1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 #include <linux/parser.h> 41 42 #include <trace/events/power.h> 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/cpuhp.h> 45 46 #include "smpboot.h" 47 48 /** 49 * struct cpuhp_cpu_state - Per cpu hotplug state storage 50 * @state: The current cpu state 51 * @target: The target state 52 * @fail: Current CPU hotplug callback state 53 * @thread: Pointer to the hotplug thread 54 * @should_run: Thread should execute 55 * @rollback: Perform a rollback 56 * @single: Single callback invocation 57 * @bringup: Single callback bringup or teardown selector 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 static bool cpu_hotplug_offline_disabled __ro_after_init; 488 489 void cpus_read_lock(void) 490 { 491 percpu_down_read(&cpu_hotplug_lock); 492 } 493 EXPORT_SYMBOL_GPL(cpus_read_lock); 494 495 int cpus_read_trylock(void) 496 { 497 return percpu_down_read_trylock(&cpu_hotplug_lock); 498 } 499 EXPORT_SYMBOL_GPL(cpus_read_trylock); 500 501 void cpus_read_unlock(void) 502 { 503 percpu_up_read(&cpu_hotplug_lock); 504 } 505 EXPORT_SYMBOL_GPL(cpus_read_unlock); 506 507 void cpus_write_lock(void) 508 { 509 percpu_down_write(&cpu_hotplug_lock); 510 } 511 512 void cpus_write_unlock(void) 513 { 514 percpu_up_write(&cpu_hotplug_lock); 515 } 516 517 void lockdep_assert_cpus_held(void) 518 { 519 /* 520 * We can't have hotplug operations before userspace starts running, 521 * and some init codepaths will knowingly not take the hotplug lock. 522 * This is all valid, so mute lockdep until it makes sense to report 523 * unheld locks. 524 */ 525 if (system_state < SYSTEM_RUNNING) 526 return; 527 528 percpu_rwsem_assert_held(&cpu_hotplug_lock); 529 } 530 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held); 531 532 #ifdef CONFIG_LOCKDEP 533 int lockdep_is_cpus_held(void) 534 { 535 return percpu_rwsem_is_held(&cpu_hotplug_lock); 536 } 537 #endif 538 539 static void lockdep_acquire_cpus_lock(void) 540 { 541 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 542 } 543 544 static void lockdep_release_cpus_lock(void) 545 { 546 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 547 } 548 549 /* Declare CPU offlining not supported */ 550 void cpu_hotplug_disable_offlining(void) 551 { 552 cpu_maps_update_begin(); 553 cpu_hotplug_offline_disabled = true; 554 cpu_maps_update_done(); 555 } 556 557 /* 558 * Wait for currently running CPU hotplug operations to complete (if any) and 559 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 560 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 561 * hotplug path before performing hotplug operations. So acquiring that lock 562 * guarantees mutual exclusion from any currently running hotplug operations. 563 */ 564 void cpu_hotplug_disable(void) 565 { 566 cpu_maps_update_begin(); 567 cpu_hotplug_disabled++; 568 cpu_maps_update_done(); 569 } 570 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 571 572 static void __cpu_hotplug_enable(void) 573 { 574 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 575 return; 576 cpu_hotplug_disabled--; 577 } 578 579 void cpu_hotplug_enable(void) 580 { 581 cpu_maps_update_begin(); 582 __cpu_hotplug_enable(); 583 cpu_maps_update_done(); 584 } 585 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 586 587 #else 588 589 static void lockdep_acquire_cpus_lock(void) 590 { 591 } 592 593 static void lockdep_release_cpus_lock(void) 594 { 595 } 596 597 #endif /* CONFIG_HOTPLUG_CPU */ 598 599 /* 600 * Architectures that need SMT-specific errata handling during SMT hotplug 601 * should override this. 602 */ 603 void __weak arch_smt_update(void) { } 604 605 #ifdef CONFIG_HOTPLUG_SMT 606 607 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 608 static unsigned int cpu_smt_max_threads __ro_after_init; 609 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 610 611 void __init cpu_smt_disable(bool force) 612 { 613 if (!cpu_smt_possible()) 614 return; 615 616 if (force) { 617 pr_info("SMT: Force disabled\n"); 618 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 619 } else { 620 pr_info("SMT: disabled\n"); 621 cpu_smt_control = CPU_SMT_DISABLED; 622 } 623 cpu_smt_num_threads = 1; 624 } 625 626 /* 627 * The decision whether SMT is supported can only be done after the full 628 * CPU identification. Called from architecture code. 629 */ 630 void __init cpu_smt_set_num_threads(unsigned int num_threads, 631 unsigned int max_threads) 632 { 633 WARN_ON(!num_threads || (num_threads > max_threads)); 634 635 if (max_threads == 1) 636 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 637 638 cpu_smt_max_threads = max_threads; 639 640 /* 641 * If SMT has been disabled via the kernel command line or SMT is 642 * not supported, set cpu_smt_num_threads to 1 for consistency. 643 * If enabled, take the architecture requested number of threads 644 * to bring up into account. 645 */ 646 if (cpu_smt_control != CPU_SMT_ENABLED) 647 cpu_smt_num_threads = 1; 648 else if (num_threads < cpu_smt_num_threads) 649 cpu_smt_num_threads = num_threads; 650 } 651 652 static int __init smt_cmdline_disable(char *str) 653 { 654 cpu_smt_disable(str && !strcmp(str, "force")); 655 return 0; 656 } 657 early_param("nosmt", smt_cmdline_disable); 658 659 /* 660 * For Archicture supporting partial SMT states check if the thread is allowed. 661 * Otherwise this has already been checked through cpu_smt_max_threads when 662 * setting the SMT level. 663 */ 664 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 665 { 666 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 667 return topology_smt_thread_allowed(cpu); 668 #else 669 return true; 670 #endif 671 } 672 673 static inline bool cpu_bootable(unsigned int cpu) 674 { 675 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 676 return true; 677 678 /* All CPUs are bootable if controls are not configured */ 679 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 680 return true; 681 682 /* All CPUs are bootable if CPU is not SMT capable */ 683 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 684 return true; 685 686 if (topology_is_primary_thread(cpu)) 687 return true; 688 689 /* 690 * On x86 it's required to boot all logical CPUs at least once so 691 * that the init code can get a chance to set CR4.MCE on each 692 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 693 * core will shutdown the machine. 694 */ 695 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 696 } 697 698 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 699 bool cpu_smt_possible(void) 700 { 701 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 702 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 703 } 704 EXPORT_SYMBOL_GPL(cpu_smt_possible); 705 706 #else 707 static inline bool cpu_bootable(unsigned int cpu) { return true; } 708 #endif 709 710 static inline enum cpuhp_state 711 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 712 { 713 enum cpuhp_state prev_state = st->state; 714 bool bringup = st->state < target; 715 716 st->rollback = false; 717 st->last = NULL; 718 719 st->target = target; 720 st->single = false; 721 st->bringup = bringup; 722 if (cpu_dying(cpu) != !bringup) 723 set_cpu_dying(cpu, !bringup); 724 725 return prev_state; 726 } 727 728 static inline void 729 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 730 enum cpuhp_state prev_state) 731 { 732 bool bringup = !st->bringup; 733 734 st->target = prev_state; 735 736 /* 737 * Already rolling back. No need invert the bringup value or to change 738 * the current state. 739 */ 740 if (st->rollback) 741 return; 742 743 st->rollback = true; 744 745 /* 746 * If we have st->last we need to undo partial multi_instance of this 747 * state first. Otherwise start undo at the previous state. 748 */ 749 if (!st->last) { 750 if (st->bringup) 751 st->state--; 752 else 753 st->state++; 754 } 755 756 st->bringup = bringup; 757 if (cpu_dying(cpu) != !bringup) 758 set_cpu_dying(cpu, !bringup); 759 } 760 761 /* Regular hotplug invocation of the AP hotplug thread */ 762 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 763 { 764 if (!st->single && st->state == st->target) 765 return; 766 767 st->result = 0; 768 /* 769 * Make sure the above stores are visible before should_run becomes 770 * true. Paired with the mb() above in cpuhp_thread_fun() 771 */ 772 smp_mb(); 773 st->should_run = true; 774 wake_up_process(st->thread); 775 wait_for_ap_thread(st, st->bringup); 776 } 777 778 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 779 enum cpuhp_state target) 780 { 781 enum cpuhp_state prev_state; 782 int ret; 783 784 prev_state = cpuhp_set_state(cpu, st, target); 785 __cpuhp_kick_ap(st); 786 if ((ret = st->result)) { 787 cpuhp_reset_state(cpu, st, prev_state); 788 __cpuhp_kick_ap(st); 789 } 790 791 return ret; 792 } 793 794 static int bringup_wait_for_ap_online(unsigned int cpu) 795 { 796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 797 798 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 799 wait_for_ap_thread(st, true); 800 if (WARN_ON_ONCE((!cpu_online(cpu)))) 801 return -ECANCELED; 802 803 /* Unpark the hotplug thread of the target cpu */ 804 kthread_unpark(st->thread); 805 806 /* 807 * SMT soft disabling on X86 requires to bring the CPU out of the 808 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 809 * CPU marked itself as booted_once in notify_cpu_starting() so the 810 * cpu_bootable() check will now return false if this is not the 811 * primary sibling. 812 */ 813 if (!cpu_bootable(cpu)) 814 return -ECANCELED; 815 return 0; 816 } 817 818 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 819 static int cpuhp_kick_ap_alive(unsigned int cpu) 820 { 821 if (!cpuhp_can_boot_ap(cpu)) 822 return -EAGAIN; 823 824 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 825 } 826 827 static int cpuhp_bringup_ap(unsigned int cpu) 828 { 829 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 830 int ret; 831 832 /* 833 * Some architectures have to walk the irq descriptors to 834 * setup the vector space for the cpu which comes online. 