xref: /linux/kernel/cpu.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/cpuset.h>
36 
37 #include <trace/events/power.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/cpuhp.h>
40 
41 #include "smpboot.h"
42 
43 /**
44  * struct cpuhp_cpu_state - Per cpu hotplug state storage
45  * @state:	The current cpu state
46  * @target:	The target state
47  * @fail:	Current CPU hotplug callback state
48  * @thread:	Pointer to the hotplug thread
49  * @should_run:	Thread should execute
50  * @rollback:	Perform a rollback
51  * @single:	Single callback invocation
52  * @bringup:	Single callback bringup or teardown selector
53  * @cpu:	CPU number
54  * @node:	Remote CPU node; for multi-instance, do a
55  *		single entry callback for install/remove
56  * @last:	For multi-instance rollback, remember how far we got
57  * @cb_state:	The state for a single callback (install/uninstall)
58  * @result:	Result of the operation
59  * @done_up:	Signal completion to the issuer of the task for cpu-up
60  * @done_down:	Signal completion to the issuer of the task for cpu-down
61  */
62 struct cpuhp_cpu_state {
63 	enum cpuhp_state	state;
64 	enum cpuhp_state	target;
65 	enum cpuhp_state	fail;
66 #ifdef CONFIG_SMP
67 	struct task_struct	*thread;
68 	bool			should_run;
69 	bool			rollback;
70 	bool			single;
71 	bool			bringup;
72 	int			cpu;
73 	struct hlist_node	*node;
74 	struct hlist_node	*last;
75 	enum cpuhp_state	cb_state;
76 	int			result;
77 	struct completion	done_up;
78 	struct completion	done_down;
79 #endif
80 };
81 
82 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
83 	.fail = CPUHP_INVALID,
84 };
85 
86 #ifdef CONFIG_SMP
87 cpumask_t cpus_booted_once_mask;
88 #endif
89 
90 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
91 static struct lockdep_map cpuhp_state_up_map =
92 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
93 static struct lockdep_map cpuhp_state_down_map =
94 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
95 
96 
97 static inline void cpuhp_lock_acquire(bool bringup)
98 {
99 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100 }
101 
102 static inline void cpuhp_lock_release(bool bringup)
103 {
104 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 #else
107 
108 static inline void cpuhp_lock_acquire(bool bringup) { }
109 static inline void cpuhp_lock_release(bool bringup) { }
110 
111 #endif
112 
113 /**
114  * struct cpuhp_step - Hotplug state machine step
115  * @name:	Name of the step
116  * @startup:	Startup function of the step
117  * @teardown:	Teardown function of the step
118  * @cant_stop:	Bringup/teardown can't be stopped at this step
119  * @multi_instance:	State has multiple instances which get added afterwards
120  */
121 struct cpuhp_step {
122 	const char		*name;
123 	union {
124 		int		(*single)(unsigned int cpu);
125 		int		(*multi)(unsigned int cpu,
126 					 struct hlist_node *node);
127 	} startup;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} teardown;
133 	/* private: */
134 	struct hlist_head	list;
135 	/* public: */
136 	bool			cant_stop;
137 	bool			multi_instance;
138 };
139 
140 static DEFINE_MUTEX(cpuhp_state_mutex);
141 static struct cpuhp_step cpuhp_hp_states[];
142 
143 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
144 {
145 	return cpuhp_hp_states + state;
146 }
147 
148 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
149 {
150 	return bringup ? !step->startup.single : !step->teardown.single;
151 }
152 
153 /**
154  * cpuhp_invoke_callback - Invoke the callbacks for a given state
155  * @cpu:	The cpu for which the callback should be invoked
156  * @state:	The state to do callbacks for
157  * @bringup:	True if the bringup callback should be invoked
158  * @node:	For multi-instance, do a single entry callback for install/remove
159  * @lastp:	For multi-instance rollback, remember how far we got
160  *
161  * Called from cpu hotplug and from the state register machinery.
162  *
163  * Return: %0 on success or a negative errno code
164  */
165 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
166 				 bool bringup, struct hlist_node *node,
167 				 struct hlist_node **lastp)
168 {
169 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
170 	struct cpuhp_step *step = cpuhp_get_step(state);
171 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
172 	int (*cb)(unsigned int cpu);
173 	int ret, cnt;
174 
175 	if (st->fail == state) {
176 		st->fail = CPUHP_INVALID;
177 		return -EAGAIN;
178 	}
179 
180 	if (cpuhp_step_empty(bringup, step)) {
181 		WARN_ON_ONCE(1);
182 		return 0;
183 	}
184 
185 	if (!step->multi_instance) {
186 		WARN_ON_ONCE(lastp && *lastp);
187 		cb = bringup ? step->startup.single : step->teardown.single;
188 
189 		trace_cpuhp_enter(cpu, st->target, state, cb);
190 		ret = cb(cpu);
191 		trace_cpuhp_exit(cpu, st->state, state, ret);
192 		return ret;
193 	}
194 	cbm = bringup ? step->startup.multi : step->teardown.multi;
195 
196 	/* Single invocation for instance add/remove */
197 	if (node) {
198 		WARN_ON_ONCE(lastp && *lastp);
199 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
200 		ret = cbm(cpu, node);
201 		trace_cpuhp_exit(cpu, st->state, state, ret);
202 		return ret;
203 	}
204 
205 	/* State transition. Invoke on all instances */
206 	cnt = 0;
207 	hlist_for_each(node, &step->list) {
208 		if (lastp && node == *lastp)
209 			break;
210 
211 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
212 		ret = cbm(cpu, node);
213 		trace_cpuhp_exit(cpu, st->state, state, ret);
214 		if (ret) {
215 			if (!lastp)
216 				goto err;
217 
218 			*lastp = node;
219 			return ret;
220 		}
221 		cnt++;
222 	}
223 	if (lastp)
224 		*lastp = NULL;
225 	return 0;
226 err:
227 	/* Rollback the instances if one failed */
228 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
229 	if (!cbm)
230 		return ret;
231 
232 	hlist_for_each(node, &step->list) {
233 		if (!cnt--)
234 			break;
235 
236 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
237 		ret = cbm(cpu, node);
238 		trace_cpuhp_exit(cpu, st->state, state, ret);
239 		/*
240 		 * Rollback must not fail,
241 		 */
242 		WARN_ON_ONCE(ret);
243 	}
244 	return ret;
245 }
246 
247 #ifdef CONFIG_SMP
248 static bool cpuhp_is_ap_state(enum cpuhp_state state)
249 {
250 	/*
251 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
252 	 * purposes as that state is handled explicitly in cpu_down.
253 	 */
254 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
255 }
256 
257 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
258 {
259 	struct completion *done = bringup ? &st->done_up : &st->done_down;
260 	wait_for_completion(done);
261 }
262 
263 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
264 {
265 	struct completion *done = bringup ? &st->done_up : &st->done_down;
266 	complete(done);
267 }
268 
269 /*
270  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
271  */
272 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
273 {
274 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
275 }
276 
277 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
278 static DEFINE_MUTEX(cpu_add_remove_lock);
279 bool cpuhp_tasks_frozen;
280 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
281 
282 /*
283  * The following two APIs (cpu_maps_update_begin/done) must be used when
284  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
285  */
286 void cpu_maps_update_begin(void)
287 {
288 	mutex_lock(&cpu_add_remove_lock);
289 }
290 
291 void cpu_maps_update_done(void)
292 {
293 	mutex_unlock(&cpu_add_remove_lock);
294 }
295 
296 /*
297  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
298  * Should always be manipulated under cpu_add_remove_lock
299  */
300 static int cpu_hotplug_disabled;
301 
302 #ifdef CONFIG_HOTPLUG_CPU
303 
304 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
305 
306 void cpus_read_lock(void)
307 {
308 	percpu_down_read(&cpu_hotplug_lock);
309 }
310 EXPORT_SYMBOL_GPL(cpus_read_lock);
311 
312 int cpus_read_trylock(void)
313 {
314 	return percpu_down_read_trylock(&cpu_hotplug_lock);
315 }
316 EXPORT_SYMBOL_GPL(cpus_read_trylock);
317 
318 void cpus_read_unlock(void)
319 {
320 	percpu_up_read(&cpu_hotplug_lock);
321 }
322 EXPORT_SYMBOL_GPL(cpus_read_unlock);
323 
324 void cpus_write_lock(void)
325 {
326 	percpu_down_write(&cpu_hotplug_lock);
327 }
328 
329 void cpus_write_unlock(void)
330 {
331 	percpu_up_write(&cpu_hotplug_lock);
332 }
333 
334 void lockdep_assert_cpus_held(void)
335 {
336 	/*
337 	 * We can't have hotplug operations before userspace starts running,
338 	 * and some init codepaths will knowingly not take the hotplug lock.
339 	 * This is all valid, so mute lockdep until it makes sense to report
340 	 * unheld locks.
341 	 */
342 	if (system_state < SYSTEM_RUNNING)
343 		return;
344 
345 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
346 }
347 
348 #ifdef CONFIG_LOCKDEP
349 int lockdep_is_cpus_held(void)
350 {
351 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
352 }
353 #endif
354 
355 static void lockdep_acquire_cpus_lock(void)
356 {
357 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
358 }
359 
360 static void lockdep_release_cpus_lock(void)
361 {
362 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
363 }
364 
365 /*
366  * Wait for currently running CPU hotplug operations to complete (if any) and
367  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
368  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
369  * hotplug path before performing hotplug operations. So acquiring that lock
370  * guarantees mutual exclusion from any currently running hotplug operations.
