1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 #include <linux/cpuset.h> 36 37 #include <trace/events/power.h> 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/cpuhp.h> 40 41 #include "smpboot.h" 42 43 /** 44 * struct cpuhp_cpu_state - Per cpu hotplug state storage 45 * @state: The current cpu state 46 * @target: The target state 47 * @fail: Current CPU hotplug callback state 48 * @thread: Pointer to the hotplug thread 49 * @should_run: Thread should execute 50 * @rollback: Perform a rollback 51 * @single: Single callback invocation 52 * @bringup: Single callback bringup or teardown selector 53 * @cpu: CPU number 54 * @node: Remote CPU node; for multi-instance, do a 55 * single entry callback for install/remove 56 * @last: For multi-instance rollback, remember how far we got 57 * @cb_state: The state for a single callback (install/uninstall) 58 * @result: Result of the operation 59 * @done_up: Signal completion to the issuer of the task for cpu-up 60 * @done_down: Signal completion to the issuer of the task for cpu-down 61 */ 62 struct cpuhp_cpu_state { 63 enum cpuhp_state state; 64 enum cpuhp_state target; 65 enum cpuhp_state fail; 66 #ifdef CONFIG_SMP 67 struct task_struct *thread; 68 bool should_run; 69 bool rollback; 70 bool single; 71 bool bringup; 72 int cpu; 73 struct hlist_node *node; 74 struct hlist_node *last; 75 enum cpuhp_state cb_state; 76 int result; 77 struct completion done_up; 78 struct completion done_down; 79 #endif 80 }; 81 82 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 83 .fail = CPUHP_INVALID, 84 }; 85 86 #ifdef CONFIG_SMP 87 cpumask_t cpus_booted_once_mask; 88 #endif 89 90 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 91 static struct lockdep_map cpuhp_state_up_map = 92 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 93 static struct lockdep_map cpuhp_state_down_map = 94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 95 96 97 static inline void cpuhp_lock_acquire(bool bringup) 98 { 99 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 100 } 101 102 static inline void cpuhp_lock_release(bool bringup) 103 { 104 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 #else 107 108 static inline void cpuhp_lock_acquire(bool bringup) { } 109 static inline void cpuhp_lock_release(bool bringup) { } 110 111 #endif 112 113 /** 114 * struct cpuhp_step - Hotplug state machine step 115 * @name: Name of the step 116 * @startup: Startup function of the step 117 * @teardown: Teardown function of the step 118 * @cant_stop: Bringup/teardown can't be stopped at this step 119 * @multi_instance: State has multiple instances which get added afterwards 120 */ 121 struct cpuhp_step { 122 const char *name; 123 union { 124 int (*single)(unsigned int cpu); 125 int (*multi)(unsigned int cpu, 126 struct hlist_node *node); 127 } startup; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } teardown; 133 /* private: */ 134 struct hlist_head list; 135 /* public: */ 136 bool cant_stop; 137 bool multi_instance; 138 }; 139 140 static DEFINE_MUTEX(cpuhp_state_mutex); 141 static struct cpuhp_step cpuhp_hp_states[]; 142 143 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 144 { 145 return cpuhp_hp_states + state; 146 } 147 148 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 149 { 150 return bringup ? !step->startup.single : !step->teardown.single; 151 } 152 153 /** 154 * cpuhp_invoke_callback - Invoke the callbacks for a given state 155 * @cpu: The cpu for which the callback should be invoked 156 * @state: The state to do callbacks for 157 * @bringup: True if the bringup callback should be invoked 158 * @node: For multi-instance, do a single entry callback for install/remove 159 * @lastp: For multi-instance rollback, remember how far we got 160 * 161 * Called from cpu hotplug and from the state register machinery. 162 * 163 * Return: %0 on success or a negative errno code 164 */ 165 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 166 bool bringup, struct hlist_node *node, 167 struct hlist_node **lastp) 168 { 169 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 170 struct cpuhp_step *step = cpuhp_get_step(state); 171 int (*cbm)(unsigned int cpu, struct hlist_node *node); 172 int (*cb)(unsigned int cpu); 173 int ret, cnt; 174 175 if (st->fail == state) { 176 st->fail = CPUHP_INVALID; 177 return -EAGAIN; 178 } 179 180 if (cpuhp_step_empty(bringup, step)) { 181 WARN_ON_ONCE(1); 182 return 0; 183 } 184 185 if (!step->multi_instance) { 186 WARN_ON_ONCE(lastp && *lastp); 187 cb = bringup ? step->startup.single : step->teardown.single; 188 189 trace_cpuhp_enter(cpu, st->target, state, cb); 190 ret = cb(cpu); 191 trace_cpuhp_exit(cpu, st->state, state, ret); 192 return ret; 193 } 194 cbm = bringup ? step->startup.multi : step->teardown.multi; 195 196 /* Single invocation for instance add/remove */ 197 if (node) { 198 WARN_ON_ONCE(lastp && *lastp); 199 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 200 ret = cbm(cpu, node); 201 trace_cpuhp_exit(cpu, st->state, state, ret); 202 return ret; 203 } 204 205 /* State transition. Invoke on all instances */ 206 cnt = 0; 207 hlist_for_each(node, &step->list) { 208 if (lastp && node == *lastp) 209 break; 210 211 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 212 ret = cbm(cpu, node); 213 trace_cpuhp_exit(cpu, st->state, state, ret); 214 if (ret) { 215 if (!lastp) 216 goto err; 217 218 *lastp = node; 219 return ret; 220 } 221 cnt++; 222 } 223 if (lastp) 224 *lastp = NULL; 225 return 0; 226 err: 227 /* Rollback the instances if one failed */ 228 cbm = !bringup ? step->startup.multi : step->teardown.multi; 229 if (!cbm) 230 return ret; 231 232 hlist_for_each(node, &step->list) { 233 if (!cnt--) 234 break; 235 236 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 237 ret = cbm(cpu, node); 238 trace_cpuhp_exit(cpu, st->state, state, ret); 239 /* 240 * Rollback must not fail, 241 */ 242 WARN_ON_ONCE(ret); 243 } 244 return ret; 245 } 246 247 #ifdef CONFIG_SMP 248 static bool cpuhp_is_ap_state(enum cpuhp_state state) 249 { 250 /* 251 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 252 * purposes as that state is handled explicitly in cpu_down. 253 */ 254 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 255 } 256 257 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 258 { 259 struct completion *done = bringup ? &st->done_up : &st->done_down; 260 wait_for_completion(done); 261 } 262 263 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 264 { 265 struct completion *done = bringup ? &st->done_up : &st->done_down; 266 complete(done); 267 } 268 269 /* 270 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 271 */ 272 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 273 { 274 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 275 } 276 277 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 278 static DEFINE_MUTEX(cpu_add_remove_lock); 279 bool cpuhp_tasks_frozen; 280 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 281 282 /* 283 * The following two APIs (cpu_maps_update_begin/done) must be used when 284 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 285 */ 286 void cpu_maps_update_begin(void) 287 { 288 mutex_lock(&cpu_add_remove_lock); 289 } 290 291 void cpu_maps_update_done(void) 292 { 293 mutex_unlock(&cpu_add_remove_lock); 294 } 295 296 /* 297 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 298 * Should always be manipulated under cpu_add_remove_lock 299 */ 300 static int cpu_hotplug_disabled; 301 302 #ifdef CONFIG_HOTPLUG_CPU 303 304 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 305 306 void cpus_read_lock(void) 307 { 308 percpu_down_read(&cpu_hotplug_lock); 309 } 310 EXPORT_SYMBOL_GPL(cpus_read_lock); 311 312 int cpus_read_trylock(void) 313 { 314 return percpu_down_read_trylock(&cpu_hotplug_lock); 315 } 316 EXPORT_SYMBOL_GPL(cpus_read_trylock); 317 318 void cpus_read_unlock(void) 319 { 320 percpu_up_read(&cpu_hotplug_lock); 321 } 322 EXPORT_SYMBOL_GPL(cpus_read_unlock); 323 324 void cpus_write_lock(void) 325 { 326 percpu_down_write(&cpu_hotplug_lock); 327 } 328 329 void cpus_write_unlock(void) 330 { 331 percpu_up_write(&cpu_hotplug_lock); 332 } 333 334 void lockdep_assert_cpus_held(void) 335 { 336 /* 337 * We can't have hotplug operations before userspace starts running, 338 * and some init codepaths will knowingly not take the hotplug lock. 339 * This is all valid, so mute lockdep until it makes sense to report 340 * unheld locks. 341 */ 342 if (system_state < SYSTEM_RUNNING) 343 return; 344 345 percpu_rwsem_assert_held(&cpu_hotplug_lock); 346 } 347 348 #ifdef CONFIG_LOCKDEP 349 int lockdep_is_cpus_held(void) 350 { 351 return percpu_rwsem_is_held(&cpu_hotplug_lock); 352 } 353 #endif 354 355 static void lockdep_acquire_cpus_lock(void) 356 { 357 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 358 } 359 360 static void lockdep_release_cpus_lock(void) 361 { 362 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 363 } 364 365 /* 366 * Wait for currently running CPU hotplug operations to complete (if any) and 367 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 368 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 369 * hotplug path before performing hotplug operations. So acquiring that lock 370 * guarantees mutual exclusion from any currently running hotplug operations. 