1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 static bool cpu_hotplug_offline_disabled __ro_after_init; 487 488 void cpus_read_lock(void) 489 { 490 percpu_down_read(&cpu_hotplug_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 494 int cpus_read_trylock(void) 495 { 496 return percpu_down_read_trylock(&cpu_hotplug_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); 499 500 void cpus_read_unlock(void) 501 { 502 percpu_up_read(&cpu_hotplug_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 506 void cpus_write_lock(void) 507 { 508 percpu_down_write(&cpu_hotplug_lock); 509 } 510 511 void cpus_write_unlock(void) 512 { 513 percpu_up_write(&cpu_hotplug_lock); 514 } 515 516 void lockdep_assert_cpus_held(void) 517 { 518 /* 519 * We can't have hotplug operations before userspace starts running, 520 * and some init codepaths will knowingly not take the hotplug lock. 521 * This is all valid, so mute lockdep until it makes sense to report 522 * unheld locks. 523 */ 524 if (system_state < SYSTEM_RUNNING) 525 return; 526 527 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 529 530 #ifdef CONFIG_LOCKDEP 531 int lockdep_is_cpus_held(void) 532 { 533 return percpu_rwsem_is_held(&cpu_hotplug_lock); 534 } 535 #endif 536 537 static void lockdep_acquire_cpus_lock(void) 538 { 539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 540 } 541 542 static void lockdep_release_cpus_lock(void) 543 { 544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 545 } 546 547 /* Declare CPU offlining not supported */ 548 void cpu_hotplug_disable_offlining(void) 549 { 550 cpu_maps_update_begin(); 551 cpu_hotplug_offline_disabled = true; 552 cpu_maps_update_done(); 553 } 554 555 /* 556 * Wait for currently running CPU hotplug operations to complete (if any) and 557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 559 * hotplug path before performing hotplug operations. So acquiring that lock 560 * guarantees mutual exclusion from any currently running hotplug operations. 561 */ 562 void cpu_hotplug_disable(void) 563 { 564 cpu_maps_update_begin(); 565 cpu_hotplug_disabled++; 566 cpu_maps_update_done(); 567 } 568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 569 570 static void __cpu_hotplug_enable(void) 571 { 572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 573 return; 574 cpu_hotplug_disabled--; 575 } 576 577 void cpu_hotplug_enable(void) 578 { 579 cpu_maps_update_begin(); 580 __cpu_hotplug_enable(); 581 cpu_maps_update_done(); 582 } 583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 584 585 #else 586 587 static void lockdep_acquire_cpus_lock(void) 588 { 589 } 590 591 static void lockdep_release_cpus_lock(void) 592 { 593 } 594 595 #endif /* CONFIG_HOTPLUG_CPU */ 596 597 /* 598 * Architectures that need SMT-specific errata handling during SMT hotplug 599 * should override this. 600 */ 601 void __weak arch_smt_update(void) { } 602 603 #ifdef CONFIG_HOTPLUG_SMT 604 605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 606 static unsigned int cpu_smt_max_threads __ro_after_init; 607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 608 609 void __init cpu_smt_disable(bool force) 610 { 611 if (!cpu_smt_possible()) 612 return; 613 614 if (force) { 615 pr_info("SMT: Force disabled\n"); 616 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 617 } else { 618 pr_info("SMT: disabled\n"); 619 cpu_smt_control = CPU_SMT_DISABLED; 620 } 621 cpu_smt_num_threads = 1; 622 } 623 624 /* 625 * The decision whether SMT is supported can only be done after the full 626 * CPU identification. Called from architecture code. 627 */ 628 void __init cpu_smt_set_num_threads(unsigned int num_threads, 629 unsigned int max_threads) 630 { 631 WARN_ON(!num_threads || (num_threads > max_threads)); 632 633 if (max_threads == 1) 634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 635 636 cpu_smt_max_threads = max_threads; 637 638 /* 639 * If SMT has been disabled via the kernel command line or SMT is 640 * not supported, set cpu_smt_num_threads to 1 for consistency. 641 * If enabled, take the architecture requested number of threads 642 * to bring up into account. 643 */ 644 if (cpu_smt_control != CPU_SMT_ENABLED) 645 cpu_smt_num_threads = 1; 646 else if (num_threads < cpu_smt_num_threads) 647 cpu_smt_num_threads = num_threads; 648 } 649 650 static int __init smt_cmdline_disable(char *str) 651 { 652 cpu_smt_disable(str && !strcmp(str, "force")); 653 return 0; 654 } 655 early_param("nosmt", smt_cmdline_disable); 656 657 /* 658 * For Archicture supporting partial SMT states check if the thread is allowed. 659 * Otherwise this has already been checked through cpu_smt_max_threads when 660 * setting the SMT level. 661 */ 662 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 663 { 664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 665 return topology_smt_thread_allowed(cpu); 666 #else 667 return true; 668 #endif 669 } 670 671 static inline bool cpu_bootable(unsigned int cpu) 672 { 673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 674 return true; 675 676 /* All CPUs are bootable if controls are not configured */ 677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 678 return true; 679 680 /* All CPUs are bootable if CPU is not SMT capable */ 681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 682 return true; 683 684 if (topology_is_primary_thread(cpu)) 685 return true; 686 687 /* 688 * On x86 it's required to boot all logical CPUs at least once so 689 * that the init code can get a chance to set CR4.MCE on each 690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 691 * core will shutdown the machine. 692 */ 693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 694 } 695 696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 697 bool cpu_smt_possible(void) 698 { 699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 701 } 702 EXPORT_SYMBOL_GPL(cpu_smt_possible); 703 704 #else 705 static inline bool cpu_bootable(unsigned int cpu) { return true; } 706 #endif 707 708 static inline enum cpuhp_state 709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 710 { 711 enum cpuhp_state prev_state = st->state; 712 bool bringup = st->state < target; 713 714 st->rollback = false; 715 st->last = NULL; 716 717 st->target = target; 718 st->single = false; 719 st->bringup = bringup; 720 if (cpu_dying(cpu) != !bringup) 721 set_cpu_dying(cpu, !bringup); 722 723 return prev_state; 724 } 725 726 static inline void 727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 728 enum cpuhp_state prev_state) 729 { 730 bool bringup = !st->bringup; 731 732 st->target = prev_state; 733 734 /* 735 * Already rolling back. No need invert the bringup value or to change 736 * the current state. 737 */ 738 if (st->rollback) 739 return; 740 741 st->rollback = true; 742 743 /* 744 * If we have st->last we need to undo partial multi_instance of this 745 * state first. Otherwise start undo at the previous state. 746 */ 747 if (!st->last) { 748 if (st->bringup) 749 st->state--; 750 else 751 st->state++; 752 } 753 754 st->bringup = bringup; 755 if (cpu_dying(cpu) != !bringup) 756 set_cpu_dying(cpu, !bringup); 757 } 758 759 /* Regular hotplug invocation of the AP hotplug thread */ 760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 761 { 762 if (!st->single && st->state == st->target) 763 return; 764 765 st->result = 0; 766 /* 767 * Make sure the above stores are visible before should_run becomes 768 * true. Paired with the mb() above in cpuhp_thread_fun() 769 */ 770 smp_mb(); 771 st->should_run = true; 772 wake_up_process(st->thread); 773 wait_for_ap_thread(st, st->bringup); 774 } 775 776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 777 enum cpuhp_state target) 778 { 779 enum cpuhp_state prev_state; 780 int ret; 781 782 prev_state = cpuhp_set_state(cpu, st, target); 783 __cpuhp_kick_ap(st); 784 if ((ret = st->result)) { 785 cpuhp_reset_state(cpu, st, prev_state); 786 __cpuhp_kick_ap(st); 787 } 788 789 return ret; 790 } 791 792 static int bringup_wait_for_ap_online(unsigned int cpu) 793 { 794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 795 796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 797 wait_for_ap_thread(st, true); 798 if (WARN_ON_ONCE((!cpu_online(cpu)))) 799 return -ECANCELED; 800 801 /* Unpark the hotplug thread of the target cpu */ 802 kthread_unpark(st->thread); 803 804 /* 805 * SMT soft disabling on X86 requires to bring the CPU out of the 806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 807 * CPU marked itself as booted_once in notify_cpu_starting() so the 808 * cpu_bootable() check will now return false if this is not the 809 * primary sibling. 810 */ 811 if (!cpu_bootable(cpu)) 812 return -ECANCELED; 813 return 0; 814 } 815 816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 817 static int cpuhp_kick_ap_alive(unsigned int cpu) 818 { 819 if (!cpuhp_can_boot_ap(cpu)) 820 return -EAGAIN; 821 822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 823 } 824 825 static int cpuhp_bringup_ap(unsigned int cpu) 826 { 827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 828 int ret; 829 830 /* 831 * Some architectures have to walk the irq descriptors to 832 * setup the vector space for the cpu which comes online. 833 * Prevent irq alloc/free across the bringup. 