371  */
372 void cpu_hotplug_disable(void)
373 {
374 	cpu_maps_update_begin();
375 	cpu_hotplug_disabled++;
376 	cpu_maps_update_done();
377 }
378 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
379 
380 static void __cpu_hotplug_enable(void)
381 {
382 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
383 		return;
384 	cpu_hotplug_disabled--;
385 }
386 
387 void cpu_hotplug_enable(void)
388 {
389 	cpu_maps_update_begin();
390 	__cpu_hotplug_enable();
391 	cpu_maps_update_done();
392 }
393 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
394 
395 #else
396 
397 static void lockdep_acquire_cpus_lock(void)
398 {
399 }
400 
401 static void lockdep_release_cpus_lock(void)
402 {
403 }
404 
405 #endif	/* CONFIG_HOTPLUG_CPU */
406 
407 /*
408  * Architectures that need SMT-specific errata handling during SMT hotplug
409  * should override this.
410  */
411 void __weak arch_smt_update(void) { }
412 
413 #ifdef CONFIG_HOTPLUG_SMT
414 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
415 
416 void __init cpu_smt_disable(bool force)
417 {
418 	if (!cpu_smt_possible())
419 		return;
420 
421 	if (force) {
422 		pr_info("SMT: Force disabled\n");
423 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
424 	} else {
425 		pr_info("SMT: disabled\n");
426 		cpu_smt_control = CPU_SMT_DISABLED;
427 	}
428 }
429 
430 /*
431  * The decision whether SMT is supported can only be done after the full
432  * CPU identification. Called from architecture code.
433  */
434 void __init cpu_smt_check_topology(void)
435 {
436 	if (!topology_smt_supported())
437 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
438 }
439 
440 static int __init smt_cmdline_disable(char *str)
441 {
442 	cpu_smt_disable(str && !strcmp(str, "force"));
443 	return 0;
444 }
445 early_param("nosmt", smt_cmdline_disable);
446 
447 static inline bool cpu_smt_allowed(unsigned int cpu)
448 {
449 	if (cpu_smt_control == CPU_SMT_ENABLED)
450 		return true;
451 
452 	if (topology_is_primary_thread(cpu))
453 		return true;
454 
455 	/*
456 	 * On x86 it's required to boot all logical CPUs at least once so
457 	 * that the init code can get a chance to set CR4.MCE on each
458 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
459 	 * core will shutdown the machine.
460 	 */
461 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
462 }
463 
464 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
465 bool cpu_smt_possible(void)
466 {
467 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
468 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
469 }
470 EXPORT_SYMBOL_GPL(cpu_smt_possible);
471 #else
472 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
473 #endif
474 
475 static inline enum cpuhp_state
476 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
477 {
478 	enum cpuhp_state prev_state = st->state;
479 	bool bringup = st->state < target;
480 
481 	st->rollback = false;
482 	st->last = NULL;
483 
484 	st->target = target;
485 	st->single = false;
486 	st->bringup = bringup;
487 	if (cpu_dying(st->cpu) != !bringup)
488 		set_cpu_dying(st->cpu, !bringup);
489 
490 	return prev_state;
491 }
492 
493 static inline void
494 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
495 {
496 	bool bringup = !st->bringup;
497 
498 	st->target = prev_state;
499 
500 	/*
501 	 * Already rolling back. No need invert the bringup value or to change
502 	 * the current state.
503 	 */
504 	if (st->rollback)
505 		return;
506 
507 	st->rollback = true;
508 
509 	/*
510 	 * If we have st->last we need to undo partial multi_instance of this
511 	 * state first. Otherwise start undo at the previous state.
512 	 */
513 	if (!st->last) {
514 		if (st->bringup)
515 			st->state--;
516 		else
517 			st->state++;
518 	}
519 
520 	st->bringup = bringup;
521 	if (cpu_dying(st->cpu) != !bringup)
522 		set_cpu_dying(st->cpu, !bringup);
523 }
524 
525 /* Regular hotplug invocation of the AP hotplug thread */
526 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
527 {
528 	if (!st->single && st->state == st->target)
529 		return;
530 
531 	st->result = 0;
532 	/*
533 	 * Make sure the above stores are visible before should_run becomes
534 	 * true. Paired with the mb() above in cpuhp_thread_fun()
535 	 */
536 	smp_mb();
537 	st->should_run = true;
538 	wake_up_process(st->thread);
539 	wait_for_ap_thread(st, st->bringup);
540 }
541 
542 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
543 {
544 	enum cpuhp_state prev_state;
545 	int ret;
546 
547 	prev_state = cpuhp_set_state(st, target);
548 	__cpuhp_kick_ap(st);
549 	if ((ret = st->result)) {
550 		cpuhp_reset_state(st, prev_state);
551 		__cpuhp_kick_ap(st);
552 	}
553 
554 	return ret;
555 }
556 
557 static int bringup_wait_for_ap(unsigned int cpu)
558 {
559 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
560 
561 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
562 	wait_for_ap_thread(st, true);
563 	if (WARN_ON_ONCE((!cpu_online(cpu))))
564 		return -ECANCELED;
565 
566 	/* Unpark the hotplug thread of the target cpu */
567 	kthread_unpark(st->thread);
568 
569 	/*
570 	 * SMT soft disabling on X86 requires to bring the CPU out of the
571 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
572 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
573 	 * cpu_smt_allowed() check will now return false if this is not the
574 	 * primary sibling.
575 	 */
576 	if (!cpu_smt_allowed(cpu))
577 		return -ECANCELED;
578 
579 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
580 		return 0;
581 
582 	return cpuhp_kick_ap(st, st->target);
583 }
584 
585 static int bringup_cpu(unsigned int cpu)
586 {
587 	struct task_struct *idle = idle_thread_get(cpu);
588 	int ret;
589 
590 	/*
591 	 * Some architectures have to walk the irq descriptors to
592 	 * setup the vector space for the cpu which comes online.
593 	 * Prevent irq alloc/free across the bringup.
594 	 */
595 	irq_lock_sparse();
596 
597 	/* Arch-specific enabling code. */
598 	ret = __cpu_up(cpu, idle);
599 	irq_unlock_sparse();
600 	if (ret)
601 		return ret;
602 	return bringup_wait_for_ap(cpu);
603 }
604 
605 static int finish_cpu(unsigned int cpu)
606 {
607 	struct task_struct *idle = idle_thread_get(cpu);
608 	struct mm_struct *mm = idle->active_mm;
609 
610 	/*
611 	 * idle_task_exit() will have switched to &init_mm, now
612 	 * clean up any remaining active_mm state.
613 	 */
614 	if (mm != &init_mm)
615 		idle->active_mm = &init_mm;
616 	mmdrop(mm);
617 	return 0;
618 }
619 
620 /*
621  * Hotplug state machine related functions
622  */
623 
624 /*
625  * Get the next state to run. Empty ones will be skipped. Returns true if a
626  * state must be run.
627  *
628  * st->state will be modified ahead of time, to match state_to_run, as if it
629  * has already ran.
630  */
631 static bool cpuhp_next_state(bool bringup,
632 			     enum cpuhp_state *state_to_run,
633 			     struct cpuhp_cpu_state *st,
634 			     enum cpuhp_state target)
635 {
636 	do {
637 		if (bringup) {
638 			if (st->state >= target)
639 				return false;
640 
641 			*state_to_run = ++st->state;
642 		} else {
643 			if (st->state <= target)
644 				return false;
645 
646 			*state_to_run = st->state--;
647 		}
648 
649 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
650 			break;
651 	} while (true);
652 
653 	return true;
654 }
655 
656 static int cpuhp_invoke_callback_range(bool bringup,
657 				       unsigned int cpu,
658 				       struct cpuhp_cpu_state *st,
659 				       enum cpuhp_state target)
660 {
661 	enum cpuhp_state state;
662 	int err = 0;
663 
664 	while (cpuhp_next_state(bringup, &state, st, target)) {
665 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
666 		if (err)
667 			break;
668 	}
669 
670 	return err;
671 }
672 
673 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
674 {
675 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
676 		return true;
677 	/*
678 	 * When CPU hotplug is disabled, then taking the CPU down is not
679 	 * possible because takedown_cpu() and the architecture and
680 	 * subsystem specific mechanisms are not available. So the CPU
681 	 * which would be completely unplugged again needs to stay around
682 	 * in the current state.
683 	 */
684 	return st->state <= CPUHP_BRINGUP_CPU;
685 }
686 
687 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
688 			      enum cpuhp_state target)
689 {
690 	enum cpuhp_state prev_state = st->state;
691 	int ret = 0;
692 
693 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
694 	if (ret) {
695 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
696 			 ret, cpu, cpuhp_get_step(st->state)->name,
697 			 st->state);
698 
699 		cpuhp_reset_state(st, prev_state);
700 		if (can_rollback_cpu(st))
701 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
702 							    prev_state));
703 	}
704 	return ret;
705 }
706 
707 /*
708  * The cpu hotplug threads manage the bringup and teardown of the cpus
709  */
710 static void cpuhp_create(unsigned int cpu)
711 {
712 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
713 
714 	init_completion(&st->done_up);
715 	init_completion(&st->done_down);
716 	st->cpu = cpu;
717 }
718 
719 static int cpuhp_should_run(unsigned int cpu)
720 {
721 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
722 
723 	return st->should_run;
724 }
725 
726 /*
727  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
728  * callbacks when a state gets [un]installed at runtime.
729  *
730  * Each invocation of this function by the smpboot thread does a single AP
731  * state callback.
732  *
733  * It has 3 modes of operation:
734  *  - single: runs st->cb_state
735  *  - up:     runs ++st->state, while st->state < st->target
736  *  - down:   runs st->state--, while st->state > st->target
737  *
738  * When complete or on error, should_run is cleared and the completion is fired.
739  */
740 static void cpuhp_thread_fun(unsigned int cpu)
741 {
742 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743 	bool bringup = st->bringup;
744 	enum cpuhp_state state;
745 
746 	if (WARN_ON_ONCE(!st->should_run))
747 		return;
748 
749 	/*
750 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
751 	 * that if we see ->should_run we also see the rest of the state.
752 	 */
753 	smp_mb();
754 
755 	/*
756 	 * The BP holds the hotplug lock, but we're now running on the AP,
757 	 * ensure that anybody asserting the lock is held, will actually find
758 	 * it so.