835 * Prevent irq alloc/free across the bringup. 836 */ 837 irq_lock_sparse(); 838 839 ret = cpuhp_bp_sync_alive(cpu); 840 if (ret) 841 goto out_unlock; 842 843 ret = bringup_wait_for_ap_online(cpu); 844 if (ret) 845 goto out_unlock; 846 847 irq_unlock_sparse(); 848 849 if (st->target <= CPUHP_AP_ONLINE_IDLE) 850 return 0; 851 852 return cpuhp_kick_ap(cpu, st, st->target); 853 854 out_unlock: 855 irq_unlock_sparse(); 856 return ret; 857 } 858 #else 859 static int bringup_cpu(unsigned int cpu) 860 { 861 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 862 struct task_struct *idle = idle_thread_get(cpu); 863 int ret; 864 865 if (!cpuhp_can_boot_ap(cpu)) 866 return -EAGAIN; 867 868 /* 869 * Some architectures have to walk the irq descriptors to 870 * setup the vector space for the cpu which comes online. 871 * 872 * Prevent irq alloc/free across the bringup by acquiring the 873 * sparse irq lock. Hold it until the upcoming CPU completes the 874 * startup in cpuhp_online_idle() which allows to avoid 875 * intermediate synchronization points in the architecture code. 876 */ 877 irq_lock_sparse(); 878 879 ret = __cpu_up(cpu, idle); 880 if (ret) 881 goto out_unlock; 882 883 ret = cpuhp_bp_sync_alive(cpu); 884 if (ret) 885 goto out_unlock; 886 887 ret = bringup_wait_for_ap_online(cpu); 888 if (ret) 889 goto out_unlock; 890 891 irq_unlock_sparse(); 892 893 if (st->target <= CPUHP_AP_ONLINE_IDLE) 894 return 0; 895 896 return cpuhp_kick_ap(cpu, st, st->target); 897 898 out_unlock: 899 irq_unlock_sparse(); 900 return ret; 901 } 902 #endif 903 904 static int finish_cpu(unsigned int cpu) 905 { 906 struct task_struct *idle = idle_thread_get(cpu); 907 struct mm_struct *mm = idle->active_mm; 908 909 /* 910 * sched_force_init_mm() ensured the use of &init_mm, 911 * drop that refcount now that the CPU has stopped. 912 */ 913 WARN_ON(mm != &init_mm); 914 idle->active_mm = NULL; 915 mmdrop_lazy_tlb(mm); 916 917 return 0; 918 } 919 920 /* 921 * Hotplug state machine related functions 922 */ 923 924 /* 925 * Get the next state to run. Empty ones will be skipped. Returns true if a 926 * state must be run. 927 * 928 * st->state will be modified ahead of time, to match state_to_run, as if it 929 * has already ran. 930 */ 931 static bool cpuhp_next_state(bool bringup, 932 enum cpuhp_state *state_to_run, 933 struct cpuhp_cpu_state *st, 934 enum cpuhp_state target) 935 { 936 do { 937 if (bringup) { 938 if (st->state >= target) 939 return false; 940 941 *state_to_run = ++st->state; 942 } else { 943 if (st->state <= target) 944 return false; 945 946 *state_to_run = st->state--; 947 } 948 949 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 950 break; 951 } while (true); 952 953 return true; 954 } 955 956 static int __cpuhp_invoke_callback_range(bool bringup, 957 unsigned int cpu, 958 struct cpuhp_cpu_state *st, 959 enum cpuhp_state target, 960 bool nofail) 961 { 962 enum cpuhp_state state; 963 int ret = 0; 964 965 while (cpuhp_next_state(bringup, &state, st, target)) { 966 int err; 967 968 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 969 if (!err) 970 continue; 971 972 if (nofail) { 973 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 974 cpu, bringup ? "UP" : "DOWN", 975 cpuhp_get_step(st->state)->name, 976 st->state, err); 977 ret = -1; 978 } else { 979 ret = err; 980 break; 981 } 982 } 983 984 return ret; 985 } 986 987 static inline int cpuhp_invoke_callback_range(bool bringup, 988 unsigned int cpu, 989 struct cpuhp_cpu_state *st, 990 enum cpuhp_state target) 991 { 992 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 993 } 994 995 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 996 unsigned int cpu, 997 struct cpuhp_cpu_state *st, 998 enum cpuhp_state target) 999 { 1000 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 1001 } 1002 1003 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1004 { 1005 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1006 return true; 1007 /* 1008 * When CPU hotplug is disabled, then taking the CPU down is not 1009 * possible because takedown_cpu() and the architecture and 1010 * subsystem specific mechanisms are not available. So the CPU 1011 * which would be completely unplugged again needs to stay around 1012 * in the current state. 1013 */ 1014 return st->state <= CPUHP_BRINGUP_CPU; 1015 } 1016 1017 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1018 enum cpuhp_state target) 1019 { 1020 enum cpuhp_state prev_state = st->state; 1021 int ret = 0; 1022 1023 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1024 if (ret) { 1025 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1026 ret, cpu, cpuhp_get_step(st->state)->name, 1027 st->state); 1028 1029 cpuhp_reset_state(cpu, st, prev_state); 1030 if (can_rollback_cpu(st)) 1031 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1032 prev_state)); 1033 } 1034 return ret; 1035 } 1036 1037 /* 1038 * The cpu hotplug threads manage the bringup and teardown of the cpus 1039 */ 1040 static int cpuhp_should_run(unsigned int cpu) 1041 { 1042 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1043 1044 return st->should_run; 1045 } 1046 1047 /* 1048 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1049 * callbacks when a state gets [un]installed at runtime. 1050 * 1051 * Each invocation of this function by the smpboot thread does a single AP 1052 * state callback. 1053 * 1054 * It has 3 modes of operation: 1055 * - single: runs st->cb_state 1056 * - up: runs ++st->state, while st->state < st->target 1057 * - down: runs st->state--, while st->state > st->target 1058 * 1059 * When complete or on error, should_run is cleared and the completion is fired. 1060 */ 1061 static void cpuhp_thread_fun(unsigned int cpu) 1062 { 1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1064 bool bringup = st->bringup; 1065 enum cpuhp_state state; 1066 1067 if (WARN_ON_ONCE(!st->should_run)) 1068 return; 1069 1070 /* 1071 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1072 * that if we see ->should_run we also see the rest of the state. 1073 */ 1074 smp_mb(); 1075 1076 /* 1077 * The BP holds the hotplug lock, but we're now running on the AP, 1078 * ensure that anybody asserting the lock is held, will actually find 1079 * it so. 1080 */ 1081 lockdep_acquire_cpus_lock(); 1082 cpuhp_lock_acquire(bringup); 1083 1084 if (st->single) { 1085 state = st->cb_state; 1086 st->should_run = false; 1087 } else { 1088 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1089 if (!st->should_run) 1090 goto end; 1091 } 1092 1093 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1094 1095 if (cpuhp_is_atomic_state(state)) { 1096 local_irq_disable(); 1097 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1098 local_irq_enable(); 1099 1100 /* 1101 * STARTING/DYING must not fail! 1102 */ 1103 WARN_ON_ONCE(st->result); 1104 } else { 1105 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1106 } 1107 1108 if (st->result) { 1109 /* 1110 * If we fail on a rollback, we're up a creek without no 1111 * paddle, no way forward, no way back. We loose, thanks for 1112 * playing. 1113 */ 1114 WARN_ON_ONCE(st->rollback); 1115 st->should_run = false; 1116 } 1117 1118 end: 1119 cpuhp_lock_release(bringup); 1120 lockdep_release_cpus_lock(); 1121 1122 if (!st->should_run) 1123 complete_ap_thread(st, bringup); 1124 } 1125 1126 /* Invoke a single callback on a remote cpu */ 1127 static int 1128 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1129 struct hlist_node *node) 1130 { 1131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1132 int ret; 1133 1134 if (!cpu_online(cpu)) 1135 return 0; 1136 1137 cpuhp_lock_acquire(false); 1138 cpuhp_lock_release(false); 1139 1140 cpuhp_lock_acquire(true); 1141 cpuhp_lock_release(true); 1142 1143 /* 1144 * If we are up and running, use the hotplug thread. For early calls 1145 * we invoke the thread function directly. 1146 */ 1147 if (!st->thread) 1148 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1149 1150 st->rollback = false; 1151 st->last = NULL; 1152 1153 st->node = node; 1154 st->bringup = bringup; 1155 st->cb_state = state; 1156 st->single = true; 1157 1158 __cpuhp_kick_ap(st); 1159 1160 /* 1161 * If we failed and did a partial, do a rollback. 1162 */ 1163 if ((ret = st->result) && st->last) { 1164 st->rollback = true; 1165 st->bringup = !bringup; 1166 1167 __cpuhp_kick_ap(st); 1168 } 1169 1170 /* 1171 * Clean up the leftovers so the next hotplug operation wont use stale 1172 * data. 1173 */ 1174 st->node = st->last = NULL; 1175 return ret; 1176 } 1177 1178 static int cpuhp_kick_ap_work(unsigned int cpu) 1179 { 1180 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1181 enum cpuhp_state prev_state = st->state; 1182 int ret; 1183 1184 cpuhp_lock_acquire(false); 1185 cpuhp_lock_release(false); 1186 1187 cpuhp_lock_acquire(true); 1188 cpuhp_lock_release(true); 1189 1190 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1191 ret = cpuhp_kick_ap(cpu, st, st->target); 1192 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1193 1194 return ret; 1195 } 1196 1197 static struct smp_hotplug_thread cpuhp_threads = { 1198 .store = &cpuhp_state.thread, 1199 .thread_should_run = cpuhp_should_run, 1200 .thread_fn = cpuhp_thread_fun, 1201 .thread_comm = "cpuhp/%u", 1202 .selfparking = true, 1203 }; 1204 1205 static __init void cpuhp_init_state(void) 1206 { 1207 struct cpuhp_cpu_state *st; 1208 int cpu; 1209 1210 for_each_possible_cpu(cpu) { 1211 st = per_cpu_ptr(&cpuhp_state, cpu); 1212 init_completion(&st->done_up); 1213 init_completion(&st->done_down); 1214 } 1215 } 1216 1217 void __init cpuhp_threads_init(void) 1218 { 1219 cpuhp_init_state(); 1220 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1221 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1222 } 1223 1224 #ifdef CONFIG_HOTPLUG_CPU 1225 #ifndef arch_clear_mm_cpumask_cpu 1226 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1227 #endif 1228 1229 /** 1230 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1231 * @cpu: a CPU id 1232 * 1233 * This function walks all processes, finds a valid mm struct for each one and 1234 * then clears a corresponding bit in mm's cpumask. While this all sounds 1235 * trivial, there are various non-obvious corner cases, which this function 1236 * tries to solve in a safe manner. 