1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bug.h> 21 #include <linux/kthread.h> 22 #include <linux/stop_machine.h> 23 #include <linux/mutex.h> 24 #include <linux/gfp.h> 25 #include <linux/suspend.h> 26 #include <linux/lockdep.h> 27 #include <linux/tick.h> 28 #include <linux/irq.h> 29 #include <linux/nmi.h> 30 #include <linux/smpboot.h> 31 #include <linux/relay.h> 32 #include <linux/slab.h> 33 #include <linux/percpu-rwsem.h> 34 35 #include <trace/events/power.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/cpuhp.h> 38 39 #include "smpboot.h" 40 41 /** 42 * cpuhp_cpu_state - Per cpu hotplug state storage 43 * @state: The current cpu state 44 * @target: The target state 45 * @thread: Pointer to the hotplug thread 46 * @should_run: Thread should execute 47 * @rollback: Perform a rollback 48 * @single: Single callback invocation 49 * @bringup: Single callback bringup or teardown selector 50 * @cb_state: The state for a single callback (install/uninstall) 51 * @result: Result of the operation 52 * @done_up: Signal completion to the issuer of the task for cpu-up 53 * @done_down: Signal completion to the issuer of the task for cpu-down 54 */ 55 struct cpuhp_cpu_state { 56 enum cpuhp_state state; 57 enum cpuhp_state target; 58 enum cpuhp_state fail; 59 #ifdef CONFIG_SMP 60 struct task_struct *thread; 61 bool should_run; 62 bool rollback; 63 bool single; 64 bool bringup; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #ifdef CONFIG_SMP 79 cpumask_t cpus_booted_once_mask; 80 #endif 81 82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 83 static struct lockdep_map cpuhp_state_up_map = 84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 85 static struct lockdep_map cpuhp_state_down_map = 86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 87 88 89 static inline void cpuhp_lock_acquire(bool bringup) 90 { 91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 94 static inline void cpuhp_lock_release(bool bringup) 95 { 96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 97 } 98 #else 99 100 static inline void cpuhp_lock_acquire(bool bringup) { } 101 static inline void cpuhp_lock_release(bool bringup) { } 102 103 #endif 104 105 /** 106 * cpuhp_step - Hotplug state machine step 107 * @name: Name of the step 108 * @startup: Startup function of the step 109 * @teardown: Teardown function of the step 110 * @cant_stop: Bringup/teardown can't be stopped at this step 111 */ 112 struct cpuhp_step { 113 const char *name; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } startup; 119 union { 120 int (*single)(unsigned int cpu); 121 int (*multi)(unsigned int cpu, 122 struct hlist_node *node); 123 } teardown; 124 struct hlist_head list; 125 bool cant_stop; 126 bool multi_instance; 127 }; 128 129 static DEFINE_MUTEX(cpuhp_state_mutex); 130 static struct cpuhp_step cpuhp_hp_states[]; 131 132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 133 { 134 return cpuhp_hp_states + state; 135 } 136 137 /** 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 139 * @cpu: The cpu for which the callback should be invoked 140 * @state: The state to do callbacks for 141 * @bringup: True if the bringup callback should be invoked 142 * @node: For multi-instance, do a single entry callback for install/remove 143 * @lastp: For multi-instance rollback, remember how far we got 144 * 145 * Called from cpu hotplug and from the state register machinery. 146 */ 147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 148 bool bringup, struct hlist_node *node, 149 struct hlist_node **lastp) 150 { 151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 152 struct cpuhp_step *step = cpuhp_get_step(state); 153 int (*cbm)(unsigned int cpu, struct hlist_node *node); 154 int (*cb)(unsigned int cpu); 155 int ret, cnt; 156 157 if (st->fail == state) { 158 st->fail = CPUHP_INVALID; 159 160 if (!(bringup ? step->startup.single : step->teardown.single)) 161 return 0; 162 163 return -EAGAIN; 164 } 165 166 if (!step->multi_instance) { 167 WARN_ON_ONCE(lastp && *lastp); 168 cb = bringup ? step->startup.single : step->teardown.single; 169 if (!cb) 170 return 0; 171 trace_cpuhp_enter(cpu, st->target, state, cb); 172 ret = cb(cpu); 173 trace_cpuhp_exit(cpu, st->state, state, ret); 174 return ret; 175 } 176 cbm = bringup ? step->startup.multi : step->teardown.multi; 177 if (!cbm) 178 return 0; 179 180 /* Single invocation for instance add/remove */ 181 if (node) { 182 WARN_ON_ONCE(lastp && *lastp); 183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 184 ret = cbm(cpu, node); 185 trace_cpuhp_exit(cpu, st->state, state, ret); 186 return ret; 187 } 188 189 /* State transition. Invoke on all instances */ 190 cnt = 0; 191 hlist_for_each(node, &step->list) { 192 if (lastp && node == *lastp) 193 break; 194 195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 196 ret = cbm(cpu, node); 197 trace_cpuhp_exit(cpu, st->state, state, ret); 198 if (ret) { 199 if (!lastp) 200 goto err; 201 202 *lastp = node; 203 return ret; 204 } 205 cnt++; 206 } 207 if (lastp) 208 *lastp = NULL; 209 return 0; 210 err: 211 /* Rollback the instances if one failed */ 212 cbm = !bringup ? step->startup.multi : step->teardown.multi; 213 if (!cbm) 214 return ret; 215 216 hlist_for_each(node, &step->list) { 217 if (!cnt--) 218 break; 219 220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 221 ret = cbm(cpu, node); 222 trace_cpuhp_exit(cpu, st->state, state, ret); 223 /* 224 * Rollback must not fail, 225 */ 226 WARN_ON_ONCE(ret); 227 } 228 return ret; 229 } 230 231 #ifdef CONFIG_SMP 232 static bool cpuhp_is_ap_state(enum cpuhp_state state) 233 { 234 /* 235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 236 * purposes as that state is handled explicitly in cpu_down. 237 */ 238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 239 } 240 241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 242 { 243 struct completion *done = bringup ? &st->done_up : &st->done_down; 244 wait_for_completion(done); 245 } 246 247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 complete(done); 251 } 252 253 /* 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 255 */ 256 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 257 { 258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 259 } 260 261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 262 static DEFINE_MUTEX(cpu_add_remove_lock); 263 bool cpuhp_tasks_frozen; 264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 266 /* 267 * The following two APIs (cpu_maps_update_begin/done) must be used when 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 269 */ 270 void cpu_maps_update_begin(void) 271 { 272 mutex_lock(&cpu_add_remove_lock); 273 } 274 275 void cpu_maps_update_done(void) 276 { 277 mutex_unlock(&cpu_add_remove_lock); 278 } 279 280 /* 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 282 * Should always be manipulated under cpu_add_remove_lock 283 */ 284 static int cpu_hotplug_disabled; 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 290 void cpus_read_lock(void) 291 { 292 percpu_down_read(&cpu_hotplug_lock); 293 } 294 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 296 int cpus_read_trylock(void) 297 { 298 return percpu_down_read_trylock(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_trylock); 301 302 void cpus_read_unlock(void) 303 { 304 percpu_up_read(&cpu_hotplug_lock); 305 } 306 EXPORT_SYMBOL_GPL(cpus_read_unlock); 307 308 void cpus_write_lock(void) 309 { 310 percpu_down_write(&cpu_hotplug_lock); 311 } 312 313 void cpus_write_unlock(void) 314 { 315 percpu_up_write(&cpu_hotplug_lock); 316 } 317 318 void lockdep_assert_cpus_held(void) 319 { 320 /* 321 * We can't have hotplug operations before userspace starts running, 322 * and some init codepaths will knowingly not take the hotplug lock. 323 * This is all valid, so mute lockdep until it makes sense to report 324 * unheld locks. 