371 */ 372 void cpu_hotplug_disable(void) 373 { 374 cpu_maps_update_begin(); 375 cpu_hotplug_disabled++; 376 cpu_maps_update_done(); 377 } 378 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 379 380 static void __cpu_hotplug_enable(void) 381 { 382 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 383 return; 384 cpu_hotplug_disabled--; 385 } 386 387 void cpu_hotplug_enable(void) 388 { 389 cpu_maps_update_begin(); 390 __cpu_hotplug_enable(); 391 cpu_maps_update_done(); 392 } 393 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 394 395 #else 396 397 static void lockdep_acquire_cpus_lock(void) 398 { 399 } 400 401 static void lockdep_release_cpus_lock(void) 402 { 403 } 404 405 #endif /* CONFIG_HOTPLUG_CPU */ 406 407 /* 408 * Architectures that need SMT-specific errata handling during SMT hotplug 409 * should override this. 410 */ 411 void __weak arch_smt_update(void) { } 412 413 #ifdef CONFIG_HOTPLUG_SMT 414 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 415 416 void __init cpu_smt_disable(bool force) 417 { 418 if (!cpu_smt_possible()) 419 return; 420 421 if (force) { 422 pr_info("SMT: Force disabled\n"); 423 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 424 } else { 425 pr_info("SMT: disabled\n"); 426 cpu_smt_control = CPU_SMT_DISABLED; 427 } 428 } 429 430 /* 431 * The decision whether SMT is supported can only be done after the full 432 * CPU identification. Called from architecture code. 433 */ 434 void __init cpu_smt_check_topology(void) 435 { 436 if (!topology_smt_supported()) 437 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 438 } 439 440 static int __init smt_cmdline_disable(char *str) 441 { 442 cpu_smt_disable(str && !strcmp(str, "force")); 443 return 0; 444 } 445 early_param("nosmt", smt_cmdline_disable); 446 447 static inline bool cpu_smt_allowed(unsigned int cpu) 448 { 449 if (cpu_smt_control == CPU_SMT_ENABLED) 450 return true; 451 452 if (topology_is_primary_thread(cpu)) 453 return true; 454 455 /* 456 * On x86 it's required to boot all logical CPUs at least once so 457 * that the init code can get a chance to set CR4.MCE on each 458 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 459 * core will shutdown the machine. 460 */ 461 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 462 } 463 464 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 465 bool cpu_smt_possible(void) 466 { 467 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 468 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 469 } 470 EXPORT_SYMBOL_GPL(cpu_smt_possible); 471 #else 472 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 473 #endif 474 475 static inline enum cpuhp_state 476 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 477 { 478 enum cpuhp_state prev_state = st->state; 479 bool bringup = st->state < target; 480 481 st->rollback = false; 482 st->last = NULL; 483 484 st->target = target; 485 st->single = false; 486 st->bringup = bringup; 487 if (cpu_dying(st->cpu) != !bringup) 488 set_cpu_dying(st->cpu, !bringup); 489 490 return prev_state; 491 } 492 493 static inline void 494 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 495 { 496 bool bringup = !st->bringup; 497 498 st->target = prev_state; 499 500 /* 501 * Already rolling back. No need invert the bringup value or to change 502 * the current state. 503 */ 504 if (st->rollback) 505 return; 506 507 st->rollback = true; 508 509 /* 510 * If we have st->last we need to undo partial multi_instance of this 511 * state first. Otherwise start undo at the previous state. 512 */ 513 if (!st->last) { 514 if (st->bringup) 515 st->state--; 516 else 517 st->state++; 518 } 519 520 st->bringup = bringup; 521 if (cpu_dying(st->cpu) != !bringup) 522 set_cpu_dying(st->cpu, !bringup); 523 } 524 525 /* Regular hotplug invocation of the AP hotplug thread */ 526 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 527 { 528 if (!st->single && st->state == st->target) 529 return; 530 531 st->result = 0; 532 /* 533 * Make sure the above stores are visible before should_run becomes 534 * true. Paired with the mb() above in cpuhp_thread_fun() 535 */ 536 smp_mb(); 537 st->should_run = true; 538 wake_up_process(st->thread); 539 wait_for_ap_thread(st, st->bringup); 540 } 541 542 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 543 { 544 enum cpuhp_state prev_state; 545 int ret; 546 547 prev_state = cpuhp_set_state(st, target); 548 __cpuhp_kick_ap(st); 549 if ((ret = st->result)) { 550 cpuhp_reset_state(st, prev_state); 551 __cpuhp_kick_ap(st); 552 } 553 554 return ret; 555 } 556 557 static int bringup_wait_for_ap(unsigned int cpu) 558 { 559 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 560 561 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 562 wait_for_ap_thread(st, true); 563 if (WARN_ON_ONCE((!cpu_online(cpu)))) 564 return -ECANCELED; 565 566 /* Unpark the hotplug thread of the target cpu */ 567 kthread_unpark(st->thread); 568 569 /* 570 * SMT soft disabling on X86 requires to bring the CPU out of the 571 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 572 * CPU marked itself as booted_once in notify_cpu_starting() so the 573 * cpu_smt_allowed() check will now return false if this is not the 574 * primary sibling. 575 */ 576 if (!cpu_smt_allowed(cpu)) 577 return -ECANCELED; 578 579 if (st->target <= CPUHP_AP_ONLINE_IDLE) 580 return 0; 581 582 return cpuhp_kick_ap(st, st->target); 583 } 584 585 static int bringup_cpu(unsigned int cpu) 586 { 587 struct task_struct *idle = idle_thread_get(cpu); 588 int ret; 589 590 /* 591 * Some architectures have to walk the irq descriptors to 592 * setup the vector space for the cpu which comes online. 593 * Prevent irq alloc/free across the bringup. 594 */ 595 irq_lock_sparse(); 596 597 /* Arch-specific enabling code. */ 598 ret = __cpu_up(cpu, idle); 599 irq_unlock_sparse(); 600 if (ret) 601 return ret; 602 return bringup_wait_for_ap(cpu); 603 } 604 605 static int finish_cpu(unsigned int cpu) 606 { 607 struct task_struct *idle = idle_thread_get(cpu); 608 struct mm_struct *mm = idle->active_mm; 609 610 /* 611 * idle_task_exit() will have switched to &init_mm, now 612 * clean up any remaining active_mm state. 613 */ 614 if (mm != &init_mm) 615 idle->active_mm = &init_mm; 616 mmdrop(mm); 617 return 0; 618 } 619 620 /* 621 * Hotplug state machine related functions 622 */ 623 624 /* 625 * Get the next state to run. Empty ones will be skipped. Returns true if a 626 * state must be run. 627 * 628 * st->state will be modified ahead of time, to match state_to_run, as if it 629 * has already ran. 630 */ 631 static bool cpuhp_next_state(bool bringup, 632 enum cpuhp_state *state_to_run, 633 struct cpuhp_cpu_state *st, 634 enum cpuhp_state target) 635 { 636 do { 637 if (bringup) { 638 if (st->state >= target) 639 return false; 640 641 *state_to_run = ++st->state; 642 } else { 643 if (st->state <= target) 644 return false; 645 646 *state_to_run = st->state--; 647 } 648 649 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 650 break; 651 } while (true); 652 653 return true; 654 } 655 656 static int cpuhp_invoke_callback_range(bool bringup, 657 unsigned int cpu, 658 struct cpuhp_cpu_state *st, 659 enum cpuhp_state target) 660 { 661 enum cpuhp_state state; 662 int err = 0; 663 664 while (cpuhp_next_state(bringup, &state, st, target)) { 665 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 666 if (err) 667 break; 668 } 669 670 return err; 671 } 672 673 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 674 { 675 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 676 return true; 677 /* 678 * When CPU hotplug is disabled, then taking the CPU down is not 679 * possible because takedown_cpu() and the architecture and 680 * subsystem specific mechanisms are not available. So the CPU 681 * which would be completely unplugged again needs to stay around 682 * in the current state. 683 */ 684 return st->state <= CPUHP_BRINGUP_CPU; 685 } 686 687 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 688 enum cpuhp_state target) 689 { 690 enum cpuhp_state prev_state = st->state; 691 int ret = 0; 692 693 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 694 if (ret) { 695 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 696 ret, cpu, cpuhp_get_step(st->state)->name, 697 st->state); 698 699 cpuhp_reset_state(st, prev_state); 700 if (can_rollback_cpu(st)) 701 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 702 prev_state)); 703 } 704 return ret; 705 } 706 707 /* 708 * The cpu hotplug threads manage the bringup and teardown of the cpus 709 */ 710 static void cpuhp_create(unsigned int cpu) 711 { 712 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 713 714 init_completion(&st->done_up); 715 init_completion(&st->done_down); 716 st->cpu = cpu; 717 } 718 719 static int cpuhp_should_run(unsigned int cpu) 720 { 721 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 722 723 return st->should_run; 724 } 725 726 /* 727 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 728 * callbacks when a state gets [un]installed at runtime. 