1237 * 1238 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1239 * be called only for an already offlined CPU. 1240 */ 1241 void clear_tasks_mm_cpumask(int cpu) 1242 { 1243 struct task_struct *p; 1244 1245 /* 1246 * This function is called after the cpu is taken down and marked 1247 * offline, so its not like new tasks will ever get this cpu set in 1248 * their mm mask. -- Peter Zijlstra 1249 * Thus, we may use rcu_read_lock() here, instead of grabbing 1250 * full-fledged tasklist_lock. 1251 */ 1252 WARN_ON(cpu_online(cpu)); 1253 rcu_read_lock(); 1254 for_each_process(p) { 1255 struct task_struct *t; 1256 1257 /* 1258 * Main thread might exit, but other threads may still have 1259 * a valid mm. Find one. 1260 */ 1261 t = find_lock_task_mm(p); 1262 if (!t) 1263 continue; 1264 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1265 task_unlock(t); 1266 } 1267 rcu_read_unlock(); 1268 } 1269 1270 /* Take this CPU down. */ 1271 static int take_cpu_down(void *_param) 1272 { 1273 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1274 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1275 int err, cpu = smp_processor_id(); 1276 1277 /* Ensure this CPU doesn't handle any more interrupts. */ 1278 err = __cpu_disable(); 1279 if (err < 0) 1280 return err; 1281 1282 /* 1283 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1284 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1285 */ 1286 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1287 1288 /* 1289 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1290 */ 1291 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1292 1293 /* Park the stopper thread */ 1294 stop_machine_park(cpu); 1295 return 0; 1296 } 1297 1298 static int takedown_cpu(unsigned int cpu) 1299 { 1300 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1301 int err; 1302 1303 /* Park the smpboot threads */ 1304 kthread_park(st->thread); 1305 1306 /* 1307 * Prevent irq alloc/free while the dying cpu reorganizes the 1308 * interrupt affinities. 1309 */ 1310 irq_lock_sparse(); 1311 1312 /* 1313 * So now all preempt/rcu users must observe !cpu_active(). 1314 */ 1315 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1316 if (err) { 1317 /* CPU refused to die */ 1318 irq_unlock_sparse(); 1319 /* Unpark the hotplug thread so we can rollback there */ 1320 kthread_unpark(st->thread); 1321 return err; 1322 } 1323 BUG_ON(cpu_online(cpu)); 1324 1325 /* 1326 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1327 * all runnable tasks from the CPU, there's only the idle task left now 1328 * that the migration thread is done doing the stop_machine thing. 1329 * 1330 * Wait for the stop thread to go away. 1331 */ 1332 wait_for_ap_thread(st, false); 1333 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1334 1335 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1336 irq_unlock_sparse(); 1337 1338 hotplug_cpu__broadcast_tick_pull(cpu); 1339 /* This actually kills the CPU. */ 1340 __cpu_die(cpu); 1341 1342 cpuhp_bp_sync_dead(cpu); 1343 1344 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); 1345 1346 /* 1347 * Callbacks must be re-integrated right away to the RCU state machine. 1348 * Otherwise an RCU callback could block a further teardown function 1349 * waiting for its completion. 1350 */ 1351 rcutree_migrate_callbacks(cpu); 1352 1353 return 0; 1354 } 1355 1356 static void cpuhp_complete_idle_dead(void *arg) 1357 { 1358 struct cpuhp_cpu_state *st = arg; 1359 1360 complete_ap_thread(st, false); 1361 } 1362 1363 void cpuhp_report_idle_dead(void) 1364 { 1365 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1366 1367 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1368 tick_assert_timekeeping_handover(); 1369 rcutree_report_cpu_dead(); 1370 st->state = CPUHP_AP_IDLE_DEAD; 1371 /* 1372 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1373 * to an online cpu. 1374 */ 1375 smp_call_function_single(cpumask_first(cpu_online_mask), 1376 cpuhp_complete_idle_dead, st, 0); 1377 } 1378 1379 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1380 enum cpuhp_state target) 1381 { 1382 enum cpuhp_state prev_state = st->state; 1383 int ret = 0; 1384 1385 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1386 if (ret) { 1387 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1388 ret, cpu, cpuhp_get_step(st->state)->name, 1389 st->state); 1390 1391 cpuhp_reset_state(cpu, st, prev_state); 1392 1393 if (st->state < prev_state) 1394 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1395 prev_state)); 1396 } 1397 1398 return ret; 1399 } 1400 1401 /* Requires cpu_add_remove_lock to be held */ 1402 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1403 enum cpuhp_state target) 1404 { 1405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1406 int prev_state, ret = 0; 1407 1408 if (num_online_cpus() == 1) 1409 return -EBUSY; 1410 1411 if (!cpu_present(cpu)) 1412 return -EINVAL; 1413 1414 cpus_write_lock(); 1415 1416 cpuhp_tasks_frozen = tasks_frozen; 1417 1418 prev_state = cpuhp_set_state(cpu, st, target); 1419 /* 1420 * If the current CPU state is in the range of the AP hotplug thread, 1421 * then we need to kick the thread. 1422 */ 1423 if (st->state > CPUHP_TEARDOWN_CPU) { 1424 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1425 ret = cpuhp_kick_ap_work(cpu); 1426 /* 1427 * The AP side has done the error rollback already. Just 1428 * return the error code.. 1429 */ 1430 if (ret) 1431 goto out; 1432 1433 /* 1434 * We might have stopped still in the range of the AP hotplug 1435 * thread. Nothing to do anymore. 1436 */ 1437 if (st->state > CPUHP_TEARDOWN_CPU) 1438 goto out; 1439 1440 st->target = target; 1441 } 1442 /* 1443 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1444 * to do the further cleanups. 1445 */ 1446 ret = cpuhp_down_callbacks(cpu, st, target); 1447 if (ret && st->state < prev_state) { 1448 if (st->state == CPUHP_TEARDOWN_CPU) { 1449 cpuhp_reset_state(cpu, st, prev_state); 1450 __cpuhp_kick_ap(st); 1451 } else { 1452 WARN(1, "DEAD callback error for CPU%d", cpu); 1453 } 1454 } 1455 1456 out: 1457 cpus_write_unlock(); 1458 arch_smt_update(); 1459 return ret; 1460 } 1461 1462 struct cpu_down_work { 1463 unsigned int cpu; 1464 enum cpuhp_state target; 1465 }; 1466 1467 static long __cpu_down_maps_locked(void *arg) 1468 { 1469 struct cpu_down_work *work = arg; 1470 1471 return _cpu_down(work->cpu, 0, work->target); 1472 } 1473 1474 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1475 { 1476 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1477 1478 /* 1479 * If the platform does not support hotplug, report it explicitly to 1480 * differentiate it from a transient offlining failure. 1481 */ 1482 if (cpu_hotplug_offline_disabled) 1483 return -EOPNOTSUPP; 1484 if (cpu_hotplug_disabled) 1485 return -EBUSY; 1486 1487 /* 1488 * Ensure that the control task does not run on the to be offlined 1489 * CPU to prevent a deadlock against cfs_b->period_timer. 1490 * Also keep at least one housekeeping cpu onlined to avoid generating 1491 * an empty sched_domain span. 1492 */ 1493 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1494 if (cpu != work.cpu) 1495 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1496 } 1497 return -EBUSY; 1498 } 1499 1500 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1501 { 1502 int err; 1503 1504 cpu_maps_update_begin(); 1505 err = cpu_down_maps_locked(cpu, target); 1506 cpu_maps_update_done(); 1507 return err; 1508 } 1509 1510 /** 1511 * cpu_device_down - Bring down a cpu device 1512 * @dev: Pointer to the cpu device to offline 1513 * 1514 * This function is meant to be used by device core cpu subsystem only. 1515 * 1516 * Other subsystems should use remove_cpu() instead. 1517 * 1518 * Return: %0 on success or a negative errno code 1519 */ 1520 int cpu_device_down(struct device *dev) 1521 { 1522 return cpu_down(dev->id, CPUHP_OFFLINE); 1523 } 1524 1525 int remove_cpu(unsigned int cpu) 1526 { 1527 int ret; 1528 1529 lock_device_hotplug(); 1530 ret = device_offline(get_cpu_device(cpu)); 1531 unlock_device_hotplug(); 1532 1533 return ret; 1534 } 1535 EXPORT_SYMBOL_GPL(remove_cpu); 1536 1537 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1538 { 1539 unsigned int cpu; 1540 int error; 1541 1542 cpu_maps_update_begin(); 1543 1544 /* 1545 * Make certain the cpu I'm about to reboot on is online. 1546 * 1547 * This is inline to what migrate_to_reboot_cpu() already do. 1548 */ 1549 if (!cpu_online(primary_cpu)) 1550 primary_cpu = cpumask_first(cpu_online_mask); 1551 1552 for_each_online_cpu(cpu) { 1553 if (cpu == primary_cpu) 1554 continue; 1555 1556 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1557 if (error) { 1558 pr_err("Failed to offline CPU%d - error=%d", 1559 cpu, error); 1560 break; 1561 } 1562 } 1563 1564 /* 1565 * Ensure all but the reboot CPU are offline. 