325 */ 326 if (system_state < SYSTEM_RUNNING) 327 return; 328 329 percpu_rwsem_assert_held(&cpu_hotplug_lock); 330 } 331 332 static void lockdep_acquire_cpus_lock(void) 333 { 334 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 335 } 336 337 static void lockdep_release_cpus_lock(void) 338 { 339 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, _THIS_IP_); 340 } 341 342 /* 343 * Wait for currently running CPU hotplug operations to complete (if any) and 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 346 * hotplug path before performing hotplug operations. So acquiring that lock 347 * guarantees mutual exclusion from any currently running hotplug operations. 348 */ 349 void cpu_hotplug_disable(void) 350 { 351 cpu_maps_update_begin(); 352 cpu_hotplug_disabled++; 353 cpu_maps_update_done(); 354 } 355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 356 357 static void __cpu_hotplug_enable(void) 358 { 359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 360 return; 361 cpu_hotplug_disabled--; 362 } 363 364 void cpu_hotplug_enable(void) 365 { 366 cpu_maps_update_begin(); 367 __cpu_hotplug_enable(); 368 cpu_maps_update_done(); 369 } 370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 371 372 #else 373 374 static void lockdep_acquire_cpus_lock(void) 375 { 376 } 377 378 static void lockdep_release_cpus_lock(void) 379 { 380 } 381 382 #endif /* CONFIG_HOTPLUG_CPU */ 383 384 /* 385 * Architectures that need SMT-specific errata handling during SMT hotplug 386 * should override this. 387 */ 388 void __weak arch_smt_update(void) { } 389 390 #ifdef CONFIG_HOTPLUG_SMT 391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 392 393 void __init cpu_smt_disable(bool force) 394 { 395 if (!cpu_smt_possible()) 396 return; 397 398 if (force) { 399 pr_info("SMT: Force disabled\n"); 400 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 401 } else { 402 pr_info("SMT: disabled\n"); 403 cpu_smt_control = CPU_SMT_DISABLED; 404 } 405 } 406 407 /* 408 * The decision whether SMT is supported can only be done after the full 409 * CPU identification. Called from architecture code. 410 */ 411 void __init cpu_smt_check_topology(void) 412 { 413 if (!topology_smt_supported()) 414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 415 } 416 417 static int __init smt_cmdline_disable(char *str) 418 { 419 cpu_smt_disable(str && !strcmp(str, "force")); 420 return 0; 421 } 422 early_param("nosmt", smt_cmdline_disable); 423 424 static inline bool cpu_smt_allowed(unsigned int cpu) 425 { 426 if (cpu_smt_control == CPU_SMT_ENABLED) 427 return true; 428 429 if (topology_is_primary_thread(cpu)) 430 return true; 431 432 /* 433 * On x86 it's required to boot all logical CPUs at least once so 434 * that the init code can get a chance to set CR4.MCE on each 435 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 436 * core will shutdown the machine. 437 */ 438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 439 } 440 441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 442 bool cpu_smt_possible(void) 443 { 444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 446 } 447 EXPORT_SYMBOL_GPL(cpu_smt_possible); 448 #else 449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 450 #endif 451 452 static inline enum cpuhp_state 453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 454 { 455 enum cpuhp_state prev_state = st->state; 456 457 st->rollback = false; 458 st->last = NULL; 459 460 st->target = target; 461 st->single = false; 462 st->bringup = st->state < target; 463 464 return prev_state; 465 } 466 467 static inline void 468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 469 { 470 st->rollback = true; 471 472 /* 473 * If we have st->last we need to undo partial multi_instance of this 474 * state first. Otherwise start undo at the previous state. 475 */ 476 if (!st->last) { 477 if (st->bringup) 478 st->state--; 479 else 480 st->state++; 481 } 482 483 st->target = prev_state; 484 st->bringup = !st->bringup; 485 } 486 487 /* Regular hotplug invocation of the AP hotplug thread */ 488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 489 { 490 if (!st->single && st->state == st->target) 491 return; 492 493 st->result = 0; 494 /* 495 * Make sure the above stores are visible before should_run becomes 496 * true. Paired with the mb() above in cpuhp_thread_fun() 497 */ 498 smp_mb(); 499 st->should_run = true; 500 wake_up_process(st->thread); 501 wait_for_ap_thread(st, st->bringup); 502 } 503 504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 505 { 506 enum cpuhp_state prev_state; 507 int ret; 508 509 prev_state = cpuhp_set_state(st, target); 510 __cpuhp_kick_ap(st); 511 if ((ret = st->result)) { 512 cpuhp_reset_state(st, prev_state); 513 __cpuhp_kick_ap(st); 514 } 515 516 return ret; 517 } 518 519 static int bringup_wait_for_ap(unsigned int cpu) 520 { 521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 522 523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 524 wait_for_ap_thread(st, true); 525 if (WARN_ON_ONCE((!cpu_online(cpu)))) 526 return -ECANCELED; 527 528 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 529 stop_machine_unpark(cpu); 530 kthread_unpark(st->thread); 531 532 /* 533 * SMT soft disabling on X86 requires to bring the CPU out of the 534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 535 * CPU marked itself as booted_once in notify_cpu_starting() so the 536 * cpu_smt_allowed() check will now return false if this is not the 537 * primary sibling. 538 */ 539 if (!cpu_smt_allowed(cpu)) 540 return -ECANCELED; 541 542 if (st->target <= CPUHP_AP_ONLINE_IDLE) 543 return 0; 544 545 return cpuhp_kick_ap(st, st->target); 546 } 547 548 static int bringup_cpu(unsigned int cpu) 549 { 550 struct task_struct *idle = idle_thread_get(cpu); 551 int ret; 552 553 /* 554 * Some architectures have to walk the irq descriptors to 555 * setup the vector space for the cpu which comes online. 556 * Prevent irq alloc/free across the bringup. 557 */ 558 irq_lock_sparse(); 559 560 /* Arch-specific enabling code. */ 561 ret = __cpu_up(cpu, idle); 562 irq_unlock_sparse(); 563 if (ret) 564 return ret; 565 return bringup_wait_for_ap(cpu); 566 } 567 568 /* 569 * Hotplug state machine related functions 570 */ 571 572 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 573 { 574 for (st->state--; st->state > st->target; st->state--) 575 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 576 } 577 578 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 579 { 580 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 581 return true; 582 /* 583 * When CPU hotplug is disabled, then taking the CPU down is not 584 * possible because takedown_cpu() and the architecture and 585 * subsystem specific mechanisms are not available. So the CPU 586 * which would be completely unplugged again needs to stay around 587 * in the current state. 588 */ 589 return st->state <= CPUHP_BRINGUP_CPU; 590 } 591 592 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 593 enum cpuhp_state target) 594 { 595 enum cpuhp_state prev_state = st->state; 596 int ret = 0; 597 598 while (st->state < target) { 599 st->state++; 600 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 601 if (ret) { 602 if (can_rollback_cpu(st)) { 603 st->target = prev_state; 604 undo_cpu_up(cpu, st); 605 } 606 break; 607 } 608 } 609 return ret; 610 } 611 612 /* 613 * The cpu hotplug threads manage the bringup and teardown of the cpus 614 */ 615 static void cpuhp_create(unsigned int cpu) 616 { 617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 618 619 init_completion(&st->done_up); 620 init_completion(&st->done_down); 621 } 622 623 static int cpuhp_should_run(unsigned int cpu) 624 { 625 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 626 627 return st->should_run; 628 } 629 630 /* 631 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 632 * callbacks when a state gets [un]installed at runtime. 633 * 634 * Each invocation of this function by the smpboot thread does a single AP 635 * state callback. 636 * 637 * It has 3 modes of operation: 638 * - single: runs st->cb_state 639 * - up: runs ++st->state, while st->state < st->target 640 * - down: runs st->state--, while st->state > st->target 641 * 642 * When complete or on error, should_run is cleared and the completion is fired. 