834 */ 835 irq_lock_sparse(); 836 837 ret = cpuhp_bp_sync_alive(cpu); 838 if (ret) 839 goto out_unlock; 840 841 ret = bringup_wait_for_ap_online(cpu); 842 if (ret) 843 goto out_unlock; 844 845 irq_unlock_sparse(); 846 847 if (st->target <= CPUHP_AP_ONLINE_IDLE) 848 return 0; 849 850 return cpuhp_kick_ap(cpu, st, st->target); 851 852 out_unlock: 853 irq_unlock_sparse(); 854 return ret; 855 } 856 #else 857 static int bringup_cpu(unsigned int cpu) 858 { 859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 860 struct task_struct *idle = idle_thread_get(cpu); 861 int ret; 862 863 if (!cpuhp_can_boot_ap(cpu)) 864 return -EAGAIN; 865 866 /* 867 * Some architectures have to walk the irq descriptors to 868 * setup the vector space for the cpu which comes online. 869 * 870 * Prevent irq alloc/free across the bringup by acquiring the 871 * sparse irq lock. Hold it until the upcoming CPU completes the 872 * startup in cpuhp_online_idle() which allows to avoid 873 * intermediate synchronization points in the architecture code. 874 */ 875 irq_lock_sparse(); 876 877 ret = __cpu_up(cpu, idle); 878 if (ret) 879 goto out_unlock; 880 881 ret = cpuhp_bp_sync_alive(cpu); 882 if (ret) 883 goto out_unlock; 884 885 ret = bringup_wait_for_ap_online(cpu); 886 if (ret) 887 goto out_unlock; 888 889 irq_unlock_sparse(); 890 891 if (st->target <= CPUHP_AP_ONLINE_IDLE) 892 return 0; 893 894 return cpuhp_kick_ap(cpu, st, st->target); 895 896 out_unlock: 897 irq_unlock_sparse(); 898 return ret; 899 } 900 #endif 901 902 static int finish_cpu(unsigned int cpu) 903 { 904 struct task_struct *idle = idle_thread_get(cpu); 905 struct mm_struct *mm = idle->active_mm; 906 907 /* 908 * sched_force_init_mm() ensured the use of &init_mm, 909 * drop that refcount now that the CPU has stopped. 910 */ 911 WARN_ON(mm != &init_mm); 912 idle->active_mm = NULL; 913 mmdrop_lazy_tlb(mm); 914 915 return 0; 916 } 917 918 /* 919 * Hotplug state machine related functions 920 */ 921 922 /* 923 * Get the next state to run. Empty ones will be skipped. Returns true if a 924 * state must be run. 925 * 926 * st->state will be modified ahead of time, to match state_to_run, as if it 927 * has already ran. 928 */ 929 static bool cpuhp_next_state(bool bringup, 930 enum cpuhp_state *state_to_run, 931 struct cpuhp_cpu_state *st, 932 enum cpuhp_state target) 933 { 934 do { 935 if (bringup) { 936 if (st->state >= target) 937 return false; 938 939 *state_to_run = ++st->state; 940 } else { 941 if (st->state <= target) 942 return false; 943 944 *state_to_run = st->state--; 945 } 946 947 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 948 break; 949 } while (true); 950 951 return true; 952 } 953 954 static int __cpuhp_invoke_callback_range(bool bringup, 955 unsigned int cpu, 956 struct cpuhp_cpu_state *st, 957 enum cpuhp_state target, 958 bool nofail) 959 { 960 enum cpuhp_state state; 961 int ret = 0; 962 963 while (cpuhp_next_state(bringup, &state, st, target)) { 964 int err; 965 966 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 967 if (!err) 968 continue; 969 970 if (nofail) { 971 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 972 cpu, bringup ? "UP" : "DOWN", 973 cpuhp_get_step(st->state)->name, 974 st->state, err); 975 ret = -1; 976 } else { 977 ret = err; 978 break; 979 } 980 } 981 982 return ret; 983 } 984 985 static inline int cpuhp_invoke_callback_range(bool bringup, 986 unsigned int cpu, 987 struct cpuhp_cpu_state *st, 988 enum cpuhp_state target) 989 { 990 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 991 } 992 993 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 994 unsigned int cpu, 995 struct cpuhp_cpu_state *st, 996 enum cpuhp_state target) 997 { 998 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 999 } 1000 1001 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1002 { 1003 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1004 return true; 1005 /* 1006 * When CPU hotplug is disabled, then taking the CPU down is not 1007 * possible because takedown_cpu() and the architecture and 1008 * subsystem specific mechanisms are not available. So the CPU 1009 * which would be completely unplugged again needs to stay around 1010 * in the current state. 1011 */ 1012 return st->state <= CPUHP_BRINGUP_CPU; 1013 } 1014 1015 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1016 enum cpuhp_state target) 1017 { 1018 enum cpuhp_state prev_state = st->state; 1019 int ret = 0; 1020 1021 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1022 if (ret) { 1023 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1024 ret, cpu, cpuhp_get_step(st->state)->name, 1025 st->state); 1026 1027 cpuhp_reset_state(cpu, st, prev_state); 1028 if (can_rollback_cpu(st)) 1029 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1030 prev_state)); 1031 } 1032 return ret; 1033 } 1034 1035 /* 1036 * The cpu hotplug threads manage the bringup and teardown of the cpus 1037 */ 1038 static int cpuhp_should_run(unsigned int cpu) 1039 { 1040 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1041 1042 return st->should_run; 1043 } 1044 1045 /* 1046 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1047 * callbacks when a state gets [un]installed at runtime. 1048 * 1049 * Each invocation of this function by the smpboot thread does a single AP 1050 * state callback. 1051 * 1052 * It has 3 modes of operation: 1053 * - single: runs st->cb_state 1054 * - up: runs ++st->state, while st->state < st->target 1055 * - down: runs st->state--, while st->state > st->target 1056 * 1057 * When complete or on error, should_run is cleared and the completion is fired. 1058 */ 1059 static void cpuhp_thread_fun(unsigned int cpu) 1060 { 1061 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1062 bool bringup = st->bringup; 1063 enum cpuhp_state state; 1064 1065 if (WARN_ON_ONCE(!st->should_run)) 1066 return; 1067 1068 /* 1069 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1070 * that if we see ->should_run we also see the rest of the state. 1071 */ 1072 smp_mb(); 1073 1074 /* 1075 * The BP holds the hotplug lock, but we're now running on the AP, 1076 * ensure that anybody asserting the lock is held, will actually find 1077 * it so. 1078 */ 1079 lockdep_acquire_cpus_lock(); 1080 cpuhp_lock_acquire(bringup); 1081 1082 if (st->single) { 1083 state = st->cb_state; 1084 st->should_run = false; 1085 } else { 1086 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1087 if (!st->should_run) 1088 goto end; 1089 } 1090 1091 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1092 1093 if (cpuhp_is_atomic_state(state)) { 1094 local_irq_disable(); 1095 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1096 local_irq_enable(); 1097 1098 /* 1099 * STARTING/DYING must not fail! 1100 */ 1101 WARN_ON_ONCE(st->result); 1102 } else { 1103 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1104 } 1105 1106 if (st->result) { 1107 /* 1108 * If we fail on a rollback, we're up a creek without no 1109 * paddle, no way forward, no way back. We loose, thanks for 1110 * playing. 1111 */ 1112 WARN_ON_ONCE(st->rollback); 1113 st->should_run = false; 1114 } 1115 1116 end: 1117 cpuhp_lock_release(bringup); 1118 lockdep_release_cpus_lock(); 1119 1120 if (!st->should_run) 1121 complete_ap_thread(st, bringup); 1122 } 1123 1124 /* Invoke a single callback on a remote cpu */ 1125 static int 1126 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1127 struct hlist_node *node) 1128 { 1129 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1130 int ret; 1131 1132 if (!cpu_online(cpu)) 1133 return 0; 1134 1135 cpuhp_lock_acquire(false); 1136 cpuhp_lock_release(false); 1137 1138 cpuhp_lock_acquire(true); 1139 cpuhp_lock_release(true); 1140 1141 /* 1142 * If we are up and running, use the hotplug thread. For early calls 1143 * we invoke the thread function directly. 1144 */ 1145 if (!st->thread) 1146 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1147 1148 st->rollback = false; 1149 st->last = NULL; 1150 1151 st->node = node; 1152 st->bringup = bringup; 1153 st->cb_state = state; 1154 st->single = true; 1155 1156 __cpuhp_kick_ap(st); 1157 1158 /* 1159 * If we failed and did a partial, do a rollback. 1160 */ 1161 if ((ret = st->result) && st->last) { 1162 st->rollback = true; 1163 st->bringup = !bringup; 1164 1165 __cpuhp_kick_ap(st); 1166 } 1167 1168 /* 1169 * Clean up the leftovers so the next hotplug operation wont use stale 1170 * data. 1171 */ 1172 st->node = st->last = NULL; 1173 return ret; 1174 } 1175 1176 static int cpuhp_kick_ap_work(unsigned int cpu) 1177 { 1178 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1179 enum cpuhp_state prev_state = st->state; 1180 int ret; 1181 1182 cpuhp_lock_acquire(false); 1183 cpuhp_lock_release(false); 1184 1185 cpuhp_lock_acquire(true); 1186 cpuhp_lock_release(true); 1187 1188 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1189 ret = cpuhp_kick_ap(cpu, st, st->target); 1190 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1191 1192 return ret; 1193 } 1194 1195 static struct smp_hotplug_thread cpuhp_threads = { 1196 .store = &cpuhp_state.thread, 1197 .thread_should_run = cpuhp_should_run, 1198 .thread_fn = cpuhp_thread_fun, 1199 .thread_comm = "cpuhp/%u", 1200 .selfparking = true, 1201 }; 1202 1203 static __init void cpuhp_init_state(void) 1204 { 1205 struct cpuhp_cpu_state *st; 1206 int cpu; 1207 1208 for_each_possible_cpu(cpu) { 1209 st = per_cpu_ptr(&cpuhp_state, cpu); 1210 init_completion(&st->done_up); 1211 init_completion(&st->done_down); 1212 } 1213 } 1214 1215 void __init cpuhp_threads_init(void) 1216 { 1217 cpuhp_init_state(); 1218 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1219 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1220 } 1221 1222 #ifdef CONFIG_HOTPLUG_CPU 1223 #ifndef arch_clear_mm_cpumask_cpu 1224 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1225 #endif 1226 1227 /** 1228 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1229 * @cpu: a CPU id 1230 * 1231 * This function walks all processes, finds a valid mm struct for each one and 1232 * then clears a corresponding bit in mm's cpumask. While this all sounds 1233 * trivial, there are various non-obvious corner cases, which this function 1234 * tries to solve in a safe manner. 