1566 */ 1567 BUG_ON(num_online_cpus() > 1); 1568 1569 /* 1570 * Make sure the CPUs won't be enabled by someone else after this 1571 * point. Kexec will reboot to a new kernel shortly resetting 1572 * everything along the way. 1573 */ 1574 cpu_hotplug_disabled++; 1575 1576 cpu_maps_update_done(); 1577 } 1578 1579 #else 1580 #define takedown_cpu NULL 1581 #endif /*CONFIG_HOTPLUG_CPU*/ 1582 1583 /** 1584 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1585 * @cpu: cpu that just started 1586 * 1587 * It must be called by the arch code on the new cpu, before the new cpu 1588 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1589 */ 1590 void notify_cpu_starting(unsigned int cpu) 1591 { 1592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1593 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1594 1595 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1596 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1597 1598 /* 1599 * STARTING must not fail! 1600 */ 1601 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1602 } 1603 1604 /* 1605 * Called from the idle task. Wake up the controlling task which brings the 1606 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1607 * online bringup to the hotplug thread. 1608 */ 1609 void cpuhp_online_idle(enum cpuhp_state state) 1610 { 1611 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1612 1613 /* Happens for the boot cpu */ 1614 if (state != CPUHP_AP_ONLINE_IDLE) 1615 return; 1616 1617 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1618 1619 /* 1620 * Unpark the stopper thread before we start the idle loop (and start 1621 * scheduling); this ensures the stopper task is always available. 1622 */ 1623 stop_machine_unpark(smp_processor_id()); 1624 1625 st->state = CPUHP_AP_ONLINE_IDLE; 1626 complete_ap_thread(st, true); 1627 } 1628 1629 /* Requires cpu_add_remove_lock to be held */ 1630 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1631 { 1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1633 struct task_struct *idle; 1634 int ret = 0; 1635 1636 cpus_write_lock(); 1637 1638 if (!cpu_present(cpu)) { 1639 ret = -EINVAL; 1640 goto out; 1641 } 1642 1643 /* 1644 * The caller of cpu_up() might have raced with another 1645 * caller. Nothing to do. 1646 */ 1647 if (st->state >= target) 1648 goto out; 1649 1650 if (st->state == CPUHP_OFFLINE) { 1651 /* Let it fail before we try to bring the cpu up */ 1652 idle = idle_thread_get(cpu); 1653 if (IS_ERR(idle)) { 1654 ret = PTR_ERR(idle); 1655 goto out; 1656 } 1657 1658 /* 1659 * Reset stale stack state from the last time this CPU was online. 1660 */ 1661 scs_task_reset(idle); 1662 kasan_unpoison_task_stack(idle); 1663 } 1664 1665 cpuhp_tasks_frozen = tasks_frozen; 1666 1667 cpuhp_set_state(cpu, st, target); 1668 /* 1669 * If the current CPU state is in the range of the AP hotplug thread, 1670 * then we need to kick the thread once more. 1671 */ 1672 if (st->state > CPUHP_BRINGUP_CPU) { 1673 ret = cpuhp_kick_ap_work(cpu); 1674 /* 1675 * The AP side has done the error rollback already. Just 1676 * return the error code.. 1677 */ 1678 if (ret) 1679 goto out; 1680 } 1681 1682 /* 1683 * Try to reach the target state. We max out on the BP at 1684 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1685 * responsible for bringing it up to the target state. 1686 */ 1687 target = min((int)target, CPUHP_BRINGUP_CPU); 1688 ret = cpuhp_up_callbacks(cpu, st, target); 1689 out: 1690 cpus_write_unlock(); 1691 arch_smt_update(); 1692 return ret; 1693 } 1694 1695 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1696 { 1697 int err = 0; 1698 1699 if (!cpu_possible(cpu)) { 1700 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1701 cpu); 1702 return -EINVAL; 1703 } 1704 1705 err = try_online_node(cpu_to_node(cpu)); 1706 if (err) 1707 return err; 1708 1709 cpu_maps_update_begin(); 1710 1711 if (cpu_hotplug_disabled) { 1712 err = -EBUSY; 1713 goto out; 1714 } 1715 if (!cpu_bootable(cpu)) { 1716 err = -EPERM; 1717 goto out; 1718 } 1719 1720 err = _cpu_up(cpu, 0, target); 1721 out: 1722 cpu_maps_update_done(); 1723 return err; 1724 } 1725 1726 /** 1727 * cpu_device_up - Bring up a cpu device 1728 * @dev: Pointer to the cpu device to online 1729 * 1730 * This function is meant to be used by device core cpu subsystem only. 1731 * 1732 * Other subsystems should use add_cpu() instead. 1733 * 1734 * Return: %0 on success or a negative errno code 1735 */ 1736 int cpu_device_up(struct device *dev) 1737 { 1738 return cpu_up(dev->id, CPUHP_ONLINE); 1739 } 1740 1741 int add_cpu(unsigned int cpu) 1742 { 1743 int ret; 1744 1745 lock_device_hotplug(); 1746 ret = device_online(get_cpu_device(cpu)); 1747 unlock_device_hotplug(); 1748 1749 return ret; 1750 } 1751 EXPORT_SYMBOL_GPL(add_cpu); 1752 1753 /** 1754 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1755 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1756 * 1757 * On some architectures like arm64, we can hibernate on any CPU, but on 1758 * wake up the CPU we hibernated on might be offline as a side effect of 1759 * using maxcpus= for example. 1760 * 1761 * Return: %0 on success or a negative errno code 1762 */ 1763 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1764 { 1765 int ret; 1766 1767 if (!cpu_online(sleep_cpu)) { 1768 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1769 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1770 if (ret) { 1771 pr_err("Failed to bring hibernate-CPU up!\n"); 1772 return ret; 1773 } 1774 } 1775 return 0; 1776 } 1777 1778 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1779 enum cpuhp_state target) 1780 { 1781 unsigned int cpu; 1782 1783 for_each_cpu(cpu, mask) { 1784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1785 1786 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1787 /* 1788 * If this failed then cpu_up() might have only 1789 * rolled back to CPUHP_BP_KICK_AP for the final 1790 * online. Clean it up. NOOP if already rolled back. 1791 */ 1792 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1793 } 1794 1795 if (!--ncpus) 1796 break; 1797 } 1798 } 1799 1800 #ifdef CONFIG_HOTPLUG_PARALLEL 1801 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1802 1803 static int __init parallel_bringup_parse_param(char *arg) 1804 { 1805 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1806 } 1807 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1808 1809 #ifdef CONFIG_HOTPLUG_SMT 1810 static inline bool cpuhp_smt_aware(void) 1811 { 1812 return cpu_smt_max_threads > 1; 1813 } 1814 1815 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1816 { 1817 return cpu_primary_thread_mask; 1818 } 1819 #else 1820 static inline bool cpuhp_smt_aware(void) 1821 { 1822 return false; 1823 } 1824 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1825 { 1826 return cpu_none_mask; 1827 } 1828 #endif 1829 1830 bool __weak arch_cpuhp_init_parallel_bringup(void) 1831 { 1832 return true; 1833 } 1834 1835 /* 1836 * On architectures which have enabled parallel bringup this invokes all BP 1837 * prepare states for each of the to be onlined APs first. The last state 1838 * sends the startup IPI to the APs. The APs proceed through the low level 1839 * bringup code in parallel and then wait for the control CPU to release 1840 * them one by one for the final onlining procedure. 1841 * 1842 * This avoids waiting for each AP to respond to the startup IPI in 1843 * CPUHP_BRINGUP_CPU. 1844 */ 1845 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1846 { 1847 const struct cpumask *mask = cpu_present_mask; 1848 1849 if (__cpuhp_parallel_bringup) 1850 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1851 if (!__cpuhp_parallel_bringup) 1852 return false; 1853 1854 if (cpuhp_smt_aware()) { 1855 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1856 static struct cpumask tmp_mask __initdata; 1857 1858 /* 1859 * X86 requires to prevent that SMT siblings stopped while 1860 * the primary thread does a microcode update for various 1861 * reasons. Bring the primary threads up first. 1862 */ 1863 cpumask_and(&tmp_mask, mask, pmask); 1864 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1865 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1866 /* Account for the online CPUs */ 1867 ncpus -= num_online_cpus(); 1868 if (!ncpus) 1869 return true; 1870 /* Create the mask for secondary CPUs */ 1871 cpumask_andnot(&tmp_mask, mask, pmask); 1872 mask = &tmp_mask; 1873 } 1874 1875 /* Bring the not-yet started CPUs up */ 1876 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1877 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1878 return true; 1879 } 1880 #else 1881 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1882 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1883 1884 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1885 { 1886 if (!max_cpus) 1887 return; 1888 1889 /* Try parallel bringup optimization if enabled */ 1890 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1891 return; 1892 1893 /* Full per CPU serialized bringup */ 1894 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1895 } 1896 1897 #ifdef CONFIG_PM_SLEEP_SMP 1898 static cpumask_var_t frozen_cpus; 1899 1900 int freeze_secondary_cpus(int primary) 1901 { 1902 int cpu, error = 0; 1903 1904 cpu_maps_update_begin(); 1905 if (primary == -1) { 1906 primary = cpumask_first(cpu_online_mask); 1907 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1908 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1909 } else { 1910 if (!cpu_online(primary)) 1911 primary = cpumask_first(cpu_online_mask); 1912 } 1913 1914 /* 1915 * We take down all of the non-boot CPUs in one shot to avoid races 1916 * with the userspace trying to use the CPU hotplug at the same time 1917 */ 1918 cpumask_clear(frozen_cpus); 1919 1920 pr_info("Disabling non-boot CPUs ...