643 */ 644 static void cpuhp_thread_fun(unsigned int cpu) 645 { 646 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 647 bool bringup = st->bringup; 648 enum cpuhp_state state; 649 650 if (WARN_ON_ONCE(!st->should_run)) 651 return; 652 653 /* 654 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 655 * that if we see ->should_run we also see the rest of the state. 656 */ 657 smp_mb(); 658 659 /* 660 * The BP holds the hotplug lock, but we're now running on the AP, 661 * ensure that anybody asserting the lock is held, will actually find 662 * it so. 663 */ 664 lockdep_acquire_cpus_lock(); 665 cpuhp_lock_acquire(bringup); 666 667 if (st->single) { 668 state = st->cb_state; 669 st->should_run = false; 670 } else { 671 if (bringup) { 672 st->state++; 673 state = st->state; 674 st->should_run = (st->state < st->target); 675 WARN_ON_ONCE(st->state > st->target); 676 } else { 677 state = st->state; 678 st->state--; 679 st->should_run = (st->state > st->target); 680 WARN_ON_ONCE(st->state < st->target); 681 } 682 } 683 684 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 685 686 if (cpuhp_is_atomic_state(state)) { 687 local_irq_disable(); 688 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 689 local_irq_enable(); 690 691 /* 692 * STARTING/DYING must not fail! 693 */ 694 WARN_ON_ONCE(st->result); 695 } else { 696 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 697 } 698 699 if (st->result) { 700 /* 701 * If we fail on a rollback, we're up a creek without no 702 * paddle, no way forward, no way back. We loose, thanks for 703 * playing. 704 */ 705 WARN_ON_ONCE(st->rollback); 706 st->should_run = false; 707 } 708 709 cpuhp_lock_release(bringup); 710 lockdep_release_cpus_lock(); 711 712 if (!st->should_run) 713 complete_ap_thread(st, bringup); 714 } 715 716 /* Invoke a single callback on a remote cpu */ 717 static int 718 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 719 struct hlist_node *node) 720 { 721 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 722 int ret; 723 724 if (!cpu_online(cpu)) 725 return 0; 726 727 cpuhp_lock_acquire(false); 728 cpuhp_lock_release(false); 729 730 cpuhp_lock_acquire(true); 731 cpuhp_lock_release(true); 732 733 /* 734 * If we are up and running, use the hotplug thread. For early calls 735 * we invoke the thread function directly. 736 */ 737 if (!st->thread) 738 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 739 740 st->rollback = false; 741 st->last = NULL; 742 743 st->node = node; 744 st->bringup = bringup; 745 st->cb_state = state; 746 st->single = true; 747 748 __cpuhp_kick_ap(st); 749 750 /* 751 * If we failed and did a partial, do a rollback. 752 */ 753 if ((ret = st->result) && st->last) { 754 st->rollback = true; 755 st->bringup = !bringup; 756 757 __cpuhp_kick_ap(st); 758 } 759 760 /* 761 * Clean up the leftovers so the next hotplug operation wont use stale 762 * data. 763 */ 764 st->node = st->last = NULL; 765 return ret; 766 } 767 768 static int cpuhp_kick_ap_work(unsigned int cpu) 769 { 770 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 771 enum cpuhp_state prev_state = st->state; 772 int ret; 773 774 cpuhp_lock_acquire(false); 775 cpuhp_lock_release(false); 776 777 cpuhp_lock_acquire(true); 778 cpuhp_lock_release(true); 779 780 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 781 ret = cpuhp_kick_ap(st, st->target); 782 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 783 784 return ret; 785 } 786 787 static struct smp_hotplug_thread cpuhp_threads = { 788 .store = &cpuhp_state.thread, 789 .create = &cpuhp_create, 790 .thread_should_run = cpuhp_should_run, 791 .thread_fn = cpuhp_thread_fun, 792 .thread_comm = "cpuhp/%u", 793 .selfparking = true, 794 }; 795 796 void __init cpuhp_threads_init(void) 797 { 798 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 799 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 800 } 801 802 #ifdef CONFIG_HOTPLUG_CPU 803 /** 804 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 805 * @cpu: a CPU id 806 * 807 * This function walks all processes, finds a valid mm struct for each one and 808 * then clears a corresponding bit in mm's cpumask. While this all sounds 809 * trivial, there are various non-obvious corner cases, which this function 810 * tries to solve in a safe manner. 811 * 812 * Also note that the function uses a somewhat relaxed locking scheme, so it may 813 * be called only for an already offlined CPU. 814 */ 815 void clear_tasks_mm_cpumask(int cpu) 816 { 817 struct task_struct *p; 818 819 /* 820 * This function is called after the cpu is taken down and marked 821 * offline, so its not like new tasks will ever get this cpu set in 822 * their mm mask. -- Peter Zijlstra 823 * Thus, we may use rcu_read_lock() here, instead of grabbing 824 * full-fledged tasklist_lock. 825 */ 826 WARN_ON(cpu_online(cpu)); 827 rcu_read_lock(); 828 for_each_process(p) { 829 struct task_struct *t; 830 831 /* 832 * Main thread might exit, but other threads may still have 833 * a valid mm. Find one. 834 */ 835 t = find_lock_task_mm(p); 836 if (!t) 837 continue; 838 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 839 task_unlock(t); 840 } 841 rcu_read_unlock(); 842 } 843 844 /* Take this CPU down. */ 845 static int take_cpu_down(void *_param) 846 { 847 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 848 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 849 int err, cpu = smp_processor_id(); 850 int ret; 851 852 /* Ensure this CPU doesn't handle any more interrupts. */ 853 err = __cpu_disable(); 854 if (err < 0) 855 return err; 856 857 /* 858 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 859 * do this step again. 860 */ 861 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 862 st->state--; 863 /* Invoke the former CPU_DYING callbacks */ 864 for (; st->state > target; st->state--) { 865 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 866 /* 867 * DYING must not fail! 868 */ 869 WARN_ON_ONCE(ret); 870 } 871 872 /* Give up timekeeping duties */ 873 tick_handover_do_timer(); 874 /* Remove CPU from timer broadcasting */ 875 tick_offline_cpu(cpu); 876 /* Park the stopper thread */ 877 stop_machine_park(cpu); 878 return 0; 879 } 880 881 static int takedown_cpu(unsigned int cpu) 882 { 883 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 884 int err; 885 886 /* Park the smpboot threads */ 887 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 888 889 /* 890 * Prevent irq alloc/free while the dying cpu reorganizes the 891 * interrupt affinities. 892 */ 893 irq_lock_sparse(); 894 895 /* 896 * So now all preempt/rcu users must observe !cpu_active(). 897 */ 898 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 899 if (err) { 900 /* CPU refused to die */ 901 irq_unlock_sparse(); 902 /* Unpark the hotplug thread so we can rollback there */ 903 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 904 return err; 905 } 906 BUG_ON(cpu_online(cpu)); 907 908 /* 909 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 910 * all runnable tasks from the CPU, there's only the idle task left now 911 * that the migration thread is done doing the stop_machine thing. 