xref: /linux/kernel/cpu.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31 
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35 
36 #include "smpboot.h"
37 
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:	The current cpu state
41  * @target:	The target state
42  * @thread:	Pointer to the hotplug thread
43  * @should_run:	Thread should execute
44  * @rollback:	Perform a rollback
45  * @single:	Single callback invocation
46  * @bringup:	Single callback bringup or teardown selector
47  * @cb_state:	The state for a single callback (install/uninstall)
48  * @result:	Result of the operation
49  * @done:	Signal completion to the issuer of the task
50  */
51 struct cpuhp_cpu_state {
52 	enum cpuhp_state	state;
53 	enum cpuhp_state	target;
54 #ifdef CONFIG_SMP
55 	struct task_struct	*thread;
56 	bool			should_run;
57 	bool			rollback;
58 	bool			single;
59 	bool			bringup;
60 	struct hlist_node	*node;
61 	enum cpuhp_state	cb_state;
62 	int			result;
63 	struct completion	done;
64 #endif
65 };
66 
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68 
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74 
75 /**
76  * cpuhp_step - Hotplug state machine step
77  * @name:	Name of the step
78  * @startup:	Startup function of the step
79  * @teardown:	Teardown function of the step
80  * @skip_onerr:	Do not invoke the functions on error rollback
81  *		Will go away once the notifiers	are gone
82  * @cant_stop:	Bringup/teardown can't be stopped at this step
83  */
84 struct cpuhp_step {
85 	const char		*name;
86 	union {
87 		int		(*single)(unsigned int cpu);
88 		int		(*multi)(unsigned int cpu,
89 					 struct hlist_node *node);
90 	} startup;
91 	union {
92 		int		(*single)(unsigned int cpu);
93 		int		(*multi)(unsigned int cpu,
94 					 struct hlist_node *node);
95 	} teardown;
96 	struct hlist_head	list;
97 	bool			skip_onerr;
98 	bool			cant_stop;
99 	bool			multi_instance;
100 };
101 
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105 
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 	/*
109 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 	 * purposes as that state is handled explicitly in cpu_down.
111 	 */
112 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114 
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 	struct cpuhp_step *sp;
118 
119 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 	return sp + state;
121 }
122 
123 /**
124  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125  * @cpu:	The cpu for which the callback should be invoked
126  * @step:	The step in the state machine
127  * @bringup:	True if the bringup callback should be invoked
128  *
129  * Called from cpu hotplug and from the state register machinery.
130  */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 				 bool bringup, struct hlist_node *node)
133 {
134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 	struct cpuhp_step *step = cpuhp_get_step(state);
136 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 	int (*cb)(unsigned int cpu);
138 	int ret, cnt;
139 
140 	if (!step->multi_instance) {
141 		cb = bringup ? step->startup.single : step->teardown.single;
142 		if (!cb)
143 			return 0;
144 		trace_cpuhp_enter(cpu, st->target, state, cb);
145 		ret = cb(cpu);
146 		trace_cpuhp_exit(cpu, st->state, state, ret);
147 		return ret;
148 	}
149 	cbm = bringup ? step->startup.multi : step->teardown.multi;
150 	if (!cbm)
151 		return 0;
152 
153 	/* Single invocation for instance add/remove */
154 	if (node) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		return ret;
159 	}
160 
161 	/* State transition. Invoke on all instances */
162 	cnt = 0;
163 	hlist_for_each(node, &step->list) {
164 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 		ret = cbm(cpu, node);
166 		trace_cpuhp_exit(cpu, st->state, state, ret);
167 		if (ret)
168 			goto err;
169 		cnt++;
170 	}
171 	return 0;
172 err:
173 	/* Rollback the instances if one failed */
174 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 	if (!cbm)
176 		return ret;
177 
178 	hlist_for_each(node, &step->list) {
179 		if (!cnt--)
180 			break;
181 		cbm(cpu, node);
182 	}
183 	return ret;
184 }
185 
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191 
192 /*
193  * The following two APIs (cpu_maps_update_begin/done) must be used when
194  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195  */
196 void cpu_maps_update_begin(void)
197 {
198 	mutex_lock(&cpu_add_remove_lock);
199 }
200 
201 void cpu_maps_update_done(void)
202 {
203 	mutex_unlock(&cpu_add_remove_lock);
204 }
205 
206 /*
207  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208  * Should always be manipulated under cpu_add_remove_lock
209  */
210 static int cpu_hotplug_disabled;
211 
212 #ifdef CONFIG_HOTPLUG_CPU
213 
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215 
216 void cpus_read_lock(void)
217 {
218 	percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221 
222 void cpus_read_unlock(void)
223 {
224 	percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227 
228 void cpus_write_lock(void)
229 {
230 	percpu_down_write(&cpu_hotplug_lock);
231 }
232 
233 void cpus_write_unlock(void)
234 {
235 	percpu_up_write(&cpu_hotplug_lock);
236 }
237 
238 void lockdep_assert_cpus_held(void)
239 {
240 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242 
243 /*
244  * Wait for currently running CPU hotplug operations to complete (if any) and
245  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247  * hotplug path before performing hotplug operations. So acquiring that lock
248  * guarantees mutual exclusion from any currently running hotplug operations.
249  */
250 void cpu_hotplug_disable(void)
251 {
252 	cpu_maps_update_begin();
253 	cpu_hotplug_disabled++;
254 	cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257 
258 static void __cpu_hotplug_enable(void)
259 {
260 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 		return;
262 	cpu_hotplug_disabled--;
263 }
264 
265 void cpu_hotplug_enable(void)
266 {
267 	cpu_maps_update_begin();
268 	__cpu_hotplug_enable();
269 	cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif	/* CONFIG_HOTPLUG_CPU */
273 
274 static int bringup_wait_for_ap(unsigned int cpu)
275 {
276 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
277 
278 	wait_for_completion(&st->done);
279 	return st->result;
280 }
281 
282 static int bringup_cpu(unsigned int cpu)
283 {
284 	struct task_struct *idle = idle_thread_get(cpu);
285 	int ret;
286 
287 	/*
288 	 * Some architectures have to walk the irq descriptors to
289 	 * setup the vector space for the cpu which comes online.
290 	 * Prevent irq alloc/free across the bringup.