759 	 */
760 	lockdep_acquire_cpus_lock();
761 	cpuhp_lock_acquire(bringup);
762 
763 	if (st->single) {
764 		state = st->cb_state;
765 		st->should_run = false;
766 	} else {
767 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
768 		if (!st->should_run)
769 			goto end;
770 	}
771 
772 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
773 
774 	if (cpuhp_is_atomic_state(state)) {
775 		local_irq_disable();
776 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
777 		local_irq_enable();
778 
779 		/*
780 		 * STARTING/DYING must not fail!
781 		 */
782 		WARN_ON_ONCE(st->result);
783 	} else {
784 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
785 	}
786 
787 	if (st->result) {
788 		/*
789 		 * If we fail on a rollback, we're up a creek without no
790 		 * paddle, no way forward, no way back. We loose, thanks for
791 		 * playing.
792 		 */
793 		WARN_ON_ONCE(st->rollback);
794 		st->should_run = false;
795 	}
796 
797 end:
798 	cpuhp_lock_release(bringup);
799 	lockdep_release_cpus_lock();
800 
801 	if (!st->should_run)
802 		complete_ap_thread(st, bringup);
803 }
804 
805 /* Invoke a single callback on a remote cpu */
806 static int
807 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
808 			 struct hlist_node *node)
809 {
810 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 	int ret;
812 
813 	if (!cpu_online(cpu))
814 		return 0;
815 
816 	cpuhp_lock_acquire(false);
817 	cpuhp_lock_release(false);
818 
819 	cpuhp_lock_acquire(true);
820 	cpuhp_lock_release(true);
821 
822 	/*
823 	 * If we are up and running, use the hotplug thread. For early calls
824 	 * we invoke the thread function directly.
825 	 */
826 	if (!st->thread)
827 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
828 
829 	st->rollback = false;
830 	st->last = NULL;
831 
832 	st->node = node;
833 	st->bringup = bringup;
834 	st->cb_state = state;
835 	st->single = true;
836 
837 	__cpuhp_kick_ap(st);
838 
839 	/*
840 	 * If we failed and did a partial, do a rollback.
841 	 */
842 	if ((ret = st->result) && st->last) {
843 		st->rollback = true;
844 		st->bringup = !bringup;
845 
846 		__cpuhp_kick_ap(st);
847 	}
848 
849 	/*
850 	 * Clean up the leftovers so the next hotplug operation wont use stale
851 	 * data.
852 	 */
853 	st->node = st->last = NULL;
854 	return ret;
855 }
856 
857 static int cpuhp_kick_ap_work(unsigned int cpu)
858 {
859 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 	enum cpuhp_state prev_state = st->state;
861 	int ret;
862 
863 	cpuhp_lock_acquire(false);
864 	cpuhp_lock_release(false);
865 
866 	cpuhp_lock_acquire(true);
867 	cpuhp_lock_release(true);
868 
869 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
870 	ret = cpuhp_kick_ap(st, st->target);
871 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
872 
873 	return ret;
874 }
875 
876 static struct smp_hotplug_thread cpuhp_threads = {
877 	.store			= &cpuhp_state.thread,
878 	.create			= &cpuhp_create,
879 	.thread_should_run	= cpuhp_should_run,
880 	.thread_fn		= cpuhp_thread_fun,
881 	.thread_comm		= "cpuhp/%u",
882 	.selfparking		= true,
883 };
884 
885 void __init cpuhp_threads_init(void)
886 {
887 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
888 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
889 }
890 
891 /*
892  *
893  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
894  * protected region.
895  *
896  * The operation is still serialized against concurrent CPU hotplug via
897  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
898  * serialized against other hotplug related activity like adding or
899  * removing of state callbacks and state instances, which invoke either the
900  * startup or the teardown callback of the affected state.
901  *
902  * This is required for subsystems which are unfixable vs. CPU hotplug and
903  * evade lock inversion problems by scheduling work which has to be
904  * completed _before_ cpu_up()/_cpu_down() returns.
905  *
906  * Don't even think about adding anything to this for any new code or even
907  * drivers. It's only purpose is to keep existing lock order trainwrecks
908  * working.
909  *
910  * For cpu_down() there might be valid reasons to finish cleanups which are
911  * not required to be done under cpu_hotplug_lock, but that's a different
912  * story and would be not invoked via this.
913  */
914 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
915 {
916 	/*
917 	 * cpusets delegate hotplug operations to a worker to "solve" the
918 	 * lock order problems. Wait for the worker, but only if tasks are
919 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
920 	 *
921 	 * The wait is required because otherwise the hotplug operation
922 	 * returns with inconsistent state, which could even be observed in
923 	 * user space when a new CPU is brought up. The CPU plug uevent
924 	 * would be delivered and user space reacting on it would fail to
925 	 * move tasks to the newly plugged CPU up to the point where the
926 	 * work has finished because up to that point the newly plugged CPU
927 	 * is not assignable in cpusets/cgroups. On unplug that's not
928 	 * necessarily a visible issue, but it is still inconsistent state,
929 	 * which is the real problem which needs to be "fixed". This can't
930 	 * prevent the transient state between scheduling the work and
931 	 * returning from waiting for it.
932 	 */
933 	if (!tasks_frozen)
934 		cpuset_wait_for_hotplug();
935 }
936 
937 #ifdef CONFIG_HOTPLUG_CPU
938 #ifndef arch_clear_mm_cpumask_cpu
939 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
940 #endif
941 
942 /**
943  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
944  * @cpu: a CPU id
945  *
946  * This function walks all processes, finds a valid mm struct for each one and
947  * then clears a corresponding bit in mm's cpumask.  While this all sounds
948  * trivial, there are various non-obvious corner cases, which this function
949  * tries to solve in a safe manner.
950  *
951  * Also note that the function uses a somewhat relaxed locking scheme, so it may
952  * be called only for an already offlined CPU.
953  */
954 void clear_tasks_mm_cpumask(int cpu)
955 {
956 	struct task_struct *p;
957 
958 	/*
959 	 * This function is called after the cpu is taken down and marked
960 	 * offline, so its not like new tasks will ever get this cpu set in
961 	 * their mm mask. -- Peter Zijlstra
962 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
963 	 * full-fledged tasklist_lock.
964 	 */
965 	WARN_ON(cpu_online(cpu));
966 	rcu_read_lock();
967 	for_each_process(p) {
968 		struct task_struct *t;
969 
970 		/*
971 		 * Main thread might exit, but other threads may still have
972 		 * a valid mm. Find one.
973 		 */
974 		t = find_lock_task_mm(p);
975 		if (!t)
976 			continue;
977 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
978 		task_unlock(t);
979 	}
980 	rcu_read_unlock();
981 }
982 
983 /* Take this CPU down. */
984 static int take_cpu_down(void *_param)
985 {
986 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
987 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
988 	int err, cpu = smp_processor_id();
989 	int ret;
990 
991 	/* Ensure this CPU doesn't handle any more interrupts. */
992 	err = __cpu_disable();
993 	if (err < 0)
994 		return err;
995 
996 	/*
997 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
998 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
999 	 */
1000 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1001 
1002 	/* Invoke the former CPU_DYING callbacks */
1003 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1004 
1005 	/*
1006 	 * DYING must not fail!
1007 	 */
1008 	WARN_ON_ONCE(ret);
1009 
1010 	/* Give up timekeeping duties */
1011 	tick_handover_do_timer();
1012 	/* Remove CPU from timer broadcasting */
1013 	tick_offline_cpu(cpu);
1014 	/* Park the stopper thread */
1015 	stop_machine_park(cpu);
1016 	return 0;
1017 }
1018 
1019 static int takedown_cpu(unsigned int cpu)
1020 {
1021 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1022 	int err;
1023 
1024 	/* Park the smpboot threads */
1025 	kthread_park(st->thread);
1026 
1027 	/*
1028 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1029 	 * interrupt affinities.
1030 	 */
1031 	irq_lock_sparse();
1032 
1033 	/*
1034 	 * So now all preempt/rcu users must observe !cpu_active().
1035 	 */
1036 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1037 	if (err) {
1038 		/* CPU refused to die */
1039 		irq_unlock_sparse();
1040 		/* Unpark the hotplug thread so we can rollback there */
1041 		kthread_unpark(st->thread);
1042 		return err;
1043 	}
1044 	BUG_ON(cpu_online(cpu));
1045 
1046 	/*
1047 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1048 	 * all runnable tasks from the CPU, there's only the idle task left now
1049 	 * that the migration thread is done doing the stop_machine thing.
1050 	 *
1051 	 * Wait for the stop thread to go away.
1052 	 */
1053 	wait_for_ap_thread(st, false);
1054 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1055 
1056 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1057 	irq_unlock_sparse();
1058 
1059 	hotplug_cpu__broadcast_tick_pull(cpu);
1060 	/* This actually kills the CPU. */
1061 	__cpu_die(cpu);
1062 
1063 	tick_cleanup_dead_cpu(cpu);
1064 	rcutree_migrate_callbacks(cpu);
1065 	return 0;
1066 }
1067 
1068 static void cpuhp_complete_idle_dead(void *arg)
1069 {
1070 	struct cpuhp_cpu_state *st = arg;
1071 
1072 	complete_ap_thread(st, false);
1073 }
1074 
1075 void cpuhp_report_idle_dead(void)
1076 {
1077 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1078 
1079 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1080 	rcu_report_dead(smp_processor_id());
1081 	st->state = CPUHP_AP_IDLE_DEAD;
1082 	/*
1083 	 * We cannot call complete after rcu_report_dead() so we delegate it
1084 	 * to an online cpu.