912 * 913 * Wait for the stop thread to go away. 914 */ 915 wait_for_ap_thread(st, false); 916 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 917 918 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 919 irq_unlock_sparse(); 920 921 hotplug_cpu__broadcast_tick_pull(cpu); 922 /* This actually kills the CPU. */ 923 __cpu_die(cpu); 924 925 tick_cleanup_dead_cpu(cpu); 926 rcutree_migrate_callbacks(cpu); 927 return 0; 928 } 929 930 static void cpuhp_complete_idle_dead(void *arg) 931 { 932 struct cpuhp_cpu_state *st = arg; 933 934 complete_ap_thread(st, false); 935 } 936 937 void cpuhp_report_idle_dead(void) 938 { 939 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 940 941 BUG_ON(st->state != CPUHP_AP_OFFLINE); 942 rcu_report_dead(smp_processor_id()); 943 st->state = CPUHP_AP_IDLE_DEAD; 944 /* 945 * We cannot call complete after rcu_report_dead() so we delegate it 946 * to an online cpu. 947 */ 948 smp_call_function_single(cpumask_first(cpu_online_mask), 949 cpuhp_complete_idle_dead, st, 0); 950 } 951 952 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 953 { 954 for (st->state++; st->state < st->target; st->state++) 955 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 956 } 957 958 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 959 enum cpuhp_state target) 960 { 961 enum cpuhp_state prev_state = st->state; 962 int ret = 0; 963 964 for (; st->state > target; st->state--) { 965 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 966 if (ret) { 967 st->target = prev_state; 968 if (st->state < prev_state) 969 undo_cpu_down(cpu, st); 970 break; 971 } 972 } 973 return ret; 974 } 975 976 /* Requires cpu_add_remove_lock to be held */ 977 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 978 enum cpuhp_state target) 979 { 980 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 981 int prev_state, ret = 0; 982 983 if (num_online_cpus() == 1) 984 return -EBUSY; 985 986 if (!cpu_present(cpu)) 987 return -EINVAL; 988 989 cpus_write_lock(); 990 991 cpuhp_tasks_frozen = tasks_frozen; 992 993 prev_state = cpuhp_set_state(st, target); 994 /* 995 * If the current CPU state is in the range of the AP hotplug thread, 996 * then we need to kick the thread. 997 */ 998 if (st->state > CPUHP_TEARDOWN_CPU) { 999 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1000 ret = cpuhp_kick_ap_work(cpu); 1001 /* 1002 * The AP side has done the error rollback already. Just 1003 * return the error code.. 1004 */ 1005 if (ret) 1006 goto out; 1007 1008 /* 1009 * We might have stopped still in the range of the AP hotplug 1010 * thread. Nothing to do anymore. 1011 */ 1012 if (st->state > CPUHP_TEARDOWN_CPU) 1013 goto out; 1014 1015 st->target = target; 1016 } 1017 /* 1018 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1019 * to do the further cleanups. 1020 */ 1021 ret = cpuhp_down_callbacks(cpu, st, target); 1022 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1023 cpuhp_reset_state(st, prev_state); 1024 __cpuhp_kick_ap(st); 1025 } 1026 1027 out: 1028 cpus_write_unlock(); 1029 /* 1030 * Do post unplug cleanup. This is still protected against 1031 * concurrent CPU hotplug via cpu_add_remove_lock. 1032 */ 1033 lockup_detector_cleanup(); 1034 arch_smt_update(); 1035 return ret; 1036 } 1037 1038 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1039 { 1040 if (cpu_hotplug_disabled) 1041 return -EBUSY; 1042 return _cpu_down(cpu, 0, target); 1043 } 1044 1045 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1046 { 1047 int err; 1048 1049 cpu_maps_update_begin(); 1050 err = cpu_down_maps_locked(cpu, target); 1051 cpu_maps_update_done(); 1052 return err; 1053 } 1054 1055 int cpu_down(unsigned int cpu) 1056 { 1057 return do_cpu_down(cpu, CPUHP_OFFLINE); 1058 } 1059 EXPORT_SYMBOL(cpu_down); 1060 1061 #else 1062 #define takedown_cpu NULL 1063 #endif /*CONFIG_HOTPLUG_CPU*/ 1064 1065 /** 1066 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1067 * @cpu: cpu that just started 1068 * 1069 * It must be called by the arch code on the new cpu, before the new cpu 1070 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1071 */ 1072 void notify_cpu_starting(unsigned int cpu) 1073 { 1074 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1075 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1076 int ret; 1077 1078 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1079 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1080 while (st->state < target) { 1081 st->state++; 1082 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1083 /* 1084 * STARTING must not fail! 1085 */ 1086 WARN_ON_ONCE(ret); 1087 } 1088 } 1089 1090 /* 1091 * Called from the idle task. Wake up the controlling task which brings the 1092 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1093 * the rest of the online bringup to the hotplug thread. 1094 */ 1095 void cpuhp_online_idle(enum cpuhp_state state) 1096 { 1097 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1098 1099 /* Happens for the boot cpu */ 1100 if (state != CPUHP_AP_ONLINE_IDLE) 1101 return; 1102 1103 st->state = CPUHP_AP_ONLINE_IDLE; 1104 complete_ap_thread(st, true); 1105 } 1106 1107 /* Requires cpu_add_remove_lock to be held */ 1108 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1109 { 1110 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1111 struct task_struct *idle; 1112 int ret = 0; 1113 1114 cpus_write_lock(); 1115 1116 if (!cpu_present(cpu)) { 1117 ret = -EINVAL; 1118 goto out; 1119 } 1120 1121 /* 1122 * The caller of do_cpu_up might have raced with another 1123 * caller. Ignore it for now. 1124 */ 1125 if (st->state >= target) 1126 goto out; 1127 1128 if (st->state == CPUHP_OFFLINE) { 1129 /* Let it fail before we try to bring the cpu up */ 1130 idle = idle_thread_get(cpu); 1131 if (IS_ERR(idle)) { 1132 ret = PTR_ERR(idle); 1133 goto out; 1134 } 1135 } 1136 1137 cpuhp_tasks_frozen = tasks_frozen; 1138 1139 cpuhp_set_state(st, target); 1140 /* 1141 * If the current CPU state is in the range of the AP hotplug thread, 1142 * then we need to kick the thread once more. 1143 */ 1144 if (st->state > CPUHP_BRINGUP_CPU) { 1145 ret = cpuhp_kick_ap_work(cpu); 1146 /* 1147 * The AP side has done the error rollback already. Just 1148 * return the error code.. 1149 */ 1150 if (ret) 1151 goto out; 1152 } 1153 1154 /* 1155 * Try to reach the target state. We max out on the BP at 1156 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1157 * responsible for bringing it up to the target state. 1158 */ 1159 target = min((int)target, CPUHP_BRINGUP_CPU); 1160 ret = cpuhp_up_callbacks(cpu, st, target); 1161 out: 1162 cpus_write_unlock(); 1163 arch_smt_update(); 1164 return ret; 1165 } 1166 1167 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1168 { 1169 int err = 0; 1170 1171 if (!cpu_possible(cpu)) { 1172 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1173 cpu); 1174 #if defined(CONFIG_IA64) 1175 pr_err("please check additional_cpus= boot parameter\n"); 1176 #endif 1177 return -EINVAL; 1178 } 1179 1180 err = try_online_node(cpu_to_node(cpu)); 1181 if (err) 1182 return err; 1183 1184 cpu_maps_update_begin(); 1185 1186 if (cpu_hotplug_disabled) { 1187 err = -EBUSY; 1188 goto out; 1189 } 1190 if (!cpu_smt_allowed(cpu)) { 1191 err = -EPERM; 1192 goto out; 1193 } 1194 1195 err = _cpu_up(cpu, 0, target); 1196 out: 1197 cpu_maps_update_done(); 1198 return err; 1199 } 1200 1201 int cpu_up(unsigned int cpu) 1202 { 1203 return do_cpu_up(cpu, CPUHP_ONLINE); 1204 } 1205 EXPORT_SYMBOL_GPL(cpu_up); 1206 1207 #ifdef CONFIG_PM_SLEEP_SMP 1208 static cpumask_var_t frozen_cpus; 1209 1210 int freeze_secondary_cpus(int primary) 1211 { 1212 int cpu, error = 0; 1213 1214 cpu_maps_update_begin(); 1215 if (primary == -1) { 1216 primary = cpumask_first(cpu_online_mask); 1217 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1218 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1219 } else { 1220 if (!cpu_online(primary)) 1221 primary = cpumask_first(cpu_online_mask); 1222 } 1223 1224 /* 1225 * We take down all of the non-boot CPUs in one shot to avoid races 1226 * with the userspace trying to use the CPU hotplug at the same time 1227 */ 1228 cpumask_clear(frozen_cpus); 1229 1230 pr_info("Disabling non-boot CPUs ...\n"); 1231 for_each_online_cpu(cpu) { 1232 if (cpu == primary) 1233 continue; 1234 1235 if (pm_wakeup_pending()) { 1236 pr_info("Wakeup pending. Abort CPU freeze\n"); 1237 error = -EBUSY; 1238 break; 1239 } 1240 1241 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1242 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1243 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1244 if (!error) 1245 cpumask_set_cpu(cpu, frozen_cpus); 1246 else { 1247 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1248 break; 1249 } 1250 } 1251 1252 if (!error) 1253 BUG_ON(num_online_cpus() > 1); 1254 else 1255 pr_err("Non-boot CPUs are not disabled\n"); 1256 1257 /* 1258 * Make sure the CPUs won't be enabled by someone else. We need to do 1259 * this even in case of failure as all disable_nonboot_cpus() users are 1260 * supposed to do enable_nonboot_cpus() on the failure path. 1261 */ 1262 cpu_hotplug_disabled++; 1263 1264 cpu_maps_update_done(); 1265 return error; 1266 } 1267 1268 void __weak arch_enable_nonboot_cpus_begin(void) 1269 { 1270 } 1271 1272 void __weak arch_enable_nonboot_cpus_end(void) 1273 { 1274 } 1275 1276 void enable_nonboot_cpus(void) 1277 { 1278 int cpu, error; 1279 1280 /* Allow everyone to use the CPU hotplug again */ 1281 cpu_maps_update_begin(); 1282 __cpu_hotplug_enable(); 1283 if (cpumask_empty(frozen_cpus)) 1284 goto out; 1285 1286 pr_info("Enabling non-boot CPUs ...