291 	 */
292 	irq_lock_sparse();
293 
294 	/* Arch-specific enabling code. */
295 	ret = __cpu_up(cpu, idle);
296 	irq_unlock_sparse();
297 	if (ret)
298 		return ret;
299 	ret = bringup_wait_for_ap(cpu);
300 	BUG_ON(!cpu_online(cpu));
301 	return ret;
302 }
303 
304 /*
305  * Hotplug state machine related functions
306  */
307 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
308 {
309 	for (st->state++; st->state < st->target; st->state++) {
310 		struct cpuhp_step *step = cpuhp_get_step(st->state);
311 
312 		if (!step->skip_onerr)
313 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
314 	}
315 }
316 
317 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
318 				enum cpuhp_state target)
319 {
320 	enum cpuhp_state prev_state = st->state;
321 	int ret = 0;
322 
323 	for (; st->state > target; st->state--) {
324 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
325 		if (ret) {
326 			st->target = prev_state;
327 			undo_cpu_down(cpu, st);
328 			break;
329 		}
330 	}
331 	return ret;
332 }
333 
334 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
335 {
336 	for (st->state--; st->state > st->target; st->state--) {
337 		struct cpuhp_step *step = cpuhp_get_step(st->state);
338 
339 		if (!step->skip_onerr)
340 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
341 	}
342 }
343 
344 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
345 			      enum cpuhp_state target)
346 {
347 	enum cpuhp_state prev_state = st->state;
348 	int ret = 0;
349 
350 	while (st->state < target) {
351 		st->state++;
352 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
353 		if (ret) {
354 			st->target = prev_state;
355 			undo_cpu_up(cpu, st);
356 			break;
357 		}
358 	}
359 	return ret;
360 }
361 
362 /*
363  * The cpu hotplug threads manage the bringup and teardown of the cpus
364  */
365 static void cpuhp_create(unsigned int cpu)
366 {
367 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
368 
369 	init_completion(&st->done);
370 }
371 
372 static int cpuhp_should_run(unsigned int cpu)
373 {
374 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
375 
376 	return st->should_run;
377 }
378 
379 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
380 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
383 
384 	return cpuhp_down_callbacks(cpu, st, target);
385 }
386 
387 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
388 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
389 {
390 	return cpuhp_up_callbacks(cpu, st, st->target);
391 }
392 
393 /*
394  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
395  * callbacks when a state gets [un]installed at runtime.
396  */
397 static void cpuhp_thread_fun(unsigned int cpu)
398 {
399 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
400 	int ret = 0;
401 
402 	/*
403 	 * Paired with the mb() in cpuhp_kick_ap_work and
404 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
405 	 */
406 	smp_mb();
407 	if (!st->should_run)
408 		return;
409 
410 	st->should_run = false;
411 
412 	lock_map_acquire(&cpuhp_state_lock_map);
413 	/* Single callback invocation for [un]install ? */
414 	if (st->single) {
415 		if (st->cb_state < CPUHP_AP_ONLINE) {
416 			local_irq_disable();
417 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
418 						    st->bringup, st->node);
419 			local_irq_enable();
420 		} else {
421 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
422 						    st->bringup, st->node);
423 		}
424 	} else if (st->rollback) {
425 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
426 
427 		undo_cpu_down(cpu, st);
428 		st->rollback = false;
429 	} else {
430 		/* Cannot happen .... */
431 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
432 
433 		/* Regular hotplug work */
434 		if (st->state < st->target)
435 			ret = cpuhp_ap_online(cpu, st);
436 		else if (st->state > st->target)
437 			ret = cpuhp_ap_offline(cpu, st);
438 	}
439 	lock_map_release(&cpuhp_state_lock_map);
440 	st->result = ret;
441 	complete(&st->done);
442 }
443 
444 /* Invoke a single callback on a remote cpu */
445 static int
446 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
447 			 struct hlist_node *node)
448 {
449 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
450 
451 	if (!cpu_online(cpu))
452 		return 0;
453 
454 	lock_map_acquire(&cpuhp_state_lock_map);
455 	lock_map_release(&cpuhp_state_lock_map);
456 
457 	/*
458 	 * If we are up and running, use the hotplug thread. For early calls
459 	 * we invoke the thread function directly.
460 	 */
461 	if (!st->thread)
462 		return cpuhp_invoke_callback(cpu, state, bringup, node);
463 
464 	st->cb_state = state;
465 	st->single = true;
466 	st->bringup = bringup;
467 	st->node = node;
468 
469 	/*
470 	 * Make sure the above stores are visible before should_run becomes
471 	 * true. Paired with the mb() above in cpuhp_thread_fun()
472 	 */
473 	smp_mb();
474 	st->should_run = true;
475 	wake_up_process(st->thread);
476 	wait_for_completion(&st->done);
477 	return st->result;
478 }
479 
480 /* Regular hotplug invocation of the AP hotplug thread */
481 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
482 {
483 	st->result = 0;
484 	st->single = false;
485 	/*
486 	 * Make sure the above stores are visible before should_run becomes
487 	 * true. Paired with the mb() above in cpuhp_thread_fun()
488 	 */
489 	smp_mb();
490 	st->should_run = true;
491 	wake_up_process(st->thread);
492 }
493 
494 static int cpuhp_kick_ap_work(unsigned int cpu)
495 {
496 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
497 	enum cpuhp_state state = st->state;
498 
499 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
500 	lock_map_acquire(&cpuhp_state_lock_map);
501 	lock_map_release(&cpuhp_state_lock_map);
502 	__cpuhp_kick_ap_work(st);
503 	wait_for_completion(&st->done);
504 	trace_cpuhp_exit(cpu, st->state, state, st->result);
505 	return st->result;
506 }
507 
508 static struct smp_hotplug_thread cpuhp_threads = {
509 	.store			= &cpuhp_state.thread,
510 	.create			= &cpuhp_create,
511 	.thread_should_run	= cpuhp_should_run,
512 	.thread_fn		= cpuhp_thread_fun,
513 	.thread_comm		= "cpuhp/%u",
514 	.selfparking		= true,
515 };
516 
517 void __init cpuhp_threads_init(void)
518 {
519 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
520 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
521 }
522 
523 #ifdef CONFIG_HOTPLUG_CPU
524 /**
525  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
526  * @cpu: a CPU id
527  *
528  * This function walks all processes, finds a valid mm struct for each one and
529  * then clears a corresponding bit in mm's cpumask.  While this all sounds
530  * trivial, there are various non-obvious corner cases, which this function
531  * tries to solve in a safe manner.