729 * 730 * Each invocation of this function by the smpboot thread does a single AP 731 * state callback. 732 * 733 * It has 3 modes of operation: 734 * - single: runs st->cb_state 735 * - up: runs ++st->state, while st->state < st->target 736 * - down: runs st->state--, while st->state > st->target 737 * 738 * When complete or on error, should_run is cleared and the completion is fired. 739 */ 740 static void cpuhp_thread_fun(unsigned int cpu) 741 { 742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 743 bool bringup = st->bringup; 744 enum cpuhp_state state; 745 746 if (WARN_ON_ONCE(!st->should_run)) 747 return; 748 749 /* 750 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 751 * that if we see ->should_run we also see the rest of the state. 752 */ 753 smp_mb(); 754 755 /* 756 * The BP holds the hotplug lock, but we're now running on the AP, 757 * ensure that anybody asserting the lock is held, will actually find 758 * it so. 759 */ 760 lockdep_acquire_cpus_lock(); 761 cpuhp_lock_acquire(bringup); 762 763 if (st->single) { 764 state = st->cb_state; 765 st->should_run = false; 766 } else { 767 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 768 if (!st->should_run) 769 goto end; 770 } 771 772 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 773 774 if (cpuhp_is_atomic_state(state)) { 775 local_irq_disable(); 776 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 777 local_irq_enable(); 778 779 /* 780 * STARTING/DYING must not fail! 781 */ 782 WARN_ON_ONCE(st->result); 783 } else { 784 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 785 } 786 787 if (st->result) { 788 /* 789 * If we fail on a rollback, we're up a creek without no 790 * paddle, no way forward, no way back. We loose, thanks for 791 * playing. 792 */ 793 WARN_ON_ONCE(st->rollback); 794 st->should_run = false; 795 } 796 797 end: 798 cpuhp_lock_release(bringup); 799 lockdep_release_cpus_lock(); 800 801 if (!st->should_run) 802 complete_ap_thread(st, bringup); 803 } 804 805 /* Invoke a single callback on a remote cpu */ 806 static int 807 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 808 struct hlist_node *node) 809 { 810 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 811 int ret; 812 813 if (!cpu_online(cpu)) 814 return 0; 815 816 cpuhp_lock_acquire(false); 817 cpuhp_lock_release(false); 818 819 cpuhp_lock_acquire(true); 820 cpuhp_lock_release(true); 821 822 /* 823 * If we are up and running, use the hotplug thread. For early calls 824 * we invoke the thread function directly. 825 */ 826 if (!st->thread) 827 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 828 829 st->rollback = false; 830 st->last = NULL; 831 832 st->node = node; 833 st->bringup = bringup; 834 st->cb_state = state; 835 st->single = true; 836 837 __cpuhp_kick_ap(st); 838 839 /* 840 * If we failed and did a partial, do a rollback. 841 */ 842 if ((ret = st->result) && st->last) { 843 st->rollback = true; 844 st->bringup = !bringup; 845 846 __cpuhp_kick_ap(st); 847 } 848 849 /* 850 * Clean up the leftovers so the next hotplug operation wont use stale 851 * data. 852 */ 853 st->node = st->last = NULL; 854 return ret; 855 } 856 857 static int cpuhp_kick_ap_work(unsigned int cpu) 858 { 859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 860 enum cpuhp_state prev_state = st->state; 861 int ret; 862 863 cpuhp_lock_acquire(false); 864 cpuhp_lock_release(false); 865 866 cpuhp_lock_acquire(true); 867 cpuhp_lock_release(true); 868 869 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 870 ret = cpuhp_kick_ap(st, st->target); 871 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 872 873 return ret; 874 } 875 876 static struct smp_hotplug_thread cpuhp_threads = { 877 .store = &cpuhp_state.thread, 878 .create = &cpuhp_create, 879 .thread_should_run = cpuhp_should_run, 880 .thread_fn = cpuhp_thread_fun, 881 .thread_comm = "cpuhp/%u", 882 .selfparking = true, 883 }; 884 885 void __init cpuhp_threads_init(void) 886 { 887 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 888 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 889 } 890 891 /* 892 * 893 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 894 * protected region. 895 * 896 * The operation is still serialized against concurrent CPU hotplug via 897 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 898 * serialized against other hotplug related activity like adding or 899 * removing of state callbacks and state instances, which invoke either the 900 * startup or the teardown callback of the affected state. 901 * 902 * This is required for subsystems which are unfixable vs. CPU hotplug and 903 * evade lock inversion problems by scheduling work which has to be 904 * completed _before_ cpu_up()/_cpu_down() returns. 905 * 906 * Don't even think about adding anything to this for any new code or even 907 * drivers. It's only purpose is to keep existing lock order trainwrecks 908 * working. 909 * 910 * For cpu_down() there might be valid reasons to finish cleanups which are 911 * not required to be done under cpu_hotplug_lock, but that's a different 912 * story and would be not invoked via this. 913 */ 914 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 915 { 916 /* 917 * cpusets delegate hotplug operations to a worker to "solve" the 918 * lock order problems. Wait for the worker, but only if tasks are 919 * _not_ frozen (suspend, hibernate) as that would wait forever. 920 * 921 * The wait is required because otherwise the hotplug operation 922 * returns with inconsistent state, which could even be observed in 923 * user space when a new CPU is brought up. The CPU plug uevent 924 * would be delivered and user space reacting on it would fail to 925 * move tasks to the newly plugged CPU up to the point where the 926 * work has finished because up to that point the newly plugged CPU 927 * is not assignable in cpusets/cgroups. On unplug that's not 928 * necessarily a visible issue, but it is still inconsistent state, 929 * which is the real problem which needs to be "fixed". This can't 930 * prevent the transient state between scheduling the work and 931 * returning from waiting for it. 932 */ 933 if (!tasks_frozen) 934 cpuset_wait_for_hotplug(); 935 } 936 937 #ifdef CONFIG_HOTPLUG_CPU 938 #ifndef arch_clear_mm_cpumask_cpu 939 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 940 #endif 941 942 /** 943 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 944 * @cpu: a CPU id 945 * 946 * This function walks all processes, finds a valid mm struct for each one and 947 * then clears a corresponding bit in mm's cpumask. While this all sounds 948 * trivial, there are various non-obvious corner cases, which this function 949 * tries to solve in a safe manner. 950 * 951 * Also note that the function uses a somewhat relaxed locking scheme, so it may 952 * be called only for an already offlined CPU. 953 */ 954 void clear_tasks_mm_cpumask(int cpu) 955 { 956 struct task_struct *p; 957 958 /* 959 * This function is called after the cpu is taken down and marked 960 * offline, so its not like new tasks will ever get this cpu set in 961 * their mm mask. -- Peter Zijlstra 962 * Thus, we may use rcu_read_lock() here, instead of grabbing 963 * full-fledged tasklist_lock. 964 */ 965 WARN_ON(cpu_online(cpu)); 966 rcu_read_lock(); 967 for_each_process(p) { 968 struct task_struct *t; 969 970 /* 971 * Main thread might exit, but other threads may still have 972 * a valid mm. Find one. 973 */ 974 t = find_lock_task_mm(p); 975 if (!t) 976 continue; 977 arch_clear_mm_cpumask_cpu(cpu, t->mm); 978 task_unlock(t); 979 } 980 rcu_read_unlock(); 981 } 982 983 /* Take this CPU down. */ 984 static int take_cpu_down(void *_param) 985 { 986 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 987 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 988 int err, cpu = smp_processor_id(); 989 int ret; 990 991 /* Ensure this CPU doesn't handle any more interrupts. */ 992 err = __cpu_disable(); 993 if (err < 0) 994 return err; 995 996 /* 997 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 998 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 999 */ 1000 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1001 1002 /* Invoke the former CPU_DYING callbacks */ 1003 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1004 1005 /* 1006 * DYING must not fail! 1007 */ 1008 WARN_ON_ONCE(ret); 1009 1010 /* Give up timekeeping duties */ 1011 tick_handover_do_timer(); 1012 /* Remove CPU from timer broadcasting */ 1013 tick_offline_cpu(cpu); 1014 /* Park the stopper thread */ 1015 stop_machine_park(cpu); 1016 return 0; 1017 } 1018 1019 static int takedown_cpu(unsigned int cpu) 1020 { 1021 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1022 int err; 1023 1024 /* Park the smpboot threads */ 1025 kthread_park(st->thread); 1026 1027 /* 1028 * Prevent irq alloc/free while the dying cpu reorganizes the 1029 * interrupt affinities. 1030 */ 1031 irq_lock_sparse(); 1032 1033 /* 1034 * So now all preempt/rcu users must observe !cpu_active(). 