1235 * 1236 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1237 * be called only for an already offlined CPU. 1238 */ 1239 void clear_tasks_mm_cpumask(int cpu) 1240 { 1241 struct task_struct *p; 1242 1243 /* 1244 * This function is called after the cpu is taken down and marked 1245 * offline, so its not like new tasks will ever get this cpu set in 1246 * their mm mask. -- Peter Zijlstra 1247 * Thus, we may use rcu_read_lock() here, instead of grabbing 1248 * full-fledged tasklist_lock. 1249 */ 1250 WARN_ON(cpu_online(cpu)); 1251 rcu_read_lock(); 1252 for_each_process(p) { 1253 struct task_struct *t; 1254 1255 /* 1256 * Main thread might exit, but other threads may still have 1257 * a valid mm. Find one. 1258 */ 1259 t = find_lock_task_mm(p); 1260 if (!t) 1261 continue; 1262 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1263 task_unlock(t); 1264 } 1265 rcu_read_unlock(); 1266 } 1267 1268 /* Take this CPU down. */ 1269 static int take_cpu_down(void *_param) 1270 { 1271 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1272 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1273 int err, cpu = smp_processor_id(); 1274 1275 /* Ensure this CPU doesn't handle any more interrupts. */ 1276 err = __cpu_disable(); 1277 if (err < 0) 1278 return err; 1279 1280 /* 1281 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1282 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1283 */ 1284 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1285 1286 /* 1287 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1288 */ 1289 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1290 1291 /* Park the stopper thread */ 1292 stop_machine_park(cpu); 1293 return 0; 1294 } 1295 1296 static int takedown_cpu(unsigned int cpu) 1297 { 1298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1299 int err; 1300 1301 /* Park the smpboot threads */ 1302 kthread_park(st->thread); 1303 1304 /* 1305 * Prevent irq alloc/free while the dying cpu reorganizes the 1306 * interrupt affinities. 1307 */ 1308 irq_lock_sparse(); 1309 1310 /* 1311 * So now all preempt/rcu users must observe !cpu_active(). 1312 */ 1313 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1314 if (err) { 1315 /* CPU refused to die */ 1316 irq_unlock_sparse(); 1317 /* Unpark the hotplug thread so we can rollback there */ 1318 kthread_unpark(st->thread); 1319 return err; 1320 } 1321 BUG_ON(cpu_online(cpu)); 1322 1323 /* 1324 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1325 * all runnable tasks from the CPU, there's only the idle task left now 1326 * that the migration thread is done doing the stop_machine thing. 1327 * 1328 * Wait for the stop thread to go away. 1329 */ 1330 wait_for_ap_thread(st, false); 1331 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1332 1333 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1334 irq_unlock_sparse(); 1335 1336 hotplug_cpu__broadcast_tick_pull(cpu); 1337 /* This actually kills the CPU. */ 1338 __cpu_die(cpu); 1339 1340 cpuhp_bp_sync_dead(cpu); 1341 1342 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); 1343 1344 /* 1345 * Callbacks must be re-integrated right away to the RCU state machine. 1346 * Otherwise an RCU callback could block a further teardown function 1347 * waiting for its completion. 1348 */ 1349 rcutree_migrate_callbacks(cpu); 1350 1351 return 0; 1352 } 1353 1354 static void cpuhp_complete_idle_dead(void *arg) 1355 { 1356 struct cpuhp_cpu_state *st = arg; 1357 1358 complete_ap_thread(st, false); 1359 } 1360 1361 void cpuhp_report_idle_dead(void) 1362 { 1363 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1364 1365 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1366 tick_assert_timekeeping_handover(); 1367 rcutree_report_cpu_dead(); 1368 st->state = CPUHP_AP_IDLE_DEAD; 1369 /* 1370 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1371 * to an online cpu. 1372 */ 1373 smp_call_function_single(cpumask_first(cpu_online_mask), 1374 cpuhp_complete_idle_dead, st, 0); 1375 } 1376 1377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1378 enum cpuhp_state target) 1379 { 1380 enum cpuhp_state prev_state = st->state; 1381 int ret = 0; 1382 1383 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1384 if (ret) { 1385 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1386 ret, cpu, cpuhp_get_step(st->state)->name, 1387 st->state); 1388 1389 cpuhp_reset_state(cpu, st, prev_state); 1390 1391 if (st->state < prev_state) 1392 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1393 prev_state)); 1394 } 1395 1396 return ret; 1397 } 1398 1399 /* Requires cpu_add_remove_lock to be held */ 1400 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1401 enum cpuhp_state target) 1402 { 1403 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1404 int prev_state, ret = 0; 1405 1406 if (num_online_cpus() == 1) 1407 return -EBUSY; 1408 1409 if (!cpu_present(cpu)) 1410 return -EINVAL; 1411 1412 cpus_write_lock(); 1413 1414 cpuhp_tasks_frozen = tasks_frozen; 1415 1416 prev_state = cpuhp_set_state(cpu, st, target); 1417 /* 1418 * If the current CPU state is in the range of the AP hotplug thread, 1419 * then we need to kick the thread. 1420 */ 1421 if (st->state > CPUHP_TEARDOWN_CPU) { 1422 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1423 ret = cpuhp_kick_ap_work(cpu); 1424 /* 1425 * The AP side has done the error rollback already. Just 1426 * return the error code.. 1427 */ 1428 if (ret) 1429 goto out; 1430 1431 /* 1432 * We might have stopped still in the range of the AP hotplug 1433 * thread. Nothing to do anymore. 1434 */ 1435 if (st->state > CPUHP_TEARDOWN_CPU) 1436 goto out; 1437 1438 st->target = target; 1439 } 1440 /* 1441 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1442 * to do the further cleanups. 1443 */ 1444 ret = cpuhp_down_callbacks(cpu, st, target); 1445 if (ret && st->state < prev_state) { 1446 if (st->state == CPUHP_TEARDOWN_CPU) { 1447 cpuhp_reset_state(cpu, st, prev_state); 1448 __cpuhp_kick_ap(st); 1449 } else { 1450 WARN(1, "DEAD callback error for CPU%d", cpu); 1451 } 1452 } 1453 1454 out: 1455 cpus_write_unlock(); 1456 /* 1457 * Do post unplug cleanup. This is still protected against 1458 * concurrent CPU hotplug via cpu_add_remove_lock. 1459 */ 1460 lockup_detector_cleanup(); 1461 arch_smt_update(); 1462 return ret; 1463 } 1464 1465 struct cpu_down_work { 1466 unsigned int cpu; 1467 enum cpuhp_state target; 1468 }; 1469 1470 static long __cpu_down_maps_locked(void *arg) 1471 { 1472 struct cpu_down_work *work = arg; 1473 1474 return _cpu_down(work->cpu, 0, work->target); 1475 } 1476 1477 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1478 { 1479 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1480 1481 /* 1482 * If the platform does not support hotplug, report it explicitly to 1483 * differentiate it from a transient offlining failure. 1484 */ 1485 if (cpu_hotplug_offline_disabled) 1486 return -EOPNOTSUPP; 1487 if (cpu_hotplug_disabled) 1488 return -EBUSY; 1489 1490 /* 1491 * Ensure that the control task does not run on the to be offlined 1492 * CPU to prevent a deadlock against cfs_b->period_timer. 1493 * Also keep at least one housekeeping cpu onlined to avoid generating 1494 * an empty sched_domain span. 1495 */ 1496 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1497 if (cpu != work.cpu) 1498 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1499 } 1500 return -EBUSY; 1501 } 1502 1503 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1504 { 1505 int err; 1506 1507 cpu_maps_update_begin(); 1508 err = cpu_down_maps_locked(cpu, target); 1509 cpu_maps_update_done(); 1510 return err; 1511 } 1512 1513 /** 1514 * cpu_device_down - Bring down a cpu device 1515 * @dev: Pointer to the cpu device to offline 1516 * 1517 * This function is meant to be used by device core cpu subsystem only. 1518 * 1519 * Other subsystems should use remove_cpu() instead. 1520 * 1521 * Return: %0 on success or a negative errno code 1522 */ 1523 int cpu_device_down(struct device *dev) 1524 { 1525 return cpu_down(dev->id, CPUHP_OFFLINE); 1526 } 1527 1528 int remove_cpu(unsigned int cpu) 1529 { 1530 int ret; 1531 1532 lock_device_hotplug(); 1533 ret = device_offline(get_cpu_device(cpu)); 1534 unlock_device_hotplug(); 1535 1536 return ret; 1537 } 1538 EXPORT_SYMBOL_GPL(remove_cpu); 1539 1540 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1541 { 1542 unsigned int cpu; 1543 int error; 1544 1545 cpu_maps_update_begin(); 1546 1547 /* 1548 * Make certain the cpu I'm about to reboot on is online. 