532  *
533  * Also note that the function uses a somewhat relaxed locking scheme, so it may
534  * be called only for an already offlined CPU.
535  */
536 void clear_tasks_mm_cpumask(int cpu)
537 {
538 	struct task_struct *p;
539 
540 	/*
541 	 * This function is called after the cpu is taken down and marked
542 	 * offline, so its not like new tasks will ever get this cpu set in
543 	 * their mm mask. -- Peter Zijlstra
544 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
545 	 * full-fledged tasklist_lock.
546 	 */
547 	WARN_ON(cpu_online(cpu));
548 	rcu_read_lock();
549 	for_each_process(p) {
550 		struct task_struct *t;
551 
552 		/*
553 		 * Main thread might exit, but other threads may still have
554 		 * a valid mm. Find one.
555 		 */
556 		t = find_lock_task_mm(p);
557 		if (!t)
558 			continue;
559 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
560 		task_unlock(t);
561 	}
562 	rcu_read_unlock();
563 }
564 
565 /* Take this CPU down. */
566 static int take_cpu_down(void *_param)
567 {
568 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
569 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
570 	int err, cpu = smp_processor_id();
571 
572 	/* Ensure this CPU doesn't handle any more interrupts. */
573 	err = __cpu_disable();
574 	if (err < 0)
575 		return err;
576 
577 	/*
578 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
579 	 * do this step again.
580 	 */
581 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
582 	st->state--;
583 	/* Invoke the former CPU_DYING callbacks */
584 	for (; st->state > target; st->state--)
585 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
586 
587 	/* Give up timekeeping duties */
588 	tick_handover_do_timer();
589 	/* Park the stopper thread */
590 	stop_machine_park(cpu);
591 	return 0;
592 }
593 
594 static int takedown_cpu(unsigned int cpu)
595 {
596 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597 	int err;
598 
599 	/* Park the smpboot threads */
600 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
601 	smpboot_park_threads(cpu);
602 
603 	/*
604 	 * Prevent irq alloc/free while the dying cpu reorganizes the
605 	 * interrupt affinities.
606 	 */
607 	irq_lock_sparse();
608 
609 	/*
610 	 * So now all preempt/rcu users must observe !cpu_active().
611 	 */
612 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
613 	if (err) {
614 		/* CPU refused to die */
615 		irq_unlock_sparse();
616 		/* Unpark the hotplug thread so we can rollback there */
617 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
618 		return err;
619 	}
620 	BUG_ON(cpu_online(cpu));
621 
622 	/*
623 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
624 	 * runnable tasks from the cpu, there's only the idle task left now
625 	 * that the migration thread is done doing the stop_machine thing.
626 	 *
627 	 * Wait for the stop thread to go away.
628 	 */
629 	wait_for_completion(&st->done);
630 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
631 
632 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
633 	irq_unlock_sparse();
634 
635 	hotplug_cpu__broadcast_tick_pull(cpu);
636 	/* This actually kills the CPU. */
637 	__cpu_die(cpu);
638 
639 	tick_cleanup_dead_cpu(cpu);
640 	return 0;
641 }
642 
643 static void cpuhp_complete_idle_dead(void *arg)
644 {
645 	struct cpuhp_cpu_state *st = arg;
646 
647 	complete(&st->done);
648 }
649 
650 void cpuhp_report_idle_dead(void)
651 {
652 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
653 
654 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
655 	rcu_report_dead(smp_processor_id());
656 	st->state = CPUHP_AP_IDLE_DEAD;
657 	/*
658 	 * We cannot call complete after rcu_report_dead() so we delegate it
659 	 * to an online cpu.
660 	 */
661 	smp_call_function_single(cpumask_first(cpu_online_mask),
662 				 cpuhp_complete_idle_dead, st, 0);
663 }
664 
665 #else
666 #define takedown_cpu		NULL
667 #endif
668 
669 #ifdef CONFIG_HOTPLUG_CPU
670 
671 /* Requires cpu_add_remove_lock to be held */
672 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
673 			   enum cpuhp_state target)
674 {
675 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
676 	int prev_state, ret = 0;
677 
678 	if (num_online_cpus() == 1)
679 		return -EBUSY;
680 
681 	if (!cpu_present(cpu))
682 		return -EINVAL;
683 
684 	cpus_write_lock();
685 
686 	cpuhp_tasks_frozen = tasks_frozen;
687 
688 	prev_state = st->state;
689 	st->target = target;
690 	/*
691 	 * If the current CPU state is in the range of the AP hotplug thread,
692 	 * then we need to kick the thread.
693 	 */
694 	if (st->state > CPUHP_TEARDOWN_CPU) {
695 		ret = cpuhp_kick_ap_work(cpu);
696 		/*
697 		 * The AP side has done the error rollback already. Just
698 		 * return the error code..
699 		 */
700 		if (ret)
701 			goto out;
702 
703 		/*
704 		 * We might have stopped still in the range of the AP hotplug
705 		 * thread. Nothing to do anymore.
706 		 */
707 		if (st->state > CPUHP_TEARDOWN_CPU)
708 			goto out;
709 	}
710 	/*
711 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
712 	 * to do the further cleanups.
713 	 */
714 	ret = cpuhp_down_callbacks(cpu, st, target);
715 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
716 		st->target = prev_state;
717 		st->rollback = true;
718 		cpuhp_kick_ap_work(cpu);
719 	}
720 
721 out:
722 	cpus_write_unlock();
723 	return ret;
724 }
725 
726 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
727 {
728 	int err;
729 
730 	cpu_maps_update_begin();
731 
732 	if (cpu_hotplug_disabled) {
733 		err = -EBUSY;
734 		goto out;
735 	}
736 
737 	err = _cpu_down(cpu, 0, target);
738 
739 out:
740 	cpu_maps_update_done();
741 	return err;
742 }
743 int cpu_down(unsigned int cpu)
744 {
745 	return do_cpu_down(cpu, CPUHP_OFFLINE);
746 }
747 EXPORT_SYMBOL(cpu_down);
748 #endif /*CONFIG_HOTPLUG_CPU*/
749 
750 /**
751  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
752  * @cpu: cpu that just started
753  *
754  * It must be called by the arch code on the new cpu, before the new cpu
755  * enables interrupts and before the "boot" cpu returns from __cpu_up().