\n"); 1921 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1922 if (!cpu_online(cpu) || cpu == primary) 1923 continue; 1924 1925 if (pm_wakeup_pending()) { 1926 pr_info("Wakeup pending. Abort CPU freeze\n"); 1927 error = -EBUSY; 1928 break; 1929 } 1930 1931 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1932 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1933 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1934 if (!error) 1935 cpumask_set_cpu(cpu, frozen_cpus); 1936 else { 1937 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1938 break; 1939 } 1940 } 1941 1942 if (!error) 1943 BUG_ON(num_online_cpus() > 1); 1944 else 1945 pr_err("Non-boot CPUs are not disabled\n"); 1946 1947 /* 1948 * Make sure the CPUs won't be enabled by someone else. We need to do 1949 * this even in case of failure as all freeze_secondary_cpus() users are 1950 * supposed to do thaw_secondary_cpus() on the failure path. 1951 */ 1952 cpu_hotplug_disabled++; 1953 1954 cpu_maps_update_done(); 1955 return error; 1956 } 1957 1958 void __weak arch_thaw_secondary_cpus_begin(void) 1959 { 1960 } 1961 1962 void __weak arch_thaw_secondary_cpus_end(void) 1963 { 1964 } 1965 1966 void thaw_secondary_cpus(void) 1967 { 1968 int cpu, error; 1969 1970 /* Allow everyone to use the CPU hotplug again */ 1971 cpu_maps_update_begin(); 1972 __cpu_hotplug_enable(); 1973 if (cpumask_empty(frozen_cpus)) 1974 goto out; 1975 1976 pr_info("Enabling non-boot CPUs ...\n"); 1977 1978 arch_thaw_secondary_cpus_begin(); 1979 1980 for_each_cpu(cpu, frozen_cpus) { 1981 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1982 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1983 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1984 if (!error) { 1985 pr_info("CPU%d is up\n", cpu); 1986 continue; 1987 } 1988 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1989 } 1990 1991 arch_thaw_secondary_cpus_end(); 1992 1993 cpumask_clear(frozen_cpus); 1994 out: 1995 cpu_maps_update_done(); 1996 } 1997 1998 static int __init alloc_frozen_cpus(void) 1999 { 2000 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2001 return -ENOMEM; 2002 return 0; 2003 } 2004 core_initcall(alloc_frozen_cpus); 2005 2006 /* 2007 * When callbacks for CPU hotplug notifications are being executed, we must 2008 * ensure that the state of the system with respect to the tasks being frozen 2009 * or not, as reported by the notification, remains unchanged *throughout the 2010 * duration* of the execution of the callbacks. 2011 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2012 * 2013 * This synchronization is implemented by mutually excluding regular CPU 2014 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2015 * Hibernate notifications. 2016 */ 2017 static int 2018 cpu_hotplug_pm_callback(struct notifier_block *nb, 2019 unsigned long action, void *ptr) 2020 { 2021 switch (action) { 2022 2023 case PM_SUSPEND_PREPARE: 2024 case PM_HIBERNATION_PREPARE: 2025 cpu_hotplug_disable(); 2026 break; 2027 2028 case PM_POST_SUSPEND: 2029 case PM_POST_HIBERNATION: 2030 cpu_hotplug_enable(); 2031 break; 2032 2033 default: 2034 return NOTIFY_DONE; 2035 } 2036 2037 return NOTIFY_OK; 2038 } 2039 2040 2041 static int __init cpu_hotplug_pm_sync_init(void) 2042 { 2043 /* 2044 * cpu_hotplug_pm_callback has higher priority than x86 2045 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2046 * to disable cpu hotplug to avoid cpu hotplug race. 2047 */ 2048 pm_notifier(cpu_hotplug_pm_callback, 0); 2049 return 0; 2050 } 2051 core_initcall(cpu_hotplug_pm_sync_init); 2052 2053 #endif /* CONFIG_PM_SLEEP_SMP */ 2054 2055 int __boot_cpu_id; 2056 2057 #endif /* CONFIG_SMP */ 2058 2059 /* Boot processor state steps */ 2060 static struct cpuhp_step cpuhp_hp_states[] = { 2061 [CPUHP_OFFLINE] = { 2062 .name = "offline", 2063 .startup.single = NULL, 2064 .teardown.single = NULL, 2065 }, 2066 #ifdef CONFIG_SMP 2067 [CPUHP_CREATE_THREADS]= { 2068 .name = "threads:prepare", 2069 .startup.single = smpboot_create_threads, 2070 .teardown.single = NULL, 2071 .cant_stop = true, 2072 }, 2073 [CPUHP_RANDOM_PREPARE] = { 2074 .name = "random:prepare", 2075 .startup.single = random_prepare_cpu, 2076 .teardown.single = NULL, 2077 }, 2078 [CPUHP_WORKQUEUE_PREP] = { 2079 .name = "workqueue:prepare", 2080 .startup.single = workqueue_prepare_cpu, 2081 .teardown.single = NULL, 2082 }, 2083 [CPUHP_HRTIMERS_PREPARE] = { 2084 .name = "hrtimers:prepare", 2085 .startup.single = hrtimers_prepare_cpu, 2086 .teardown.single = NULL, 2087 }, 2088 [CPUHP_SMPCFD_PREPARE] = { 2089 .name = "smpcfd:prepare", 2090 .startup.single = smpcfd_prepare_cpu, 2091 .teardown.single = smpcfd_dead_cpu, 2092 }, 2093 [CPUHP_RELAY_PREPARE] = { 2094 .name = "relay:prepare", 2095 .startup.single = relay_prepare_cpu, 2096 .teardown.single = NULL, 2097 }, 2098 [CPUHP_RCUTREE_PREP] = { 2099 .name = "RCU/tree:prepare", 2100 .startup.single = rcutree_prepare_cpu, 2101 .teardown.single = rcutree_dead_cpu, 2102 }, 2103 /* 2104 * On the tear-down path, timers_dead_cpu() must be invoked 2105 * before blk_mq_queue_reinit_notify() from notify_dead(), 2106 * otherwise a RCU stall occurs. 2107 */ 2108 [CPUHP_TIMERS_PREPARE] = { 2109 .name = "timers:prepare", 2110 .startup.single = timers_prepare_cpu, 2111 .teardown.single = timers_dead_cpu, 2112 }, 2113 2114 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2115 /* 2116 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2117 * the next step will release it. 2118 */ 2119 [CPUHP_BP_KICK_AP] = { 2120 .name = "cpu:kick_ap", 2121 .startup.single = cpuhp_kick_ap_alive, 2122 }, 2123 2124 /* 2125 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2126 * releases it for the complete bringup. 2127 */ 2128 [CPUHP_BRINGUP_CPU] = { 2129 .name = "cpu:bringup", 2130 .startup.single = cpuhp_bringup_ap, 2131 .teardown.single = finish_cpu, 2132 .cant_stop = true, 2133 }, 2134 #else 2135 /* 2136 * All-in-one CPU bringup state which includes the kick alive. 2137 */ 2138 [CPUHP_BRINGUP_CPU] = { 2139 .name = "cpu:bringup", 2140 .startup.single = bringup_cpu, 2141 .teardown.single = finish_cpu, 2142 .cant_stop = true, 2143 }, 2144 #endif 2145 /* Final state before CPU kills itself */ 2146 [CPUHP_AP_IDLE_DEAD] = { 2147 .name = "idle:dead", 2148 }, 2149 /* 2150 * Last state before CPU enters the idle loop to die. Transient state 2151 * for synchronization. 2152 */ 2153 [CPUHP_AP_OFFLINE] = { 2154 .name = "ap:offline", 2155 .cant_stop = true, 2156 }, 2157 /* First state is scheduler control. Interrupts are disabled */ 2158 [CPUHP_AP_SCHED_STARTING] = { 2159 .name = "sched:starting", 2160 .startup.single = sched_cpu_starting, 2161 .teardown.single = sched_cpu_dying, 2162 }, 2163 [CPUHP_AP_RCUTREE_DYING] = { 2164 .name = "RCU/tree:dying", 2165 .startup.single = NULL, 2166 .teardown.single = rcutree_dying_cpu, 2167 }, 2168 [CPUHP_AP_SMPCFD_DYING] = { 2169 .name = "smpcfd:dying", 2170 .startup.single = NULL, 2171 .teardown.single = smpcfd_dying_cpu, 2172 }, 2173 [CPUHP_AP_HRTIMERS_DYING] = { 2174 .name = "hrtimers:dying", 2175 .startup.single = hrtimers_cpu_starting, 2176 .teardown.single = hrtimers_cpu_dying, 2177 }, 2178 [CPUHP_AP_TICK_DYING] = { 2179 .name = "tick:dying", 2180 .startup.single = NULL, 2181 .teardown.single = tick_cpu_dying, 2182 }, 2183 /* Entry state on starting. Interrupts enabled from here on. Transient 2184 * state for synchronsization */ 2185 [CPUHP_AP_ONLINE] = { 2186 .name = "ap:online", 2187 }, 2188 /* 2189 * Handled on control processor until the plugged processor manages 2190 * this itself. 2191 */ 2192 [CPUHP_TEARDOWN_CPU] = { 2193 .name = "cpu:teardown", 2194 .startup.single = NULL, 2195 .teardown.single = takedown_cpu, 2196 .cant_stop = true, 2197 }, 2198 2199 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2200 .name = "sched:waitempty", 2201 .startup.single = NULL, 2202 .teardown.single = sched_cpu_wait_empty, 2203 }, 2204 2205 /* Handle smpboot threads park/unpark */ 2206 [CPUHP_AP_SMPBOOT_THREADS] = { 2207 .name = "smpboot/threads:online", 2208 .startup.single = smpboot_unpark_threads, 2209 .teardown.single = smpboot_park_threads, 2210 }, 2211 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2212 .name = "irq/affinity:online", 2213 .startup.single = irq_affinity_online_cpu, 2214 .teardown.single = NULL, 2215 }, 2216 [CPUHP_AP_PERF_ONLINE] = { 2217 .name = "perf:online", 2218 .startup.single = perf_event_init_cpu, 2219 .teardown.single = perf_event_exit_cpu, 2220 }, 2221 [CPUHP_AP_WATCHDOG_ONLINE] = { 2222 .name = "lockup_detector:online", 2223 .startup.single = lockup_detector_online_cpu, 2224 .teardown.single = lockup_detector_offline_cpu, 2225 }, 2226 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2227 .name = "workqueue:online", 2228 .startup.single = workqueue_online_cpu, 2229 .teardown.single = workqueue_offline_cpu, 2230 }, 2231 [CPUHP_AP_RANDOM_ONLINE] = { 2232 .name = "random:online", 2233 .startup.single = random_online_cpu, 2234 .teardown.single = NULL, 2235 }, 2236 [CPUHP_AP_RCUTREE_ONLINE] = { 2237 .name = "RCU/tree:online", 2238 .startup.single = rcutree_online_cpu, 2239 .teardown.single = rcutree_offline_cpu, 2240 }, 2241 #endif 2242 /* 2243 * The dynamically registered state space is here 2244 */ 2245 2246 #ifdef CONFIG_SMP 2247 /* Last state is scheduler control setting the cpu active */ 2248 [CPUHP_AP_ACTIVE] = { 2249 .name = "sched:active", 2250 .startup.single = sched_cpu_activate, 2251 .teardown.single = sched_cpu_deactivate, 2252 }, 2253 #endif 2254 2255 /* CPU is fully up and running. */ 2256 [CPUHP_ONLINE] = { 2257 .name = "online", 2258 .startup.single = NULL, 2259 .teardown.single = NULL, 2260 }, 2261 }; 2262 2263 /* Sanity check for callbacks */ 2264 static int cpuhp_cb_check(enum cpuhp_state state) 2265 { 2266 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2267 return -EINVAL; 2268 return 0; 2269 } 2270 2271 /* 2272 * Returns a free for dynamic slot assignment of the Online state. The states 2273 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2274 * by having no name assigned. 