1549 * 1550 * This is inline to what migrate_to_reboot_cpu() already do. 1551 */ 1552 if (!cpu_online(primary_cpu)) 1553 primary_cpu = cpumask_first(cpu_online_mask); 1554 1555 for_each_online_cpu(cpu) { 1556 if (cpu == primary_cpu) 1557 continue; 1558 1559 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1560 if (error) { 1561 pr_err("Failed to offline CPU%d - error=%d", 1562 cpu, error); 1563 break; 1564 } 1565 } 1566 1567 /* 1568 * Ensure all but the reboot CPU are offline. 1569 */ 1570 BUG_ON(num_online_cpus() > 1); 1571 1572 /* 1573 * Make sure the CPUs won't be enabled by someone else after this 1574 * point. Kexec will reboot to a new kernel shortly resetting 1575 * everything along the way. 1576 */ 1577 cpu_hotplug_disabled++; 1578 1579 cpu_maps_update_done(); 1580 } 1581 1582 #else 1583 #define takedown_cpu NULL 1584 #endif /*CONFIG_HOTPLUG_CPU*/ 1585 1586 /** 1587 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1588 * @cpu: cpu that just started 1589 * 1590 * It must be called by the arch code on the new cpu, before the new cpu 1591 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1592 */ 1593 void notify_cpu_starting(unsigned int cpu) 1594 { 1595 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1596 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1597 1598 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1599 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1600 1601 /* 1602 * STARTING must not fail! 1603 */ 1604 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1605 } 1606 1607 /* 1608 * Called from the idle task. Wake up the controlling task which brings the 1609 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1610 * online bringup to the hotplug thread. 1611 */ 1612 void cpuhp_online_idle(enum cpuhp_state state) 1613 { 1614 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1615 1616 /* Happens for the boot cpu */ 1617 if (state != CPUHP_AP_ONLINE_IDLE) 1618 return; 1619 1620 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1621 1622 /* 1623 * Unpark the stopper thread before we start the idle loop (and start 1624 * scheduling); this ensures the stopper task is always available. 1625 */ 1626 stop_machine_unpark(smp_processor_id()); 1627 1628 st->state = CPUHP_AP_ONLINE_IDLE; 1629 complete_ap_thread(st, true); 1630 } 1631 1632 /* Requires cpu_add_remove_lock to be held */ 1633 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1634 { 1635 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1636 struct task_struct *idle; 1637 int ret = 0; 1638 1639 cpus_write_lock(); 1640 1641 if (!cpu_present(cpu)) { 1642 ret = -EINVAL; 1643 goto out; 1644 } 1645 1646 /* 1647 * The caller of cpu_up() might have raced with another 1648 * caller. Nothing to do. 1649 */ 1650 if (st->state >= target) 1651 goto out; 1652 1653 if (st->state == CPUHP_OFFLINE) { 1654 /* Let it fail before we try to bring the cpu up */ 1655 idle = idle_thread_get(cpu); 1656 if (IS_ERR(idle)) { 1657 ret = PTR_ERR(idle); 1658 goto out; 1659 } 1660 1661 /* 1662 * Reset stale stack state from the last time this CPU was online. 1663 */ 1664 scs_task_reset(idle); 1665 kasan_unpoison_task_stack(idle); 1666 } 1667 1668 cpuhp_tasks_frozen = tasks_frozen; 1669 1670 cpuhp_set_state(cpu, st, target); 1671 /* 1672 * If the current CPU state is in the range of the AP hotplug thread, 1673 * then we need to kick the thread once more. 1674 */ 1675 if (st->state > CPUHP_BRINGUP_CPU) { 1676 ret = cpuhp_kick_ap_work(cpu); 1677 /* 1678 * The AP side has done the error rollback already. Just 1679 * return the error code.. 1680 */ 1681 if (ret) 1682 goto out; 1683 } 1684 1685 /* 1686 * Try to reach the target state. We max out on the BP at 1687 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1688 * responsible for bringing it up to the target state. 1689 */ 1690 target = min((int)target, CPUHP_BRINGUP_CPU); 1691 ret = cpuhp_up_callbacks(cpu, st, target); 1692 out: 1693 cpus_write_unlock(); 1694 arch_smt_update(); 1695 return ret; 1696 } 1697 1698 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1699 { 1700 int err = 0; 1701 1702 if (!cpu_possible(cpu)) { 1703 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1704 cpu); 1705 return -EINVAL; 1706 } 1707 1708 err = try_online_node(cpu_to_node(cpu)); 1709 if (err) 1710 return err; 1711 1712 cpu_maps_update_begin(); 1713 1714 if (cpu_hotplug_disabled) { 1715 err = -EBUSY; 1716 goto out; 1717 } 1718 if (!cpu_bootable(cpu)) { 1719 err = -EPERM; 1720 goto out; 1721 } 1722 1723 err = _cpu_up(cpu, 0, target); 1724 out: 1725 cpu_maps_update_done(); 1726 return err; 1727 } 1728 1729 /** 1730 * cpu_device_up - Bring up a cpu device 1731 * @dev: Pointer to the cpu device to online 1732 * 1733 * This function is meant to be used by device core cpu subsystem only. 1734 * 1735 * Other subsystems should use add_cpu() instead. 1736 * 1737 * Return: %0 on success or a negative errno code 1738 */ 1739 int cpu_device_up(struct device *dev) 1740 { 1741 return cpu_up(dev->id, CPUHP_ONLINE); 1742 } 1743 1744 int add_cpu(unsigned int cpu) 1745 { 1746 int ret; 1747 1748 lock_device_hotplug(); 1749 ret = device_online(get_cpu_device(cpu)); 1750 unlock_device_hotplug(); 1751 1752 return ret; 1753 } 1754 EXPORT_SYMBOL_GPL(add_cpu); 1755 1756 /** 1757 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1758 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1759 * 1760 * On some architectures like arm64, we can hibernate on any CPU, but on 1761 * wake up the CPU we hibernated on might be offline as a side effect of 1762 * using maxcpus= for example. 1763 * 1764 * Return: %0 on success or a negative errno code 1765 */ 1766 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1767 { 1768 int ret; 1769 1770 if (!cpu_online(sleep_cpu)) { 1771 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1772 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1773 if (ret) { 1774 pr_err("Failed to bring hibernate-CPU up!\n"); 1775 return ret; 1776 } 1777 } 1778 return 0; 1779 } 1780 1781 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1782 enum cpuhp_state target) 1783 { 1784 unsigned int cpu; 1785 1786 for_each_cpu(cpu, mask) { 1787 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1788 1789 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1790 /* 1791 * If this failed then cpu_up() might have only 1792 * rolled back to CPUHP_BP_KICK_AP for the final 1793 * online. Clean it up. NOOP if already rolled back. 1794 */ 1795 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1796 } 1797 1798 if (!--ncpus) 1799 break; 1800 } 1801 } 1802 1803 #ifdef CONFIG_HOTPLUG_PARALLEL 1804 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1805 1806 static int __init parallel_bringup_parse_param(char *arg) 1807 { 1808 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1809 } 1810 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1811 1812 #ifdef CONFIG_HOTPLUG_SMT 1813 static inline bool cpuhp_smt_aware(void) 1814 { 1815 return cpu_smt_max_threads > 1; 1816 } 1817 1818 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1819 { 1820 return cpu_primary_thread_mask; 1821 } 1822 #else 1823 static inline bool cpuhp_smt_aware(void) 1824 { 1825 return false; 1826 } 1827 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1828 { 1829 return cpu_none_mask; 1830 } 1831 #endif 1832 1833 bool __weak arch_cpuhp_init_parallel_bringup(void) 1834 { 1835 return true; 1836 } 1837 1838 /* 1839 * On architectures which have enabled parallel bringup this invokes all BP 1840 * prepare states for each of the to be onlined APs first. The last state 1841 * sends the startup IPI to the APs. The APs proceed through the low level 1842 * bringup code in parallel and then wait for the control CPU to release 1843 * them one by one for the final onlining procedure. 1844 * 1845 * This avoids waiting for each AP to respond to the startup IPI in 1846 * CPUHP_BRINGUP_CPU. 1847 */ 1848 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1849 { 1850 const struct cpumask *mask = cpu_present_mask; 1851 1852 if (__cpuhp_parallel_bringup) 1853 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1854 if (!__cpuhp_parallel_bringup) 1855 return false; 1856 1857 if (cpuhp_smt_aware()) { 1858 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1859 static struct cpumask tmp_mask __initdata; 1860 1861 /* 1862 * X86 requires to prevent that SMT siblings stopped while 1863 * the primary thread does a microcode update for various 1864 * reasons. Bring the primary threads up first. 1865 */ 1866 cpumask_and(&tmp_mask, mask, pmask); 1867 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1868 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1869 /* Account for the online CPUs */ 1870 ncpus -= num_online_cpus(); 1871 if (!ncpus) 1872 return true; 1873 /* Create the mask for secondary CPUs */ 1874 cpumask_andnot(&tmp_mask, mask, pmask); 1875 mask = &tmp_mask; 1876 } 1877 1878 /* Bring the not-yet started CPUs up */ 1879 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1880 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1881 return true; 1882 } 1883 #else 1884 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1885 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1886 1887 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1888 { 1889 if (!max_cpus) 1890 return; 1891 1892 /* Try parallel bringup optimization if enabled */ 1893 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1894 return; 1895 1896 /* Full per CPU serialized bringup */ 1897 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1898 } 1899 1900 #ifdef CONFIG_PM_SLEEP_SMP 1901 static cpumask_var_t frozen_cpus; 1902 1903 int freeze_secondary_cpus(int primary) 1904 { 1905 int cpu, error = 0; 1906 1907 cpu_maps_update_begin(); 1908 if (primary == -1) { 1909 primary = cpumask_first(cpu_online_mask); 1910 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1911 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1912 } else { 1913 if (!cpu_online(primary)) 1914 primary = cpumask_first(cpu_online_mask); 1915 } 1916 1917 /* 1918 * We take down all of the non-boot CPUs in one shot to avoid races 1919 * with the userspace trying to use the CPU hotplug at the same time 1920 */ 1921 cpumask_clear(frozen_cpus); 1922 1923 pr_info("Disabling non-boot CPUs ...