1085 	 */
1086 	smp_call_function_single(cpumask_first(cpu_online_mask),
1087 				 cpuhp_complete_idle_dead, st, 0);
1088 }
1089 
1090 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1091 				enum cpuhp_state target)
1092 {
1093 	enum cpuhp_state prev_state = st->state;
1094 	int ret = 0;
1095 
1096 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1097 	if (ret) {
1098 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1099 			 ret, cpu, cpuhp_get_step(st->state)->name,
1100 			 st->state);
1101 
1102 		cpuhp_reset_state(st, prev_state);
1103 
1104 		if (st->state < prev_state)
1105 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1106 							    prev_state));
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 /* Requires cpu_add_remove_lock to be held */
1113 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1114 			   enum cpuhp_state target)
1115 {
1116 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1117 	int prev_state, ret = 0;
1118 
1119 	if (num_online_cpus() == 1)
1120 		return -EBUSY;
1121 
1122 	if (!cpu_present(cpu))
1123 		return -EINVAL;
1124 
1125 	cpus_write_lock();
1126 
1127 	cpuhp_tasks_frozen = tasks_frozen;
1128 
1129 	prev_state = cpuhp_set_state(st, target);
1130 	/*
1131 	 * If the current CPU state is in the range of the AP hotplug thread,
1132 	 * then we need to kick the thread.
1133 	 */
1134 	if (st->state > CPUHP_TEARDOWN_CPU) {
1135 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1136 		ret = cpuhp_kick_ap_work(cpu);
1137 		/*
1138 		 * The AP side has done the error rollback already. Just
1139 		 * return the error code..
1140 		 */
1141 		if (ret)
1142 			goto out;
1143 
1144 		/*
1145 		 * We might have stopped still in the range of the AP hotplug
1146 		 * thread. Nothing to do anymore.
1147 		 */
1148 		if (st->state > CPUHP_TEARDOWN_CPU)
1149 			goto out;
1150 
1151 		st->target = target;
1152 	}
1153 	/*
1154 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1155 	 * to do the further cleanups.
1156 	 */
1157 	ret = cpuhp_down_callbacks(cpu, st, target);
1158 	if (ret && st->state < prev_state) {
1159 		if (st->state == CPUHP_TEARDOWN_CPU) {
1160 			cpuhp_reset_state(st, prev_state);
1161 			__cpuhp_kick_ap(st);
1162 		} else {
1163 			WARN(1, "DEAD callback error for CPU%d", cpu);
1164 		}
1165 	}
1166 
1167 out:
1168 	cpus_write_unlock();
1169 	/*
1170 	 * Do post unplug cleanup. This is still protected against
1171 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1172 	 */
1173 	lockup_detector_cleanup();
1174 	arch_smt_update();
1175 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1176 	return ret;
1177 }
1178 
1179 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1180 {
1181 	if (cpu_hotplug_disabled)
1182 		return -EBUSY;
1183 	return _cpu_down(cpu, 0, target);
1184 }
1185 
1186 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1187 {
1188 	int err;
1189 
1190 	cpu_maps_update_begin();
1191 	err = cpu_down_maps_locked(cpu, target);
1192 	cpu_maps_update_done();
1193 	return err;
1194 }
1195 
1196 /**
1197  * cpu_device_down - Bring down a cpu device
1198  * @dev: Pointer to the cpu device to offline
1199  *
1200  * This function is meant to be used by device core cpu subsystem only.
1201  *
1202  * Other subsystems should use remove_cpu() instead.
1203  *
1204  * Return: %0 on success or a negative errno code
1205  */
1206 int cpu_device_down(struct device *dev)
1207 {
1208 	return cpu_down(dev->id, CPUHP_OFFLINE);
1209 }
1210 
1211 int remove_cpu(unsigned int cpu)
1212 {
1213 	int ret;
1214 
1215 	lock_device_hotplug();
1216 	ret = device_offline(get_cpu_device(cpu));
1217 	unlock_device_hotplug();
1218 
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(remove_cpu);
1222 
1223 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1224 {
1225 	unsigned int cpu;
1226 	int error;
1227 
1228 	cpu_maps_update_begin();
1229 
1230 	/*
1231 	 * Make certain the cpu I'm about to reboot on is online.
1232 	 *
1233 	 * This is inline to what migrate_to_reboot_cpu() already do.
1234 	 */
1235 	if (!cpu_online(primary_cpu))
1236 		primary_cpu = cpumask_first(cpu_online_mask);
1237 
1238 	for_each_online_cpu(cpu) {
1239 		if (cpu == primary_cpu)
1240 			continue;
1241 
1242 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1243 		if (error) {
1244 			pr_err("Failed to offline CPU%d - error=%d",
1245 				cpu, error);
1246 			break;
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Ensure all but the reboot CPU are offline.
1252 	 */
1253 	BUG_ON(num_online_cpus() > 1);
1254 
1255 	/*
1256 	 * Make sure the CPUs won't be enabled by someone else after this
1257 	 * point. Kexec will reboot to a new kernel shortly resetting
1258 	 * everything along the way.
1259 	 */
1260 	cpu_hotplug_disabled++;
1261 
1262 	cpu_maps_update_done();
1263 }
1264 
1265 #else
1266 #define takedown_cpu		NULL
1267 #endif /*CONFIG_HOTPLUG_CPU*/
1268 
1269 /**
1270  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1271  * @cpu: cpu that just started
1272  *
1273  * It must be called by the arch code on the new cpu, before the new cpu
1274  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1275  */
1276 void notify_cpu_starting(unsigned int cpu)
1277 {
1278 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1279 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1280 	int ret;
1281 
1282 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1283 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1284 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1285 
1286 	/*
1287 	 * STARTING must not fail!
1288 	 */
1289 	WARN_ON_ONCE(ret);
1290 }
1291 
1292 /*
1293  * Called from the idle task. Wake up the controlling task which brings the
1294  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1295  * online bringup to the hotplug thread.
1296  */
1297 void cpuhp_online_idle(enum cpuhp_state state)
1298 {
1299 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300 
1301 	/* Happens for the boot cpu */
1302 	if (state != CPUHP_AP_ONLINE_IDLE)
1303 		return;
1304 
1305 	/*
1306 	 * Unpart the stopper thread before we start the idle loop (and start
1307 	 * scheduling); this ensures the stopper task is always available.
1308 	 */
1309 	stop_machine_unpark(smp_processor_id());
1310 
1311 	st->state = CPUHP_AP_ONLINE_IDLE;
1312 	complete_ap_thread(st, true);
1313 }
1314 
1315 /* Requires cpu_add_remove_lock to be held */
1316 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1317 {
1318 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1319 	struct task_struct *idle;
1320 	int ret = 0;
1321 
1322 	cpus_write_lock();
1323 
1324 	if (!cpu_present(cpu)) {
1325 		ret = -EINVAL;
1326 		goto out;
1327 	}
1328 
1329 	/*
1330 	 * The caller of cpu_up() might have raced with another
1331 	 * caller. Nothing to do.
1332 	 */
1333 	if (st->state >= target)
1334 		goto out;
1335 
1336 	if (st->state == CPUHP_OFFLINE) {
1337 		/* Let it fail before we try to bring the cpu up */
1338 		idle = idle_thread_get(cpu);
1339 		if (IS_ERR(idle)) {
1340 			ret = PTR_ERR(idle);
1341 			goto out;
1342 		}
1343 	}
1344 
1345 	cpuhp_tasks_frozen = tasks_frozen;
1346 
1347 	cpuhp_set_state(st, target);
1348 	/*
1349 	 * If the current CPU state is in the range of the AP hotplug thread,
1350 	 * then we need to kick the thread once more.
1351 	 */
1352 	if (st->state > CPUHP_BRINGUP_CPU) {
1353 		ret = cpuhp_kick_ap_work(cpu);
1354 		/*
1355 		 * The AP side has done the error rollback already. Just
1356 		 * return the error code..
1357 		 */
1358 		if (ret)
1359 			goto out;
1360 	}
1361 
1362 	/*
1363 	 * Try to reach the target state. We max out on the BP at
1364 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1365 	 * responsible for bringing it up to the target state.
1366 	 */
1367 	target = min((int)target, CPUHP_BRINGUP_CPU);
1368 	ret = cpuhp_up_callbacks(cpu, st, target);
1369 out:
1370 	cpus_write_unlock();
1371 	arch_smt_update();
1372 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1373 	return ret;
1374 }
1375 
1376 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1377 {
1378 	int err = 0;
1379 
1380 	if (!cpu_possible(cpu)) {
1381 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1382 		       cpu);
1383 #if defined(CONFIG_IA64)
1384 		pr_err("please check additional_cpus= boot parameter\n");
1385 #endif
1386 		return -EINVAL;
1387 	}
1388 
1389 	err = try_online_node(cpu_to_node(cpu));
1390 	if (err)
1391 		return err;
1392 
1393 	cpu_maps_update_begin();
1394 
1395 	if (cpu_hotplug_disabled) {
1396 		err = -EBUSY;
1397 		goto out;
1398 	}
1399 	if (!cpu_smt_allowed(cpu)) {
1400 		err = -EPERM;
1401 		goto out;
1402 	}
1403 
1404 	err = _cpu_up(cpu, 0, target);
1405 out:
1406 	cpu_maps_update_done();
1407 	return err;
1408 }
1409 
1410 /**
1411  * cpu_device_up - Bring up a cpu device
1412  * @dev: Pointer to the cpu device to online
1413  *
1414  * This function is meant to be used by device core cpu subsystem only.
1415  *
1416  * Other subsystems should use add_cpu() instead.
1417  *
1418  * Return: %0 on success or a negative errno code
1419  */
1420 int cpu_device_up(struct device *dev)
1421 {
1422 	return cpu_up(dev->id, CPUHP_ONLINE);
1423 }
1424 
1425 int add_cpu(unsigned int cpu)
1426 {
1427 	int ret;
1428 
1429 	lock_device_hotplug();
1430 	ret = device_online(get_cpu_device(cpu));
1431 	unlock_device_hotplug();
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(add_cpu);
1436 
1437 /**
1438  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1439  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1440  *
1441  * On some architectures like arm64, we can hibernate on any CPU, but on
1442  * wake up the CPU we hibernated on might be offline as a side effect of
1443  * using maxcpus= for example.
