @state:	The state to remove
1864  * @invoke:	If true, the teardown function is invoked for cpus where
1865  *		cpu state >= @state
1866  *
1867  * The caller needs to hold cpus read locked while calling this function.
1868  * The teardown callback is currently not allowed to fail. Think
1869  * about module removal!
1870  */
1871 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1872 {
1873 	struct cpuhp_step *sp = cpuhp_get_step(state);
1874 	int cpu;
1875 
1876 	BUG_ON(cpuhp_cb_check(state));
1877 
1878 	lockdep_assert_cpus_held();
1879 
1880 	mutex_lock(&cpuhp_state_mutex);
1881 	if (sp->multi_instance) {
1882 		WARN(!hlist_empty(&sp->list),
1883 		     "Error: Removing state %d which has instances left.\n",
1884 		     state);
1885 		goto remove;
1886 	}
1887 
1888 	if (!invoke || !cpuhp_get_teardown_cb(state))
1889 		goto remove;
1890 
1891 	/*
1892 	 * Call the teardown callback for each present cpu depending
1893 	 * on the hotplug state of the cpu. This function is not
1894 	 * allowed to fail currently!
1895 	 */
1896 	for_each_present_cpu(cpu) {
1897 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1898 		int cpustate = st->state;
1899 
1900 		if (cpustate >= state)
1901 			cpuhp_issue_call(cpu, state, false, NULL);
1902 	}
1903 remove:
1904 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1905 	mutex_unlock(&cpuhp_state_mutex);
1906 }
1907 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1908 
1909 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1910 {
1911 	cpus_read_lock();
1912 	__cpuhp_remove_state_cpuslocked(state, invoke);
1913 	cpus_read_unlock();
1914 }
1915 EXPORT_SYMBOL(__cpuhp_remove_state);
1916 
1917 #ifdef CONFIG_HOTPLUG_SMT
1918 static void cpuhp_offline_cpu_device(unsigned int cpu)
1919 {
1920 	struct device *dev = get_cpu_device(cpu);
1921 
1922 	dev->offline = true;
1923 	/* Tell user space about the state change */
1924 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1925 }
1926 
1927 static void cpuhp_online_cpu_device(unsigned int cpu)
1928 {
1929 	struct device *dev = get_cpu_device(cpu);
1930 
1931 	dev->offline = false;
1932 	/* Tell user space about the state change */
1933 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1934 }
1935 
1936 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
1937 {
1938 	int cpu, ret = 0;
1939 
1940 	cpu_maps_update_begin();
1941 	for_each_online_cpu(cpu) {
1942 		if (topology_is_primary_thread(cpu))
1943 			continue;
1944 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1945 		if (ret)
1946 			break;
1947 		/*
1948 		 * As this needs to hold the cpu maps lock it's impossible
1949 		 * to call device_offline() because that ends up calling
1950 		 * cpu_down() which takes cpu maps lock. cpu maps lock
1951 		 * needs to be held as this might race against in kernel
1952 		 * abusers of the hotplug machinery (thermal management).
1953 		 *
1954 		 * So nothing would update device:offline state. That would
1955 		 * leave the sysfs entry stale and prevent onlining after
1956 		 * smt control has been changed to 'off' again. This is
1957 		 * called under the sysfs hotplug lock, so it is properly
1958 		 * serialized against the regular offline usage.