\n"); 1924 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1925 if (!cpu_online(cpu) || cpu == primary) 1926 continue; 1927 1928 if (pm_wakeup_pending()) { 1929 pr_info("Wakeup pending. Abort CPU freeze\n"); 1930 error = -EBUSY; 1931 break; 1932 } 1933 1934 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1935 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1936 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1937 if (!error) 1938 cpumask_set_cpu(cpu, frozen_cpus); 1939 else { 1940 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1941 break; 1942 } 1943 } 1944 1945 if (!error) 1946 BUG_ON(num_online_cpus() > 1); 1947 else 1948 pr_err("Non-boot CPUs are not disabled\n"); 1949 1950 /* 1951 * Make sure the CPUs won't be enabled by someone else. We need to do 1952 * this even in case of failure as all freeze_secondary_cpus() users are 1953 * supposed to do thaw_secondary_cpus() on the failure path. 1954 */ 1955 cpu_hotplug_disabled++; 1956 1957 cpu_maps_update_done(); 1958 return error; 1959 } 1960 1961 void __weak arch_thaw_secondary_cpus_begin(void) 1962 { 1963 } 1964 1965 void __weak arch_thaw_secondary_cpus_end(void) 1966 { 1967 } 1968 1969 void thaw_secondary_cpus(void) 1970 { 1971 int cpu, error; 1972 1973 /* Allow everyone to use the CPU hotplug again */ 1974 cpu_maps_update_begin(); 1975 __cpu_hotplug_enable(); 1976 if (cpumask_empty(frozen_cpus)) 1977 goto out; 1978 1979 pr_info("Enabling non-boot CPUs ...\n"); 1980 1981 arch_thaw_secondary_cpus_begin(); 1982 1983 for_each_cpu(cpu, frozen_cpus) { 1984 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1985 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1986 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1987 if (!error) { 1988 pr_info("CPU%d is up\n", cpu); 1989 continue; 1990 } 1991 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1992 } 1993 1994 arch_thaw_secondary_cpus_end(); 1995 1996 cpumask_clear(frozen_cpus); 1997 out: 1998 cpu_maps_update_done(); 1999 } 2000 2001 static int __init alloc_frozen_cpus(void) 2002 { 2003 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2004 return -ENOMEM; 2005 return 0; 2006 } 2007 core_initcall(alloc_frozen_cpus); 2008 2009 /* 2010 * When callbacks for CPU hotplug notifications are being executed, we must 2011 * ensure that the state of the system with respect to the tasks being frozen 2012 * or not, as reported by the notification, remains unchanged *throughout the 2013 * duration* of the execution of the callbacks. 2014 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2015 * 2016 * This synchronization is implemented by mutually excluding regular CPU 2017 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2018 * Hibernate notifications. 2019 */ 2020 static int 2021 cpu_hotplug_pm_callback(struct notifier_block *nb, 2022 unsigned long action, void *ptr) 2023 { 2024 switch (action) { 2025 2026 case PM_SUSPEND_PREPARE: 2027 case PM_HIBERNATION_PREPARE: 2028 cpu_hotplug_disable(); 2029 break; 2030 2031 case PM_POST_SUSPEND: 2032 case PM_POST_HIBERNATION: 2033 cpu_hotplug_enable(); 2034 break; 2035 2036 default: 2037 return NOTIFY_DONE; 2038 } 2039 2040 return NOTIFY_OK; 2041 } 2042 2043 2044 static int __init cpu_hotplug_pm_sync_init(void) 2045 { 2046 /* 2047 * cpu_hotplug_pm_callback has higher priority than x86 2048 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2049 * to disable cpu hotplug to avoid cpu hotplug race. 2050 */ 2051 pm_notifier(cpu_hotplug_pm_callback, 0); 2052 return 0; 2053 } 2054 core_initcall(cpu_hotplug_pm_sync_init); 2055 2056 #endif /* CONFIG_PM_SLEEP_SMP */ 2057 2058 int __boot_cpu_id; 2059 2060 #endif /* CONFIG_SMP */ 2061 2062 /* Boot processor state steps */ 2063 static struct cpuhp_step cpuhp_hp_states[] = { 2064 [CPUHP_OFFLINE] = { 2065 .name = "offline", 2066 .startup.single = NULL, 2067 .teardown.single = NULL, 2068 }, 2069 #ifdef CONFIG_SMP 2070 [CPUHP_CREATE_THREADS]= { 2071 .name = "threads:prepare", 2072 .startup.single = smpboot_create_threads, 2073 .teardown.single = NULL, 2074 .cant_stop = true, 2075 }, 2076 [CPUHP_PERF_PREPARE] = { 2077 .name = "perf:prepare", 2078 .startup.single = perf_event_init_cpu, 2079 .teardown.single = perf_event_exit_cpu, 2080 }, 2081 [CPUHP_RANDOM_PREPARE] = { 2082 .name = "random:prepare", 2083 .startup.single = random_prepare_cpu, 2084 .teardown.single = NULL, 2085 }, 2086 [CPUHP_WORKQUEUE_PREP] = { 2087 .name = "workqueue:prepare", 2088 .startup.single = workqueue_prepare_cpu, 2089 .teardown.single = NULL, 2090 }, 2091 [CPUHP_HRTIMERS_PREPARE] = { 2092 .name = "hrtimers:prepare", 2093 .startup.single = hrtimers_prepare_cpu, 2094 .teardown.single = NULL, 2095 }, 2096 [CPUHP_SMPCFD_PREPARE] = { 2097 .name = "smpcfd:prepare", 2098 .startup.single = smpcfd_prepare_cpu, 2099 .teardown.single = smpcfd_dead_cpu, 2100 }, 2101 [CPUHP_RELAY_PREPARE] = { 2102 .name = "relay:prepare", 2103 .startup.single = relay_prepare_cpu, 2104 .teardown.single = NULL, 2105 }, 2106 [CPUHP_RCUTREE_PREP] = { 2107 .name = "RCU/tree:prepare", 2108 .startup.single = rcutree_prepare_cpu, 2109 .teardown.single = rcutree_dead_cpu, 2110 }, 2111 /* 2112 * On the tear-down path, timers_dead_cpu() must be invoked 2113 * before blk_mq_queue_reinit_notify() from notify_dead(), 2114 * otherwise a RCU stall occurs. 2115 */ 2116 [CPUHP_TIMERS_PREPARE] = { 2117 .name = "timers:prepare", 2118 .startup.single = timers_prepare_cpu, 2119 .teardown.single = timers_dead_cpu, 2120 }, 2121 2122 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2123 /* 2124 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2125 * the next step will release it. 2126 */ 2127 [CPUHP_BP_KICK_AP] = { 2128 .name = "cpu:kick_ap", 2129 .startup.single = cpuhp_kick_ap_alive, 2130 }, 2131 2132 /* 2133 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2134 * releases it for the complete bringup. 2135 */ 2136 [CPUHP_BRINGUP_CPU] = { 2137 .name = "cpu:bringup", 2138 .startup.single = cpuhp_bringup_ap, 2139 .teardown.single = finish_cpu, 2140 .cant_stop = true, 2141 }, 2142 #else 2143 /* 2144 * All-in-one CPU bringup state which includes the kick alive. 2145 */ 2146 [CPUHP_BRINGUP_CPU] = { 2147 .name = "cpu:bringup", 2148 .startup.single = bringup_cpu, 2149 .teardown.single = finish_cpu, 2150 .cant_stop = true, 2151 }, 2152 #endif 2153 /* Final state before CPU kills itself */ 2154 [CPUHP_AP_IDLE_DEAD] = { 2155 .name = "idle:dead", 2156 }, 2157 /* 2158 * Last state before CPU enters the idle loop to die. Transient state 2159 * for synchronization. 2160 */ 2161 [CPUHP_AP_OFFLINE] = { 2162 .name = "ap:offline", 2163 .cant_stop = true, 2164 }, 2165 /* First state is scheduler control. Interrupts are disabled */ 2166 [CPUHP_AP_SCHED_STARTING] = { 2167 .name = "sched:starting", 2168 .startup.single = sched_cpu_starting, 2169 .teardown.single = sched_cpu_dying, 2170 }, 2171 [CPUHP_AP_RCUTREE_DYING] = { 2172 .name = "RCU/tree:dying", 2173 .startup.single = NULL, 2174 .teardown.single = rcutree_dying_cpu, 2175 }, 2176 [CPUHP_AP_SMPCFD_DYING] = { 2177 .name = "smpcfd:dying", 2178 .startup.single = NULL, 2179 .teardown.single = smpcfd_dying_cpu, 2180 }, 2181 [CPUHP_AP_HRTIMERS_DYING] = { 2182 .name = "hrtimers:dying", 2183 .startup.single = hrtimers_cpu_starting, 2184 .teardown.single = hrtimers_cpu_dying, 2185 }, 2186 [CPUHP_AP_TICK_DYING] = { 2187 .name = "tick:dying", 2188 .startup.single = NULL, 2189 .teardown.single = tick_cpu_dying, 2190 }, 2191 /* Entry state on starting. Interrupts enabled from here on. Transient 2192 * state for synchronsization */ 2193 [CPUHP_AP_ONLINE] = { 2194 .name = "ap:online", 2195 }, 2196 /* 2197 * Handled on control processor until the plugged processor manages 2198 * this itself. 