1444  *
1445  * Return: %0 on success or a negative errno code
1446  */
1447 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1448 {
1449 	int ret;
1450 
1451 	if (!cpu_online(sleep_cpu)) {
1452 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1453 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1454 		if (ret) {
1455 			pr_err("Failed to bring hibernate-CPU up!\n");
1456 			return ret;
1457 		}
1458 	}
1459 	return 0;
1460 }
1461 
1462 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1463 {
1464 	unsigned int cpu;
1465 
1466 	for_each_present_cpu(cpu) {
1467 		if (num_online_cpus() >= setup_max_cpus)
1468 			break;
1469 		if (!cpu_online(cpu))
1470 			cpu_up(cpu, CPUHP_ONLINE);
1471 	}
1472 }
1473 
1474 #ifdef CONFIG_PM_SLEEP_SMP
1475 static cpumask_var_t frozen_cpus;
1476 
1477 int freeze_secondary_cpus(int primary)
1478 {
1479 	int cpu, error = 0;
1480 
1481 	cpu_maps_update_begin();
1482 	if (primary == -1) {
1483 		primary = cpumask_first(cpu_online_mask);
1484 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1485 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1486 	} else {
1487 		if (!cpu_online(primary))
1488 			primary = cpumask_first(cpu_online_mask);
1489 	}
1490 
1491 	/*
1492 	 * We take down all of the non-boot CPUs in one shot to avoid races
1493 	 * with the userspace trying to use the CPU hotplug at the same time
1494 	 */
1495 	cpumask_clear(frozen_cpus);
1496 
1497 	pr_info("Disabling non-boot CPUs ...\n");
1498 	for_each_online_cpu(cpu) {
1499 		if (cpu == primary)
1500 			continue;
1501 
1502 		if (pm_wakeup_pending()) {
1503 			pr_info("Wakeup pending. Abort CPU freeze\n");
1504 			error = -EBUSY;
1505 			break;
1506 		}
1507 
1508 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1509 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1510 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1511 		if (!error)
1512 			cpumask_set_cpu(cpu, frozen_cpus);
1513 		else {
1514 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1515 			break;
1516 		}
1517 	}
1518 
1519 	if (!error)
1520 		BUG_ON(num_online_cpus() > 1);
1521 	else
1522 		pr_err("Non-boot CPUs are not disabled\n");
1523 
1524 	/*
1525 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1526 	 * this even in case of failure as all freeze_secondary_cpus() users are
1527 	 * supposed to do thaw_secondary_cpus() on the failure path.
1528 	 */
1529 	cpu_hotplug_disabled++;
1530 
1531 	cpu_maps_update_done();
1532 	return error;
1533 }
1534 
1535 void __weak arch_thaw_secondary_cpus_begin(void)
1536 {
1537 }
1538 
1539 void __weak arch_thaw_secondary_cpus_end(void)
1540 {
1541 }
1542 
1543 void thaw_secondary_cpus(void)
1544 {
1545 	int cpu, error;
1546 
1547 	/* Allow everyone to use the CPU hotplug again */
1548 	cpu_maps_update_begin();
1549 	__cpu_hotplug_enable();
1550 	if (cpumask_empty(frozen_cpus))
1551 		goto out;
1552 
1553 	pr_info("Enabling non-boot CPUs ...\n");
1554 
1555 	arch_thaw_secondary_cpus_begin();
1556 
1557 	for_each_cpu(cpu, frozen_cpus) {
1558 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1559 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1560 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1561 		if (!error) {
1562 			pr_info("CPU%d is up\n", cpu);
1563 			continue;
1564 		}
1565 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1566 	}
1567 
1568 	arch_thaw_secondary_cpus_end();
1569 
1570 	cpumask_clear(frozen_cpus);
1571 out:
1572 	cpu_maps_update_done();
1573 }
1574 
1575 static int __init alloc_frozen_cpus(void)
1576 {
1577 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1578 		return -ENOMEM;
1579 	return 0;
1580 }
1581 core_initcall(alloc_frozen_cpus);
1582 
1583 /*
1584  * When callbacks for CPU hotplug notifications are being executed, we must
1585  * ensure that the state of the system with respect to the tasks being frozen
1586  * or not, as reported by the notification, remains unchanged *throughout the
1587  * duration* of the execution of the callbacks.
1588  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1589  *
1590  * This synchronization is implemented by mutually excluding regular CPU
1591  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1592  * Hibernate notifications.
1593  */
1594 static int
1595 cpu_hotplug_pm_callback(struct notifier_block *nb,
1596 			unsigned long action, void *ptr)
1597 {
1598 	switch (action) {
1599 
1600 	case PM_SUSPEND_PREPARE:
1601 	case PM_HIBERNATION_PREPARE:
1602 		cpu_hotplug_disable();
1603 		break;
1604 
1605 	case PM_POST_SUSPEND:
1606 	case PM_POST_HIBERNATION:
1607 		cpu_hotplug_enable();
1608 		break;
1609 
1610 	default:
1611 		return NOTIFY_DONE;
1612 	}
1613 
1614 	return NOTIFY_OK;
1615 }
1616 
1617 
1618 static int __init cpu_hotplug_pm_sync_init(void)
1619 {
1620 	/*
1621 	 * cpu_hotplug_pm_callback has higher priority than x86
1622 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1623 	 * to disable cpu hotplug to avoid cpu hotplug race.
1624 	 */
1625 	pm_notifier(cpu_hotplug_pm_callback, 0);
1626 	return 0;
1627 }
1628 core_initcall(cpu_hotplug_pm_sync_init);
1629 
1630 #endif /* CONFIG_PM_SLEEP_SMP */
1631 
1632 int __boot_cpu_id;
1633 
1634 #endif /* CONFIG_SMP */
1635 
1636 /* Boot processor state steps */
1637 static struct cpuhp_step cpuhp_hp_states[] = {
1638 	[CPUHP_OFFLINE] = {
1639 		.name			= "offline",
1640 		.startup.single		= NULL,
1641 		.teardown.single	= NULL,
1642 	},
1643 #ifdef CONFIG_SMP
1644 	[CPUHP_CREATE_THREADS]= {
1645 		.name			= "threads:prepare",
1646 		.startup.single		= smpboot_create_threads,
1647 		.teardown.single	= NULL,
1648 		.cant_stop		= true,
1649 	},
1650 	[CPUHP_PERF_PREPARE] = {
1651 		.name			= "perf:prepare",
1652 		.startup.single		= perf_event_init_cpu,
1653 		.teardown.single	= perf_event_exit_cpu,
1654 	},
1655 	[CPUHP_WORKQUEUE_PREP] = {
1656 		.name			= "workqueue:prepare",
1657 		.startup.single		= workqueue_prepare_cpu,
1658 		.teardown.single	= NULL,
1659 	},
1660 	[CPUHP_HRTIMERS_PREPARE] = {
1661 		.name			= "hrtimers:prepare",
1662 		.startup.single		= hrtimers_prepare_cpu,
1663 		.teardown.single	= hrtimers_dead_cpu,
1664 	},
1665 	[CPUHP_SMPCFD_PREPARE] = {
1666 		.name			= "smpcfd:prepare",
1667 		.startup.single		= smpcfd_prepare_cpu,
1668 		.teardown.single	= smpcfd_dead_cpu,
1669 	},
1670 	[CPUHP_RELAY_PREPARE] = {
1671 		.name			= "relay:prepare",
1672 		.startup.single		= relay_prepare_cpu,
1673 		.teardown.single	= NULL,
1674 	},
1675 	[CPUHP_SLAB_PREPARE] = {
1676 		.name			= "slab:prepare",
1677 		.startup.single		= slab_prepare_cpu,
1678 		.teardown.single	= slab_dead_cpu,
1679 	},
1680 	[CPUHP_RCUTREE_PREP] = {
1681 		.name			= "RCU/tree:prepare",
1682 		.startup.single		= rcutree_prepare_cpu,
1683 		.teardown.single	= rcutree_dead_cpu,
1684 	},
1685 	/*
1686 	 * On the tear-down path, timers_dead_cpu() must be invoked
1687 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1688 	 * otherwise a RCU stall occurs.
1689 	 */
1690 	[CPUHP_TIMERS_PREPARE] = {
1691 		.name			= "timers:prepare",
1692 		.startup.single		= timers_prepare_cpu,
1693 		.teardown.single	= timers_dead_cpu,
1694 	},
1695 	/* Kicks the plugged cpu into life */
1696 	[CPUHP_BRINGUP_CPU] = {
1697 		.name			= "cpu:bringup",
1698 		.startup.single		= bringup_cpu,
1699 		.teardown.single	= finish_cpu,
1700 		.cant_stop		= true,
1701 	},
1702 	/* Final state before CPU kills itself */
1703 	[CPUHP_AP_IDLE_DEAD] = {
1704 		.name			= "idle:dead",
1705 	},
1706 	/*
1707 	 * Last state before CPU enters the idle loop to die. Transient state
1708 	 * for synchronization.
1709 	 */
1710 	[CPUHP_AP_OFFLINE] = {
1711 		.name			= "ap:offline",
1712 		.cant_stop		= true,
1713 	},
1714 	/* First state is scheduler control. Interrupts are disabled */
1715 	[CPUHP_AP_SCHED_STARTING] = {
1716 		.name			= "sched:starting",
1717 		.startup.single		= sched_cpu_starting,
1718 		.teardown.single	= sched_cpu_dying,
1719 	},
1720 	[CPUHP_AP_RCUTREE_DYING] = {
1721 		.name			= "RCU/tree:dying",
1722 		.startup.single		= NULL,
1723 		.teardown.single	= rcutree_dying_cpu,
1724 	},
1725 	[CPUHP_AP_SMPCFD_DYING] = {
1726 		.name			= "smpcfd:dying",
1727 		.startup.single		= NULL,
1728 		.teardown.single	= smpcfd_dying_cpu,
1729 	},
1730 	/* Entry state on starting. Interrupts enabled from here on. Transient
1731 	 * state for synchronsization */
1732 	[CPUHP_AP_ONLINE] = {
1733 		.name			= "ap:online",
1734 	},
1735 	/*
1736 	 * Handled on control processor until the plugged processor manages
1737 	 * this itself.