1035 */ 1036 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1037 if (err) { 1038 /* CPU refused to die */ 1039 irq_unlock_sparse(); 1040 /* Unpark the hotplug thread so we can rollback there */ 1041 kthread_unpark(st->thread); 1042 return err; 1043 } 1044 BUG_ON(cpu_online(cpu)); 1045 1046 /* 1047 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1048 * all runnable tasks from the CPU, there's only the idle task left now 1049 * that the migration thread is done doing the stop_machine thing. 1050 * 1051 * Wait for the stop thread to go away. 1052 */ 1053 wait_for_ap_thread(st, false); 1054 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1055 1056 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1057 irq_unlock_sparse(); 1058 1059 hotplug_cpu__broadcast_tick_pull(cpu); 1060 /* This actually kills the CPU. */ 1061 __cpu_die(cpu); 1062 1063 tick_cleanup_dead_cpu(cpu); 1064 rcutree_migrate_callbacks(cpu); 1065 return 0; 1066 } 1067 1068 static void cpuhp_complete_idle_dead(void *arg) 1069 { 1070 struct cpuhp_cpu_state *st = arg; 1071 1072 complete_ap_thread(st, false); 1073 } 1074 1075 void cpuhp_report_idle_dead(void) 1076 { 1077 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1078 1079 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1080 rcu_report_dead(smp_processor_id()); 1081 st->state = CPUHP_AP_IDLE_DEAD; 1082 /* 1083 * We cannot call complete after rcu_report_dead() so we delegate it 1084 * to an online cpu. 1085 */ 1086 smp_call_function_single(cpumask_first(cpu_online_mask), 1087 cpuhp_complete_idle_dead, st, 0); 1088 } 1089 1090 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1091 enum cpuhp_state target) 1092 { 1093 enum cpuhp_state prev_state = st->state; 1094 int ret = 0; 1095 1096 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1097 if (ret) { 1098 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1099 ret, cpu, cpuhp_get_step(st->state)->name, 1100 st->state); 1101 1102 cpuhp_reset_state(st, prev_state); 1103 1104 if (st->state < prev_state) 1105 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1106 prev_state)); 1107 } 1108 1109 return ret; 1110 } 1111 1112 /* Requires cpu_add_remove_lock to be held */ 1113 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1114 enum cpuhp_state target) 1115 { 1116 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1117 int prev_state, ret = 0; 1118 1119 if (num_online_cpus() == 1) 1120 return -EBUSY; 1121 1122 if (!cpu_present(cpu)) 1123 return -EINVAL; 1124 1125 cpus_write_lock(); 1126 1127 cpuhp_tasks_frozen = tasks_frozen; 1128 1129 prev_state = cpuhp_set_state(st, target); 1130 /* 1131 * If the current CPU state is in the range of the AP hotplug thread, 1132 * then we need to kick the thread. 1133 */ 1134 if (st->state > CPUHP_TEARDOWN_CPU) { 1135 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1136 ret = cpuhp_kick_ap_work(cpu); 1137 /* 1138 * The AP side has done the error rollback already. Just 1139 * return the error code.. 1140 */ 1141 if (ret) 1142 goto out; 1143 1144 /* 1145 * We might have stopped still in the range of the AP hotplug 1146 * thread. Nothing to do anymore. 1147 */ 1148 if (st->state > CPUHP_TEARDOWN_CPU) 1149 goto out; 1150 1151 st->target = target; 1152 } 1153 /* 1154 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1155 * to do the further cleanups. 1156 */ 1157 ret = cpuhp_down_callbacks(cpu, st, target); 1158 if (ret && st->state < prev_state) { 1159 if (st->state == CPUHP_TEARDOWN_CPU) { 1160 cpuhp_reset_state(st, prev_state); 1161 __cpuhp_kick_ap(st); 1162 } else { 1163 WARN(1, "DEAD callback error for CPU%d", cpu); 1164 } 1165 } 1166 1167 out: 1168 cpus_write_unlock(); 1169 /* 1170 * Do post unplug cleanup. This is still protected against 1171 * concurrent CPU hotplug via cpu_add_remove_lock. 1172 */ 1173 lockup_detector_cleanup(); 1174 arch_smt_update(); 1175 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1176 return ret; 1177 } 1178 1179 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1180 { 1181 if (cpu_hotplug_disabled) 1182 return -EBUSY; 1183 return _cpu_down(cpu, 0, target); 1184 } 1185 1186 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1187 { 1188 int err; 1189 1190 cpu_maps_update_begin(); 1191 err = cpu_down_maps_locked(cpu, target); 1192 cpu_maps_update_done(); 1193 return err; 1194 } 1195 1196 /** 1197 * cpu_device_down - Bring down a cpu device 1198 * @dev: Pointer to the cpu device to offline 1199 * 1200 * This function is meant to be used by device core cpu subsystem only. 1201 * 1202 * Other subsystems should use remove_cpu() instead. 1203 * 1204 * Return: %0 on success or a negative errno code 1205 */ 1206 int cpu_device_down(struct device *dev) 1207 { 1208 return cpu_down(dev->id, CPUHP_OFFLINE); 1209 } 1210 1211 int remove_cpu(unsigned int cpu) 1212 { 1213 int ret; 1214 1215 lock_device_hotplug(); 1216 ret = device_offline(get_cpu_device(cpu)); 1217 unlock_device_hotplug(); 1218 1219 return ret; 1220 } 1221 EXPORT_SYMBOL_GPL(remove_cpu); 1222 1223 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1224 { 1225 unsigned int cpu; 1226 int error; 1227 1228 cpu_maps_update_begin(); 1229 1230 /* 1231 * Make certain the cpu I'm about to reboot on is online. 1232 * 1233 * This is inline to what migrate_to_reboot_cpu() already do. 1234 */ 1235 if (!cpu_online(primary_cpu)) 1236 primary_cpu = cpumask_first(cpu_online_mask); 1237 1238 for_each_online_cpu(cpu) { 1239 if (cpu == primary_cpu) 1240 continue; 1241 1242 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1243 if (error) { 1244 pr_err("Failed to offline CPU%d - error=%d", 1245 cpu, error); 1246 break; 1247 } 1248 } 1249 1250 /* 1251 * Ensure all but the reboot CPU are offline. 1252 */ 1253 BUG_ON(num_online_cpus() > 1); 1254 1255 /* 1256 * Make sure the CPUs won't be enabled by someone else after this 1257 * point. Kexec will reboot to a new kernel shortly resetting 1258 * everything along the way. 1259 */ 1260 cpu_hotplug_disabled++; 1261 1262 cpu_maps_update_done(); 1263 } 1264 1265 #else 1266 #define takedown_cpu NULL 1267 #endif /*CONFIG_HOTPLUG_CPU*/ 1268 1269 /** 1270 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1271 * @cpu: cpu that just started 1272 * 1273 * It must be called by the arch code on the new cpu, before the new cpu 1274 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1275 */ 1276 void notify_cpu_starting(unsigned int cpu) 1277 { 1278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1279 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1280 int ret; 1281 1282 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1283 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1284 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1285 1286 /* 1287 * STARTING must not fail! 1288 */ 1289 WARN_ON_ONCE(ret); 1290 } 1291 1292 /* 1293 * Called from the idle task. Wake up the controlling task which brings the 1294 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1295 * online bringup to the hotplug thread. 1296 */ 1297 void cpuhp_online_idle(enum cpuhp_state state) 1298 { 1299 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1300 1301 /* Happens for the boot cpu */ 1302 if (state != CPUHP_AP_ONLINE_IDLE) 1303 return; 1304 1305 /* 1306 * Unpart the stopper thread before we start the idle loop (and start 1307 * scheduling); this ensures the stopper task is always available. 1308 */ 1309 stop_machine_unpark(smp_processor_id()); 1310 1311 st->state = CPUHP_AP_ONLINE_IDLE; 1312 complete_ap_thread(st, true); 1313 } 1314 1315 /* Requires cpu_add_remove_lock to be held */ 1316 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1317 { 1318 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1319 struct task_struct *idle; 1320 int ret = 0; 1321 1322 cpus_write_lock(); 1323 1324 if (!cpu_present(cpu)) { 1325 ret = -EINVAL; 1326 goto out; 1327 } 1328 1329 /* 1330 * The caller of cpu_up() might have raced with another 1331 * caller. Nothing to do. 1332 */ 1333 if (st->state >= target) 1334 goto out; 1335 1336 if (st->state == CPUHP_OFFLINE) { 1337 /* Let it fail before we try to bring the cpu up */ 1338 idle = idle_thread_get(cpu); 1339 if (IS_ERR(idle)) { 1340 ret = PTR_ERR(idle); 1341 goto out; 1342 } 1343 } 1344 1345 cpuhp_tasks_frozen = tasks_frozen; 1346 1347 cpuhp_set_state(st, target); 1348 /* 1349 * If the current CPU state is in the range of the AP hotplug thread, 1350 * then we need to kick the thread once more. 1351 */ 1352 if (st->state > CPUHP_BRINGUP_CPU) { 1353 ret = cpuhp_kick_ap_work(cpu); 1354 /* 1355 * The AP side has done the error rollback already. Just 1356 * return the error code.. 1357 */ 1358 if (ret) 1359 goto out; 1360 } 1361 1362 /* 1363 * Try to reach the target state. We max out on the BP at 1364 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1365 * responsible for bringing it up to the target state. 