2199 */ 2200 [CPUHP_TEARDOWN_CPU] = { 2201 .name = "cpu:teardown", 2202 .startup.single = NULL, 2203 .teardown.single = takedown_cpu, 2204 .cant_stop = true, 2205 }, 2206 2207 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2208 .name = "sched:waitempty", 2209 .startup.single = NULL, 2210 .teardown.single = sched_cpu_wait_empty, 2211 }, 2212 2213 /* Handle smpboot threads park/unpark */ 2214 [CPUHP_AP_SMPBOOT_THREADS] = { 2215 .name = "smpboot/threads:online", 2216 .startup.single = smpboot_unpark_threads, 2217 .teardown.single = smpboot_park_threads, 2218 }, 2219 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2220 .name = "irq/affinity:online", 2221 .startup.single = irq_affinity_online_cpu, 2222 .teardown.single = NULL, 2223 }, 2224 [CPUHP_AP_PERF_ONLINE] = { 2225 .name = "perf:online", 2226 .startup.single = perf_event_init_cpu, 2227 .teardown.single = perf_event_exit_cpu, 2228 }, 2229 [CPUHP_AP_WATCHDOG_ONLINE] = { 2230 .name = "lockup_detector:online", 2231 .startup.single = lockup_detector_online_cpu, 2232 .teardown.single = lockup_detector_offline_cpu, 2233 }, 2234 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2235 .name = "workqueue:online", 2236 .startup.single = workqueue_online_cpu, 2237 .teardown.single = workqueue_offline_cpu, 2238 }, 2239 [CPUHP_AP_RANDOM_ONLINE] = { 2240 .name = "random:online", 2241 .startup.single = random_online_cpu, 2242 .teardown.single = NULL, 2243 }, 2244 [CPUHP_AP_RCUTREE_ONLINE] = { 2245 .name = "RCU/tree:online", 2246 .startup.single = rcutree_online_cpu, 2247 .teardown.single = rcutree_offline_cpu, 2248 }, 2249 #endif 2250 /* 2251 * The dynamically registered state space is here 2252 */ 2253 2254 #ifdef CONFIG_SMP 2255 /* Last state is scheduler control setting the cpu active */ 2256 [CPUHP_AP_ACTIVE] = { 2257 .name = "sched:active", 2258 .startup.single = sched_cpu_activate, 2259 .teardown.single = sched_cpu_deactivate, 2260 }, 2261 #endif 2262 2263 /* CPU is fully up and running. */ 2264 [CPUHP_ONLINE] = { 2265 .name = "online", 2266 .startup.single = NULL, 2267 .teardown.single = NULL, 2268 }, 2269 }; 2270 2271 /* Sanity check for callbacks */ 2272 static int cpuhp_cb_check(enum cpuhp_state state) 2273 { 2274 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2275 return -EINVAL; 2276 return 0; 2277 } 2278 2279 /* 2280 * Returns a free for dynamic slot assignment of the Online state. The states 2281 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2282 * by having no name assigned. 2283 */ 2284 static int cpuhp_reserve_state(enum cpuhp_state state) 2285 { 2286 enum cpuhp_state i, end; 2287 struct cpuhp_step *step; 2288 2289 switch (state) { 2290 case CPUHP_AP_ONLINE_DYN: 2291 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2292 end = CPUHP_AP_ONLINE_DYN_END; 2293 break; 2294 case CPUHP_BP_PREPARE_DYN: 2295 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2296 end = CPUHP_BP_PREPARE_DYN_END; 2297 break; 2298 default: 2299 return -EINVAL; 2300 } 2301 2302 for (i = state; i <= end; i++, step++) { 2303 if (!step->name) 2304 return i; 2305 } 2306 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2307 return -ENOSPC; 2308 } 2309 2310 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2311 int (*startup)(unsigned int cpu), 2312 int (*teardown)(unsigned int cpu), 2313 bool multi_instance) 2314 { 2315 /* (Un)Install the callbacks for further cpu hotplug operations */ 2316 struct cpuhp_step *sp; 2317 int ret = 0; 2318 2319 /* 2320 * If name is NULL, then the state gets removed. 2321 * 2322 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2323 * the first allocation from these dynamic ranges, so the removal 2324 * would trigger a new allocation and clear the wrong (already 2325 * empty) state, leaving the callbacks of the to be cleared state 2326 * dangling, which causes wreckage on the next hotplug operation. 2327 */ 2328 if (name && (state == CPUHP_AP_ONLINE_DYN || 2329 state == CPUHP_BP_PREPARE_DYN)) { 2330 ret = cpuhp_reserve_state(state); 2331 if (ret < 0) 2332 return ret; 2333 state = ret; 2334 } 2335 sp = cpuhp_get_step(state); 2336 if (name && sp->name) 2337 return -EBUSY; 2338 2339 sp->startup.single = startup; 2340 sp->teardown.single = teardown; 2341 sp->name = name; 2342 sp->multi_instance = multi_instance; 2343 INIT_HLIST_HEAD(&sp->list); 2344 return ret; 2345 } 2346 2347 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2348 { 2349 return cpuhp_get_step(state)->teardown.single; 2350 } 2351 2352 /* 2353 * Call the startup/teardown function for a step either on the AP or 2354 * on the current CPU. 2355 */ 2356 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2357 struct hlist_node *node) 2358 { 2359 struct cpuhp_step *sp = cpuhp_get_step(state); 2360 int ret; 2361 2362 /* 2363 * If there's nothing to do, we done. 2364 * Relies on the union for multi_instance. 2365 */ 2366 if (cpuhp_step_empty(bringup, sp)) 2367 return 0; 2368 /* 2369 * The non AP bound callbacks can fail on bringup. On teardown 2370 * e.g. module removal we crash for now. 2371 */ 2372 #ifdef CONFIG_SMP 2373 if (cpuhp_is_ap_state(state)) 2374 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2375 else 2376 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2377 #else 2378 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2379 #endif 2380 BUG_ON(ret && !bringup); 2381 return ret; 2382 } 2383 2384 /* 2385 * Called from __cpuhp_setup_state on a recoverable failure. 2386 * 2387 * Note: The teardown callbacks for rollback are not allowed to fail! 2388 */ 2389 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2390 struct hlist_node *node) 2391 { 2392 int cpu; 2393 2394 /* Roll back the already executed steps on the other cpus */ 2395 for_each_present_cpu(cpu) { 2396 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2397 int cpustate = st->state; 2398 2399 if (cpu >= failedcpu) 2400 break; 2401 2402 /* Did we invoke the startup call on that cpu ? */ 2403 if (cpustate >= state) 2404 cpuhp_issue_call(cpu, state, false, node); 2405 } 2406 } 2407 2408 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2409 struct hlist_node *node, 2410 bool invoke) 2411 { 2412 struct cpuhp_step *sp; 2413 int cpu; 2414 int ret; 2415 2416 lockdep_assert_cpus_held(); 2417 2418 sp = cpuhp_get_step(state); 2419 if (sp->multi_instance == false) 2420 return -EINVAL; 2421 2422 mutex_lock(&cpuhp_state_mutex); 2423 2424 if (!invoke || !sp->startup.multi) 2425 goto add_node; 2426 2427 /* 2428 * Try to call the startup callback for each present cpu 2429 * depending on the hotplug state of the cpu. 2430 */ 2431 for_each_present_cpu(cpu) { 2432 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2433 int cpustate = st->state; 2434 2435 if (cpustate < state) 2436 continue; 2437 2438 ret = cpuhp_issue_call(cpu, state, true, node); 2439 if (ret) { 2440 if (sp->teardown.multi) 2441 cpuhp_rollback_install(cpu, state, node); 2442 goto unlock; 2443 } 2444 } 2445 add_node: 2446 ret = 0; 2447 hlist_add_head(node, &sp->list); 2448 unlock: 2449 mutex_unlock(&cpuhp_state_mutex); 2450 return ret; 2451 } 2452 2453 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2454 bool invoke) 2455 { 2456 int ret; 2457 2458 cpus_read_lock(); 2459 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2460 cpus_read_unlock(); 2461 return ret; 2462 } 2463 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2464 2465 /** 2466 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2467 * @state: The state to setup 2468 * @name: Name of the step 2469 * @invoke: If true, the startup function is invoked for cpus where 2470 * cpu state >= @state 2471 * @startup: startup callback function 2472 * @teardown: teardown callback function 2473 * @multi_instance: State is set up for multiple instances which get 2474 * added afterwards. 2475 * 2476 * The caller needs to hold cpus read locked while calling this function. 2477 * Return: 2478 * On success: 2479 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2480 * 0 for all other states 2481 * On failure: proper (negative) error code 2482 */ 2483 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2484 const char *name, bool invoke, 2485 int (*startup)(unsigned int cpu), 2486 int (*teardown)(unsigned int cpu), 2487 bool multi_instance) 2488 { 2489 int cpu, ret = 0; 2490 bool dynstate; 2491 2492 lockdep_assert_cpus_held(); 2493 2494 if (cpuhp_cb_check(state) || !name) 2495 return -EINVAL; 2496 2497 mutex_lock(&cpuhp_state_mutex); 2498 2499 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2500 multi_instance); 2501 2502 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2503 if (ret > 0 && dynstate) { 2504 state = ret; 2505 ret = 0; 2506 } 2507 2508 if (ret || !invoke || !startup) 2509 goto out; 2510 2511 /* 2512 * Try to call the startup callback for each present cpu 2513 * depending on the hotplug state of the cpu. 2514 */ 2515 for_each_present_cpu(cpu) { 2516 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2517 int cpustate = st->state; 2518 2519 if (cpustate < state) 2520 continue; 2521 2522 ret = cpuhp_issue_call(cpu, state, true, NULL); 2523 if (ret) { 2524 if (teardown) 2525 cpuhp_rollback_install(cpu, state, NULL); 2526 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2527 goto out; 2528 } 2529 } 2530 out: 2531 mutex_unlock(&cpuhp_state_mutex); 2532 /* 2533 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2534 * return the dynamically allocated state in case of success. 2535 */ 2536 if (!ret && dynstate) 2537 return state; 2538 return ret; 2539 } 2540 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2541 2542 int __cpuhp_setup_state(enum cpuhp_state state, 2543 const char *name, bool invoke, 2544 int (*startup)(unsigned int cpu), 2545 int (*teardown)(unsigned int cpu), 2546 bool multi_instance) 2547 { 2548 int ret; 2549 2550 cpus_read_lock(); 2551 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2552 teardown, multi_instance); 2553 cpus_read_unlock(); 2554 return ret; 2555 } 2556 EXPORT_SYMBOL(__cpuhp_setup_state); 2557 2558 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2559 struct hlist_node *node, bool invoke) 2560 { 2561 struct cpuhp_step *sp = cpuhp_get_step(state); 2562 int cpu; 2563 2564 BUG_ON(cpuhp_cb_check(state)); 2565 2566 if (!sp->multi_instance) 2567 return -EINVAL; 2568 2569 cpus_read_lock(); 2570 mutex_lock(&cpuhp_state_mutex); 2571 2572 if (!invoke || !cpuhp_get_teardown_cb(state)) 2573 goto remove; 2574 /* 2575 * Call the teardown callback for each present cpu depending 2576 * on the hotplug state of the cpu. This function is not 2577 * allowed to fail currently! 