1738 	 */
1739 	[CPUHP_TEARDOWN_CPU] = {
1740 		.name			= "cpu:teardown",
1741 		.startup.single		= NULL,
1742 		.teardown.single	= takedown_cpu,
1743 		.cant_stop		= true,
1744 	},
1745 
1746 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1747 		.name			= "sched:waitempty",
1748 		.startup.single		= NULL,
1749 		.teardown.single	= sched_cpu_wait_empty,
1750 	},
1751 
1752 	/* Handle smpboot threads park/unpark */
1753 	[CPUHP_AP_SMPBOOT_THREADS] = {
1754 		.name			= "smpboot/threads:online",
1755 		.startup.single		= smpboot_unpark_threads,
1756 		.teardown.single	= smpboot_park_threads,
1757 	},
1758 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1759 		.name			= "irq/affinity:online",
1760 		.startup.single		= irq_affinity_online_cpu,
1761 		.teardown.single	= NULL,
1762 	},
1763 	[CPUHP_AP_PERF_ONLINE] = {
1764 		.name			= "perf:online",
1765 		.startup.single		= perf_event_init_cpu,
1766 		.teardown.single	= perf_event_exit_cpu,
1767 	},
1768 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1769 		.name			= "lockup_detector:online",
1770 		.startup.single		= lockup_detector_online_cpu,
1771 		.teardown.single	= lockup_detector_offline_cpu,
1772 	},
1773 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1774 		.name			= "workqueue:online",
1775 		.startup.single		= workqueue_online_cpu,
1776 		.teardown.single	= workqueue_offline_cpu,
1777 	},
1778 	[CPUHP_AP_RCUTREE_ONLINE] = {
1779 		.name			= "RCU/tree:online",
1780 		.startup.single		= rcutree_online_cpu,
1781 		.teardown.single	= rcutree_offline_cpu,
1782 	},
1783 #endif
1784 	/*
1785 	 * The dynamically registered state space is here
1786 	 */
1787 
1788 #ifdef CONFIG_SMP
1789 	/* Last state is scheduler control setting the cpu active */
1790 	[CPUHP_AP_ACTIVE] = {
1791 		.name			= "sched:active",
1792 		.startup.single		= sched_cpu_activate,
1793 		.teardown.single	= sched_cpu_deactivate,
1794 	},
1795 #endif
1796 
1797 	/* CPU is fully up and running. */
1798 	[CPUHP_ONLINE] = {
1799 		.name			= "online",
1800 		.startup.single		= NULL,
1801 		.teardown.single	= NULL,
1802 	},
1803 };
1804 
1805 /* Sanity check for callbacks */
1806 static int cpuhp_cb_check(enum cpuhp_state state)
1807 {
1808 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1809 		return -EINVAL;
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Returns a free for dynamic slot assignment of the Online state. The states
1815  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1816  * by having no name assigned.
1817  */
1818 static int cpuhp_reserve_state(enum cpuhp_state state)
1819 {
1820 	enum cpuhp_state i, end;
1821 	struct cpuhp_step *step;
1822 
1823 	switch (state) {
1824 	case CPUHP_AP_ONLINE_DYN:
1825 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1826 		end = CPUHP_AP_ONLINE_DYN_END;
1827 		break;
1828 	case CPUHP_BP_PREPARE_DYN:
1829 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1830 		end = CPUHP_BP_PREPARE_DYN_END;
1831 		break;
1832 	default:
1833 		return -EINVAL;
1834 	}
1835 
1836 	for (i = state; i <= end; i++, step++) {
1837 		if (!step->name)
1838 			return i;
1839 	}
1840 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1841 	return -ENOSPC;
1842 }
1843 
1844 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1845 				 int (*startup)(unsigned int cpu),
1846 				 int (*teardown)(unsigned int cpu),
1847 				 bool multi_instance)
1848 {
1849 	/* (Un)Install the callbacks for further cpu hotplug operations */
1850 	struct cpuhp_step *sp;
1851 	int ret = 0;
1852 
1853 	/*
1854 	 * If name is NULL, then the state gets removed.
1855 	 *
1856 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1857 	 * the first allocation from these dynamic ranges, so the removal
1858 	 * would trigger a new allocation and clear the wrong (already
1859 	 * empty) state, leaving the callbacks of the to be cleared state
1860 	 * dangling, which causes wreckage on the next hotplug operation.
1861 	 */
1862 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1863 		     state == CPUHP_BP_PREPARE_DYN)) {
1864 		ret = cpuhp_reserve_state(state);
1865 		if (ret < 0)
1866 			return ret;
1867 		state = ret;
1868 	}
1869 	sp = cpuhp_get_step(state);
1870 	if (name && sp->name)
1871 		return -EBUSY;
1872 
1873 	sp->startup.single = startup;
1874 	sp->teardown.single = teardown;
1875 	sp->name = name;
1876 	sp->multi_instance = multi_instance;
1877 	INIT_HLIST_HEAD(&sp->list);
1878 	return ret;
1879 }
1880 
1881 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1882 {
1883 	return cpuhp_get_step(state)->teardown.single;
1884 }
1885 
1886 /*
1887  * Call the startup/teardown function for a step either on the AP or
1888  * on the current CPU.
1889  */
1890 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1891 			    struct hlist_node *node)
1892 {
1893 	struct cpuhp_step *sp = cpuhp_get_step(state);
1894 	int ret;
1895 
1896 	/*
1897 	 * If there's nothing to do, we done.
1898 	 * Relies on the union for multi_instance.
1899 	 */
1900 	if (cpuhp_step_empty(bringup, sp))
1901 		return 0;
1902 	/*
1903 	 * The non AP bound callbacks can fail on bringup. On teardown
1904 	 * e.g. module removal we crash for now.
1905 	 */
1906 #ifdef CONFIG_SMP
1907 	if (cpuhp_is_ap_state(state))
1908 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1909 	else
1910 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1911 #else
1912 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1913 #endif
1914 	BUG_ON(ret && !bringup);
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Called from __cpuhp_setup_state on a recoverable failure.
1920  *
1921  * Note: The teardown callbacks for rollback are not allowed to fail!
1922  */
1923 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1924 				   struct hlist_node *node)
1925 {
1926 	int cpu;
1927 
1928 	/* Roll back the already executed steps on the other cpus */
1929 	for_each_present_cpu(cpu) {
1930 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1931 		int cpustate = st->state;
1932 
1933 		if (cpu >= failedcpu)
1934 			break;
1935 
1936 		/* Did we invoke the startup call on that cpu ? */
1937 		if (cpustate >= state)
1938 			cpuhp_issue_call(cpu, state, false, node);
1939 	}
1940 }
1941 
1942 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1943 					  struct hlist_node *node,
1944 					  bool invoke)
1945 {
1946 	struct cpuhp_step *sp;
1947 	int cpu;
1948 	int ret;
1949 
1950 	lockdep_assert_cpus_held();
1951 
1952 	sp = cpuhp_get_step(state);
1953 	if (sp->multi_instance == false)
1954 		return -EINVAL;
1955 
1956 	mutex_lock(&cpuhp_state_mutex);
1957 
1958 	if (!invoke || !sp->startup.multi)
1959 		goto add_node;
1960 
1961 	/*
1962 	 * Try to call the startup callback for each present cpu
1963 	 * depending on the hotplug state of the cpu.
1964 	 */
1965 	for_each_present_cpu(cpu) {
1966 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1967 		int cpustate = st->state;
1968 
1969 		if (cpustate < state)
1970 			continue;
1971 
1972 		ret = cpuhp_issue_call(cpu, state, true, node);
1973 		if (ret) {
1974 			if (sp->teardown.multi)
1975 				cpuhp_rollback_install(cpu, state, node);
1976 			goto unlock;
1977 		}
1978 	}
1979 add_node:
1980 	ret = 0;
1981 	hlist_add_head(node, &sp->list);
1982 unlock:
1983 	mutex_unlock(&cpuhp_state_mutex);
1984 	return ret;
1985 }
1986 
1987 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1988 			       bool invoke)
1989 {
1990 	int ret;
1991 
1992 	cpus_read_lock();
1993 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1994 	cpus_read_unlock();
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1998 
1999 /**
2000  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2001  * @state:		The state to setup
2002  * @name:		Name of the step
2003  * @invoke:		If true, the startup function is invoked for cpus where
2004  *			cpu state >= @state
2005  * @startup:		startup callback function
2006  * @teardown:		teardown callback function
2007  * @multi_instance:	State is set up for multiple instances which get
2008  *			added afterwards.
2009  *
2010  * The caller needs to hold cpus read locked while calling this function.
2011  * Return:
2012  *   On success:
2013  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2014  *      0 for all other states
2015  *   On failure: proper (negative) error code
2016  */
2017 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2018 				   const char *name, bool invoke,
2019 				   int (*startup)(unsigned int cpu),
2020 				   int (*teardown)(unsigned int cpu),
2021 				   bool multi_instance)
2022 {
2023 	int cpu, ret = 0;
2024 	bool dynstate;
2025 
2026 	lockdep_assert_cpus_held();
2027 
2028 	if (cpuhp_cb_check(state) || !name)
2029 		return -EINVAL;
2030 
2031 	mutex_lock(&cpuhp_state_mutex);
2032 
2033 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2034 				    multi_instance);
2035 
2036 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2037 	if (ret > 0 && dynstate) {
2038 		state = ret;
2039 		ret = 0;
2040 	}
2041 
2042 	if (ret || !invoke || !startup)
2043 		goto out;
2044 
2045 	/*
2046 	 * Try to call the startup callback for each present cpu
2047 	 * depending on the hotplug state of the cpu.