1366 */ 1367 target = min((int)target, CPUHP_BRINGUP_CPU); 1368 ret = cpuhp_up_callbacks(cpu, st, target); 1369 out: 1370 cpus_write_unlock(); 1371 arch_smt_update(); 1372 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1373 return ret; 1374 } 1375 1376 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1377 { 1378 int err = 0; 1379 1380 if (!cpu_possible(cpu)) { 1381 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1382 cpu); 1383 #if defined(CONFIG_IA64) 1384 pr_err("please check additional_cpus= boot parameter\n"); 1385 #endif 1386 return -EINVAL; 1387 } 1388 1389 err = try_online_node(cpu_to_node(cpu)); 1390 if (err) 1391 return err; 1392 1393 cpu_maps_update_begin(); 1394 1395 if (cpu_hotplug_disabled) { 1396 err = -EBUSY; 1397 goto out; 1398 } 1399 if (!cpu_smt_allowed(cpu)) { 1400 err = -EPERM; 1401 goto out; 1402 } 1403 1404 err = _cpu_up(cpu, 0, target); 1405 out: 1406 cpu_maps_update_done(); 1407 return err; 1408 } 1409 1410 /** 1411 * cpu_device_up - Bring up a cpu device 1412 * @dev: Pointer to the cpu device to online 1413 * 1414 * This function is meant to be used by device core cpu subsystem only. 1415 * 1416 * Other subsystems should use add_cpu() instead. 1417 * 1418 * Return: %0 on success or a negative errno code 1419 */ 1420 int cpu_device_up(struct device *dev) 1421 { 1422 return cpu_up(dev->id, CPUHP_ONLINE); 1423 } 1424 1425 int add_cpu(unsigned int cpu) 1426 { 1427 int ret; 1428 1429 lock_device_hotplug(); 1430 ret = device_online(get_cpu_device(cpu)); 1431 unlock_device_hotplug(); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL_GPL(add_cpu); 1436 1437 /** 1438 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1439 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1440 * 1441 * On some architectures like arm64, we can hibernate on any CPU, but on 1442 * wake up the CPU we hibernated on might be offline as a side effect of 1443 * using maxcpus= for example. 1444 * 1445 * Return: %0 on success or a negative errno code 1446 */ 1447 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1448 { 1449 int ret; 1450 1451 if (!cpu_online(sleep_cpu)) { 1452 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1453 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1454 if (ret) { 1455 pr_err("Failed to bring hibernate-CPU up!\n"); 1456 return ret; 1457 } 1458 } 1459 return 0; 1460 } 1461 1462 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1463 { 1464 unsigned int cpu; 1465 1466 for_each_present_cpu(cpu) { 1467 if (num_online_cpus() >= setup_max_cpus) 1468 break; 1469 if (!cpu_online(cpu)) 1470 cpu_up(cpu, CPUHP_ONLINE); 1471 } 1472 } 1473 1474 #ifdef CONFIG_PM_SLEEP_SMP 1475 static cpumask_var_t frozen_cpus; 1476 1477 int freeze_secondary_cpus(int primary) 1478 { 1479 int cpu, error = 0; 1480 1481 cpu_maps_update_begin(); 1482 if (primary == -1) { 1483 primary = cpumask_first(cpu_online_mask); 1484 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1485 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1486 } else { 1487 if (!cpu_online(primary)) 1488 primary = cpumask_first(cpu_online_mask); 1489 } 1490 1491 /* 1492 * We take down all of the non-boot CPUs in one shot to avoid races 1493 * with the userspace trying to use the CPU hotplug at the same time 1494 */ 1495 cpumask_clear(frozen_cpus); 1496 1497 pr_info("Disabling non-boot CPUs ...\n"); 1498 for_each_online_cpu(cpu) { 1499 if (cpu == primary) 1500 continue; 1501 1502 if (pm_wakeup_pending()) { 1503 pr_info("Wakeup pending. Abort CPU freeze\n"); 1504 error = -EBUSY; 1505 break; 1506 } 1507 1508 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1509 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1510 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1511 if (!error) 1512 cpumask_set_cpu(cpu, frozen_cpus); 1513 else { 1514 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1515 break; 1516 } 1517 } 1518 1519 if (!error) 1520 BUG_ON(num_online_cpus() > 1); 1521 else 1522 pr_err("Non-boot CPUs are not disabled\n"); 1523 1524 /* 1525 * Make sure the CPUs won't be enabled by someone else. We need to do 1526 * this even in case of failure as all freeze_secondary_cpus() users are 1527 * supposed to do thaw_secondary_cpus() on the failure path. 1528 */ 1529 cpu_hotplug_disabled++; 1530 1531 cpu_maps_update_done(); 1532 return error; 1533 } 1534 1535 void __weak arch_thaw_secondary_cpus_begin(void) 1536 { 1537 } 1538 1539 void __weak arch_thaw_secondary_cpus_end(void) 1540 { 1541 } 1542 1543 void thaw_secondary_cpus(void) 1544 { 1545 int cpu, error; 1546 1547 /* Allow everyone to use the CPU hotplug again */ 1548 cpu_maps_update_begin(); 1549 __cpu_hotplug_enable(); 1550 if (cpumask_empty(frozen_cpus)) 1551 goto out; 1552 1553 pr_info("Enabling non-boot CPUs ...\n"); 1554 1555 arch_thaw_secondary_cpus_begin(); 1556 1557 for_each_cpu(cpu, frozen_cpus) { 1558 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1559 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1560 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1561 if (!error) { 1562 pr_info("CPU%d is up\n", cpu); 1563 continue; 1564 } 1565 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1566 } 1567 1568 arch_thaw_secondary_cpus_end(); 1569 1570 cpumask_clear(frozen_cpus); 1571 out: 1572 cpu_maps_update_done(); 1573 } 1574 1575 static int __init alloc_frozen_cpus(void) 1576 { 1577 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1578 return -ENOMEM; 1579 return 0; 1580 } 1581 core_initcall(alloc_frozen_cpus); 1582 1583 /* 1584 * When callbacks for CPU hotplug notifications are being executed, we must 1585 * ensure that the state of the system with respect to the tasks being frozen 1586 * or not, as reported by the notification, remains unchanged *throughout the 1587 * duration* of the execution of the callbacks. 1588 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1589 * 1590 * This synchronization is implemented by mutually excluding regular CPU 1591 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1592 * Hibernate notifications. 1593 */ 1594 static int 1595 cpu_hotplug_pm_callback(struct notifier_block *nb, 1596 unsigned long action, void *ptr) 1597 { 1598 switch (action) { 1599 1600 case PM_SUSPEND_PREPARE: 1601 case PM_HIBERNATION_PREPARE: 1602 cpu_hotplug_disable(); 1603 break; 1604 1605 case PM_POST_SUSPEND: 1606 case PM_POST_HIBERNATION: 1607 cpu_hotplug_enable(); 1608 break; 1609 1610 default: 1611 return NOTIFY_DONE; 1612 } 1613 1614 return NOTIFY_OK; 1615 } 1616 1617 1618 static int __init cpu_hotplug_pm_sync_init(void) 1619 { 1620 /* 1621 * cpu_hotplug_pm_callback has higher priority than x86 1622 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1623 * to disable cpu hotplug to avoid cpu hotplug race. 1624 */ 1625 pm_notifier(cpu_hotplug_pm_callback, 0); 1626 return 0; 1627 } 1628 core_initcall(cpu_hotplug_pm_sync_init); 1629 1630 #endif /* CONFIG_PM_SLEEP_SMP */ 1631 1632 int __boot_cpu_id; 1633 1634 #endif /* CONFIG_SMP */ 1635 1636 /* Boot processor state steps */ 1637 static struct cpuhp_step cpuhp_hp_states[] = { 1638 [CPUHP_OFFLINE] = { 1639 .name = "offline", 1640 .startup.single = NULL, 1641 .teardown.single = NULL, 1642 }, 1643 #ifdef CONFIG_SMP 1644 [CPUHP_CREATE_THREADS]= { 1645 .name = "threads:prepare", 1646 .startup.single = smpboot_create_threads, 1647 .teardown.single = NULL, 1648 .cant_stop = true, 1649 }, 1650 [CPUHP_PERF_PREPARE] = { 1651 .name = "perf:prepare", 1652 .startup.single = perf_event_init_cpu, 1653 .teardown.single = perf_event_exit_cpu, 1654 }, 1655 [CPUHP_WORKQUEUE_PREP] = { 1656 .name = "workqueue:prepare", 1657 .startup.single = workqueue_prepare_cpu, 1658 .teardown.single = NULL, 1659 }, 1660 [CPUHP_HRTIMERS_PREPARE] = { 1661 .name = "hrtimers:prepare", 1662 .startup.single = hrtimers_prepare_cpu, 1663 .teardown.single = hrtimers_dead_cpu, 1664 }, 1665 [CPUHP_SMPCFD_PREPARE] = { 1666 .name = "smpcfd:prepare", 1667 .startup.single = smpcfd_prepare_cpu, 1668 .teardown.single = smpcfd_dead_cpu, 1669 }, 1670 [CPUHP_RELAY_PREPARE] = { 1671 .name = "relay:prepare", 1672 .startup.single = relay_prepare_cpu, 1673 .teardown.single = NULL, 1674 }, 1675 [CPUHP_SLAB_PREPARE] = { 1676 .name = "slab:prepare", 1677 .startup.single = slab_prepare_cpu, 1678 .teardown.single = slab_dead_cpu, 1679 }, 1680 [CPUHP_RCUTREE_PREP] = { 1681 .name = "RCU/tree:prepare", 1682 .startup.single = rcutree_prepare_cpu, 1683 .teardown.single = rcutree_dead_cpu, 1684 }, 1685 /* 1686 * On the tear-down path, timers_dead_cpu() must be invoked 1687 * before blk_mq_queue_reinit_notify() from notify_dead(), 1688 * otherwise a RCU stall occurs. 1689 */ 1690 [CPUHP_TIMERS_PREPARE] = { 1691 .name = "timers:prepare", 1692 .startup.single = timers_prepare_cpu, 1693 .teardown.single = timers_dead_cpu, 1694 }, 1695 /* Kicks the plugged cpu into life */ 1696 [CPUHP_BRINGUP_CPU] = { 1697 .name = "cpu:bringup", 1698 .startup.single = bringup_cpu, 1699 .teardown.single = finish_cpu, 1700 .cant_stop = true, 1701 }, 1702 /* Final state before CPU kills itself */ 1703 [CPUHP_AP_IDLE_DEAD] = { 1704 .name = "idle:dead", 1705 }, 1706 /* 1707 * Last state before CPU enters the idle loop to die. Transient state 1708 * for synchronization. 