2578 */ 2579 for_each_present_cpu(cpu) { 2580 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2581 int cpustate = st->state; 2582 2583 if (cpustate >= state) 2584 cpuhp_issue_call(cpu, state, false, node); 2585 } 2586 2587 remove: 2588 hlist_del(node); 2589 mutex_unlock(&cpuhp_state_mutex); 2590 cpus_read_unlock(); 2591 2592 return 0; 2593 } 2594 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2595 2596 /** 2597 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2598 * @state: The state to remove 2599 * @invoke: If true, the teardown function is invoked for cpus where 2600 * cpu state >= @state 2601 * 2602 * The caller needs to hold cpus read locked while calling this function. 2603 * The teardown callback is currently not allowed to fail. Think 2604 * about module removal! 2605 */ 2606 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2607 { 2608 struct cpuhp_step *sp = cpuhp_get_step(state); 2609 int cpu; 2610 2611 BUG_ON(cpuhp_cb_check(state)); 2612 2613 lockdep_assert_cpus_held(); 2614 2615 mutex_lock(&cpuhp_state_mutex); 2616 if (sp->multi_instance) { 2617 WARN(!hlist_empty(&sp->list), 2618 "Error: Removing state %d which has instances left.\n", 2619 state); 2620 goto remove; 2621 } 2622 2623 if (!invoke || !cpuhp_get_teardown_cb(state)) 2624 goto remove; 2625 2626 /* 2627 * Call the teardown callback for each present cpu depending 2628 * on the hotplug state of the cpu. This function is not 2629 * allowed to fail currently! 2630 */ 2631 for_each_present_cpu(cpu) { 2632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2633 int cpustate = st->state; 2634 2635 if (cpustate >= state) 2636 cpuhp_issue_call(cpu, state, false, NULL); 2637 } 2638 remove: 2639 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2640 mutex_unlock(&cpuhp_state_mutex); 2641 } 2642 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2643 2644 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2645 { 2646 cpus_read_lock(); 2647 __cpuhp_remove_state_cpuslocked(state, invoke); 2648 cpus_read_unlock(); 2649 } 2650 EXPORT_SYMBOL(__cpuhp_remove_state); 2651 2652 #ifdef CONFIG_HOTPLUG_SMT 2653 static void cpuhp_offline_cpu_device(unsigned int cpu) 2654 { 2655 struct device *dev = get_cpu_device(cpu); 2656 2657 dev->offline = true; 2658 /* Tell user space about the state change */ 2659 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2660 } 2661 2662 static void cpuhp_online_cpu_device(unsigned int cpu) 2663 { 2664 struct device *dev = get_cpu_device(cpu); 2665 2666 dev->offline = false; 2667 /* Tell user space about the state change */ 2668 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2669 } 2670 2671 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2672 { 2673 int cpu, ret = 0; 2674 2675 cpu_maps_update_begin(); 2676 for_each_online_cpu(cpu) { 2677 if (topology_is_primary_thread(cpu)) 2678 continue; 2679 /* 2680 * Disable can be called with CPU_SMT_ENABLED when changing 2681 * from a higher to lower number of SMT threads per core. 2682 */ 2683 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2684 continue; 2685 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2686 if (ret) 2687 break; 2688 /* 2689 * As this needs to hold the cpu maps lock it's impossible 2690 * to call device_offline() because that ends up calling 2691 * cpu_down() which takes cpu maps lock. cpu maps lock 2692 * needs to be held as this might race against in kernel 2693 * abusers of the hotplug machinery (thermal management). 2694 * 2695 * So nothing would update device:offline state. That would 2696 * leave the sysfs entry stale and prevent onlining after 2697 * smt control has been changed to 'off' again. This is 2698 * called under the sysfs hotplug lock, so it is properly 2699 * serialized against the regular offline usage. 2700 */ 2701 cpuhp_offline_cpu_device(cpu); 2702 } 2703 if (!ret) 2704 cpu_smt_control = ctrlval; 2705 cpu_maps_update_done(); 2706 return ret; 2707 } 2708 2709 /* Check if the core a CPU belongs to is online */ 2710 #if !defined(topology_is_core_online) 2711 static inline bool topology_is_core_online(unsigned int cpu) 2712 { 2713 return true; 2714 } 2715 #endif 2716 2717 int cpuhp_smt_enable(void) 2718 { 2719 int cpu, ret = 0; 2720 2721 cpu_maps_update_begin(); 2722 cpu_smt_control = CPU_SMT_ENABLED; 2723 for_each_present_cpu(cpu) { 2724 /* Skip online CPUs and CPUs on offline nodes */ 2725 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2726 continue; 2727 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2728 continue; 2729 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2730 if (ret) 2731 break; 2732 /* See comment in cpuhp_smt_disable() */ 2733 cpuhp_online_cpu_device(cpu); 2734 } 2735 cpu_maps_update_done(); 2736 return ret; 2737 } 2738 #endif 2739 2740 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2741 static ssize_t state_show(struct device *dev, 2742 struct device_attribute *attr, char *buf) 2743 { 2744 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2745 2746 return sprintf(buf, "%d\n", st->state); 2747 } 2748 static DEVICE_ATTR_RO(state); 2749 2750 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2751 const char *buf, size_t count) 2752 { 2753 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2754 struct cpuhp_step *sp; 2755 int target, ret; 2756 2757 ret = kstrtoint(buf, 10, &target); 2758 if (ret) 2759 return ret; 2760 2761 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2762 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2763 return -EINVAL; 2764 #else 2765 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2766 return -EINVAL; 2767 #endif 2768 2769 ret = lock_device_hotplug_sysfs(); 2770 if (ret) 2771 return ret; 2772 2773 mutex_lock(&cpuhp_state_mutex); 2774 sp = cpuhp_get_step(target); 2775 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2776 mutex_unlock(&cpuhp_state_mutex); 2777 if (ret) 2778 goto out; 2779 2780 if (st->state < target) 2781 ret = cpu_up(dev->id, target); 2782 else if (st->state > target) 2783 ret = cpu_down(dev->id, target); 2784 else if (WARN_ON(st->target != target)) 2785 st->target = target; 2786 out: 2787 unlock_device_hotplug(); 2788 return ret ? ret : count; 2789 } 2790 2791 static ssize_t target_show(struct device *dev, 2792 struct device_attribute *attr, char *buf) 2793 { 2794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2795 2796 return sprintf(buf, "%d\n", st->target); 2797 } 2798 static DEVICE_ATTR_RW(target); 2799 2800 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2801 const char *buf, size_t count) 2802 { 2803 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2804 struct cpuhp_step *sp; 2805 int fail, ret; 2806 2807 ret = kstrtoint(buf, 10, &fail); 2808 if (ret) 2809 return ret; 2810 2811 if (fail == CPUHP_INVALID) { 2812 st->fail = fail; 2813 return count; 2814 } 2815 2816 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2817 return -EINVAL; 2818 2819 /* 2820 * Cannot fail STARTING/DYING callbacks. 2821 */ 2822 if (cpuhp_is_atomic_state(fail)) 2823 return -EINVAL; 2824 2825 /* 2826 * DEAD callbacks cannot fail... 2827 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2828 * triggering STARTING callbacks, a failure in this state would 2829 * hinder rollback. 2830 */ 2831 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2832 return -EINVAL; 2833 2834 /* 2835 * Cannot fail anything that doesn't have callbacks. 2836 */ 2837 mutex_lock(&cpuhp_state_mutex); 2838 sp = cpuhp_get_step(fail); 2839 if (!sp->startup.single && !sp->teardown.single) 2840 ret = -EINVAL; 2841 mutex_unlock(&cpuhp_state_mutex); 2842 if (ret) 2843 return ret; 2844 2845 st->fail = fail; 2846 2847 return count; 2848 } 2849 2850 static ssize_t fail_show(struct device *dev, 2851 struct device_attribute *attr, char *buf) 2852 { 2853 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2854 2855 return sprintf(buf, "%d\n", st->fail); 2856 } 2857 2858 static DEVICE_ATTR_RW(fail); 2859 2860 static struct attribute *cpuhp_cpu_attrs[] = { 2861 &dev_attr_state.attr, 2862 &dev_attr_target.attr, 2863 &dev_attr_fail.attr, 2864 NULL 2865 }; 2866 2867 static const struct attribute_group cpuhp_cpu_attr_group = { 2868 .attrs = cpuhp_cpu_attrs, 2869 .name = "hotplug", 2870 }; 2871 2872 static ssize_t states_show(struct device *dev, 2873 struct device_attribute *attr, char *buf) 2874 { 2875 ssize_t cur, res = 0; 2876 int i; 2877 2878 mutex_lock(&cpuhp_state_mutex); 2879 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2880 struct cpuhp_step *sp = cpuhp_get_step(i); 2881 2882 if (sp->name) { 2883 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2884 buf += cur; 2885 res += cur; 2886 } 2887 } 2888 mutex_unlock(&cpuhp_state_mutex); 2889 return res; 2890 } 2891 static DEVICE_ATTR_RO(states); 2892 2893 static struct attribute *cpuhp_cpu_root_attrs[] = { 2894 &dev_attr_states.attr, 2895 NULL 2896 }; 2897 2898 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2899 .attrs = cpuhp_cpu_root_attrs, 2900 .name = "hotplug", 2901 }; 2902 2903 #ifdef CONFIG_HOTPLUG_SMT 2904 2905 static bool cpu_smt_num_threads_valid(unsigned int threads) 2906 { 2907 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2908 return threads >= 1 && threads <= cpu_smt_max_threads; 2909 return threads == 1 || threads == cpu_smt_max_threads; 2910 } 2911 2912 static ssize_t 2913 __store_smt_control(struct device *dev, struct device_attribute *attr, 2914 const char *buf, size_t count) 2915 { 2916 int ctrlval, ret, num_threads, orig_threads; 2917 bool force_off; 2918 2919 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2920 return -EPERM; 2921 2922 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2923 return -ENODEV; 2924 2925 if (sysfs_streq(buf, "on")) { 2926 ctrlval = CPU_SMT_ENABLED; 2927 num_threads = cpu_smt_max_threads; 2928 } else if (sysfs_streq(buf, "off")) { 2929 ctrlval = CPU_SMT_DISABLED; 2930 num_threads = 1; 2931 } else if (sysfs_streq(buf, "forceoff")) { 2932 ctrlval = CPU_SMT_FORCE_DISABLED; 2933 num_threads = 1; 2934 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2935 if (num_threads == 1) 2936 ctrlval = CPU_SMT_DISABLED; 2937 else if (cpu_smt_num_threads_valid(num_threads)) 2938 ctrlval = CPU_SMT_ENABLED; 2939 else 2940 return -EINVAL; 2941 } else { 2942 return -EINVAL; 2943 } 2944 2945 ret = lock_device_hotplug_sysfs(); 2946 if (ret) 2947 return ret; 2948 2949 orig_threads = cpu_smt_num_threads; 2950 cpu_smt_num_threads = num_threads; 2951 2952 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2953 2954 if (num_threads > orig_threads) 2955 ret = cpuhp_smt_enable(); 2956 else if (num_threads < orig_threads || force_off) 2957 ret = cpuhp_smt_disable(ctrlval); 2958 2959 unlock_device_hotplug(); 2960 return ret ? ret : count; 2961 } 2962 2963 #else /* !CONFIG_HOTPLUG_SMT */ 2964 static ssize_t 2965 __store_smt_control(struct device *dev, struct device_attribute *attr, 2966 const char *buf, size_t count) 2967 { 2968 return -ENODEV; 2969 } 2970 #endif /* CONFIG_HOTPLUG_SMT */ 2971 2972 static const char *smt_states[] = { 2973 [CPU_SMT_ENABLED] = "on", 2974 [CPU_SMT_DISABLED] = "off", 2975 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2976 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2977 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2978 }; 2979 2980 static ssize_t control_show(struct device *dev, 2981 struct device_attribute *attr, char *buf) 2982 { 2983 const char *state = smt_states[cpu_smt_control]; 2984 2985 #ifdef CONFIG_HOTPLUG_SMT 2986 /* 2987 * If SMT is enabled but not all threads are enabled then show the 2988 * number of threads. If all threads are enabled show "on". Otherwise 2989 * show the state name. 2990 */ 2991 if (cpu_smt_control == CPU_SMT_ENABLED && 2992 cpu_smt_num_threads != cpu_smt_max_threads) 2993 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2994 #endif 2995 2996 return sysfs_emit(buf, "%s\n", state); 2997 } 2998 2999 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 3000 const char *buf, size_t count) 3001 { 3002 return __store_smt_control(dev, attr, buf, count); 3003 } 3004 static DEVICE_ATTR_RW(control); 3005 3006 static ssize_t active_show(struct device *dev, 3007 struct device_attribute *attr, char *buf) 3008 { 3009 return sysfs_emit(buf, "%d\n", sched_smt_active()); 3010 } 3011 static DEVICE_ATTR_RO(active); 3012 3013 static struct attribute *cpuhp_smt_attrs[] = { 3014 &dev_attr_control.attr, 3015 &dev_attr_active.attr, 3016 NULL 3017 }; 3018 3019 static const struct attribute_group cpuhp_smt_attr_group = { 3020 .attrs = cpuhp_smt_attrs, 3021 .name = "smt", 3022 }; 3023 3024 static int __init cpu_smt_sysfs_init(void) 3025 { 3026 struct device *dev_root; 3027 int ret = -ENODEV; 3028 3029 dev_root = bus_get_dev_root(&cpu_subsys); 3030 if (dev_root) { 3031 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3032 put_device(dev_root); 3033 } 3034 return ret; 3035 } 3036 3037 static int __init cpuhp_sysfs_init(void) 3038 { 3039 struct device *dev_root; 3040 int cpu, ret; 3041 3042 ret = cpu_smt_sysfs_init(); 3043 if (ret) 3044 return ret; 3045 3046 dev_root = bus_get_dev_root(&cpu_subsys); 3047 if (dev_root) { 3048 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3049 put_device(dev_root); 3050 if (ret) 3051 return ret; 3052 } 3053 3054 for_each_possible_cpu(cpu) { 3055 struct device *dev = get_cpu_device(cpu); 3056 3057 if (!dev) 3058 continue; 3059 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3060 if (ret) 3061 return ret; 3062 } 3063 return 0; 3064 } 3065 device_initcall(cpuhp_sysfs_init); 3066 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3067 3068 /* 3069 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3070 * represents all NR_CPUS bits binary values of 1<<nr. 3071 * 3072 * It is used by cpumask_of() to get a constant address to a CPU 3073 * mask value that has a single bit set only. 3074 */ 3075 3076 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3077 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3078 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3079 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3080 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3081 3082 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3083 3084 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3085 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3086 #if BITS_PER_LONG > 32 3087 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3088 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3089 #endif 3090 }; 3091 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3092 3093 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3094 EXPORT_SYMBOL(cpu_all_bits); 3095 3096 #ifdef CONFIG_INIT_ALL_POSSIBLE 3097 struct cpumask __cpu_possible_mask __ro_after_init 3098 = {CPU_BITS_ALL}; 3099 #else 3100 struct cpumask __cpu_possible_mask __ro_after_init; 3101 #endif 3102 EXPORT_SYMBOL(__cpu_possible_mask); 3103 3104 struct cpumask __cpu_online_mask __read_mostly; 3105 EXPORT_SYMBOL(__cpu_online_mask); 3106 3107 struct cpumask __cpu_enabled_mask __read_mostly; 3108 EXPORT_SYMBOL(__cpu_enabled_mask); 3109 3110 struct cpumask __cpu_present_mask __read_mostly; 3111 EXPORT_SYMBOL(__cpu_present_mask); 3112 3113 struct cpumask __cpu_active_mask __read_mostly; 3114 EXPORT_SYMBOL(__cpu_active_mask); 3115 3116 struct cpumask __cpu_dying_mask __read_mostly; 3117 EXPORT_SYMBOL(__cpu_dying_mask); 3118 3119 atomic_t __num_online_cpus __read_mostly; 3120 EXPORT_SYMBOL(__num_online_cpus); 3121 3122 void init_cpu_present(const struct cpumask *src) 3123 { 3124 cpumask_copy(&__cpu_present_mask, src); 3125 } 3126 3127 void init_cpu_possible(const struct cpumask *src) 3128 { 3129 cpumask_copy(&__cpu_possible_mask, src); 3130 } 3131 3132 void set_cpu_online(unsigned int cpu, bool online) 3133 { 3134 /* 3135 * atomic_inc/dec() is required to handle the horrid abuse of this 3136 * function by the reboot and kexec code which invoke it from 3137 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3138 * regular CPU hotplug is properly serialized. 3139 * 3140 * Note, that the fact that __num_online_cpus is of type atomic_t 3141 * does not protect readers which are not serialized against 3142 * concurrent hotplug operations. 3143 */ 3144 if (online) { 3145 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3146 atomic_inc(&__num_online_cpus); 3147 } else { 3148 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3149 atomic_dec(&__num_online_cpus); 3150 } 3151 } 3152 3153 /* 3154 * Activate the first processor. 3155 */ 3156 void __init boot_cpu_init(void) 3157 { 3158 int cpu = smp_processor_id(); 3159 3160 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3161 set_cpu_online(cpu, true); 3162 set_cpu_active(cpu, true); 3163 set_cpu_present(cpu, true); 3164 set_cpu_possible(cpu, true); 3165 3166 #ifdef CONFIG_SMP 3167 __boot_cpu_id = cpu; 3168 #endif 3169 } 3170 3171 /* 3172 * Must be called _AFTER_ setting up the per_cpu areas 3173 */ 3174 void __init boot_cpu_hotplug_init(void) 3175 { 3176 #ifdef CONFIG_SMP 3177 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3178 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3179 #endif 3180 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3181 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3182 } 3183 3184 #ifdef CONFIG_CPU_MITIGATIONS 3185 /* 3186 * These are used for a global "mitigations=" cmdline option for toggling 3187 * optional CPU mitigations. 3188 */ 3189 enum cpu_mitigations { 3190 CPU_MITIGATIONS_OFF, 3191 CPU_MITIGATIONS_AUTO, 3192 CPU_MITIGATIONS_AUTO_NOSMT, 3193 }; 3194 3195 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3196 3197 static int __init mitigations_parse_cmdline(char *arg) 3198 { 3199 if (!strcmp(arg, "off")) 3200 cpu_mitigations = CPU_MITIGATIONS_OFF; 3201 else if (!strcmp(arg, "auto")) 3202 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3203 else if (!strcmp(arg, "auto,nosmt")) 3204 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3205 else 3206 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3207 arg); 3208 3209 return 0; 3210 } 3211 3212 /* mitigations=off */ 3213 bool cpu_mitigations_off(void) 3214 { 3215 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3216 } 3217 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3218 3219 /* mitigations=auto,nosmt */ 3220 bool cpu_mitigations_auto_nosmt(void) 3221 { 3222 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3223 } 3224 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3225 #else 3226 static int __init mitigations_parse_cmdline(char *arg) 3227 { 3228 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3229 return 0; 3230 } 3231 #endif 3232 early_param("mitigations", mitigations_parse_cmdline); 3233