2048 	 */
2049 	for_each_present_cpu(cpu) {
2050 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2051 		int cpustate = st->state;
2052 
2053 		if (cpustate < state)
2054 			continue;
2055 
2056 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2057 		if (ret) {
2058 			if (teardown)
2059 				cpuhp_rollback_install(cpu, state, NULL);
2060 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2061 			goto out;
2062 		}
2063 	}
2064 out:
2065 	mutex_unlock(&cpuhp_state_mutex);
2066 	/*
2067 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2068 	 * dynamically allocated state in case of success.
2069 	 */
2070 	if (!ret && dynstate)
2071 		return state;
2072 	return ret;
2073 }
2074 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2075 
2076 int __cpuhp_setup_state(enum cpuhp_state state,
2077 			const char *name, bool invoke,
2078 			int (*startup)(unsigned int cpu),
2079 			int (*teardown)(unsigned int cpu),
2080 			bool multi_instance)
2081 {
2082 	int ret;
2083 
2084 	cpus_read_lock();
2085 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2086 					     teardown, multi_instance);
2087 	cpus_read_unlock();
2088 	return ret;
2089 }
2090 EXPORT_SYMBOL(__cpuhp_setup_state);
2091 
2092 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2093 				  struct hlist_node *node, bool invoke)
2094 {
2095 	struct cpuhp_step *sp = cpuhp_get_step(state);
2096 	int cpu;
2097 
2098 	BUG_ON(cpuhp_cb_check(state));
2099 
2100 	if (!sp->multi_instance)
2101 		return -EINVAL;
2102 
2103 	cpus_read_lock();
2104 	mutex_lock(&cpuhp_state_mutex);
2105 
2106 	if (!invoke || !cpuhp_get_teardown_cb(state))
2107 		goto remove;
2108 	/*
2109 	 * Call the teardown callback for each present cpu depending
2110 	 * on the hotplug state of the cpu. This function is not
2111 	 * allowed to fail currently!
2112 	 */
2113 	for_each_present_cpu(cpu) {
2114 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2115 		int cpustate = st->state;
2116 
2117 		if (cpustate >= state)
2118 			cpuhp_issue_call(cpu, state, false, node);
2119 	}
2120 
2121 remove:
2122 	hlist_del(node);
2123 	mutex_unlock(&cpuhp_state_mutex);
2124 	cpus_read_unlock();
2125 
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2129 
2130 /**
2131  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2132  * @state:	The state to remove
2133  * @invoke:	If true, the teardown function is invoked for cpus where
2134  *		cpu state >= @state
2135  *
2136  * The caller needs to hold cpus read locked while calling this function.
2137  * The teardown callback is currently not allowed to fail. Think
2138  * about module removal!
2139  */
2140 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2141 {
2142 	struct cpuhp_step *sp = cpuhp_get_step(state);
2143 	int cpu;
2144 
2145 	BUG_ON(cpuhp_cb_check(state));
2146 
2147 	lockdep_assert_cpus_held();
2148 
2149 	mutex_lock(&cpuhp_state_mutex);
2150 	if (sp->multi_instance) {
2151 		WARN(!hlist_empty(&sp->list),
2152 		     "Error: Removing state %d which has instances left.\n",
2153 		     state);
2154 		goto remove;
2155 	}
2156 
2157 	if (!invoke || !cpuhp_get_teardown_cb(state))
2158 		goto remove;
2159 
2160 	/*
2161 	 * Call the teardown callback for each present cpu depending
2162 	 * on the hotplug state of the cpu. This function is not
2163 	 * allowed to fail currently!
2164 	 */
2165 	for_each_present_cpu(cpu) {
2166 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2167 		int cpustate = st->state;
2168 
2169 		if (cpustate >= state)
2170 			cpuhp_issue_call(cpu, state, false, NULL);
2171 	}
2172 remove:
2173 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2174 	mutex_unlock(&cpuhp_state_mutex);
2175 }
2176 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2177 
2178 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2179 {
2180 	cpus_read_lock();
2181 	__cpuhp_remove_state_cpuslocked(state, invoke);
2182 	cpus_read_unlock();
2183 }
2184 EXPORT_SYMBOL(__cpuhp_remove_state);
2185 
2186 #ifdef CONFIG_HOTPLUG_SMT
2187 static void cpuhp_offline_cpu_device(unsigned int cpu)
2188 {
2189 	struct device *dev = get_cpu_device(cpu);
2190 
2191 	dev->offline = true;
2192 	/* Tell user space about the state change */
2193 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2194 }
2195 
2196 static void cpuhp_online_cpu_device(unsigned int cpu)
2197 {
2198 	struct device *dev = get_cpu_device(cpu);
2199 
2200 	dev->offline = false;
2201 	/* Tell user space about the state change */
2202 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2203 }
2204 
2205 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2206 {
2207 	int cpu, ret = 0;
2208 
2209 	cpu_maps_update_begin();
2210 	for_each_online_cpu(cpu) {
2211 		if (topology_is_primary_thread(cpu))
2212 			continue;
2213 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2214 		if (ret)
2215 			break;
2216 		/*
2217 		 * As this needs to hold the cpu maps lock it's impossible
2218 		 * to call device_offline() because that ends up calling
2219 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2220 		 * needs to be held as this might race against in kernel
2221 		 * abusers of the hotplug machinery (thermal management).
2222 		 *
2223 		 * So nothing would update device:offline state. That would
2224 		 * leave the sysfs entry stale and prevent onlining after
2225 		 * smt control has been changed to 'off' again. This is
2226 		 * called under the sysfs hotplug lock, so it is properly
2227 		 * serialized against the regular offline usage.
2228 		 */
2229 		cpuhp_offline_cpu_device(cpu);
2230 	}
2231 	if (!ret)
2232 		cpu_smt_control = ctrlval;
2233 	cpu_maps_update_done();
2234 	return ret;
2235 }
2236 
2237 int cpuhp_smt_enable(void)
2238 {
2239 	int cpu, ret = 0;
2240 
2241 	cpu_maps_update_begin();
2242 	cpu_smt_control = CPU_SMT_ENABLED;
2243 	for_each_present_cpu(cpu) {
2244 		/* Skip online CPUs and CPUs on offline nodes */
2245 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2246 			continue;
2247 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2248 		if (ret)
2249 			break;
2250 		/* See comment in cpuhp_smt_disable() */
2251 		cpuhp_online_cpu_device(cpu);
2252 	}
2253 	cpu_maps_update_done();
2254 	return ret;
2255 }
2256 #endif
2257 
2258 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2259 static ssize_t state_show(struct device *dev,
2260 			  struct device_attribute *attr, char *buf)
2261 {
2262 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2263 
2264 	return sprintf(buf, "%d\n", st->state);
2265 }
2266 static DEVICE_ATTR_RO(state);
2267 
2268 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2269 			    const char *buf, size_t count)
2270 {
2271 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2272 	struct cpuhp_step *sp;
2273 	int target, ret;
2274 
2275 	ret = kstrtoint(buf, 10, &target);
2276 	if (ret)
2277 		return ret;
2278 
2279 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2280 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2281 		return -EINVAL;
2282 #else
2283 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2284 		return -EINVAL;
2285 #endif
2286 
2287 	ret = lock_device_hotplug_sysfs();
2288 	if (ret)
2289 		return ret;
2290 
2291 	mutex_lock(&cpuhp_state_mutex);
2292 	sp = cpuhp_get_step(target);
2293 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2294 	mutex_unlock(&cpuhp_state_mutex);
2295 	if (ret)
2296 		goto out;
2297 
2298 	if (st->state < target)
2299 		ret = cpu_up(dev->id, target);
2300 	else
2301 		ret = cpu_down(dev->id, target);
2302 out:
2303 	unlock_device_hotplug();
2304 	return ret ? ret : count;
2305 }
2306 
2307 static ssize_t target_show(struct device *dev,
2308 			   struct device_attribute *attr, char *buf)
2309 {
2310 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2311 
2312 	return sprintf(buf, "%d\n", st->target);
2313 }
2314 static DEVICE_ATTR_RW(target);
2315 
2316 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2317 			  const char *buf, size_t count)
2318 {
2319 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2320 	struct cpuhp_step *sp;
2321 	int fail, ret;
2322 
2323 	ret = kstrtoint(buf, 10, &fail);
2324 	if (ret)
2325 		return ret;
2326 
2327 	if (fail == CPUHP_INVALID) {
2328 		st->fail = fail;
2329 		return count;
2330 	}
2331 
2332 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2333 		return -EINVAL;
2334 
2335 	/*
2336 	 * Cannot fail STARTING/DYING callbacks.
2337 	 */
2338 	if (cpuhp_is_atomic_state(fail))
2339 		return -EINVAL;
2340 
2341 	/*
2342 	 * DEAD callbacks cannot fail...
2343 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2344 	 * triggering STARTING callbacks, a failure in this state would
2345 	 * hinder rollback.
2346 	 */
2347 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2348 		return -EINVAL;
2349 
2350 	/*
2351 	 * Cannot fail anything that doesn't have callbacks.