1709 */ 1710 [CPUHP_AP_OFFLINE] = { 1711 .name = "ap:offline", 1712 .cant_stop = true, 1713 }, 1714 /* First state is scheduler control. Interrupts are disabled */ 1715 [CPUHP_AP_SCHED_STARTING] = { 1716 .name = "sched:starting", 1717 .startup.single = sched_cpu_starting, 1718 .teardown.single = sched_cpu_dying, 1719 }, 1720 [CPUHP_AP_RCUTREE_DYING] = { 1721 .name = "RCU/tree:dying", 1722 .startup.single = NULL, 1723 .teardown.single = rcutree_dying_cpu, 1724 }, 1725 [CPUHP_AP_SMPCFD_DYING] = { 1726 .name = "smpcfd:dying", 1727 .startup.single = NULL, 1728 .teardown.single = smpcfd_dying_cpu, 1729 }, 1730 /* Entry state on starting. Interrupts enabled from here on. Transient 1731 * state for synchronsization */ 1732 [CPUHP_AP_ONLINE] = { 1733 .name = "ap:online", 1734 }, 1735 /* 1736 * Handled on control processor until the plugged processor manages 1737 * this itself. 1738 */ 1739 [CPUHP_TEARDOWN_CPU] = { 1740 .name = "cpu:teardown", 1741 .startup.single = NULL, 1742 .teardown.single = takedown_cpu, 1743 .cant_stop = true, 1744 }, 1745 1746 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1747 .name = "sched:waitempty", 1748 .startup.single = NULL, 1749 .teardown.single = sched_cpu_wait_empty, 1750 }, 1751 1752 /* Handle smpboot threads park/unpark */ 1753 [CPUHP_AP_SMPBOOT_THREADS] = { 1754 .name = "smpboot/threads:online", 1755 .startup.single = smpboot_unpark_threads, 1756 .teardown.single = smpboot_park_threads, 1757 }, 1758 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1759 .name = "irq/affinity:online", 1760 .startup.single = irq_affinity_online_cpu, 1761 .teardown.single = NULL, 1762 }, 1763 [CPUHP_AP_PERF_ONLINE] = { 1764 .name = "perf:online", 1765 .startup.single = perf_event_init_cpu, 1766 .teardown.single = perf_event_exit_cpu, 1767 }, 1768 [CPUHP_AP_WATCHDOG_ONLINE] = { 1769 .name = "lockup_detector:online", 1770 .startup.single = lockup_detector_online_cpu, 1771 .teardown.single = lockup_detector_offline_cpu, 1772 }, 1773 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1774 .name = "workqueue:online", 1775 .startup.single = workqueue_online_cpu, 1776 .teardown.single = workqueue_offline_cpu, 1777 }, 1778 [CPUHP_AP_RCUTREE_ONLINE] = { 1779 .name = "RCU/tree:online", 1780 .startup.single = rcutree_online_cpu, 1781 .teardown.single = rcutree_offline_cpu, 1782 }, 1783 #endif 1784 /* 1785 * The dynamically registered state space is here 1786 */ 1787 1788 #ifdef CONFIG_SMP 1789 /* Last state is scheduler control setting the cpu active */ 1790 [CPUHP_AP_ACTIVE] = { 1791 .name = "sched:active", 1792 .startup.single = sched_cpu_activate, 1793 .teardown.single = sched_cpu_deactivate, 1794 }, 1795 #endif 1796 1797 /* CPU is fully up and running. */ 1798 [CPUHP_ONLINE] = { 1799 .name = "online", 1800 .startup.single = NULL, 1801 .teardown.single = NULL, 1802 }, 1803 }; 1804 1805 /* Sanity check for callbacks */ 1806 static int cpuhp_cb_check(enum cpuhp_state state) 1807 { 1808 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1809 return -EINVAL; 1810 return 0; 1811 } 1812 1813 /* 1814 * Returns a free for dynamic slot assignment of the Online state. The states 1815 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1816 * by having no name assigned. 1817 */ 1818 static int cpuhp_reserve_state(enum cpuhp_state state) 1819 { 1820 enum cpuhp_state i, end; 1821 struct cpuhp_step *step; 1822 1823 switch (state) { 1824 case CPUHP_AP_ONLINE_DYN: 1825 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1826 end = CPUHP_AP_ONLINE_DYN_END; 1827 break; 1828 case CPUHP_BP_PREPARE_DYN: 1829 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1830 end = CPUHP_BP_PREPARE_DYN_END; 1831 break; 1832 default: 1833 return -EINVAL; 1834 } 1835 1836 for (i = state; i <= end; i++, step++) { 1837 if (!step->name) 1838 return i; 1839 } 1840 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1841 return -ENOSPC; 1842 } 1843 1844 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1845 int (*startup)(unsigned int cpu), 1846 int (*teardown)(unsigned int cpu), 1847 bool multi_instance) 1848 { 1849 /* (Un)Install the callbacks for further cpu hotplug operations */ 1850 struct cpuhp_step *sp; 1851 int ret = 0; 1852 1853 /* 1854 * If name is NULL, then the state gets removed. 1855 * 1856 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1857 * the first allocation from these dynamic ranges, so the removal 1858 * would trigger a new allocation and clear the wrong (already 1859 * empty) state, leaving the callbacks of the to be cleared state 1860 * dangling, which causes wreckage on the next hotplug operation. 1861 */ 1862 if (name && (state == CPUHP_AP_ONLINE_DYN || 1863 state == CPUHP_BP_PREPARE_DYN)) { 1864 ret = cpuhp_reserve_state(state); 1865 if (ret < 0) 1866 return ret; 1867 state = ret; 1868 } 1869 sp = cpuhp_get_step(state); 1870 if (name && sp->name) 1871 return -EBUSY; 1872 1873 sp->startup.single = startup; 1874 sp->teardown.single = teardown; 1875 sp->name = name; 1876 sp->multi_instance = multi_instance; 1877 INIT_HLIST_HEAD(&sp->list); 1878 return ret; 1879 } 1880 1881 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1882 { 1883 return cpuhp_get_step(state)->teardown.single; 1884 } 1885 1886 /* 1887 * Call the startup/teardown function for a step either on the AP or 1888 * on the current CPU. 1889 */ 1890 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1891 struct hlist_node *node) 1892 { 1893 struct cpuhp_step *sp = cpuhp_get_step(state); 1894 int ret; 1895 1896 /* 1897 * If there's nothing to do, we done. 1898 * Relies on the union for multi_instance. 1899 */ 1900 if (cpuhp_step_empty(bringup, sp)) 1901 return 0; 1902 /* 1903 * The non AP bound callbacks can fail on bringup. On teardown 1904 * e.g. module removal we crash for now. 1905 */ 1906 #ifdef CONFIG_SMP 1907 if (cpuhp_is_ap_state(state)) 1908 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1909 else 1910 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1911 #else 1912 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1913 #endif 1914 BUG_ON(ret && !bringup); 1915 return ret; 1916 } 1917 1918 /* 1919 * Called from __cpuhp_setup_state on a recoverable failure. 1920 * 1921 * Note: The teardown callbacks for rollback are not allowed to fail! 1922 */ 1923 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1924 struct hlist_node *node) 1925 { 1926 int cpu; 1927 1928 /* Roll back the already executed steps on the other cpus */ 1929 for_each_present_cpu(cpu) { 1930 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1931 int cpustate = st->state; 1932 1933 if (cpu >= failedcpu) 1934 break; 1935 1936 /* Did we invoke the startup call on that cpu ? */ 1937 if (cpustate >= state) 1938 cpuhp_issue_call(cpu, state, false, node); 1939 } 1940 } 1941 1942 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1943 struct hlist_node *node, 1944 bool invoke) 1945 { 1946 struct cpuhp_step *sp; 1947 int cpu; 1948 int ret; 1949 1950 lockdep_assert_cpus_held(); 1951 1952 sp = cpuhp_get_step(state); 1953 if (sp->multi_instance == false) 1954 return -EINVAL; 1955 1956 mutex_lock(&cpuhp_state_mutex); 1957 1958 if (!invoke || !sp->startup.multi) 1959 goto add_node; 1960 1961 /* 1962 * Try to call the startup callback for each present cpu 1963 * depending on the hotplug state of the cpu. 1964 */ 1965 for_each_present_cpu(cpu) { 1966 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1967 int cpustate = st->state; 1968 1969 if (cpustate < state) 1970 continue; 1971 1972 ret = cpuhp_issue_call(cpu, state, true, node); 1973 if (ret) { 1974 if (sp->teardown.multi) 1975 cpuhp_rollback_install(cpu, state, node); 1976 goto unlock; 1977 } 1978 } 1979 add_node: 1980 ret = 0; 1981 hlist_add_head(node, &sp->list); 1982 unlock: 1983 mutex_unlock(&cpuhp_state_mutex); 1984 return ret; 1985 } 1986 1987 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1988 bool invoke) 1989 { 1990 int ret; 1991 1992 cpus_read_lock(); 1993 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1994 cpus_read_unlock(); 1995 return ret; 1996 } 1997 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1998 1999 /** 2000 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2001 * @state: The state to setup 2002 * @name: Name of the step 2003 * @invoke: If true, the startup function is invoked for cpus where 2004 * cpu state >= @state 2005 * @startup: startup callback function 2006 * @teardown: teardown callback function 2007 * @multi_instance: State is set up for multiple instances which get 2008 * added afterwards. 2009 * 2010 * The caller needs to hold cpus read locked while calling this function. 2011 * Return: 2012 * On success: 2013 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2014 * 0 for all other states 2015 * On failure: proper (negative) error code 2016 */ 2017 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2018 const char *name, bool invoke, 2019 int (*startup)(unsigned int cpu), 2020 int (*teardown)(unsigned int cpu), 2021 bool multi_instance) 2022 { 2023 int cpu, ret = 0; 2024 bool dynstate; 2025 2026 lockdep_assert_cpus_held(); 2027 2028 if (cpuhp_cb_check(state) || !name) 2029 return -EINVAL; 2030 2031 mutex_lock(&cpuhp_state_mutex); 2032 2033 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2034 multi_instance); 2035 2036 dynstate = state == CPUHP_AP_ONLINE_DYN; 2037 if (ret > 0 && dynstate) { 2038 state = ret; 2039 ret = 0; 2040 } 2041 2042 if (ret || !invoke || !startup) 2043 goto out; 2044 2045 /* 2046 * Try to call the startup callback for each present cpu 2047 * depending on the hotplug state of the cpu. 2048 */ 2049 for_each_present_cpu(cpu) { 2050 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2051 int cpustate = st->state; 2052 2053 if (cpustate < state) 2054 continue; 2055 2056 ret = cpuhp_issue_call(cpu, state, true, NULL); 2057 if (ret) { 2058 if (teardown) 2059 cpuhp_rollback_install(cpu, state, NULL); 2060 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2061 goto out; 2062 } 2063 } 2064 out: 2065 mutex_unlock(&cpuhp_state_mutex); 2066 /* 2067 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2068 * dynamically allocated state in case of success. 