756  */
757 void notify_cpu_starting(unsigned int cpu)
758 {
759 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
761 
762 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
763 	while (st->state < target) {
764 		st->state++;
765 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
766 	}
767 }
768 
769 /*
770  * Called from the idle task. We need to set active here, so we can kick off
771  * the stopper thread and unpark the smpboot threads. If the target state is
772  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
773  * cpu further.
774  */
775 void cpuhp_online_idle(enum cpuhp_state state)
776 {
777 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
778 	unsigned int cpu = smp_processor_id();
779 
780 	/* Happens for the boot cpu */
781 	if (state != CPUHP_AP_ONLINE_IDLE)
782 		return;
783 
784 	st->state = CPUHP_AP_ONLINE_IDLE;
785 
786 	/* Unpark the stopper thread and the hotplug thread of this cpu */
787 	stop_machine_unpark(cpu);
788 	kthread_unpark(st->thread);
789 
790 	/* Should we go further up ? */
791 	if (st->target > CPUHP_AP_ONLINE_IDLE)
792 		__cpuhp_kick_ap_work(st);
793 	else
794 		complete(&st->done);
795 }
796 
797 /* Requires cpu_add_remove_lock to be held */
798 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
799 {
800 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
801 	struct task_struct *idle;
802 	int ret = 0;
803 
804 	cpus_write_lock();
805 
806 	if (!cpu_present(cpu)) {
807 		ret = -EINVAL;
808 		goto out;
809 	}
810 
811 	/*
812 	 * The caller of do_cpu_up might have raced with another
813 	 * caller. Ignore it for now.
814 	 */
815 	if (st->state >= target)
816 		goto out;
817 
818 	if (st->state == CPUHP_OFFLINE) {
819 		/* Let it fail before we try to bring the cpu up */
820 		idle = idle_thread_get(cpu);
821 		if (IS_ERR(idle)) {
822 			ret = PTR_ERR(idle);
823 			goto out;
824 		}
825 	}
826 
827 	cpuhp_tasks_frozen = tasks_frozen;
828 
829 	st->target = target;
830 	/*
831 	 * If the current CPU state is in the range of the AP hotplug thread,
832 	 * then we need to kick the thread once more.
833 	 */
834 	if (st->state > CPUHP_BRINGUP_CPU) {
835 		ret = cpuhp_kick_ap_work(cpu);
836 		/*
837 		 * The AP side has done the error rollback already. Just
838 		 * return the error code..
839 		 */
840 		if (ret)
841 			goto out;
842 	}
843 
844 	/*
845 	 * Try to reach the target state. We max out on the BP at
846 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
847 	 * responsible for bringing it up to the target state.
848 	 */
849 	target = min((int)target, CPUHP_BRINGUP_CPU);
850 	ret = cpuhp_up_callbacks(cpu, st, target);
851 out:
852 	cpus_write_unlock();
853 	return ret;
854 }
855 
856 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
857 {
858 	int err = 0;
859 
860 	if (!cpu_possible(cpu)) {
861 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
862 		       cpu);
863 #if defined(CONFIG_IA64)
864 		pr_err("please check additional_cpus= boot parameter\n");
865 #endif
866 		return -EINVAL;
867 	}
868 
869 	err = try_online_node(cpu_to_node(cpu));
870 	if (err)
871 		return err;
872 
873 	cpu_maps_update_begin();
874 
875 	if (cpu_hotplug_disabled) {
876 		err = -EBUSY;
877 		goto out;
878 	}
879 
880 	err = _cpu_up(cpu, 0, target);
881 out:
882 	cpu_maps_update_done();
883 	return err;
884 }
885 
886 int cpu_up(unsigned int cpu)
887 {
888 	return do_cpu_up(cpu, CPUHP_ONLINE);
889 }
890 EXPORT_SYMBOL_GPL(cpu_up);
891 
892 #ifdef CONFIG_PM_SLEEP_SMP
893 static cpumask_var_t frozen_cpus;
894 
895 int freeze_secondary_cpus(int primary)
896 {
897 	int cpu, error = 0;
898 
899 	cpu_maps_update_begin();
900 	if (!cpu_online(primary))
901 		primary = cpumask_first(cpu_online_mask);
902 	/*
903 	 * We take down all of the non-boot CPUs in one shot to avoid races
904 	 * with the userspace trying to use the CPU hotplug at the same time
905 	 */
906 	cpumask_clear(frozen_cpus);
907 
908 	pr_info("Disabling non-boot CPUs ...\n");
909 	for_each_online_cpu(cpu) {
910 		if (cpu == primary)
911 			continue;
912 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
913 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
914 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
915 		if (!error)
916 			cpumask_set_cpu(cpu, frozen_cpus);
917 		else {
918 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
919 			break;
920 		}
921 	}
922 
923 	if (!error)
924 		BUG_ON(num_online_cpus() > 1);
925 	else
926 		pr_err("Non-boot CPUs are not disabled\n");
927 
928 	/*
929 	 * Make sure the CPUs won't be enabled by someone else. We need to do
930 	 * this even in case of failure as all disable_nonboot_cpus() users are
931 	 * supposed to do enable_nonboot_cpus() on the failure path.
932 	 */
933 	cpu_hotplug_disabled++;
934 
935 	cpu_maps_update_done();
936 	return error;
937 }
938 
939 void __weak arch_enable_nonboot_cpus_begin(void)
940 {
941 }
942 
943 void __weak arch_enable_nonboot_cpus_end(void)
944 {
945 }
946 
947 void enable_nonboot_cpus(void)
948 {
949 	int cpu, error;
950 
951 	/* Allow everyone to use the CPU hotplug again */
952 	cpu_maps_update_begin();
953 	__cpu_hotplug_enable();
954 	if (cpumask_empty(frozen_cpus))
955 		goto out;
956 
957 	pr_info("Enabling non-boot CPUs ...\n");
958 
959 	arch_enable_nonboot_cpus_begin();
960 
961 	for_each_cpu(cpu, frozen_cpus) {
962 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
963 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
964 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
965 		if (!error) {
966 			pr_info("CPU%d is up\n", cpu);
967 			continue;
968 		}
969 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
970 	}
971 
972 	arch_enable_nonboot_cpus_end();
973 
974 	cpumask_clear(frozen_cpus);
975 out:
976 	cpu_maps_update_done();
977 }
978 
979 static int __init alloc_frozen_cpus(void)
980 {
981 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
982 		return -ENOMEM;
983 	return 0;
984 }
985 core_initcall(alloc_frozen_cpus);
986 
987 /*
988  * When callbacks for CPU hotplug notifications are being executed, we must
989  * ensure that the state of the system with respect to the tasks being frozen
990  * or not, as reported by the notification, remains unchanged *throughout the
991  * duration* of the execution of the callbacks.
