xref: /linux/kernel/cpu.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* CPU control.
3  * (C) 2001, 2002, 2003, 2004 Rusty Russell
4  */
5 #include <linux/sched/mm.h>
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39 #include <linux/parser.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @ap_sync_state:	State for AP synchronization
63  * @done_up:	Signal completion to the issuer of the task for cpu-up
64  * @done_down:	Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67 	enum cpuhp_state	state;
68 	enum cpuhp_state	target;
69 	enum cpuhp_state	fail;
70 #ifdef CONFIG_SMP
71 	struct task_struct	*thread;
72 	bool			should_run;
73 	bool			rollback;
74 	bool			single;
75 	bool			bringup;
76 	struct hlist_node	*node;
77 	struct hlist_node	*last;
78 	enum cpuhp_state	cb_state;
79 	int			result;
80 	atomic_t		ap_sync_state;
81 	struct completion	done_up;
82 	struct completion	done_down;
83 #endif
84 };
85 
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 	.fail = CPUHP_INVALID,
88 };
89 
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93 
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99 
100 
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:	Name of the step
120  * @startup:	Startup function of the step
121  * @teardown:	Teardown function of the step
122  * @cant_stop:	Bringup/teardown can't be stopped at this step
123  * @multi_instance:	State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126 	const char		*name;
127 	union {
128 		int		(*single)(unsigned int cpu);
129 		int		(*multi)(unsigned int cpu,
130 					 struct hlist_node *node);
131 	} startup;
132 	union {
133 		int		(*single)(unsigned int cpu);
134 		int		(*multi)(unsigned int cpu,
135 					 struct hlist_node *node);
136 	} teardown;
137 	/* private: */
138 	struct hlist_head	list;
139 	/* public: */
140 	bool			cant_stop;
141 	bool			multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 	return cpuhp_hp_states + state;
150 }
151 
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 	return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:	The cpu for which the callback should be invoked
160  * @state:	The state to do callbacks for
161  * @bringup:	True if the bringup callback should be invoked
162  * @node:	For multi-instance, do a single entry callback for install/remove
163  * @lastp:	For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 				 bool bringup, struct hlist_node *node,
171 				 struct hlist_node **lastp)
172 {
173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 	struct cpuhp_step *step = cpuhp_get_step(state);
175 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 	int (*cb)(unsigned int cpu);
177 	int ret, cnt;
178 
179 	if (st->fail == state) {
180 		st->fail = CPUHP_INVALID;
181 		return -EAGAIN;
182 	}
183 
184 	if (cpuhp_step_empty(bringup, step)) {
185 		WARN_ON_ONCE(1);
186 		return 0;
187 	}
188 
189 	if (!step->multi_instance) {
190 		WARN_ON_ONCE(lastp && *lastp);
191 		cb = bringup ? step->startup.single : step->teardown.single;
192 
193 		trace_cpuhp_enter(cpu, st->target, state, cb);
194 		ret = cb(cpu);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 	cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200 	/* Single invocation for instance add/remove */
201 	if (node) {
202 		WARN_ON_ONCE(lastp && *lastp);
203 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 		ret = cbm(cpu, node);
205 		trace_cpuhp_exit(cpu, st->state, state, ret);
206 		return ret;
207 	}
208 
209 	/* State transition. Invoke on all instances */
210 	cnt = 0;
211 	hlist_for_each(node, &step->list) {
212 		if (lastp && node == *lastp)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		if (ret) {
219 			if (!lastp)
220 				goto err;
221 
222 			*lastp = node;
223 			return ret;
224 		}
225 		cnt++;
226 	}
227 	if (lastp)
228 		*lastp = NULL;
229 	return 0;
230 err:
231 	/* Rollback the instances if one failed */
232 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 	if (!cbm)
234 		return ret;
235 
236 	hlist_for_each(node, &step->list) {
237 		if (!cnt--)
238 			break;
239 
240 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 		ret = cbm(cpu, node);
242 		trace_cpuhp_exit(cpu, st->state, state, ret);
243 		/*
244 		 * Rollback must not fail,
245 		 */
246 		WARN_ON_ONCE(ret);
247 	}
248 	return ret;
249 }
250 
251 /*
252  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
253  */
254 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
255 {
256 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
257 }
258 
259 #ifdef CONFIG_SMP
260 static bool cpuhp_is_ap_state(enum cpuhp_state state)
261 {
262 	/*
263 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
264 	 * purposes as that state is handled explicitly in cpu_down.