2275 */ 2276 static int cpuhp_reserve_state(enum cpuhp_state state) 2277 { 2278 enum cpuhp_state i, end; 2279 struct cpuhp_step *step; 2280 2281 switch (state) { 2282 case CPUHP_AP_ONLINE_DYN: 2283 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2284 end = CPUHP_AP_ONLINE_DYN_END; 2285 break; 2286 case CPUHP_BP_PREPARE_DYN: 2287 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2288 end = CPUHP_BP_PREPARE_DYN_END; 2289 break; 2290 default: 2291 return -EINVAL; 2292 } 2293 2294 for (i = state; i <= end; i++, step++) { 2295 if (!step->name) 2296 return i; 2297 } 2298 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2299 return -ENOSPC; 2300 } 2301 2302 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2303 int (*startup)(unsigned int cpu), 2304 int (*teardown)(unsigned int cpu), 2305 bool multi_instance) 2306 { 2307 /* (Un)Install the callbacks for further cpu hotplug operations */ 2308 struct cpuhp_step *sp; 2309 int ret = 0; 2310 2311 /* 2312 * If name is NULL, then the state gets removed. 2313 * 2314 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2315 * the first allocation from these dynamic ranges, so the removal 2316 * would trigger a new allocation and clear the wrong (already 2317 * empty) state, leaving the callbacks of the to be cleared state 2318 * dangling, which causes wreckage on the next hotplug operation. 2319 */ 2320 if (name && (state == CPUHP_AP_ONLINE_DYN || 2321 state == CPUHP_BP_PREPARE_DYN)) { 2322 ret = cpuhp_reserve_state(state); 2323 if (ret < 0) 2324 return ret; 2325 state = ret; 2326 } 2327 sp = cpuhp_get_step(state); 2328 if (name && sp->name) 2329 return -EBUSY; 2330 2331 sp->startup.single = startup; 2332 sp->teardown.single = teardown; 2333 sp->name = name; 2334 sp->multi_instance = multi_instance; 2335 INIT_HLIST_HEAD(&sp->list); 2336 return ret; 2337 } 2338 2339 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2340 { 2341 return cpuhp_get_step(state)->teardown.single; 2342 } 2343 2344 /* 2345 * Call the startup/teardown function for a step either on the AP or 2346 * on the current CPU. 2347 */ 2348 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2349 struct hlist_node *node) 2350 { 2351 struct cpuhp_step *sp = cpuhp_get_step(state); 2352 int ret; 2353 2354 /* 2355 * If there's nothing to do, we done. 2356 * Relies on the union for multi_instance. 2357 */ 2358 if (cpuhp_step_empty(bringup, sp)) 2359 return 0; 2360 /* 2361 * The non AP bound callbacks can fail on bringup. On teardown 2362 * e.g. module removal we crash for now. 2363 */ 2364 #ifdef CONFIG_SMP 2365 if (cpuhp_is_ap_state(state)) 2366 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2367 else 2368 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2369 #else 2370 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2371 #endif 2372 BUG_ON(ret && !bringup); 2373 return ret; 2374 } 2375 2376 /* 2377 * Called from __cpuhp_setup_state on a recoverable failure. 2378 * 2379 * Note: The teardown callbacks for rollback are not allowed to fail! 2380 */ 2381 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2382 struct hlist_node *node) 2383 { 2384 int cpu; 2385 2386 /* Roll back the already executed steps on the other cpus */ 2387 for_each_present_cpu(cpu) { 2388 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2389 int cpustate = st->state; 2390 2391 if (cpu >= failedcpu) 2392 break; 2393 2394 /* Did we invoke the startup call on that cpu ? */ 2395 if (cpustate >= state) 2396 cpuhp_issue_call(cpu, state, false, node); 2397 } 2398 } 2399 2400 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2401 struct hlist_node *node, 2402 bool invoke) 2403 { 2404 struct cpuhp_step *sp; 2405 int cpu; 2406 int ret; 2407 2408 lockdep_assert_cpus_held(); 2409 2410 sp = cpuhp_get_step(state); 2411 if (sp->multi_instance == false) 2412 return -EINVAL; 2413 2414 mutex_lock(&cpuhp_state_mutex); 2415 2416 if (!invoke || !sp->startup.multi) 2417 goto add_node; 2418 2419 /* 2420 * Try to call the startup callback for each present cpu 2421 * depending on the hotplug state of the cpu. 2422 */ 2423 for_each_present_cpu(cpu) { 2424 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2425 int cpustate = st->state; 2426 2427 if (cpustate < state) 2428 continue; 2429 2430 ret = cpuhp_issue_call(cpu, state, true, node); 2431 if (ret) { 2432 if (sp->teardown.multi) 2433 cpuhp_rollback_install(cpu, state, node); 2434 goto unlock; 2435 } 2436 } 2437 add_node: 2438 ret = 0; 2439 hlist_add_head(node, &sp->list); 2440 unlock: 2441 mutex_unlock(&cpuhp_state_mutex); 2442 return ret; 2443 } 2444 2445 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2446 bool invoke) 2447 { 2448 int ret; 2449 2450 cpus_read_lock(); 2451 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2452 cpus_read_unlock(); 2453 return ret; 2454 } 2455 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2456 2457 /** 2458 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2459 * @state: The state to setup 2460 * @name: Name of the step 2461 * @invoke: If true, the startup function is invoked for cpus where 2462 * cpu state >= @state 2463 * @startup: startup callback function 2464 * @teardown: teardown callback function 2465 * @multi_instance: State is set up for multiple instances which get 2466 * added afterwards. 2467 * 2468 * The caller needs to hold cpus read locked while calling this function. 2469 * Return: 2470 * On success: 2471 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2472 * 0 for all other states 2473 * On failure: proper (negative) error code 2474 */ 2475 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2476 const char *name, bool invoke, 2477 int (*startup)(unsigned int cpu), 2478 int (*teardown)(unsigned int cpu), 2479 bool multi_instance) 2480 { 2481 int cpu, ret = 0; 2482 bool dynstate; 2483 2484 lockdep_assert_cpus_held(); 2485 2486 if (cpuhp_cb_check(state) || !name) 2487 return -EINVAL; 2488 2489 mutex_lock(&cpuhp_state_mutex); 2490 2491 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2492 multi_instance); 2493 2494 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2495 if (ret > 0 && dynstate) { 2496 state = ret; 2497 ret = 0; 2498 } 2499 2500 if (ret || !invoke || !startup) 2501 goto out; 2502 2503 /* 2504 * Try to call the startup callback for each present cpu 2505 * depending on the hotplug state of the cpu. 2506 */ 2507 for_each_present_cpu(cpu) { 2508 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2509 int cpustate = st->state; 2510 2511 if (cpustate < state) 2512 continue; 2513 2514 ret = cpuhp_issue_call(cpu, state, true, NULL); 2515 if (ret) { 2516 if (teardown) 2517 cpuhp_rollback_install(cpu, state, NULL); 2518 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2519 goto out; 2520 } 2521 } 2522 out: 2523 mutex_unlock(&cpuhp_state_mutex); 2524 /* 2525 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2526 * return the dynamically allocated state in case of success. 2527 */ 2528 if (!ret && dynstate) 2529 return state; 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2533 2534 int __cpuhp_setup_state(enum cpuhp_state state, 2535 const char *name, bool invoke, 2536 int (*startup)(unsigned int cpu), 2537 int (*teardown)(unsigned int cpu), 2538 bool multi_instance) 2539 { 2540 int ret; 2541 2542 cpus_read_lock(); 2543 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2544 teardown, multi_instance); 2545 cpus_read_unlock(); 2546 return ret; 2547 } 2548 EXPORT_SYMBOL(__cpuhp_setup_state); 2549 2550 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2551 struct hlist_node *node, bool invoke) 2552 { 2553 struct cpuhp_step *sp = cpuhp_get_step(state); 2554 int cpu; 2555 2556 BUG_ON(cpuhp_cb_check(state)); 2557 2558 if (!sp->multi_instance) 2559 return -EINVAL; 2560 2561 cpus_read_lock(); 2562 mutex_lock(&cpuhp_state_mutex); 2563 2564 if (!invoke || !cpuhp_get_teardown_cb(state)) 2565 goto remove; 2566 /* 2567 * Call the teardown callback for each present cpu depending 2568 * on the hotplug state of the cpu. This function is not 2569 * allowed to fail currently! 2570 */ 2571 for_each_present_cpu(cpu) { 2572 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2573 int cpustate = st->state; 2574 2575 if (cpustate >= state) 2576 cpuhp_issue_call(cpu, state, false, node); 2577 } 2578 2579 remove: 2580 hlist_del(node); 2581 mutex_unlock(&cpuhp_state_mutex); 2582 cpus_read_unlock(); 2583 2584 return 0; 2585 } 2586 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2587 2588 /** 2589 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2590 * @state: The state to remove 2591 * @invoke: If true, the teardown function is invoked for cpus where 2592 * cpu state >= @state 2593 * 2594 * The caller needs to hold cpus read locked while calling this function. 2595 * The teardown callback is currently not allowed to fail. Think 2596 * about module removal! 2597 */ 2598 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2599 { 2600 struct cpuhp_step *sp = cpuhp_get_step(state); 2601 int cpu; 2602 2603 BUG_ON(cpuhp_cb_check(state)); 2604 2605 lockdep_assert_cpus_held(); 2606 2607 mutex_lock(&cpuhp_state_mutex); 2608 if (sp->multi_instance) { 2609 WARN(!hlist_empty(&sp->list), 2610 "Error: Removing state %d which has instances left.\n", 2611 state); 2612 goto remove; 2613 } 2614 2615 if (!invoke || !cpuhp_get_teardown_cb(state)) 2616 goto remove; 2617 2618 /* 2619 * Call the teardown callback for each present cpu depending 2620 * on the hotplug state of the cpu. This function is not 2621 * allowed to fail currently! 