1959 		 */
1960 		cpuhp_offline_cpu_device(cpu);
1961 	}
1962 	if (!ret)
1963 		cpu_smt_control = ctrlval;
1964 	cpu_maps_update_done();
1965 	return ret;
1966 }
1967 
1968 int cpuhp_smt_enable(void)
1969 {
1970 	int cpu, ret = 0;
1971 
1972 	cpu_maps_update_begin();
1973 	cpu_smt_control = CPU_SMT_ENABLED;
1974 	for_each_present_cpu(cpu) {
1975 		/* Skip online CPUs and CPUs on offline nodes */
1976 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
1977 			continue;
1978 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
1979 		if (ret)
1980 			break;
1981 		/* See comment in cpuhp_smt_disable() */
1982 		cpuhp_online_cpu_device(cpu);
1983 	}
1984 	cpu_maps_update_done();
1985 	return ret;
1986 }
1987 #endif
1988 
1989 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1990 static ssize_t show_cpuhp_state(struct device *dev,
1991 				struct device_attribute *attr, char *buf)
1992 {
1993 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1994 
1995 	return sprintf(buf, "%d\n", st->state);
1996 }
1997 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1998 
1999 static ssize_t write_cpuhp_target(struct device *dev,
2000 				  struct device_attribute *attr,
2001 				  const char *buf, size_t count)
2002 {
2003 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2004 	struct cpuhp_step *sp;
2005 	int target, ret;
2006 
2007 	ret = kstrtoint(buf, 10, &target);
2008 	if (ret)
2009 		return ret;
2010 
2011 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2012 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2013 		return -EINVAL;
2014 #else
2015 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2016 		return -EINVAL;
2017 #endif
2018 
2019 	ret = lock_device_hotplug_sysfs();
2020 	if (ret)
2021 		return ret;
2022 
2023 	mutex_lock(&cpuhp_state_mutex);
2024 	sp = cpuhp_get_step(target);
2025 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2026 	mutex_unlock(&cpuhp_state_mutex);
2027 	if (ret)
2028 		goto out;
2029 
2030 	if (st->state < target)
2031 		ret = do_cpu_up(dev->id, target);
2032 	else
2033 		ret = do_cpu_down(dev->id, target);
2034 out:
2035 	unlock_device_hotplug();
2036 	return ret ? ret : count;
2037 }
2038 
2039 static ssize_t show_cpuhp_target(struct device *dev,
2040 				 struct device_attribute *attr, char *buf)
2041 {
2042 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2043 
2044 	return sprintf(buf, "%d\n", st->target);
2045 }
2046 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2047 
2048 
2049 static ssize_t write_cpuhp_fail(struct device *dev,
2050 				struct device_attribute *attr,
2051 				const char *buf, size_t count)
2052 {
2053 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2054 	struct cpuhp_step *sp;
2055 	int fail, ret;
2056 
2057 	ret = kstrtoint(buf, 10, &fail);
2058 	if (ret)
2059 		return ret;
2060 
2061 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2062 		return -EINVAL;
2063 
2064 	/*
2065 	 * Cannot fail STARTING/DYING callbacks.
2066 	 */
2067 	if (cpuhp_is_atomic_state(fail))
2068 		return -EINVAL;
2069 
2070 	/*
2071 	 * Cannot fail anything that doesn't have callbacks.
2072 	 */
2073 	mutex_lock(&cpuhp_state_mutex);
2074 	sp = cpuhp_get_step(fail);
2075 	if (!sp->startup.single && !sp->teardown.single)
2076 		ret = -EINVAL;
2077 	mutex_unlock(&cpuhp_state_mutex);
2078 	if (ret)
2079 		return ret;
2080 
2081 	st->fail = fail;
2082 
2083 	return count;
2084 }
2085 
2086 static ssize_t show_cpuhp_fail(struct device *dev,
2087 			       struct device_attribute *attr, char *buf)
2088 {
2089 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2090 
2091 	return sprintf(buf, "%d\n", st->fail);
2092 }
2093 
2094 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2095 
2096 static struct attribute *cpuhp_cpu_attrs[] = {
2097 	&dev_attr_state.attr,
2098 	&dev_attr_target.attr,
2099 	&dev_attr_fail.attr,
2100 	NULL
2101 };
2102 
2103 static const struct attribute_group cpuhp_cpu_attr_group = {
2104 	.attrs = cpuhp_cpu_attrs,
2105 	.name = "hotplug",
2106 	NULL
2107 };
2108 
2109 static ssize_t show_cpuhp_states(struct device *dev,
2110 				 struct device_attribute *attr, char *buf)
2111 {
2112 	ssize_t cur, res = 0;
2113 	int i;
2114 
2115 	mutex_lock(&cpuhp_state_mutex);