2069 */ 2070 if (!ret && dynstate) 2071 return state; 2072 return ret; 2073 } 2074 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2075 2076 int __cpuhp_setup_state(enum cpuhp_state state, 2077 const char *name, bool invoke, 2078 int (*startup)(unsigned int cpu), 2079 int (*teardown)(unsigned int cpu), 2080 bool multi_instance) 2081 { 2082 int ret; 2083 2084 cpus_read_lock(); 2085 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2086 teardown, multi_instance); 2087 cpus_read_unlock(); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(__cpuhp_setup_state); 2091 2092 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2093 struct hlist_node *node, bool invoke) 2094 { 2095 struct cpuhp_step *sp = cpuhp_get_step(state); 2096 int cpu; 2097 2098 BUG_ON(cpuhp_cb_check(state)); 2099 2100 if (!sp->multi_instance) 2101 return -EINVAL; 2102 2103 cpus_read_lock(); 2104 mutex_lock(&cpuhp_state_mutex); 2105 2106 if (!invoke || !cpuhp_get_teardown_cb(state)) 2107 goto remove; 2108 /* 2109 * Call the teardown callback for each present cpu depending 2110 * on the hotplug state of the cpu. This function is not 2111 * allowed to fail currently! 2112 */ 2113 for_each_present_cpu(cpu) { 2114 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2115 int cpustate = st->state; 2116 2117 if (cpustate >= state) 2118 cpuhp_issue_call(cpu, state, false, node); 2119 } 2120 2121 remove: 2122 hlist_del(node); 2123 mutex_unlock(&cpuhp_state_mutex); 2124 cpus_read_unlock(); 2125 2126 return 0; 2127 } 2128 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2129 2130 /** 2131 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2132 * @state: The state to remove 2133 * @invoke: If true, the teardown function is invoked for cpus where 2134 * cpu state >= @state 2135 * 2136 * The caller needs to hold cpus read locked while calling this function. 2137 * The teardown callback is currently not allowed to fail. Think 2138 * about module removal! 2139 */ 2140 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2141 { 2142 struct cpuhp_step *sp = cpuhp_get_step(state); 2143 int cpu; 2144 2145 BUG_ON(cpuhp_cb_check(state)); 2146 2147 lockdep_assert_cpus_held(); 2148 2149 mutex_lock(&cpuhp_state_mutex); 2150 if (sp->multi_instance) { 2151 WARN(!hlist_empty(&sp->list), 2152 "Error: Removing state %d which has instances left.\n", 2153 state); 2154 goto remove; 2155 } 2156 2157 if (!invoke || !cpuhp_get_teardown_cb(state)) 2158 goto remove; 2159 2160 /* 2161 * Call the teardown callback for each present cpu depending 2162 * on the hotplug state of the cpu. This function is not 2163 * allowed to fail currently! 2164 */ 2165 for_each_present_cpu(cpu) { 2166 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2167 int cpustate = st->state; 2168 2169 if (cpustate >= state) 2170 cpuhp_issue_call(cpu, state, false, NULL); 2171 } 2172 remove: 2173 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2174 mutex_unlock(&cpuhp_state_mutex); 2175 } 2176 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2177 2178 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2179 { 2180 cpus_read_lock(); 2181 __cpuhp_remove_state_cpuslocked(state, invoke); 2182 cpus_read_unlock(); 2183 } 2184 EXPORT_SYMBOL(__cpuhp_remove_state); 2185 2186 #ifdef CONFIG_HOTPLUG_SMT 2187 static void cpuhp_offline_cpu_device(unsigned int cpu) 2188 { 2189 struct device *dev = get_cpu_device(cpu); 2190 2191 dev->offline = true; 2192 /* Tell user space about the state change */ 2193 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2194 } 2195 2196 static void cpuhp_online_cpu_device(unsigned int cpu) 2197 { 2198 struct device *dev = get_cpu_device(cpu); 2199 2200 dev->offline = false; 2201 /* Tell user space about the state change */ 2202 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2203 } 2204 2205 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2206 { 2207 int cpu, ret = 0; 2208 2209 cpu_maps_update_begin(); 2210 for_each_online_cpu(cpu) { 2211 if (topology_is_primary_thread(cpu)) 2212 continue; 2213 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2214 if (ret) 2215 break; 2216 /* 2217 * As this needs to hold the cpu maps lock it's impossible 2218 * to call device_offline() because that ends up calling 2219 * cpu_down() which takes cpu maps lock. cpu maps lock 2220 * needs to be held as this might race against in kernel 2221 * abusers of the hotplug machinery (thermal management). 2222 * 2223 * So nothing would update device:offline state. That would 2224 * leave the sysfs entry stale and prevent onlining after 2225 * smt control has been changed to 'off' again. This is 2226 * called under the sysfs hotplug lock, so it is properly 2227 * serialized against the regular offline usage. 2228 */ 2229 cpuhp_offline_cpu_device(cpu); 2230 } 2231 if (!ret) 2232 cpu_smt_control = ctrlval; 2233 cpu_maps_update_done(); 2234 return ret; 2235 } 2236 2237 int cpuhp_smt_enable(void) 2238 { 2239 int cpu, ret = 0; 2240 2241 cpu_maps_update_begin(); 2242 cpu_smt_control = CPU_SMT_ENABLED; 2243 for_each_present_cpu(cpu) { 2244 /* Skip online CPUs and CPUs on offline nodes */ 2245 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2246 continue; 2247 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2248 if (ret) 2249 break; 2250 /* See comment in cpuhp_smt_disable() */ 2251 cpuhp_online_cpu_device(cpu); 2252 } 2253 cpu_maps_update_done(); 2254 return ret; 2255 } 2256 #endif 2257 2258 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2259 static ssize_t state_show(struct device *dev, 2260 struct device_attribute *attr, char *buf) 2261 { 2262 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2263 2264 return sprintf(buf, "%d\n", st->state); 2265 } 2266 static DEVICE_ATTR_RO(state); 2267 2268 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2269 const char *buf, size_t count) 2270 { 2271 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2272 struct cpuhp_step *sp; 2273 int target, ret; 2274 2275 ret = kstrtoint(buf, 10, &target); 2276 if (ret) 2277 return ret; 2278 2279 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2280 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2281 return -EINVAL; 2282 #else 2283 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2284 return -EINVAL; 2285 #endif 2286 2287 ret = lock_device_hotplug_sysfs(); 2288 if (ret) 2289 return ret; 2290 2291 mutex_lock(&cpuhp_state_mutex); 2292 sp = cpuhp_get_step(target); 2293 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2294 mutex_unlock(&cpuhp_state_mutex); 2295 if (ret) 2296 goto out; 2297 2298 if (st->state < target) 2299 ret = cpu_up(dev->id, target); 2300 else 2301 ret = cpu_down(dev->id, target); 2302 out: 2303 unlock_device_hotplug(); 2304 return ret ? ret : count; 2305 } 2306 2307 static ssize_t target_show(struct device *dev, 2308 struct device_attribute *attr, char *buf) 2309 { 2310 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2311 2312 return sprintf(buf, "%d\n", st->target); 2313 } 2314 static DEVICE_ATTR_RW(target); 2315 2316 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2317 const char *buf, size_t count) 2318 { 2319 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2320 struct cpuhp_step *sp; 2321 int fail, ret; 2322 2323 ret = kstrtoint(buf, 10, &fail); 2324 if (ret) 2325 return ret; 2326 2327 if (fail == CPUHP_INVALID) { 2328 st->fail = fail; 2329 return count; 2330 } 2331 2332 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2333 return -EINVAL; 2334 2335 /* 2336 * Cannot fail STARTING/DYING callbacks. 2337 */ 2338 if (cpuhp_is_atomic_state(fail)) 2339 return -EINVAL; 2340 2341 /* 2342 * DEAD callbacks cannot fail... 2343 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2344 * triggering STARTING callbacks, a failure in this state would 2345 * hinder rollback. 2346 */ 2347 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2348 return -EINVAL; 2349 2350 /* 2351 * Cannot fail anything that doesn't have callbacks. 