2622 */ 2623 for_each_present_cpu(cpu) { 2624 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2625 int cpustate = st->state; 2626 2627 if (cpustate >= state) 2628 cpuhp_issue_call(cpu, state, false, NULL); 2629 } 2630 remove: 2631 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2632 mutex_unlock(&cpuhp_state_mutex); 2633 } 2634 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2635 2636 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2637 { 2638 cpus_read_lock(); 2639 __cpuhp_remove_state_cpuslocked(state, invoke); 2640 cpus_read_unlock(); 2641 } 2642 EXPORT_SYMBOL(__cpuhp_remove_state); 2643 2644 #ifdef CONFIG_HOTPLUG_SMT 2645 static void cpuhp_offline_cpu_device(unsigned int cpu) 2646 { 2647 struct device *dev = get_cpu_device(cpu); 2648 2649 dev->offline = true; 2650 /* Tell user space about the state change */ 2651 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2652 } 2653 2654 static void cpuhp_online_cpu_device(unsigned int cpu) 2655 { 2656 struct device *dev = get_cpu_device(cpu); 2657 2658 dev->offline = false; 2659 /* Tell user space about the state change */ 2660 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2661 } 2662 2663 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2664 { 2665 int cpu, ret = 0; 2666 2667 cpu_maps_update_begin(); 2668 for_each_online_cpu(cpu) { 2669 if (topology_is_primary_thread(cpu)) 2670 continue; 2671 /* 2672 * Disable can be called with CPU_SMT_ENABLED when changing 2673 * from a higher to lower number of SMT threads per core. 2674 */ 2675 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2676 continue; 2677 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2678 if (ret) 2679 break; 2680 /* 2681 * As this needs to hold the cpu maps lock it's impossible 2682 * to call device_offline() because that ends up calling 2683 * cpu_down() which takes cpu maps lock. cpu maps lock 2684 * needs to be held as this might race against in kernel 2685 * abusers of the hotplug machinery (thermal management). 2686 * 2687 * So nothing would update device:offline state. That would 2688 * leave the sysfs entry stale and prevent onlining after 2689 * smt control has been changed to 'off' again. This is 2690 * called under the sysfs hotplug lock, so it is properly 2691 * serialized against the regular offline usage. 2692 */ 2693 cpuhp_offline_cpu_device(cpu); 2694 } 2695 if (!ret) 2696 cpu_smt_control = ctrlval; 2697 cpu_maps_update_done(); 2698 return ret; 2699 } 2700 2701 /* Check if the core a CPU belongs to is online */ 2702 #if !defined(topology_is_core_online) 2703 static inline bool topology_is_core_online(unsigned int cpu) 2704 { 2705 return true; 2706 } 2707 #endif 2708 2709 int cpuhp_smt_enable(void) 2710 { 2711 int cpu, ret = 0; 2712 2713 cpu_maps_update_begin(); 2714 cpu_smt_control = CPU_SMT_ENABLED; 2715 for_each_present_cpu(cpu) { 2716 /* Skip online CPUs and CPUs on offline nodes */ 2717 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2718 continue; 2719 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2720 continue; 2721 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2722 if (ret) 2723 break; 2724 /* See comment in cpuhp_smt_disable() */ 2725 cpuhp_online_cpu_device(cpu); 2726 } 2727 cpu_maps_update_done(); 2728 return ret; 2729 } 2730 #endif 2731 2732 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2733 static ssize_t state_show(struct device *dev, 2734 struct device_attribute *attr, char *buf) 2735 { 2736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2737 2738 return sprintf(buf, "%d\n", st->state); 2739 } 2740 static DEVICE_ATTR_RO(state); 2741 2742 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2743 const char *buf, size_t count) 2744 { 2745 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2746 struct cpuhp_step *sp; 2747 int target, ret; 2748 2749 ret = kstrtoint(buf, 10, &target); 2750 if (ret) 2751 return ret; 2752 2753 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2754 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2755 return -EINVAL; 2756 #else 2757 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2758 return -EINVAL; 2759 #endif 2760 2761 ret = lock_device_hotplug_sysfs(); 2762 if (ret) 2763 return ret; 2764 2765 mutex_lock(&cpuhp_state_mutex); 2766 sp = cpuhp_get_step(target); 2767 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2768 mutex_unlock(&cpuhp_state_mutex); 2769 if (ret) 2770 goto out; 2771 2772 if (st->state < target) 2773 ret = cpu_up(dev->id, target); 2774 else if (st->state > target) 2775 ret = cpu_down(dev->id, target); 2776 else if (WARN_ON(st->target != target)) 2777 st->target = target; 2778 out: 2779 unlock_device_hotplug(); 2780 return ret ? ret : count; 2781 } 2782 2783 static ssize_t target_show(struct device *dev, 2784 struct device_attribute *attr, char *buf) 2785 { 2786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2787 2788 return sprintf(buf, "%d\n", st->target); 2789 } 2790 static DEVICE_ATTR_RW(target); 2791 2792 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2793 const char *buf, size_t count) 2794 { 2795 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2796 struct cpuhp_step *sp; 2797 int fail, ret; 2798 2799 ret = kstrtoint(buf, 10, &fail); 2800 if (ret) 2801 return ret; 2802 2803 if (fail == CPUHP_INVALID) { 2804 st->fail = fail; 2805 return count; 2806 } 2807 2808 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2809 return -EINVAL; 2810 2811 /* 2812 * Cannot fail STARTING/DYING callbacks. 2813 */ 2814 if (cpuhp_is_atomic_state(fail)) 2815 return -EINVAL; 2816 2817 /* 2818 * DEAD callbacks cannot fail... 2819 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2820 * triggering STARTING callbacks, a failure in this state would 2821 * hinder rollback. 2822 */ 2823 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2824 return -EINVAL; 2825 2826 /* 2827 * Cannot fail anything that doesn't have callbacks. 2828 */ 2829 mutex_lock(&cpuhp_state_mutex); 2830 sp = cpuhp_get_step(fail); 2831 if (!sp->startup.single && !sp->teardown.single) 2832 ret = -EINVAL; 2833 mutex_unlock(&cpuhp_state_mutex); 2834 if (ret) 2835 return ret; 2836 2837 st->fail = fail; 2838 2839 return count; 2840 } 2841 2842 static ssize_t fail_show(struct device *dev, 2843 struct device_attribute *attr, char *buf) 2844 { 2845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2846 2847 return sprintf(buf, "%d\n", st->fail); 2848 } 2849 2850 static DEVICE_ATTR_RW(fail); 2851 2852 static struct attribute *cpuhp_cpu_attrs[] = { 2853 &dev_attr_state.attr, 2854 &dev_attr_target.attr, 2855 &dev_attr_fail.attr, 2856 NULL 2857 }; 2858 2859 static const struct attribute_group cpuhp_cpu_attr_group = { 2860 .attrs = cpuhp_cpu_attrs, 2861 .name = "hotplug", 2862 }; 2863 2864 static ssize_t states_show(struct device *dev, 2865 struct device_attribute *attr, char *buf) 2866 { 2867 ssize_t cur, res = 0; 2868 int i; 2869 2870 mutex_lock(&cpuhp_state_mutex); 2871 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2872 struct cpuhp_step *sp = cpuhp_get_step(i); 2873 2874 if (sp->name) { 2875 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2876 buf += cur; 2877 res += cur; 2878 } 2879 } 2880 mutex_unlock(&cpuhp_state_mutex); 2881 return res; 2882 } 2883 static DEVICE_ATTR_RO(states); 2884 2885 static struct attribute *cpuhp_cpu_root_attrs[] = { 2886 &dev_attr_states.attr, 2887 NULL 2888 }; 2889 2890 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2891 .attrs = cpuhp_cpu_root_attrs, 2892 .name = "hotplug", 2893 }; 2894 2895 #ifdef CONFIG_HOTPLUG_SMT 2896 2897 static bool cpu_smt_num_threads_valid(unsigned int threads) 2898 { 2899 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2900 return threads >= 1 && threads <= cpu_smt_max_threads; 2901 return threads == 1 || threads == cpu_smt_max_threads; 2902 } 2903 2904 static ssize_t 2905 __store_smt_control(struct device *dev, struct device_attribute *attr, 2906 const char *buf, size_t count) 2907 { 2908 int ctrlval, ret, num_threads, orig_threads; 2909 bool force_off; 2910 2911 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2912 return -EPERM; 2913 2914 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2915 return -ENODEV; 2916 2917 if (sysfs_streq(buf, "on")) { 2918 ctrlval = CPU_SMT_ENABLED; 2919 num_threads = cpu_smt_max_threads; 2920 } else if (sysfs_streq(buf, "off")) { 2921 ctrlval = CPU_SMT_DISABLED; 2922 num_threads = 1; 2923 } else if (sysfs_streq(buf, "forceoff")) { 2924 ctrlval = CPU_SMT_FORCE_DISABLED; 2925 num_threads = 1; 2926 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2927 if (num_threads == 1) 2928 ctrlval = CPU_SMT_DISABLED; 2929 else if (cpu_smt_num_threads_valid(num_threads)) 2930 ctrlval = CPU_SMT_ENABLED; 2931 else 2932 return -EINVAL; 2933 } else { 2934 return -EINVAL; 2935 } 2936 2937 ret = lock_device_hotplug_sysfs(); 2938 if (ret) 2939 return ret; 2940 2941 orig_threads = cpu_smt_num_threads; 2942 cpu_smt_num_threads = num_threads; 2943 2944 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2945 2946 if (num_threads > orig_threads) 2947 ret = cpuhp_smt_enable(); 2948 else if (num_threads < orig_threads || force_off) 2949 ret = cpuhp_smt_disable(ctrlval); 2950 2951 unlock_device_hotplug(); 2952 return ret ? ret : count; 2953 } 2954 2955 #else /* !CONFIG_HOTPLUG_SMT */ 2956 static ssize_t 2957 __store_smt_control(struct device *dev, struct device_attribute *attr, 2958 const char *buf, size_t count) 2959 { 2960 return -ENODEV; 2961 } 2962 #endif /* CONFIG_HOTPLUG_SMT */ 2963 2964 static const char *smt_states[] = { 2965 [CPU_SMT_ENABLED] = "on", 2966 [CPU_SMT_DISABLED] = "off", 2967 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2968 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2969 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2970 }; 2971 2972 static ssize_t control_show(struct device *dev, 2973 struct device_attribute *attr, char *buf) 2974 { 2975 const char *state = smt_states[cpu_smt_control]; 2976 2977 #ifdef CONFIG_HOTPLUG_SMT 2978 /* 2979 * If SMT is enabled but not all threads are enabled then show the 2980 * number of threads. If all threads are enabled show "on". Otherwise 2981 * show the state name. 2982 */ 2983 if (cpu_smt_control == CPU_SMT_ENABLED && 2984 cpu_smt_num_threads != cpu_smt_max_threads) 2985 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2986 #endif 2987 2988 return sysfs_emit(buf, "%s\n", state); 2989 } 2990 2991 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2992 