2352 	 */
2353 	mutex_lock(&cpuhp_state_mutex);
2354 	sp = cpuhp_get_step(fail);
2355 	if (!sp->startup.single && !sp->teardown.single)
2356 		ret = -EINVAL;
2357 	mutex_unlock(&cpuhp_state_mutex);
2358 	if (ret)
2359 		return ret;
2360 
2361 	st->fail = fail;
2362 
2363 	return count;
2364 }
2365 
2366 static ssize_t fail_show(struct device *dev,
2367 			 struct device_attribute *attr, char *buf)
2368 {
2369 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2370 
2371 	return sprintf(buf, "%d\n", st->fail);
2372 }
2373 
2374 static DEVICE_ATTR_RW(fail);
2375 
2376 static struct attribute *cpuhp_cpu_attrs[] = {
2377 	&dev_attr_state.attr,
2378 	&dev_attr_target.attr,
2379 	&dev_attr_fail.attr,
2380 	NULL
2381 };
2382 
2383 static const struct attribute_group cpuhp_cpu_attr_group = {
2384 	.attrs = cpuhp_cpu_attrs,
2385 	.name = "hotplug",
2386 	NULL
2387 };
2388 
2389 static ssize_t states_show(struct device *dev,
2390 				 struct device_attribute *attr, char *buf)
2391 {
2392 	ssize_t cur, res = 0;
2393 	int i;
2394 
2395 	mutex_lock(&cpuhp_state_mutex);
2396 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2397 		struct cpuhp_step *sp = cpuhp_get_step(i);
2398 
2399 		if (sp->name) {
2400 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2401 			buf += cur;
2402 			res += cur;
2403 		}
2404 	}
2405 	mutex_unlock(&cpuhp_state_mutex);
2406 	return res;
2407 }
2408 static DEVICE_ATTR_RO(states);
2409 
2410 static struct attribute *cpuhp_cpu_root_attrs[] = {
2411 	&dev_attr_states.attr,
2412 	NULL
2413 };
2414 
2415 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2416 	.attrs = cpuhp_cpu_root_attrs,
2417 	.name = "hotplug",
2418 	NULL
2419 };
2420 
2421 #ifdef CONFIG_HOTPLUG_SMT
2422 
2423 static ssize_t
2424 __store_smt_control(struct device *dev, struct device_attribute *attr,
2425 		    const char *buf, size_t count)
2426 {
2427 	int ctrlval, ret;
2428 
2429 	if (sysfs_streq(buf, "on"))
2430 		ctrlval = CPU_SMT_ENABLED;
2431 	else if (sysfs_streq(buf, "off"))
2432 		ctrlval = CPU_SMT_DISABLED;
2433 	else if (sysfs_streq(buf, "forceoff"))
2434 		ctrlval = CPU_SMT_FORCE_DISABLED;
2435 	else
2436 		return -EINVAL;
2437 
2438 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2439 		return -EPERM;
2440 
2441 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2442 		return -ENODEV;
2443 
2444 	ret = lock_device_hotplug_sysfs();
2445 	if (ret)
2446 		return ret;
2447 
2448 	if (ctrlval != cpu_smt_control) {
2449 		switch (ctrlval) {
2450 		case CPU_SMT_ENABLED:
2451 			ret = cpuhp_smt_enable();
2452 			break;
2453 		case CPU_SMT_DISABLED:
2454 		case CPU_SMT_FORCE_DISABLED:
2455 			ret = cpuhp_smt_disable(ctrlval);
2456 			break;
2457 		}
2458 	}
2459 
2460 	unlock_device_hotplug();
2461 	return ret ? ret : count;
2462 }
2463 
2464 #else /* !CONFIG_HOTPLUG_SMT */
2465 static ssize_t
2466 __store_smt_control(struct device *dev, struct device_attribute *attr,
2467 		    const char *buf, size_t count)
2468 {
2469 	return -ENODEV;
2470 }
2471 #endif /* CONFIG_HOTPLUG_SMT */
2472 
2473 static const char *smt_states[] = {
2474 	[CPU_SMT_ENABLED]		= "on",
2475 	[CPU_SMT_DISABLED]		= "off",
2476 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2477 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2478 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2479 };
2480 
2481 static ssize_t control_show(struct device *dev,
2482 			    struct device_attribute *attr, char *buf)
2483 {
2484 	const char *state = smt_states[cpu_smt_control];
2485 
2486 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2487 }
2488 
2489 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2490 			     const char *buf, size_t count)
2491 {
2492 	return __store_smt_control(dev, attr, buf, count);
2493 }
2494 static DEVICE_ATTR_RW(control);
2495 
2496 static ssize_t active_show(struct device *dev,
2497 			   struct device_attribute *attr, char *buf)
2498 {
2499 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2500 }
2501 static DEVICE_ATTR_RO(active);
2502 
2503 static struct attribute *cpuhp_smt_attrs[] = {
2504 	&dev_attr_control.attr,
2505 	&dev_attr_active.attr,
2506 	NULL
2507 };
2508 
2509 static const struct attribute_group cpuhp_smt_attr_group = {
2510 	.attrs = cpuhp_smt_attrs,
2511 	.name = "smt",
2512 	NULL
2513 };
2514 
2515 static int __init cpu_smt_sysfs_init(void)
2516 {
2517 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2518 				  &cpuhp_smt_attr_group);
2519 }
2520 
2521 static int __init cpuhp_sysfs_init(void)
2522 {
2523 	int cpu, ret;
2524 
2525 	ret = cpu_smt_sysfs_init();
2526 	if (ret)
2527 		return ret;
2528 
2529 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2530 				 &cpuhp_cpu_root_attr_group);
2531 	if (ret)
2532 		return ret;
2533 
2534 	for_each_possible_cpu(cpu) {
2535 		struct device *dev = get_cpu_device(cpu);
2536 
2537 		if (!dev)
2538 			continue;
2539 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2540 		if (ret)
2541 			return ret;
2542 	}
2543 	return 0;
2544 }
2545 device_initcall(cpuhp_sysfs_init);
2546 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2547 
2548 /*
2549  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2550  * represents all NR_CPUS bits binary values of 1<<nr.
2551  *
2552  * It is used by cpumask_of() to get a constant address to a CPU
2553  * mask value that has a single bit set only.
2554  */
2555 
2556 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2557 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2558 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2559 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2560 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2561 
2562 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2563 
2564 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2565 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2566 #if BITS_PER_LONG > 32
2567 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2568 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2569 #endif
2570 };
2571 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2572 
2573 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2574 EXPORT_SYMBOL(cpu_all_bits);
2575 
2576 #ifdef CONFIG_INIT_ALL_POSSIBLE
2577 struct cpumask __cpu_possible_mask __read_mostly
2578 	= {CPU_BITS_ALL};
2579 #else
2580 struct cpumask __cpu_possible_mask __read_mostly;
2581 #endif
2582 EXPORT_SYMBOL(__cpu_possible_mask);
2583 
2584 struct cpumask __cpu_online_mask __read_mostly;
2585 EXPORT_SYMBOL(__cpu_online_mask);
2586 
2587 struct cpumask __cpu_present_mask __read_mostly;
2588 EXPORT_SYMBOL(__cpu_present_mask);
2589 
2590 struct cpumask __cpu_active_mask __read_mostly;
2591 EXPORT_SYMBOL(__cpu_active_mask);
2592 
2593 struct cpumask __cpu_dying_mask __read_mostly;
2594 EXPORT_SYMBOL(__cpu_dying_mask);
2595 
2596 atomic_t __num_online_cpus __read_mostly;
2597 EXPORT_SYMBOL(__num_online_cpus);
2598 
2599 void init_cpu_present(const struct cpumask *src)
2600 {
2601 	cpumask_copy(&__cpu_present_mask, src);
2602 }
2603 
2604 void init_cpu_possible(const struct cpumask *src)
2605 {
2606 	cpumask_copy(&__cpu_possible_mask, src);
2607 }
2608 
2609 void init_cpu_online(const struct cpumask *src)
2610 {
2611 	cpumask_copy(&__cpu_online_mask, src);
2612 }
2613 
2614 void set_cpu_online(unsigned int cpu, bool online)
2615 {
2616 	/*
2617 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2618 	 * function by the reboot and kexec code which invoke it from
2619 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2620 	 * regular CPU hotplug is properly serialized.
2621 	 *
2622 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2623 	 * does not protect readers which are not serialized against
2624 	 * concurrent hotplug operations.
2625 	 */
2626 	if (online) {
2627 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2628 			atomic_inc(&__num_online_cpus);
2629 	} else {
2630 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2631 			atomic_dec(&__num_online_cpus);
2632 	}
2633 }
2634 
2635 /*
2636  * Activate the first processor.
2637  */
2638 void __init boot_cpu_init(void)
2639 {
2640 	int cpu = smp_processor_id();
2641 
2642 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2643 	set_cpu_online(cpu, true);
2644 	set_cpu_active(cpu, true);
2645 	set_cpu_present(cpu, true);
2646 	set_cpu_possible(cpu, true);
2647 
2648 #ifdef CONFIG_SMP
2649 	__boot_cpu_id = cpu;
2650 #endif
2651 }
2652 
2653 /*
2654  * Must be called _AFTER_ setting up the per_cpu areas
2655  */
2656 void __init boot_cpu_hotplug_init(void)
2657 {
2658 #ifdef CONFIG_SMP
2659 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2660 #endif
2661 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2662 }
2663 
2664 /*
2665  * These are used for a global "mitigations=" cmdline option for toggling
2666  * optional CPU mitigations.
2667  */
2668 enum cpu_mitigations {
2669 	CPU_MITIGATIONS_OFF,
2670 	CPU_MITIGATIONS_AUTO,
2671 	CPU_MITIGATIONS_AUTO_NOSMT,
2672 };
2673 
2674 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2675 	CPU_MITIGATIONS_AUTO;
2676 
2677 static int __init mitigations_parse_cmdline(char *arg)
2678 {
2679 	if (!strcmp(arg, "off"))
2680 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2681 	else if (!strcmp(arg, "auto"))
2682 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2683 	else if (!strcmp(arg, "auto,nosmt"))
2684 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2685 	else
2686 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2687 			arg);
2688 
2689 	return 0;
2690 }
2691 early_param("mitigations", mitigations_parse_cmdline);
2692 
2693 /* mitigations=off */
2694 bool cpu_mitigations_off(void)
2695 {
2696 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2697 }
2698 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2699 
2700 /* mitigations=auto,nosmt */
2701 bool cpu_mitigations_auto_nosmt(void)
2702 {
2703 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2704 }
2705 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2706