992  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
993  *
994  * This synchronization is implemented by mutually excluding regular CPU
995  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
996  * Hibernate notifications.
997  */
998 static int
999 cpu_hotplug_pm_callback(struct notifier_block *nb,
1000 			unsigned long action, void *ptr)
1001 {
1002 	switch (action) {
1003 
1004 	case PM_SUSPEND_PREPARE:
1005 	case PM_HIBERNATION_PREPARE:
1006 		cpu_hotplug_disable();
1007 		break;
1008 
1009 	case PM_POST_SUSPEND:
1010 	case PM_POST_HIBERNATION:
1011 		cpu_hotplug_enable();
1012 		break;
1013 
1014 	default:
1015 		return NOTIFY_DONE;
1016 	}
1017 
1018 	return NOTIFY_OK;
1019 }
1020 
1021 
1022 static int __init cpu_hotplug_pm_sync_init(void)
1023 {
1024 	/*
1025 	 * cpu_hotplug_pm_callback has higher priority than x86
1026 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1027 	 * to disable cpu hotplug to avoid cpu hotplug race.
1028 	 */
1029 	pm_notifier(cpu_hotplug_pm_callback, 0);
1030 	return 0;
1031 }
1032 core_initcall(cpu_hotplug_pm_sync_init);
1033 
1034 #endif /* CONFIG_PM_SLEEP_SMP */
1035 
1036 int __boot_cpu_id;
1037 
1038 #endif /* CONFIG_SMP */
1039 
1040 /* Boot processor state steps */
1041 static struct cpuhp_step cpuhp_bp_states[] = {
1042 	[CPUHP_OFFLINE] = {
1043 		.name			= "offline",
1044 		.startup.single		= NULL,
1045 		.teardown.single	= NULL,
1046 	},
1047 #ifdef CONFIG_SMP
1048 	[CPUHP_CREATE_THREADS]= {
1049 		.name			= "threads:prepare",
1050 		.startup.single		= smpboot_create_threads,
1051 		.teardown.single	= NULL,
1052 		.cant_stop		= true,
1053 	},
1054 	[CPUHP_PERF_PREPARE] = {
1055 		.name			= "perf:prepare",
1056 		.startup.single		= perf_event_init_cpu,
1057 		.teardown.single	= perf_event_exit_cpu,
1058 	},
1059 	[CPUHP_WORKQUEUE_PREP] = {
1060 		.name			= "workqueue:prepare",
1061 		.startup.single		= workqueue_prepare_cpu,
1062 		.teardown.single	= NULL,
1063 	},
1064 	[CPUHP_HRTIMERS_PREPARE] = {
1065 		.name			= "hrtimers:prepare",
1066 		.startup.single		= hrtimers_prepare_cpu,
1067 		.teardown.single	= hrtimers_dead_cpu,
1068 	},
1069 	[CPUHP_SMPCFD_PREPARE] = {
1070 		.name			= "smpcfd:prepare",
1071 		.startup.single		= smpcfd_prepare_cpu,
1072 		.teardown.single	= smpcfd_dead_cpu,
1073 	},
1074 	[CPUHP_RELAY_PREPARE] = {
1075 		.name			= "relay:prepare",
1076 		.startup.single		= relay_prepare_cpu,
1077 		.teardown.single	= NULL,
1078 	},
1079 	[CPUHP_SLAB_PREPARE] = {
1080 		.name			= "slab:prepare",
1081 		.startup.single		= slab_prepare_cpu,
1082 		.teardown.single	= slab_dead_cpu,
1083 	},
1084 	[CPUHP_RCUTREE_PREP] = {
1085 		.name			= "RCU/tree:prepare",
1086 		.startup.single		= rcutree_prepare_cpu,
1087 		.teardown.single	= rcutree_dead_cpu,
1088 	},
1089 	/*
1090 	 * On the tear-down path, timers_dead_cpu() must be invoked
1091 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1092 	 * otherwise a RCU stall occurs.
1093 	 */
1094 	[CPUHP_TIMERS_DEAD] = {
1095 		.name			= "timers:dead",
1096 		.startup.single		= NULL,
1097 		.teardown.single	= timers_dead_cpu,
1098 	},
1099 	/* Kicks the plugged cpu into life */
1100 	[CPUHP_BRINGUP_CPU] = {
1101 		.name			= "cpu:bringup",
1102 		.startup.single		= bringup_cpu,
1103 		.teardown.single	= NULL,
1104 		.cant_stop		= true,
1105 	},
1106 	[CPUHP_AP_SMPCFD_DYING] = {
1107 		.name			= "smpcfd:dying",
1108 		.startup.single		= NULL,
1109 		.teardown.single	= smpcfd_dying_cpu,
1110 	},
1111 	/*
1112 	 * Handled on controll processor until the plugged processor manages
1113 	 * this itself.
1114 	 */
1115 	[CPUHP_TEARDOWN_CPU] = {
1116 		.name			= "cpu:teardown",
1117 		.startup.single		= NULL,
1118 		.teardown.single	= takedown_cpu,
1119 		.cant_stop		= true,
1120 	},
1121 #else
1122 	[CPUHP_BRINGUP_CPU] = { },
1123 #endif
1124 };
1125 
1126 /* Application processor state steps */
1127 static struct cpuhp_step cpuhp_ap_states[] = {
1128 #ifdef CONFIG_SMP
1129 	/* Final state before CPU kills itself */
1130 	[CPUHP_AP_IDLE_DEAD] = {
1131 		.name			= "idle:dead",
1132 	},
1133 	/*
1134 	 * Last state before CPU enters the idle loop to die. Transient state
1135 	 * for synchronization.