\n"); 1287 1288 arch_enable_nonboot_cpus_begin(); 1289 1290 for_each_cpu(cpu, frozen_cpus) { 1291 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1292 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1293 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1294 if (!error) { 1295 pr_info("CPU%d is up\n", cpu); 1296 continue; 1297 } 1298 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1299 } 1300 1301 arch_enable_nonboot_cpus_end(); 1302 1303 cpumask_clear(frozen_cpus); 1304 out: 1305 cpu_maps_update_done(); 1306 } 1307 1308 static int __init alloc_frozen_cpus(void) 1309 { 1310 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1311 return -ENOMEM; 1312 return 0; 1313 } 1314 core_initcall(alloc_frozen_cpus); 1315 1316 /* 1317 * When callbacks for CPU hotplug notifications are being executed, we must 1318 * ensure that the state of the system with respect to the tasks being frozen 1319 * or not, as reported by the notification, remains unchanged *throughout the 1320 * duration* of the execution of the callbacks. 1321 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1322 * 1323 * This synchronization is implemented by mutually excluding regular CPU 1324 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1325 * Hibernate notifications. 1326 */ 1327 static int 1328 cpu_hotplug_pm_callback(struct notifier_block *nb, 1329 unsigned long action, void *ptr) 1330 { 1331 switch (action) { 1332 1333 case PM_SUSPEND_PREPARE: 1334 case PM_HIBERNATION_PREPARE: 1335 cpu_hotplug_disable(); 1336 break; 1337 1338 case PM_POST_SUSPEND: 1339 case PM_POST_HIBERNATION: 1340 cpu_hotplug_enable(); 1341 break; 1342 1343 default: 1344 return NOTIFY_DONE; 1345 } 1346 1347 return NOTIFY_OK; 1348 } 1349 1350 1351 static int __init cpu_hotplug_pm_sync_init(void) 1352 { 1353 /* 1354 * cpu_hotplug_pm_callback has higher priority than x86 1355 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1356 * to disable cpu hotplug to avoid cpu hotplug race. 1357 */ 1358 pm_notifier(cpu_hotplug_pm_callback, 0); 1359 return 0; 1360 } 1361 core_initcall(cpu_hotplug_pm_sync_init); 1362 1363 #endif /* CONFIG_PM_SLEEP_SMP */ 1364 1365 int __boot_cpu_id; 1366 1367 #endif /* CONFIG_SMP */ 1368 1369 /* Boot processor state steps */ 1370 static struct cpuhp_step cpuhp_hp_states[] = { 1371 [CPUHP_OFFLINE] = { 1372 .name = "offline", 1373 .startup.single = NULL, 1374 .teardown.single = NULL, 1375 }, 1376 #ifdef CONFIG_SMP 1377 [CPUHP_CREATE_THREADS]= { 1378 .name = "threads:prepare", 1379 .startup.single = smpboot_create_threads, 1380 .teardown.single = NULL, 1381 .cant_stop = true, 1382 }, 1383 [CPUHP_PERF_PREPARE] = { 1384 .name = "perf:prepare", 1385 .startup.single = perf_event_init_cpu, 1386 .teardown.single = perf_event_exit_cpu, 1387 }, 1388 [CPUHP_WORKQUEUE_PREP] = { 1389 .name = "workqueue:prepare", 1390 .startup.single = workqueue_prepare_cpu, 1391 .teardown.single = NULL, 1392 }, 1393 [CPUHP_HRTIMERS_PREPARE] = { 1394 .name = "hrtimers:prepare", 1395 .startup.single = hrtimers_prepare_cpu, 1396 .teardown.single = hrtimers_dead_cpu, 1397 }, 1398 [CPUHP_SMPCFD_PREPARE] = { 1399 .name = "smpcfd:prepare", 1400 .startup.single = smpcfd_prepare_cpu, 1401 .teardown.single = smpcfd_dead_cpu, 1402 }, 1403 [CPUHP_RELAY_PREPARE] = { 1404 .name = "relay:prepare", 1405 .startup.single = relay_prepare_cpu, 1406 .teardown.single = NULL, 1407 }, 1408 [CPUHP_SLAB_PREPARE] = { 1409 .name = "slab:prepare", 1410 .startup.single = slab_prepare_cpu, 1411 .teardown.single = slab_dead_cpu, 1412 }, 1413 [CPUHP_RCUTREE_PREP] = { 1414 .name = "RCU/tree:prepare", 1415 .startup.single = rcutree_prepare_cpu, 1416 .teardown.single = rcutree_dead_cpu, 1417 }, 1418 /* 1419 * On the tear-down path, timers_dead_cpu() must be invoked 1420 * before blk_mq_queue_reinit_notify() from notify_dead(), 1421 * otherwise a RCU stall occurs. 1422 */ 1423 [CPUHP_TIMERS_PREPARE] = { 1424 .name = "timers:prepare", 1425 .startup.single = timers_prepare_cpu, 1426 .teardown.single = timers_dead_cpu, 1427 }, 1428 /* Kicks the plugged cpu into life */ 1429 [CPUHP_BRINGUP_CPU] = { 1430 .name = "cpu:bringup", 1431 .startup.single = bringup_cpu, 1432 .teardown.single = NULL, 1433 .cant_stop = true, 1434 }, 1435 /* Final state before CPU kills itself */ 1436 [CPUHP_AP_IDLE_DEAD] = { 1437 .name = "idle:dead", 1438 }, 1439 /* 1440 * Last state before CPU enters the idle loop to die. Transient state 1441 * for synchronization. 1442 */ 1443 [CPUHP_AP_OFFLINE] = { 1444 .name = "ap:offline", 1445 .cant_stop = true, 1446 }, 1447 /* First state is scheduler control. Interrupts are disabled */ 1448 [CPUHP_AP_SCHED_STARTING] = { 1449 .name = "sched:starting", 1450 .startup.single = sched_cpu_starting, 1451 .teardown.single = sched_cpu_dying, 1452 }, 1453 [CPUHP_AP_RCUTREE_DYING] = { 1454 .name = "RCU/tree:dying", 1455 .startup.single = NULL, 1456 .teardown.single = rcutree_dying_cpu, 1457 }, 1458 [CPUHP_AP_SMPCFD_DYING] = { 1459 .name = "smpcfd:dying", 1460 .startup.single = NULL, 1461 .teardown.single = smpcfd_dying_cpu, 1462 }, 1463 /* Entry state on starting. Interrupts enabled from here on. Transient 1464 * state for synchronsization */ 1465 [CPUHP_AP_ONLINE] = { 1466 .name = "ap:online", 1467 }, 1468 /* 1469 * Handled on controll processor until the plugged processor manages 1470 * this itself. 1471 */ 1472 [CPUHP_TEARDOWN_CPU] = { 1473 .name = "cpu:teardown", 1474 .startup.single = NULL, 1475 .teardown.single = takedown_cpu, 1476 .cant_stop = true, 1477 }, 1478 /* Handle smpboot threads park/unpark */ 1479 [CPUHP_AP_SMPBOOT_THREADS] = { 1480 .name = "smpboot/threads:online", 1481 .startup.single = smpboot_unpark_threads, 1482 .teardown.single = smpboot_park_threads, 1483 }, 1484 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1485 .name = "irq/affinity:online", 1486 .startup.single = irq_affinity_online_cpu, 1487 .teardown.single = NULL, 1488 }, 1489 [CPUHP_AP_PERF_ONLINE] = { 1490 .name = "perf:online", 1491 .startup.single = perf_event_init_cpu, 1492 .teardown.single = perf_event_exit_cpu, 1493 }, 1494 [CPUHP_AP_WATCHDOG_ONLINE] = { 1495 .name = "lockup_detector:online", 1496 .startup.single = lockup_detector_online_cpu, 1497 .teardown.single = lockup_detector_offline_cpu, 1498 }, 1499 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1500 .name = "workqueue:online", 1501 .startup.single = workqueue_online_cpu, 1502 .teardown.single = workqueue_offline_cpu, 1503 }, 1504 [CPUHP_AP_RCUTREE_ONLINE] = { 1505 .name = "RCU/tree:online", 1506 .startup.single = rcutree_online_cpu, 1507 .teardown.single = rcutree_offline_cpu, 1508 }, 1509 #endif 1510 /* 1511 * The dynamically registered state space is here 1512 */ 1513 1514 #ifdef CONFIG_SMP 1515 /* Last state is scheduler control setting the cpu active */ 1516 [CPUHP_AP_ACTIVE] = { 1517 .name = "sched:active", 1518 .startup.single = sched_cpu_activate, 1519 .teardown.single = sched_cpu_deactivate, 1520 }, 1521 #endif 1522 1523 /* CPU is fully up and running. */ 1524 [CPUHP_ONLINE] = { 1525 .name = "online", 1526 .startup.single = NULL, 1527 .teardown.single = NULL, 1528 }, 1529 }; 1530 1531 /* Sanity check for callbacks */ 1532 static int cpuhp_cb_check(enum cpuhp_state state) 1533 { 1534 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1535 return -EINVAL; 1536 return 0; 1537 } 1538 1539 /* 1540 * Returns a free for dynamic slot assignment of the Online state. The states 1541 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1542 * by having no name assigned. 