2116 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2117 		struct cpuhp_step *sp = cpuhp_get_step(i);
2118 
2119 		if (sp->name) {
2120 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2121 			buf += cur;
2122 			res += cur;
2123 		}
2124 	}
2125 	mutex_unlock(&cpuhp_state_mutex);
2126 	return res;
2127 }
2128 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2129 
2130 static struct attribute *cpuhp_cpu_root_attrs[] = {
2131 	&dev_attr_states.attr,
2132 	NULL
2133 };
2134 
2135 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2136 	.attrs = cpuhp_cpu_root_attrs,
2137 	.name = "hotplug",
2138 	NULL
2139 };
2140 
2141 #ifdef CONFIG_HOTPLUG_SMT
2142 
2143 static ssize_t
2144 __store_smt_control(struct device *dev, struct device_attribute *attr,
2145 		    const char *buf, size_t count)
2146 {
2147 	int ctrlval, ret;
2148 
2149 	if (sysfs_streq(buf, "on"))
2150 		ctrlval = CPU_SMT_ENABLED;
2151 	else if (sysfs_streq(buf, "off"))
2152 		ctrlval = CPU_SMT_DISABLED;
2153 	else if (sysfs_streq(buf, "forceoff"))
2154 		ctrlval = CPU_SMT_FORCE_DISABLED;
2155 	else
2156 		return -EINVAL;
2157 
2158 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2159 		return -EPERM;
2160 
2161 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2162 		return -ENODEV;
2163 
2164 	ret = lock_device_hotplug_sysfs();
2165 	if (ret)
2166 		return ret;
2167 
2168 	if (ctrlval != cpu_smt_control) {
2169 		switch (ctrlval) {
2170 		case CPU_SMT_ENABLED:
2171 			ret = cpuhp_smt_enable();
2172 			break;
2173 		case CPU_SMT_DISABLED:
2174 		case CPU_SMT_FORCE_DISABLED:
2175 			ret = cpuhp_smt_disable(ctrlval);
2176 			break;
2177 		}
2178 	}
2179 
2180 	unlock_device_hotplug();
2181 	return ret ? ret : count;
2182 }
2183 
2184 #else /* !CONFIG_HOTPLUG_SMT */
2185 static ssize_t
2186 __store_smt_control(struct device *dev, struct device_attribute *attr,
2187 		    const char *buf, size_t count)
2188 {
2189 	return -ENODEV;
2190 }
2191 #endif /* CONFIG_HOTPLUG_SMT */
2192 
2193 static const char *smt_states[] = {
2194 	[CPU_SMT_ENABLED]		= "on",
2195 	[CPU_SMT_DISABLED]		= "off",
2196 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2197 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2198 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2199 };
2200 
2201 static ssize_t
2202 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2203 {
2204 	const char *state = smt_states[cpu_smt_control];
2205 
2206 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2207 }
2208 
2209 static ssize_t
2210 store_smt_control(struct device *dev, struct device_attribute *attr,
2211 		  const char *buf, size_t count)
2212 {
2213 	return __store_smt_control(dev, attr, buf, count);
2214 }
2215 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2216 
2217 static ssize_t
2218 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2219 {
2220 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2221 }
2222 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2223 
2224 static struct attribute *cpuhp_smt_attrs[] = {
2225 	&dev_attr_control.attr,
2226 	&dev_attr_active.attr,
2227 	NULL
2228 };
2229 
2230 static const struct attribute_group cpuhp_smt_attr_group = {
2231 	.attrs = cpuhp_smt_attrs,
2232 	.name = "smt",
2233 	NULL
2234 };
2235 
2236 static int __init cpu_smt_sysfs_init(void)
2237 {
2238 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2239 				  &cpuhp_smt_attr_group);
2240 }
2241 
2242 static int __init cpuhp_sysfs_init(void)
2243 {
2244 	int cpu, ret;
2245 
2246 	ret = cpu_smt_sysfs_init();
2247 	if (ret)
2248 		return ret;
2249 
2250 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2251 				 &cpuhp_cpu_root_attr_group);
2252 	if (ret)
2253 		return ret;
2254 
2255 	for_each_possible_cpu(cpu) {
2256 		struct device *dev = get_cpu_device(cpu);
2257 
2258 		if (!dev)
2259 			continue;
2260 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2261 		if (ret)
2262 			return ret;
2263 	}
2264 	return 0;
2265 }
2266 device_initcall(cpuhp_sysfs_init);
2267 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2268 
2269 /*
2270  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2271  * represents all NR_CPUS bits binary values of 1<<nr.
2272  *
2273  * It is used by cpumask_of() to get a constant address to a CPU
2274  * mask value that has a single bit set only.