1136 	 */
1137 	[CPUHP_AP_OFFLINE] = {
1138 		.name			= "ap:offline",
1139 		.cant_stop		= true,
1140 	},
1141 	/* First state is scheduler control. Interrupts are disabled */
1142 	[CPUHP_AP_SCHED_STARTING] = {
1143 		.name			= "sched:starting",
1144 		.startup.single		= sched_cpu_starting,
1145 		.teardown.single	= sched_cpu_dying,
1146 	},
1147 	[CPUHP_AP_RCUTREE_DYING] = {
1148 		.name			= "RCU/tree:dying",
1149 		.startup.single		= NULL,
1150 		.teardown.single	= rcutree_dying_cpu,
1151 	},
1152 	/* Entry state on starting. Interrupts enabled from here on. Transient
1153 	 * state for synchronsization */
1154 	[CPUHP_AP_ONLINE] = {
1155 		.name			= "ap:online",
1156 	},
1157 	/* Handle smpboot threads park/unpark */
1158 	[CPUHP_AP_SMPBOOT_THREADS] = {
1159 		.name			= "smpboot/threads:online",
1160 		.startup.single		= smpboot_unpark_threads,
1161 		.teardown.single	= NULL,
1162 	},
1163 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1164 		.name			= "irq/affinity:online",
1165 		.startup.single		= irq_affinity_online_cpu,
1166 		.teardown.single	= NULL,
1167 	},
1168 	[CPUHP_AP_PERF_ONLINE] = {
1169 		.name			= "perf:online",
1170 		.startup.single		= perf_event_init_cpu,
1171 		.teardown.single	= perf_event_exit_cpu,
1172 	},
1173 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1174 		.name			= "workqueue:online",
1175 		.startup.single		= workqueue_online_cpu,
1176 		.teardown.single	= workqueue_offline_cpu,
1177 	},
1178 	[CPUHP_AP_RCUTREE_ONLINE] = {
1179 		.name			= "RCU/tree:online",
1180 		.startup.single		= rcutree_online_cpu,
1181 		.teardown.single	= rcutree_offline_cpu,
1182 	},
1183 #endif
1184 	/*
1185 	 * The dynamically registered state space is here
1186 	 */
1187 
1188 #ifdef CONFIG_SMP
1189 	/* Last state is scheduler control setting the cpu active */
1190 	[CPUHP_AP_ACTIVE] = {
1191 		.name			= "sched:active",
1192 		.startup.single		= sched_cpu_activate,
1193 		.teardown.single	= sched_cpu_deactivate,
1194 	},
1195 #endif
1196 
1197 	/* CPU is fully up and running. */
1198 	[CPUHP_ONLINE] = {
1199 		.name			= "online",
1200 		.startup.single		= NULL,
1201 		.teardown.single	= NULL,
1202 	},
1203 };
1204 
1205 /* Sanity check for callbacks */
1206 static int cpuhp_cb_check(enum cpuhp_state state)
1207 {
1208 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1209 		return -EINVAL;
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Returns a free for dynamic slot assignment of the Online state. The states
1215  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1216  * by having no name assigned.
1217  */
1218 static int cpuhp_reserve_state(enum cpuhp_state state)
1219 {
1220 	enum cpuhp_state i, end;
1221 	struct cpuhp_step *step;
1222 
1223 	switch (state) {
1224 	case CPUHP_AP_ONLINE_DYN:
1225 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1226 		end = CPUHP_AP_ONLINE_DYN_END;
1227 		break;
1228 	case CPUHP_BP_PREPARE_DYN:
1229 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1230 		end = CPUHP_BP_PREPARE_DYN_END;
1231 		break;
1232 	default:
1233 		return -EINVAL;
1234 	}
1235 
1236 	for (i = state; i <= end; i++, step++) {
1237 		if (!step->name)
1238 			return i;
1239 	}
1240 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1241 	return -ENOSPC;
1242 }
1243 
1244 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1245 				 int (*startup)(unsigned int cpu),
1246 				 int (*teardown)(unsigned int cpu),
1247 				 bool multi_instance)
1248 {
1249 	/* (Un)Install the callbacks for further cpu hotplug operations */
1250 	struct cpuhp_step *sp;
1251 	int ret = 0;
1252 
1253 	if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1254 		ret = cpuhp_reserve_state(state);
1255 		if (ret < 0)
1256 			return ret;
1257 		state = ret;
1258 	}
1259 	sp = cpuhp_get_step(state);
1260 	if (name && sp->name)
1261 		return -EBUSY;
1262 
1263 	sp->startup.single = startup;
1264 	sp->teardown.single = teardown;
1265 	sp->name = name;
1266 	sp->multi_instance = multi_instance;
1267 	INIT_HLIST_HEAD(&sp->list);
1268 	return ret;
1269 }
1270 
1271 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1272 {
1273 	return cpuhp_get_step(state)->teardown.single;
1274 }
1275 
1276 /*
1277  * Call the startup/teardown function for a step either on the AP or
1278  * on the current CPU.
1279  */
1280 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1281 			    struct hlist_node *node)
1282 {
1283 	struct cpuhp_step *sp = cpuhp_get_step(state);
1284 	int ret;
1285 
1286 	if ((bringup && !sp->startup.single) ||
1287 	    (!bringup && !sp->teardown.single))
1288 		return 0;
1289 	/*
1290 	 * The non AP bound callbacks can fail on bringup. On teardown
1291 	 * e.g. module removal we crash for now.
1292 	 */
1293 #ifdef CONFIG_SMP
1294 	if (cpuhp_is_ap_state(state))
1295 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1296 	else
1297 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1298 #else
1299 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1300 #endif
1301 	BUG_ON(ret && !bringup);
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Called from __cpuhp_setup_state on a recoverable failure.
1307  *
1308  * Note: The teardown callbacks for rollback are not allowed to fail!
1309  */
1310 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1311 				   struct hlist_node *node)
1312 {
1313 	int cpu;
1314 
1315 	/* Roll back the already executed steps on the other cpus */
1316 	for_each_present_cpu(cpu) {
1317 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1318 		int cpustate = st->state;
1319 
1320 		if (cpu >= failedcpu)
1321 			break;
1322 
1323 		/* Did we invoke the startup call on that cpu ? */
1324 		if (cpustate >= state)
1325 			cpuhp_issue_call(cpu, state, false, node);
1326 	}
1327 }
1328 
1329 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1330 					  struct hlist_node *node,
1331 					  bool invoke)
1332 {
1333 	struct cpuhp_step *sp;
1334 	int cpu;
1335 	int ret;
1336 
1337 	lockdep_assert_cpus_held();
1338 
1339 	sp = cpuhp_get_step(state);
1340 	if (sp->multi_instance == false)
1341 		return -EINVAL;
1342 
1343 	mutex_lock(&cpuhp_state_mutex);
1344 
1345 	if (!invoke || !sp->startup.multi)
1346 		goto add_node;
1347 
1348 	/*
1349 	 * Try to call the startup callback for each present cpu
1350 	 * depending on the hotplug state of the cpu.