2352 */ 2353 mutex_lock(&cpuhp_state_mutex); 2354 sp = cpuhp_get_step(fail); 2355 if (!sp->startup.single && !sp->teardown.single) 2356 ret = -EINVAL; 2357 mutex_unlock(&cpuhp_state_mutex); 2358 if (ret) 2359 return ret; 2360 2361 st->fail = fail; 2362 2363 return count; 2364 } 2365 2366 static ssize_t fail_show(struct device *dev, 2367 struct device_attribute *attr, char *buf) 2368 { 2369 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2370 2371 return sprintf(buf, "%d\n", st->fail); 2372 } 2373 2374 static DEVICE_ATTR_RW(fail); 2375 2376 static struct attribute *cpuhp_cpu_attrs[] = { 2377 &dev_attr_state.attr, 2378 &dev_attr_target.attr, 2379 &dev_attr_fail.attr, 2380 NULL 2381 }; 2382 2383 static const struct attribute_group cpuhp_cpu_attr_group = { 2384 .attrs = cpuhp_cpu_attrs, 2385 .name = "hotplug", 2386 NULL 2387 }; 2388 2389 static ssize_t states_show(struct device *dev, 2390 struct device_attribute *attr, char *buf) 2391 { 2392 ssize_t cur, res = 0; 2393 int i; 2394 2395 mutex_lock(&cpuhp_state_mutex); 2396 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2397 struct cpuhp_step *sp = cpuhp_get_step(i); 2398 2399 if (sp->name) { 2400 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2401 buf += cur; 2402 res += cur; 2403 } 2404 } 2405 mutex_unlock(&cpuhp_state_mutex); 2406 return res; 2407 } 2408 static DEVICE_ATTR_RO(states); 2409 2410 static struct attribute *cpuhp_cpu_root_attrs[] = { 2411 &dev_attr_states.attr, 2412 NULL 2413 }; 2414 2415 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2416 .attrs = cpuhp_cpu_root_attrs, 2417 .name = "hotplug", 2418 NULL 2419 }; 2420 2421 #ifdef CONFIG_HOTPLUG_SMT 2422 2423 static ssize_t 2424 __store_smt_control(struct device *dev, struct device_attribute *attr, 2425 const char *buf, size_t count) 2426 { 2427 int ctrlval, ret; 2428 2429 if (sysfs_streq(buf, "on")) 2430 ctrlval = CPU_SMT_ENABLED; 2431 else if (sysfs_streq(buf, "off")) 2432 ctrlval = CPU_SMT_DISABLED; 2433 else if (sysfs_streq(buf, "forceoff")) 2434 ctrlval = CPU_SMT_FORCE_DISABLED; 2435 else 2436 return -EINVAL; 2437 2438 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2439 return -EPERM; 2440 2441 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2442 return -ENODEV; 2443 2444 ret = lock_device_hotplug_sysfs(); 2445 if (ret) 2446 return ret; 2447 2448 if (ctrlval != cpu_smt_control) { 2449 switch (ctrlval) { 2450 case CPU_SMT_ENABLED: 2451 ret = cpuhp_smt_enable(); 2452 break; 2453 case CPU_SMT_DISABLED: 2454 case CPU_SMT_FORCE_DISABLED: 2455 ret = cpuhp_smt_disable(ctrlval); 2456 break; 2457 } 2458 } 2459 2460 unlock_device_hotplug(); 2461 return ret ? ret : count; 2462 } 2463 2464 #else /* !CONFIG_HOTPLUG_SMT */ 2465 static ssize_t 2466 __store_smt_control(struct device *dev, struct device_attribute *attr, 2467 const char *buf, size_t count) 2468 { 2469 return -ENODEV; 2470 } 2471 #endif /* CONFIG_HOTPLUG_SMT */ 2472 2473 static const char *smt_states[] = { 2474 [CPU_SMT_ENABLED] = "on", 2475 [CPU_SMT_DISABLED] = "off", 2476 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2477 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2478 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2479 }; 2480 2481 static ssize_t control_show(struct device *dev, 2482 struct device_attribute *attr, char *buf) 2483 { 2484 const char *state = smt_states[cpu_smt_control]; 2485 2486 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2487 } 2488 2489 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2490 const char *buf, size_t count) 2491 { 2492 return __store_smt_control(dev, attr, buf, count); 2493 } 2494 static DEVICE_ATTR_RW(control); 2495 2496 static ssize_t active_show(struct device *dev, 2497 struct device_attribute *attr, char *buf) 2498 { 2499 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2500 } 2501 static DEVICE_ATTR_RO(active); 2502 2503 static struct attribute *cpuhp_smt_attrs[] = { 2504 &dev_attr_control.attr, 2505 &dev_attr_active.attr, 2506 NULL 2507 }; 2508 2509 static const struct attribute_group cpuhp_smt_attr_group = { 2510 .attrs = cpuhp_smt_attrs, 2511 .name = "smt", 2512 NULL 2513 }; 2514 2515 static int __init cpu_smt_sysfs_init(void) 2516 { 2517 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2518 &cpuhp_smt_attr_group); 2519 } 2520 2521 static int __init cpuhp_sysfs_init(void) 2522 { 2523 int cpu, ret; 2524 2525 ret = cpu_smt_sysfs_init(); 2526 if (ret) 2527 return ret; 2528 2529 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2530 &cpuhp_cpu_root_attr_group); 2531 if (ret) 2532 return ret; 2533 2534 for_each_possible_cpu(cpu) { 2535 struct device *dev = get_cpu_device(cpu); 2536 2537 if (!dev) 2538 continue; 2539 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2540 if (ret) 2541 return ret; 2542 } 2543 return 0; 2544 } 2545 device_initcall(cpuhp_sysfs_init); 2546 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2547 2548 /* 2549 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2550 * represents all NR_CPUS bits binary values of 1<<nr. 2551 * 2552 * It is used by cpumask_of() to get a constant address to a CPU 2553 * mask value that has a single bit set only. 2554 */ 2555 2556 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2557 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2558 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2559 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2560 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2561 2562 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2563 2564 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2565 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2566 #if BITS_PER_LONG > 32 2567 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2568 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2569 #endif 2570 }; 2571 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2572 2573 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2574 EXPORT_SYMBOL(cpu_all_bits); 2575 2576 #ifdef CONFIG_INIT_ALL_POSSIBLE 2577 struct cpumask __cpu_possible_mask __read_mostly 2578 = {CPU_BITS_ALL}; 2579 #else 2580 struct cpumask __cpu_possible_mask __read_mostly; 2581 #endif 2582 EXPORT_SYMBOL(__cpu_possible_mask); 2583 2584 struct cpumask __cpu_online_mask __read_mostly; 2585 EXPORT_SYMBOL(__cpu_online_mask); 2586 2587 struct cpumask __cpu_present_mask __read_mostly; 2588 EXPORT_SYMBOL(__cpu_present_mask); 2589 2590 struct cpumask __cpu_active_mask __read_mostly; 2591 EXPORT_SYMBOL(__cpu_active_mask); 2592 2593 struct cpumask __cpu_dying_mask __read_mostly; 2594 EXPORT_SYMBOL(__cpu_dying_mask); 2595 2596 atomic_t __num_online_cpus __read_mostly; 2597 EXPORT_SYMBOL(__num_online_cpus); 2598 2599 void init_cpu_present(const struct cpumask *src) 2600 { 2601 cpumask_copy(&__cpu_present_mask, src); 2602 } 2603 2604 void init_cpu_possible(const struct cpumask *src) 2605 { 2606 cpumask_copy(&__cpu_possible_mask, src); 2607 } 2608 2609 void init_cpu_online(const struct cpumask *src) 2610 { 2611 cpumask_copy(&__cpu_online_mask, src); 2612 } 2613 2614 void set_cpu_online(unsigned int cpu, bool online) 2615 { 2616 /* 2617 * atomic_inc/dec() is required to handle the horrid abuse of this 2618 * function by the reboot and kexec code which invoke it from 2619 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2620 * regular CPU hotplug is properly serialized. 2621 * 2622 * Note, that the fact that __num_online_cpus is of type atomic_t 2623 * does not protect readers which are not serialized against 2624 * concurrent hotplug operations. 2625 */ 2626 if (online) { 2627 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2628 atomic_inc(&__num_online_cpus); 2629 } else { 2630 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2631 atomic_dec(&__num_online_cpus); 2632 } 2633 } 2634 2635 /* 2636 * Activate the first processor. 2637 */ 2638 void __init boot_cpu_init(void) 2639 { 2640 int cpu = smp_processor_id(); 2641 2642 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2643 set_cpu_online(cpu, true); 2644 set_cpu_active(cpu, true); 2645 set_cpu_present(cpu, true); 2646 set_cpu_possible(cpu, true); 2647 2648 #ifdef CONFIG_SMP 2649 __boot_cpu_id = cpu; 2650 #endif 2651 } 2652 2653 /* 2654 * Must be called _AFTER_ setting up the per_cpu areas 2655 */ 2656 void __init boot_cpu_hotplug_init(void) 2657 { 2658 #ifdef CONFIG_SMP 2659 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2660 #endif 2661 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2662 } 2663 2664 /* 2665 * These are used for a global "mitigations=" cmdline option for toggling 2666 * optional CPU mitigations. 2667 */ 2668 enum cpu_mitigations { 2669 CPU_MITIGATIONS_OFF, 2670 CPU_MITIGATIONS_AUTO, 2671 CPU_MITIGATIONS_AUTO_NOSMT, 2672 }; 2673 2674 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2675 CPU_MITIGATIONS_AUTO; 2676 2677 static int __init mitigations_parse_cmdline(char *arg) 2678 { 2679 if (!strcmp(arg, "off")) 2680 cpu_mitigations = CPU_MITIGATIONS_OFF; 2681 else if (!strcmp(arg, "auto")) 2682 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2683 else if (!strcmp(arg, "auto,nosmt")) 2684 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2685 else 2686 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2687 arg); 2688 2689 return 0; 2690 } 2691 early_param("mitigations", mitigations_parse_cmdline); 2692 2693 /* mitigations=off */ 2694 bool cpu_mitigations_off(void) 2695 { 2696 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2697 } 2698 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2699 2700 /* mitigations=auto,nosmt */ 2701 bool cpu_mitigations_auto_nosmt(void) 2702 { 2703 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2704 } 2705 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2706