1543 */ 1544 static int cpuhp_reserve_state(enum cpuhp_state state) 1545 { 1546 enum cpuhp_state i, end; 1547 struct cpuhp_step *step; 1548 1549 switch (state) { 1550 case CPUHP_AP_ONLINE_DYN: 1551 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1552 end = CPUHP_AP_ONLINE_DYN_END; 1553 break; 1554 case CPUHP_BP_PREPARE_DYN: 1555 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1556 end = CPUHP_BP_PREPARE_DYN_END; 1557 break; 1558 default: 1559 return -EINVAL; 1560 } 1561 1562 for (i = state; i <= end; i++, step++) { 1563 if (!step->name) 1564 return i; 1565 } 1566 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1567 return -ENOSPC; 1568 } 1569 1570 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1571 int (*startup)(unsigned int cpu), 1572 int (*teardown)(unsigned int cpu), 1573 bool multi_instance) 1574 { 1575 /* (Un)Install the callbacks for further cpu hotplug operations */ 1576 struct cpuhp_step *sp; 1577 int ret = 0; 1578 1579 /* 1580 * If name is NULL, then the state gets removed. 1581 * 1582 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1583 * the first allocation from these dynamic ranges, so the removal 1584 * would trigger a new allocation and clear the wrong (already 1585 * empty) state, leaving the callbacks of the to be cleared state 1586 * dangling, which causes wreckage on the next hotplug operation. 1587 */ 1588 if (name && (state == CPUHP_AP_ONLINE_DYN || 1589 state == CPUHP_BP_PREPARE_DYN)) { 1590 ret = cpuhp_reserve_state(state); 1591 if (ret < 0) 1592 return ret; 1593 state = ret; 1594 } 1595 sp = cpuhp_get_step(state); 1596 if (name && sp->name) 1597 return -EBUSY; 1598 1599 sp->startup.single = startup; 1600 sp->teardown.single = teardown; 1601 sp->name = name; 1602 sp->multi_instance = multi_instance; 1603 INIT_HLIST_HEAD(&sp->list); 1604 return ret; 1605 } 1606 1607 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1608 { 1609 return cpuhp_get_step(state)->teardown.single; 1610 } 1611 1612 /* 1613 * Call the startup/teardown function for a step either on the AP or 1614 * on the current CPU. 1615 */ 1616 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1617 struct hlist_node *node) 1618 { 1619 struct cpuhp_step *sp = cpuhp_get_step(state); 1620 int ret; 1621 1622 /* 1623 * If there's nothing to do, we done. 1624 * Relies on the union for multi_instance. 1625 */ 1626 if ((bringup && !sp->startup.single) || 1627 (!bringup && !sp->teardown.single)) 1628 return 0; 1629 /* 1630 * The non AP bound callbacks can fail on bringup. On teardown 1631 * e.g. module removal we crash for now. 1632 */ 1633 #ifdef CONFIG_SMP 1634 if (cpuhp_is_ap_state(state)) 1635 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1636 else 1637 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1638 #else 1639 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1640 #endif 1641 BUG_ON(ret && !bringup); 1642 return ret; 1643 } 1644 1645 /* 1646 * Called from __cpuhp_setup_state on a recoverable failure. 1647 * 1648 * Note: The teardown callbacks for rollback are not allowed to fail! 1649 */ 1650 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1651 struct hlist_node *node) 1652 { 1653 int cpu; 1654 1655 /* Roll back the already executed steps on the other cpus */ 1656 for_each_present_cpu(cpu) { 1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1658 int cpustate = st->state; 1659 1660 if (cpu >= failedcpu) 1661 break; 1662 1663 /* Did we invoke the startup call on that cpu ? */ 1664 if (cpustate >= state) 1665 cpuhp_issue_call(cpu, state, false, node); 1666 } 1667 } 1668 1669 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1670 struct hlist_node *node, 1671 bool invoke) 1672 { 1673 struct cpuhp_step *sp; 1674 int cpu; 1675 int ret; 1676 1677 lockdep_assert_cpus_held(); 1678 1679 sp = cpuhp_get_step(state); 1680 if (sp->multi_instance == false) 1681 return -EINVAL; 1682 1683 mutex_lock(&cpuhp_state_mutex); 1684 1685 if (!invoke || !sp->startup.multi) 1686 goto add_node; 1687 1688 /* 1689 * Try to call the startup callback for each present cpu 1690 * depending on the hotplug state of the cpu. 1691 */ 1692 for_each_present_cpu(cpu) { 1693 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1694 int cpustate = st->state; 1695 1696 if (cpustate < state) 1697 continue; 1698 1699 ret = cpuhp_issue_call(cpu, state, true, node); 1700 if (ret) { 1701 if (sp->teardown.multi) 1702 cpuhp_rollback_install(cpu, state, node); 1703 goto unlock; 1704 } 1705 } 1706 add_node: 1707 ret = 0; 1708 hlist_add_head(node, &sp->list); 1709 unlock: 1710 mutex_unlock(&cpuhp_state_mutex); 1711 return ret; 1712 } 1713 1714 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1715 bool invoke) 1716 { 1717 int ret; 1718 1719 cpus_read_lock(); 1720 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1721 cpus_read_unlock(); 1722 return ret; 1723 } 1724 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1725 1726 /** 1727 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1728 * @state: The state to setup 1729 * @invoke: If true, the startup function is invoked for cpus where 1730 * cpu state >= @state 1731 * @startup: startup callback function 1732 * @teardown: teardown callback function 1733 * @multi_instance: State is set up for multiple instances which get 1734 * added afterwards. 1735 * 1736 * The caller needs to hold cpus read locked while calling this function. 1737 * Returns: 1738 * On success: 1739 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1740 * 0 for all other states 1741 * On failure: proper (negative) error code 1742 */ 1743 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1744 const char *name, bool invoke, 1745 int (*startup)(unsigned int cpu), 1746 int (*teardown)(unsigned int cpu), 1747 bool multi_instance) 1748 { 1749 int cpu, ret = 0; 1750 bool dynstate; 1751 1752 lockdep_assert_cpus_held(); 1753 1754 if (cpuhp_cb_check(state) || !name) 1755 return -EINVAL; 1756 1757 mutex_lock(&cpuhp_state_mutex); 1758 1759 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1760 multi_instance); 1761 1762 dynstate = state == CPUHP_AP_ONLINE_DYN; 1763 if (ret > 0 && dynstate) { 1764 state = ret; 1765 ret = 0; 1766 } 1767 1768 if (ret || !invoke || !startup) 1769 goto out; 1770 1771 /* 1772 * Try to call the startup callback for each present cpu 1773 * depending on the hotplug state of the cpu. 1774 */ 1775 for_each_present_cpu(cpu) { 1776 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1777 int cpustate = st->state; 1778 1779 if (cpustate < state) 1780 continue; 1781 1782 ret = cpuhp_issue_call(cpu, state, true, NULL); 1783 if (ret) { 1784 if (teardown) 1785 cpuhp_rollback_install(cpu, state, NULL); 1786 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1787 goto out; 1788 } 1789 } 1790 out: 1791 mutex_unlock(&cpuhp_state_mutex); 1792 /* 1793 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1794 * dynamically allocated state in case of success. 1795 */ 1796 if (!ret && dynstate) 1797 return state; 1798 return ret; 1799 } 1800 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1801 1802 int __cpuhp_setup_state(enum cpuhp_state state, 1803 const char *name, bool invoke, 1804 int (*startup)(unsigned int cpu), 1805 int (*teardown)(unsigned int cpu), 1806 bool multi_instance) 1807 { 1808 int ret; 1809 1810 cpus_read_lock(); 1811 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1812 teardown, multi_instance); 1813 cpus_read_unlock(); 1814 return ret; 1815 } 1816 EXPORT_SYMBOL(__cpuhp_setup_state); 1817 1818 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1819 struct hlist_node *node, bool invoke) 1820 { 1821 struct cpuhp_step *sp = cpuhp_get_step(state); 1822 int cpu; 1823 1824 BUG_ON(cpuhp_cb_check(state)); 1825 1826 if (!sp->multi_instance) 1827 return -EINVAL; 1828 1829 cpus_read_lock(); 1830 mutex_lock(&cpuhp_state_mutex); 1831 1832 if (!invoke || !cpuhp_get_teardown_cb(state)) 1833 goto remove; 1834 /* 1835 * Call the teardown callback for each present cpu depending 1836 * on the hotplug state of the cpu. This function is not 1837 * allowed to fail currently! 