1351 	 */
1352 	for_each_present_cpu(cpu) {
1353 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1354 		int cpustate = st->state;
1355 
1356 		if (cpustate < state)
1357 			continue;
1358 
1359 		ret = cpuhp_issue_call(cpu, state, true, node);
1360 		if (ret) {
1361 			if (sp->teardown.multi)
1362 				cpuhp_rollback_install(cpu, state, node);
1363 			goto unlock;
1364 		}
1365 	}
1366 add_node:
1367 	ret = 0;
1368 	hlist_add_head(node, &sp->list);
1369 unlock:
1370 	mutex_unlock(&cpuhp_state_mutex);
1371 	return ret;
1372 }
1373 
1374 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1375 			       bool invoke)
1376 {
1377 	int ret;
1378 
1379 	cpus_read_lock();
1380 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1381 	cpus_read_unlock();
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1385 
1386 /**
1387  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1388  * @state:		The state to setup
1389  * @invoke:		If true, the startup function is invoked for cpus where
1390  *			cpu state >= @state
1391  * @startup:		startup callback function
1392  * @teardown:		teardown callback function
1393  * @multi_instance:	State is set up for multiple instances which get
1394  *			added afterwards.
1395  *
1396  * The caller needs to hold cpus read locked while calling this function.
1397  * Returns:
1398  *   On success:
1399  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1400  *      0 for all other states
1401  *   On failure: proper (negative) error code
1402  */
1403 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1404 				   const char *name, bool invoke,
1405 				   int (*startup)(unsigned int cpu),
1406 				   int (*teardown)(unsigned int cpu),
1407 				   bool multi_instance)
1408 {
1409 	int cpu, ret = 0;
1410 	bool dynstate;
1411 
1412 	lockdep_assert_cpus_held();
1413 
1414 	if (cpuhp_cb_check(state) || !name)
1415 		return -EINVAL;
1416 
1417 	mutex_lock(&cpuhp_state_mutex);
1418 
1419 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1420 				    multi_instance);
1421 
1422 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1423 	if (ret > 0 && dynstate) {
1424 		state = ret;
1425 		ret = 0;
1426 	}
1427 
1428 	if (ret || !invoke || !startup)
1429 		goto out;
1430 
1431 	/*
1432 	 * Try to call the startup callback for each present cpu
1433 	 * depending on the hotplug state of the cpu.
1434 	 */
1435 	for_each_present_cpu(cpu) {
1436 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1437 		int cpustate = st->state;
1438 
1439 		if (cpustate < state)
1440 			continue;
1441 
1442 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1443 		if (ret) {
1444 			if (teardown)
1445 				cpuhp_rollback_install(cpu, state, NULL);
1446 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1447 			goto out;
1448 		}
1449 	}
1450 out:
1451 	mutex_unlock(&cpuhp_state_mutex);
1452 	/*
1453 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1454 	 * dynamically allocated state in case of success.
1455 	 */
1456 	if (!ret && dynstate)
1457 		return state;
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1461 
1462 int __cpuhp_setup_state(enum cpuhp_state state,
1463 			const char *name, bool invoke,
1464 			int (*startup)(unsigned int cpu),
1465 			int (*teardown)(unsigned int cpu),
1466 			bool multi_instance)
1467 {
1468 	int ret;
1469 
1470 	cpus_read_lock();
1471 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1472 					     teardown, multi_instance);
1473 	cpus_read_unlock();
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(__cpuhp_setup_state);
1477 
1478 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1479 				  struct hlist_node *node, bool invoke)
1480 {
1481 	struct cpuhp_step *sp = cpuhp_get_step(state);
1482 	int cpu;
1483 
1484 	BUG_ON(cpuhp_cb_check(state));
1485 
1486 	if (!sp->multi_instance)
1487 		return -EINVAL;
1488 
1489 	cpus_read_lock();
1490 	mutex_lock(&cpuhp_state_mutex);
1491 
1492 	if (!invoke || !cpuhp_get_teardown_cb(state))
1493 		goto remove;
1494 	/*
1495 	 * Call the teardown callback for each present cpu depending
1496 	 * on the hotplug state of the cpu. This function is not
1497 	 * allowed to fail currently!
1498 	 */
1499 	for_each_present_cpu(cpu) {
1500 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501 		int cpustate = st->state;
1502 
1503 		if (cpustate >= state)
1504 			cpuhp_issue_call(cpu, state, false, node);
1505 	}
1506 
1507 remove:
1508 	hlist_del(node);
1509 	mutex_unlock(&cpuhp_state_mutex);
1510 	cpus_read_unlock();
1511 
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1515 
1516 /**
1517  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1518  * @state:	The state to remove
1519  * @invoke:	If true, the teardown function is invoked for cpus where
1520  *		cpu state >= @state
1521  *
1522  * The caller needs to hold cpus read locked while calling this function.
1523  * The teardown callback is currently not allowed to fail. Think
1524  * about module removal!
1525  */
1526 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1527 {
1528 	struct cpuhp_step *sp = cpuhp_get_step(state);
1529 	int cpu;
1530 
1531 	BUG_ON(cpuhp_cb_check(state));
1532 
1533 	lockdep_assert_cpus_held();
1534 
1535 	mutex_lock(&cpuhp_state_mutex);
1536 	if (sp->multi_instance) {
1537 		WARN(!hlist_empty(&sp->list),
1538 		     "Error: Removing state %d which has instances left.\n",
1539 		     state);
1540 		goto remove;
1541 	}
1542 
1543 	if (!invoke || !cpuhp_get_teardown_cb(state))
1544 		goto remove;
1545 
1546 	/*
1547 	 * Call the teardown callback for each present cpu depending
1548 	 * on the hotplug state of the cpu. This function is not
1549 	 * allowed to fail currently!