2275  */
2276 
2277 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2278 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2279 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2280 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2281 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2282 
2283 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2284 
2285 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2286 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2287 #if BITS_PER_LONG > 32
2288 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2289 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2290 #endif
2291 };
2292 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2293 
2294 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2295 EXPORT_SYMBOL(cpu_all_bits);
2296 
2297 #ifdef CONFIG_INIT_ALL_POSSIBLE
2298 struct cpumask __cpu_possible_mask __read_mostly
2299 	= {CPU_BITS_ALL};
2300 #else
2301 struct cpumask __cpu_possible_mask __read_mostly;
2302 #endif
2303 EXPORT_SYMBOL(__cpu_possible_mask);
2304 
2305 struct cpumask __cpu_online_mask __read_mostly;
2306 EXPORT_SYMBOL(__cpu_online_mask);
2307 
2308 struct cpumask __cpu_present_mask __read_mostly;
2309 EXPORT_SYMBOL(__cpu_present_mask);
2310 
2311 struct cpumask __cpu_active_mask __read_mostly;
2312 EXPORT_SYMBOL(__cpu_active_mask);
2313 
2314 atomic_t __num_online_cpus __read_mostly;
2315 EXPORT_SYMBOL(__num_online_cpus);
2316 
2317 void init_cpu_present(const struct cpumask *src)
2318 {
2319 	cpumask_copy(&__cpu_present_mask, src);
2320 }
2321 
2322 void init_cpu_possible(const struct cpumask *src)
2323 {
2324 	cpumask_copy(&__cpu_possible_mask, src);
2325 }
2326 
2327 void init_cpu_online(const struct cpumask *src)
2328 {
2329 	cpumask_copy(&__cpu_online_mask, src);
2330 }
2331 
2332 void set_cpu_online(unsigned int cpu, bool online)
2333 {
2334 	/*
2335 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2336 	 * function by the reboot and kexec code which invoke it from
2337 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2338 	 * regular CPU hotplug is properly serialized.
2339 	 *
2340 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2341 	 * does not protect readers which are not serialized against
2342 	 * concurrent hotplug operations.
2343 	 */
2344 	if (online) {
2345 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2346 			atomic_inc(&__num_online_cpus);
2347 	} else {
2348 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2349 			atomic_dec(&__num_online_cpus);
2350 	}
2351 }
2352 
2353 /*
2354  * Activate the first processor.
2355  */
2356 void __init boot_cpu_init(void)
2357 {
2358 	int cpu = smp_processor_id();
2359 
2360 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2361 	set_cpu_online(cpu, true);
2362 	set_cpu_active(cpu, true);
2363 	set_cpu_present(cpu, true);
2364 	set_cpu_possible(cpu, true);
2365 
2366 #ifdef CONFIG_SMP
2367 	__boot_cpu_id = cpu;
2368 #endif
2369 }
2370 
2371 /*
2372  * Must be called _AFTER_ setting up the per_cpu areas
2373  */
2374 void __init boot_cpu_hotplug_init(void)
2375 {
2376 #ifdef CONFIG_SMP
2377 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2378 #endif
2379 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2380 }
2381 
2382 /*
2383  * These are used for a global "mitigations=" cmdline option for toggling
2384  * optional CPU mitigations.
2385  */
2386 enum cpu_mitigations {
2387 	CPU_MITIGATIONS_OFF,
2388 	CPU_MITIGATIONS_AUTO,
2389 	CPU_MITIGATIONS_AUTO_NOSMT,
2390 };
2391 
2392 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2393 	CPU_MITIGATIONS_AUTO;
2394 
2395 static int __init mitigations_parse_cmdline(char *arg)
2396 {
2397 	if (!strcmp(arg, "off"))
2398 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2399 	else if (!strcmp(arg, "auto"))
2400 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2401 	else if (!strcmp(arg, "auto,nosmt"))
2402 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2403 	else
2404 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2405 			arg);
2406 
2407 	return 0;
2408 }
2409 early_param("mitigations", mitigations_parse_cmdline);
2410 
2411 /* mitigations=off */
2412 bool cpu_mitigations_off(void)
2413 {
2414 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2415 }
2416 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2417 
2418 /* mitigations=auto,nosmt */
2419 bool cpu_mitigations_auto_nosmt(void)
2420 {
2421 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2422 }
2423 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2424