1838 */ 1839 for_each_present_cpu(cpu) { 1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1841 int cpustate = st->state; 1842 1843 if (cpustate >= state) 1844 cpuhp_issue_call(cpu, state, false, node); 1845 } 1846 1847 remove: 1848 hlist_del(node); 1849 mutex_unlock(&cpuhp_state_mutex); 1850 cpus_read_unlock(); 1851 1852 return 0; 1853 } 1854 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1855 1856 /** 1857 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1858 * @state: The state to remove 1859 * @invoke: If true, the teardown function is invoked for cpus where 1860 * cpu state >= @state 1861 * 1862 * The caller needs to hold cpus read locked while calling this function. 1863 * The teardown callback is currently not allowed to fail. Think 1864 * about module removal! 1865 */ 1866 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1867 { 1868 struct cpuhp_step *sp = cpuhp_get_step(state); 1869 int cpu; 1870 1871 BUG_ON(cpuhp_cb_check(state)); 1872 1873 lockdep_assert_cpus_held(); 1874 1875 mutex_lock(&cpuhp_state_mutex); 1876 if (sp->multi_instance) { 1877 WARN(!hlist_empty(&sp->list), 1878 "Error: Removing state %d which has instances left.\n", 1879 state); 1880 goto remove; 1881 } 1882 1883 if (!invoke || !cpuhp_get_teardown_cb(state)) 1884 goto remove; 1885 1886 /* 1887 * Call the teardown callback for each present cpu depending 1888 * on the hotplug state of the cpu. This function is not 1889 * allowed to fail currently! 1890 */ 1891 for_each_present_cpu(cpu) { 1892 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1893 int cpustate = st->state; 1894 1895 if (cpustate >= state) 1896 cpuhp_issue_call(cpu, state, false, NULL); 1897 } 1898 remove: 1899 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1900 mutex_unlock(&cpuhp_state_mutex); 1901 } 1902 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1903 1904 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1905 { 1906 cpus_read_lock(); 1907 __cpuhp_remove_state_cpuslocked(state, invoke); 1908 cpus_read_unlock(); 1909 } 1910 EXPORT_SYMBOL(__cpuhp_remove_state); 1911 1912 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1913 static ssize_t show_cpuhp_state(struct device *dev, 1914 struct device_attribute *attr, char *buf) 1915 { 1916 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1917 1918 return sprintf(buf, "%d\n", st->state); 1919 } 1920 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1921 1922 static ssize_t write_cpuhp_target(struct device *dev, 1923 struct device_attribute *attr, 1924 const char *buf, size_t count) 1925 { 1926 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1927 struct cpuhp_step *sp; 1928 int target, ret; 1929 1930 ret = kstrtoint(buf, 10, &target); 1931 if (ret) 1932 return ret; 1933 1934 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1935 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1936 return -EINVAL; 1937 #else 1938 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1939 return -EINVAL; 1940 #endif 1941 1942 ret = lock_device_hotplug_sysfs(); 1943 if (ret) 1944 return ret; 1945 1946 mutex_lock(&cpuhp_state_mutex); 1947 sp = cpuhp_get_step(target); 1948 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1949 mutex_unlock(&cpuhp_state_mutex); 1950 if (ret) 1951 goto out; 1952 1953 if (st->state < target) 1954 ret = do_cpu_up(dev->id, target); 1955 else 1956 ret = do_cpu_down(dev->id, target); 1957 out: 1958 unlock_device_hotplug(); 1959 return ret ? ret : count; 1960 } 1961 1962 static ssize_t show_cpuhp_target(struct device *dev, 1963 struct device_attribute *attr, char *buf) 1964 { 1965 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1966 1967 return sprintf(buf, "%d\n", st->target); 1968 } 1969 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1970 1971 1972 static ssize_t write_cpuhp_fail(struct device *dev, 1973 struct device_attribute *attr, 1974 const char *buf, size_t count) 1975 { 1976 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1977 struct cpuhp_step *sp; 1978 int fail, ret; 1979 1980 ret = kstrtoint(buf, 10, &fail); 1981 if (ret) 1982 return ret; 1983 1984 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 1985 return -EINVAL; 1986 1987 /* 1988 * Cannot fail STARTING/DYING callbacks. 1989 */ 1990 if (cpuhp_is_atomic_state(fail)) 1991 return -EINVAL; 1992 1993 /* 1994 * Cannot fail anything that doesn't have callbacks. 1995 */ 1996 mutex_lock(&cpuhp_state_mutex); 1997 sp = cpuhp_get_step(fail); 1998 if (!sp->startup.single && !sp->teardown.single) 1999 ret = -EINVAL; 2000 mutex_unlock(&cpuhp_state_mutex); 2001 if (ret) 2002 return ret; 2003 2004 st->fail = fail; 2005 2006 return count; 2007 } 2008 2009 static ssize_t show_cpuhp_fail(struct device *dev, 2010 struct device_attribute *attr, char *buf) 2011 { 2012 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2013 2014 return sprintf(buf, "%d\n", st->fail); 2015 } 2016 2017 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2018 2019 static struct attribute *cpuhp_cpu_attrs[] = { 2020 &dev_attr_state.attr, 2021 &dev_attr_target.attr, 2022 &dev_attr_fail.attr, 2023 NULL 2024 }; 2025 2026 static const struct attribute_group cpuhp_cpu_attr_group = { 2027 .attrs = cpuhp_cpu_attrs, 2028 .name = "hotplug", 2029 NULL 2030 }; 2031 2032 static ssize_t show_cpuhp_states(struct device *dev, 2033 struct device_attribute *attr, char *buf) 2034 { 2035 ssize_t cur, res = 0; 2036 int i; 2037 2038 mutex_lock(&cpuhp_state_mutex); 2039 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2040 struct cpuhp_step *sp = cpuhp_get_step(i); 2041 2042 if (sp->name) { 2043 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2044 buf += cur; 2045 res += cur; 2046 } 2047 } 2048 mutex_unlock(&cpuhp_state_mutex); 2049 return res; 2050 } 2051 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2052 2053 static struct attribute *cpuhp_cpu_root_attrs[] = { 2054 &dev_attr_states.attr, 2055 NULL 2056 }; 2057 2058 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2059 .attrs = cpuhp_cpu_root_attrs, 2060 .name = "hotplug", 2061 NULL 2062 }; 2063 2064 #ifdef CONFIG_HOTPLUG_SMT 2065 2066 static void cpuhp_offline_cpu_device(unsigned int cpu) 2067 { 2068 struct device *dev = get_cpu_device(cpu); 2069 2070 dev->offline = true; 2071 /* Tell user space about the state change */ 2072 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2073 } 2074 2075 static void cpuhp_online_cpu_device(unsigned int cpu) 2076 { 2077 struct device *dev = get_cpu_device(cpu); 2078 2079 dev->offline = false; 2080 /* Tell user space about the state change */ 2081 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2082 } 2083 2084 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2085 { 2086 int cpu, ret = 0; 2087 2088 cpu_maps_update_begin(); 2089 for_each_online_cpu(cpu) { 2090 if (topology_is_primary_thread(cpu)) 2091 continue; 2092 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2093 if (ret) 2094 break; 2095 /* 2096 * As this needs to hold the cpu maps lock it's impossible 2097 * to call device_offline() because that ends up calling 2098 * cpu_down() which takes cpu maps lock. cpu maps lock 2099 * needs to be held as this might race against in kernel 2100 * abusers of the hotplug machinery (thermal management). 2101 * 2102 * So nothing would update device:offline state. That would 2103 * leave the sysfs entry stale and prevent onlining after 2104 * smt control has been changed to 'off' again. This is 2105 * called under the sysfs hotplug lock, so it is properly 2106 * serialized against the regular offline usage. 