1550 	 */
1551 	for_each_present_cpu(cpu) {
1552 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1553 		int cpustate = st->state;
1554 
1555 		if (cpustate >= state)
1556 			cpuhp_issue_call(cpu, state, false, NULL);
1557 	}
1558 remove:
1559 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1560 	mutex_unlock(&cpuhp_state_mutex);
1561 }
1562 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1563 
1564 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1565 {
1566 	cpus_read_lock();
1567 	__cpuhp_remove_state_cpuslocked(state, invoke);
1568 	cpus_read_unlock();
1569 }
1570 EXPORT_SYMBOL(__cpuhp_remove_state);
1571 
1572 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1573 static ssize_t show_cpuhp_state(struct device *dev,
1574 				struct device_attribute *attr, char *buf)
1575 {
1576 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1577 
1578 	return sprintf(buf, "%d\n", st->state);
1579 }
1580 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1581 
1582 static ssize_t write_cpuhp_target(struct device *dev,
1583 				  struct device_attribute *attr,
1584 				  const char *buf, size_t count)
1585 {
1586 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1587 	struct cpuhp_step *sp;
1588 	int target, ret;
1589 
1590 	ret = kstrtoint(buf, 10, &target);
1591 	if (ret)
1592 		return ret;
1593 
1594 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1595 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1596 		return -EINVAL;
1597 #else
1598 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1599 		return -EINVAL;
1600 #endif
1601 
1602 	ret = lock_device_hotplug_sysfs();
1603 	if (ret)
1604 		return ret;
1605 
1606 	mutex_lock(&cpuhp_state_mutex);
1607 	sp = cpuhp_get_step(target);
1608 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1609 	mutex_unlock(&cpuhp_state_mutex);
1610 	if (ret)
1611 		goto out;
1612 
1613 	if (st->state < target)
1614 		ret = do_cpu_up(dev->id, target);
1615 	else
1616 		ret = do_cpu_down(dev->id, target);
1617 out:
1618 	unlock_device_hotplug();
1619 	return ret ? ret : count;
1620 }
1621 
1622 static ssize_t show_cpuhp_target(struct device *dev,
1623 				 struct device_attribute *attr, char *buf)
1624 {
1625 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1626 
1627 	return sprintf(buf, "%d\n", st->target);
1628 }
1629 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1630 
1631 static struct attribute *cpuhp_cpu_attrs[] = {
1632 	&dev_attr_state.attr,
1633 	&dev_attr_target.attr,
1634 	NULL
1635 };
1636 
1637 static const struct attribute_group cpuhp_cpu_attr_group = {
1638 	.attrs = cpuhp_cpu_attrs,
1639 	.name = "hotplug",
1640 	NULL
1641 };
1642 
1643 static ssize_t show_cpuhp_states(struct device *dev,
1644 				 struct device_attribute *attr, char *buf)
1645 {
1646 	ssize_t cur, res = 0;
1647 	int i;
1648 
1649 	mutex_lock(&cpuhp_state_mutex);
1650 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1651 		struct cpuhp_step *sp = cpuhp_get_step(i);
1652 
1653 		if (sp->name) {
1654 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1655 			buf += cur;
1656 			res += cur;
1657 		}
1658 	}
1659 	mutex_unlock(&cpuhp_state_mutex);
1660 	return res;
1661 }
1662 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1663 
1664 static struct attribute *cpuhp_cpu_root_attrs[] = {
1665 	&dev_attr_states.attr,
1666 	NULL
1667 };
1668 
1669 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1670 	.attrs = cpuhp_cpu_root_attrs,
1671 	.name = "hotplug",
1672 	NULL
1673 };
1674 
1675 static int __init cpuhp_sysfs_init(void)
1676 {
1677 	int cpu, ret;
1678 
1679 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1680 				 &cpuhp_cpu_root_attr_group);
1681 	if (ret)
1682 		return ret;
1683 
1684 	for_each_possible_cpu(cpu) {
1685 		struct device *dev = get_cpu_device(cpu);
1686 
1687 		if (!dev)
1688 			continue;
1689 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1690 		if (ret)
1691 			return ret;
1692 	}
1693 	return 0;
1694 }
1695 device_initcall(cpuhp_sysfs_init);
1696 #endif
1697 
1698 /*
1699  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1700  * represents all NR_CPUS bits binary values of 1<<nr.
1701  *
1702  * It is used by cpumask_of() to get a constant address to a CPU
1703  * mask value that has a single bit set only.
1704  */
1705 
1706 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1707 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1708 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1709 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1710 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1711 
1712 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1713 
1714 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1715 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1716 #if BITS_PER_LONG > 32
1717 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1718 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1719 #endif
1720 };
1721 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1722 
1723 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1724 EXPORT_SYMBOL(cpu_all_bits);
1725 
1726 #ifdef CONFIG_INIT_ALL_POSSIBLE
1727 struct cpumask __cpu_possible_mask __read_mostly
1728 	= {CPU_BITS_ALL};
1729 #else
1730 struct cpumask __cpu_possible_mask __read_mostly;
1731 #endif
1732 EXPORT_SYMBOL(__cpu_possible_mask);
1733 
1734 struct cpumask __cpu_online_mask __read_mostly;
1735 EXPORT_SYMBOL(__cpu_online_mask);
1736 
1737 struct cpumask __cpu_present_mask __read_mostly;
1738 EXPORT_SYMBOL(__cpu_present_mask);
1739 
1740 struct cpumask __cpu_active_mask __read_mostly;
1741 EXPORT_SYMBOL(__cpu_active_mask);
1742 
1743 void init_cpu_present(const struct cpumask *src)
1744 {
1745 	cpumask_copy(&__cpu_present_mask, src);
1746 }
1747 
1748 void init_cpu_possible(const struct cpumask *src)
1749 {
1750 	cpumask_copy(&__cpu_possible_mask, src);
1751 }
1752 
1753 void init_cpu_online(const struct cpumask *src)
1754 {
1755 	cpumask_copy(&__cpu_online_mask, src);
1756 }
1757 
1758 /*
1759  * Activate the first processor.
1760  */
1761 void __init boot_cpu_init(void)
1762 {
1763 	int cpu = smp_processor_id();
1764 
1765 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1766 	set_cpu_online(cpu, true);
1767 	set_cpu_active(cpu, true);
1768 	set_cpu_present(cpu, true);
1769 	set_cpu_possible(cpu, true);
1770 
1771 #ifdef CONFIG_SMP
1772 	__boot_cpu_id = cpu;
1773 #endif
1774 }
1775 
1776 /*
1777  * Must be called _AFTER_ setting up the per_cpu areas
1778  */
1779 void __init boot_cpu_state_init(void)
1780 {
1781 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1782 }
1783