const char *buf, size_t count) 2993 { 2994 return __store_smt_control(dev, attr, buf, count); 2995 } 2996 static DEVICE_ATTR_RW(control); 2997 2998 static ssize_t active_show(struct device *dev, 2999 struct device_attribute *attr, char *buf) 3000 { 3001 return sysfs_emit(buf, "%d\n", sched_smt_active()); 3002 } 3003 static DEVICE_ATTR_RO(active); 3004 3005 static struct attribute *cpuhp_smt_attrs[] = { 3006 &dev_attr_control.attr, 3007 &dev_attr_active.attr, 3008 NULL 3009 }; 3010 3011 static const struct attribute_group cpuhp_smt_attr_group = { 3012 .attrs = cpuhp_smt_attrs, 3013 .name = "smt", 3014 }; 3015 3016 static int __init cpu_smt_sysfs_init(void) 3017 { 3018 struct device *dev_root; 3019 int ret = -ENODEV; 3020 3021 dev_root = bus_get_dev_root(&cpu_subsys); 3022 if (dev_root) { 3023 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3024 put_device(dev_root); 3025 } 3026 return ret; 3027 } 3028 3029 static int __init cpuhp_sysfs_init(void) 3030 { 3031 struct device *dev_root; 3032 int cpu, ret; 3033 3034 ret = cpu_smt_sysfs_init(); 3035 if (ret) 3036 return ret; 3037 3038 dev_root = bus_get_dev_root(&cpu_subsys); 3039 if (dev_root) { 3040 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3041 put_device(dev_root); 3042 if (ret) 3043 return ret; 3044 } 3045 3046 for_each_possible_cpu(cpu) { 3047 struct device *dev = get_cpu_device(cpu); 3048 3049 if (!dev) 3050 continue; 3051 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3052 if (ret) 3053 return ret; 3054 } 3055 return 0; 3056 } 3057 device_initcall(cpuhp_sysfs_init); 3058 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3059 3060 /* 3061 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3062 * represents all NR_CPUS bits binary values of 1<<nr. 3063 * 3064 * It is used by cpumask_of() to get a constant address to a CPU 3065 * mask value that has a single bit set only. 3066 */ 3067 3068 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3069 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3070 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3071 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3072 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3073 3074 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3075 3076 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3077 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3078 #if BITS_PER_LONG > 32 3079 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3080 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3081 #endif 3082 }; 3083 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3084 3085 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3086 EXPORT_SYMBOL(cpu_all_bits); 3087 3088 #ifdef CONFIG_INIT_ALL_POSSIBLE 3089 struct cpumask __cpu_possible_mask __ro_after_init 3090 = {CPU_BITS_ALL}; 3091 #else 3092 struct cpumask __cpu_possible_mask __ro_after_init; 3093 #endif 3094 EXPORT_SYMBOL(__cpu_possible_mask); 3095 3096 struct cpumask __cpu_online_mask __read_mostly; 3097 EXPORT_SYMBOL(__cpu_online_mask); 3098 3099 struct cpumask __cpu_enabled_mask __read_mostly; 3100 EXPORT_SYMBOL(__cpu_enabled_mask); 3101 3102 struct cpumask __cpu_present_mask __read_mostly; 3103 EXPORT_SYMBOL(__cpu_present_mask); 3104 3105 struct cpumask __cpu_active_mask __read_mostly; 3106 EXPORT_SYMBOL(__cpu_active_mask); 3107 3108 struct cpumask __cpu_dying_mask __read_mostly; 3109 EXPORT_SYMBOL(__cpu_dying_mask); 3110 3111 atomic_t __num_online_cpus __read_mostly; 3112 EXPORT_SYMBOL(__num_online_cpus); 3113 3114 void init_cpu_present(const struct cpumask *src) 3115 { 3116 cpumask_copy(&__cpu_present_mask, src); 3117 } 3118 3119 void init_cpu_possible(const struct cpumask *src) 3120 { 3121 cpumask_copy(&__cpu_possible_mask, src); 3122 } 3123 3124 void set_cpu_online(unsigned int cpu, bool online) 3125 { 3126 /* 3127 * atomic_inc/dec() is required to handle the horrid abuse of this 3128 * function by the reboot and kexec code which invoke it from 3129 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3130 * regular CPU hotplug is properly serialized. 3131 * 3132 * Note, that the fact that __num_online_cpus is of type atomic_t 3133 * does not protect readers which are not serialized against 3134 * concurrent hotplug operations. 3135 */ 3136 if (online) { 3137 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3138 atomic_inc(&__num_online_cpus); 3139 } else { 3140 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3141 atomic_dec(&__num_online_cpus); 3142 } 3143 } 3144 3145 /* 3146 * Activate the first processor. 3147 */ 3148 void __init boot_cpu_init(void) 3149 { 3150 int cpu = smp_processor_id(); 3151 3152 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3153 set_cpu_online(cpu, true); 3154 set_cpu_active(cpu, true); 3155 set_cpu_present(cpu, true); 3156 set_cpu_possible(cpu, true); 3157 3158 #ifdef CONFIG_SMP 3159 __boot_cpu_id = cpu; 3160 #endif 3161 } 3162 3163 /* 3164 * Must be called _AFTER_ setting up the per_cpu areas 3165 */ 3166 void __init boot_cpu_hotplug_init(void) 3167 { 3168 #ifdef CONFIG_SMP 3169 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3170 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3171 #endif 3172 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3173 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3174 } 3175 3176 #ifdef CONFIG_CPU_MITIGATIONS 3177 /* 3178 * All except the cross-thread attack vector are mitigated by default. 3179 * Cross-thread mitigation often requires disabling SMT which is expensive 3180 * so cross-thread mitigations are only partially enabled by default. 3181 * 3182 * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is 3183 * present. 3184 */ 3185 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = { 3186 [CPU_MITIGATE_USER_KERNEL] = true, 3187 [CPU_MITIGATE_USER_USER] = true, 3188 [CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM), 3189 [CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM), 3190 }; 3191 3192 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v) 3193 { 3194 if (v < NR_CPU_ATTACK_VECTORS) 3195 return attack_vectors[v]; 3196 3197 WARN_ONCE(1, "Invalid attack vector %d\n", v); 3198 return false; 3199 } 3200 3201 /* 3202 * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally 3203 * be combined with attack-vector disables which follow them. 3204 * 3205 * Examples: 3206 * mitigations=auto,no_user_kernel,no_user_user,no_cross_thread 3207 * mitigations=auto,nosmt,no_guest_host,no_guest_guest 3208 * 3209 * mitigations=off is equivalent to disabling all attack vectors. 3210 */ 3211 enum cpu_mitigations { 3212 CPU_MITIGATIONS_OFF, 3213 CPU_MITIGATIONS_AUTO, 3214 CPU_MITIGATIONS_AUTO_NOSMT, 3215 }; 3216 3217 enum { 3218 NO_USER_KERNEL, 3219 NO_USER_USER, 3220 NO_GUEST_HOST, 3221 NO_GUEST_GUEST, 3222 NO_CROSS_THREAD, 3223 NR_VECTOR_PARAMS, 3224 }; 3225 3226 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO; 3227 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3228 3229 static const match_table_t global_mitigations = { 3230 { CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt"}, 3231 { CPU_MITIGATIONS_AUTO, "auto"}, 3232 { CPU_MITIGATIONS_OFF, "off"}, 3233 }; 3234 3235 static const match_table_t vector_mitigations = { 3236 { NO_USER_KERNEL, "no_user_kernel"}, 3237 { NO_USER_USER, "no_user_user"}, 3238 { NO_GUEST_HOST, "no_guest_host"}, 3239 { NO_GUEST_GUEST, "no_guest_guest"}, 3240 { NO_CROSS_THREAD, "no_cross_thread"}, 3241 { NR_VECTOR_PARAMS, NULL}, 3242 }; 3243 3244 static int __init mitigations_parse_global_opt(char *arg) 3245 { 3246 int i; 3247 3248 for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) { 3249 const char *pattern = global_mitigations[i].pattern; 3250 3251 if (!strncmp(arg, pattern, strlen(pattern))) { 3252 cpu_mitigations = global_mitigations[i].token; 3253 return strlen(pattern); 3254 } 3255 } 3256 3257 return 0; 3258 } 3259 3260 static int __init mitigations_parse_cmdline(char *arg) 3261 { 3262 char *s, *p; 3263 int len; 3264 3265 len = mitigations_parse_global_opt(arg); 3266 3267 if (cpu_mitigations_off()) { 3268 memset(attack_vectors, 0, sizeof(attack_vectors)); 3269 smt_mitigations = SMT_MITIGATIONS_OFF; 3270 } else if (cpu_mitigations_auto_nosmt()) { 3271 smt_mitigations = SMT_MITIGATIONS_ON; 3272 } 3273 3274 p = arg + len; 3275 3276 if (!*p) 3277 return 0; 3278 3279 /* Attack vector controls may come after the ',' */ 3280 if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) { 3281 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg); 3282 return 0; 3283 } 3284 3285 while ((s = strsep(&p, ",")) != NULL) { 3286 switch (match_token(s, vector_mitigations, NULL)) { 3287 case NO_USER_KERNEL: 3288 attack_vectors[CPU_MITIGATE_USER_KERNEL] = false; 3289 break; 3290 case NO_USER_USER: 3291 attack_vectors[CPU_MITIGATE_USER_USER] = false; 3292 break; 3293 case NO_GUEST_HOST: 3294 attack_vectors[CPU_MITIGATE_GUEST_HOST] = false; 3295 break; 3296 case NO_GUEST_GUEST: 3297 attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false; 3298 break; 3299 case NO_CROSS_THREAD: 3300 smt_mitigations = SMT_MITIGATIONS_OFF; 3301 break; 3302 default: 3303 pr_crit("Unsupported mitigations options %s\n", s); 3304 return 0; 3305 } 3306 } 3307 3308 return 0; 3309 } 3310 3311 /* mitigations=off */ 3312 bool cpu_mitigations_off(void) 3313 { 3314 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3315 } 3316 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3317 3318 /* mitigations=auto,nosmt */ 3319 bool cpu_mitigations_auto_nosmt(void) 3320 { 3321 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3322 } 3323 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3324 #else 3325 static int __init mitigations_parse_cmdline(char *arg) 3326 { 3327 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3328 return 0; 3329 } 3330 #endif 3331 early_param("mitigations", mitigations_parse_cmdline); 3332