2107 */ 2108 cpuhp_offline_cpu_device(cpu); 2109 } 2110 if (!ret) 2111 cpu_smt_control = ctrlval; 2112 cpu_maps_update_done(); 2113 return ret; 2114 } 2115 2116 int cpuhp_smt_enable(void) 2117 { 2118 int cpu, ret = 0; 2119 2120 cpu_maps_update_begin(); 2121 cpu_smt_control = CPU_SMT_ENABLED; 2122 for_each_present_cpu(cpu) { 2123 /* Skip online CPUs and CPUs on offline nodes */ 2124 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2125 continue; 2126 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2127 if (ret) 2128 break; 2129 /* See comment in cpuhp_smt_disable() */ 2130 cpuhp_online_cpu_device(cpu); 2131 } 2132 cpu_maps_update_done(); 2133 return ret; 2134 } 2135 2136 2137 static ssize_t 2138 __store_smt_control(struct device *dev, struct device_attribute *attr, 2139 const char *buf, size_t count) 2140 { 2141 int ctrlval, ret; 2142 2143 if (sysfs_streq(buf, "on")) 2144 ctrlval = CPU_SMT_ENABLED; 2145 else if (sysfs_streq(buf, "off")) 2146 ctrlval = CPU_SMT_DISABLED; 2147 else if (sysfs_streq(buf, "forceoff")) 2148 ctrlval = CPU_SMT_FORCE_DISABLED; 2149 else 2150 return -EINVAL; 2151 2152 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2153 return -EPERM; 2154 2155 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2156 return -ENODEV; 2157 2158 ret = lock_device_hotplug_sysfs(); 2159 if (ret) 2160 return ret; 2161 2162 if (ctrlval != cpu_smt_control) { 2163 switch (ctrlval) { 2164 case CPU_SMT_ENABLED: 2165 ret = cpuhp_smt_enable(); 2166 break; 2167 case CPU_SMT_DISABLED: 2168 case CPU_SMT_FORCE_DISABLED: 2169 ret = cpuhp_smt_disable(ctrlval); 2170 break; 2171 } 2172 } 2173 2174 unlock_device_hotplug(); 2175 return ret ? ret : count; 2176 } 2177 2178 #else /* !CONFIG_HOTPLUG_SMT */ 2179 static ssize_t 2180 __store_smt_control(struct device *dev, struct device_attribute *attr, 2181 const char *buf, size_t count) 2182 { 2183 return -ENODEV; 2184 } 2185 #endif /* CONFIG_HOTPLUG_SMT */ 2186 2187 static const char *smt_states[] = { 2188 [CPU_SMT_ENABLED] = "on", 2189 [CPU_SMT_DISABLED] = "off", 2190 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2191 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2192 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2193 }; 2194 2195 static ssize_t 2196 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2197 { 2198 const char *state = smt_states[cpu_smt_control]; 2199 2200 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2201 } 2202 2203 static ssize_t 2204 store_smt_control(struct device *dev, struct device_attribute *attr, 2205 const char *buf, size_t count) 2206 { 2207 return __store_smt_control(dev, attr, buf, count); 2208 } 2209 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2210 2211 static ssize_t 2212 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2213 { 2214 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2215 } 2216 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2217 2218 static struct attribute *cpuhp_smt_attrs[] = { 2219 &dev_attr_control.attr, 2220 &dev_attr_active.attr, 2221 NULL 2222 }; 2223 2224 static const struct attribute_group cpuhp_smt_attr_group = { 2225 .attrs = cpuhp_smt_attrs, 2226 .name = "smt", 2227 NULL 2228 }; 2229 2230 static int __init cpu_smt_sysfs_init(void) 2231 { 2232 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2233 &cpuhp_smt_attr_group); 2234 } 2235 2236 static int __init cpuhp_sysfs_init(void) 2237 { 2238 int cpu, ret; 2239 2240 ret = cpu_smt_sysfs_init(); 2241 if (ret) 2242 return ret; 2243 2244 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2245 &cpuhp_cpu_root_attr_group); 2246 if (ret) 2247 return ret; 2248 2249 for_each_possible_cpu(cpu) { 2250 struct device *dev = get_cpu_device(cpu); 2251 2252 if (!dev) 2253 continue; 2254 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2255 if (ret) 2256 return ret; 2257 } 2258 return 0; 2259 } 2260 device_initcall(cpuhp_sysfs_init); 2261 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2262 2263 /* 2264 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2265 * represents all NR_CPUS bits binary values of 1<<nr. 2266 * 2267 * It is used by cpumask_of() to get a constant address to a CPU 2268 * mask value that has a single bit set only. 2269 */ 2270 2271 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2272 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2273 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2274 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2275 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2276 2277 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2278 2279 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2280 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2281 #if BITS_PER_LONG > 32 2282 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2283 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2284 #endif 2285 }; 2286 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2287 2288 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2289 EXPORT_SYMBOL(cpu_all_bits); 2290 2291 #ifdef CONFIG_INIT_ALL_POSSIBLE 2292 struct cpumask __cpu_possible_mask __read_mostly 2293 = {CPU_BITS_ALL}; 2294 #else 2295 struct cpumask __cpu_possible_mask __read_mostly; 2296 #endif 2297 EXPORT_SYMBOL(__cpu_possible_mask); 2298 2299 struct cpumask __cpu_online_mask __read_mostly; 2300 EXPORT_SYMBOL(__cpu_online_mask); 2301 2302 struct cpumask __cpu_present_mask __read_mostly; 2303 EXPORT_SYMBOL(__cpu_present_mask); 2304 2305 struct cpumask __cpu_active_mask __read_mostly; 2306 EXPORT_SYMBOL(__cpu_active_mask); 2307 2308 atomic_t __num_online_cpus __read_mostly; 2309 EXPORT_SYMBOL(__num_online_cpus); 2310 2311 void init_cpu_present(const struct cpumask *src) 2312 { 2313 cpumask_copy(&__cpu_present_mask, src); 2314 } 2315 2316 void init_cpu_possible(const struct cpumask *src) 2317 { 2318 cpumask_copy(&__cpu_possible_mask, src); 2319 } 2320 2321 void init_cpu_online(const struct cpumask *src) 2322 { 2323 cpumask_copy(&__cpu_online_mask, src); 2324 } 2325 2326 void set_cpu_online(unsigned int cpu, bool online) 2327 { 2328 /* 2329 * atomic_inc/dec() is required to handle the horrid abuse of this 2330 * function by the reboot and kexec code which invoke it from 2331 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2332 * regular CPU hotplug is properly serialized. 2333 * 2334 * Note, that the fact that __num_online_cpus is of type atomic_t 2335 * does not protect readers which are not serialized against 2336 * concurrent hotplug operations. 2337 */ 2338 if (online) { 2339 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2340 atomic_inc(&__num_online_cpus); 2341 } else { 2342 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2343 atomic_dec(&__num_online_cpus); 2344 } 2345 } 2346 2347 /* 2348 * Activate the first processor. 2349 */ 2350 void __init boot_cpu_init(void) 2351 { 2352 int cpu = smp_processor_id(); 2353 2354 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2355 set_cpu_online(cpu, true); 2356 set_cpu_active(cpu, true); 2357 set_cpu_present(cpu, true); 2358 set_cpu_possible(cpu, true); 2359 2360 #ifdef CONFIG_SMP 2361 __boot_cpu_id = cpu; 2362 #endif 2363 } 2364 2365 /* 2366 * Must be called _AFTER_ setting up the per_cpu areas 2367 */ 2368 void __init boot_cpu_hotplug_init(void) 2369 { 2370 #ifdef CONFIG_SMP 2371 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2372 #endif 2373 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2374 } 2375 2376 /* 2377 * These are used for a global "mitigations=" cmdline option for toggling 2378 * optional CPU mitigations. 2379 */ 2380 enum cpu_mitigations { 2381 CPU_MITIGATIONS_OFF, 2382 CPU_MITIGATIONS_AUTO, 2383 CPU_MITIGATIONS_AUTO_NOSMT, 2384 }; 2385 2386 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2387 CPU_MITIGATIONS_AUTO; 2388 2389 static int __init mitigations_parse_cmdline(char *arg) 2390 { 2391 if (!strcmp(arg, "off")) 2392 cpu_mitigations = CPU_MITIGATIONS_OFF; 2393 else if (!strcmp(arg, "auto")) 2394 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2395 else if (!strcmp(arg, "auto,nosmt")) 2396 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2397 else 2398 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2399 arg); 2400 2401 return 0; 2402 } 2403 early_param("mitigations", mitigations_parse_cmdline); 2404 2405 /* mitigations=off */ 2406 bool cpu_mitigations_off(void) 2407 { 2408 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2409 } 2410 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2411 2412 /* mitigations=auto,nosmt */ 2413 bool cpu_mitigations_auto_nosmt(void) 2414 { 2415 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2416 } 2417 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2418