265 	 */
266 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
267 }
268 
269 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
270 {
271 	struct completion *done = bringup ? &st->done_up : &st->done_down;
272 	wait_for_completion(done);
273 }
274 
275 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
276 {
277 	struct completion *done = bringup ? &st->done_up : &st->done_down;
278 	complete(done);
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 	SYNC_STATE_DEAD,
284 	SYNC_STATE_KICKED,
285 	SYNC_STATE_SHOULD_DIE,
286 	SYNC_STATE_ALIVE,
287 	SYNC_STATE_SHOULD_ONLINE,
288 	SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:	The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303 	(void)atomic_xchg(st, state);
304 }
305 
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 				      enum cpuhp_sync_state next_state)
310 {
311 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 	ktime_t now, end, start = ktime_get();
313 	int sync;
314 
315 	end = start + 10ULL * NSEC_PER_SEC;
316 
317 	sync = atomic_read(st);
318 	while (1) {
319 		if (sync == state) {
320 			if (!atomic_try_cmpxchg(st, &sync, next_state))
321 				continue;
322 			return true;
323 		}
324 
325 		now = ktime_get();
326 		if (now > end) {
327 			/* Timeout. Leave the state unchanged */
328 			return false;
329 		} else if (now - start < NSEC_PER_MSEC) {
330 			/* Poll for one millisecond */
331 			arch_cpuhp_sync_state_poll();
332 		} else {
333 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 		}
335 		sync = atomic_read(st);
336 	}
337 	return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 	int sync = atomic_read(st);
364 
365 	do {
366 		/* CPU can have reported dead already. Don't overwrite that! */
367 		if (sync == SYNC_STATE_DEAD)
368 			break;
369 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 		/* CPU reached dead state. Invoke the cleanup function */
373 		arch_cpuhp_cleanup_dead_cpu(cpu);
374 		return;
375 	}
376 
377 	/* No further action possible. Emit message and give up. */
378 	pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397 	/* Wait for the control CPU to release it. */
398 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 		cpu_relax();
400 }
401 
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 	int sync = atomic_read(st);
406 
407 again:
408 	switch (sync) {
409 	case SYNC_STATE_DEAD:
410 		/* CPU is properly dead */
411 		break;
412 	case SYNC_STATE_KICKED:
413 		/* CPU did not come up in previous attempt */
414 		break;
415 	case SYNC_STATE_ALIVE:
416 		/* CPU is stuck cpuhp_ap_sync_alive(). */
417 		break;
418 	default:
419 		/* CPU failed to report online or dead and is in limbo state. */
420 		return false;
421 	}
422 
423 	/* Prepare for booting */
424 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 		goto again;
426 
427 	return true;
428 }
429 
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 	int ret = 0;
439 
440 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 		return 0;
442 
443 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 		pr_err("CPU%u failed to report alive state\n", cpu);
445 		ret = -EIO;
446 	}
447 
448 	/* Let the architecture cleanup the kick alive mechanics. */
449 	arch_cpuhp_cleanup_kick_cpu(cpu);
450 	return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468 	mutex_lock(&cpu_add_remove_lock);
469 }
470 
471 void cpu_maps_update_done(void)
472 {
473 	mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487 
488 void cpus_read_lock(void)
489 {
490 	percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 
494 int cpus_read_trylock(void)
495 {
496 	return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 
500 void cpus_read_unlock(void)
501 {
502 	percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 
506 void cpus_write_lock(void)
507 {
508 	percpu_down_write(&cpu_hotplug_lock);
509 }
510 
511 void cpus_write_unlock(void)
512 {
513 	percpu_up_write(&cpu_hotplug_lock);
514 }
515 
516 void lockdep_assert_cpus_held(void)
517 {
518 	/*
519 	 * We can't have hotplug operations before userspace starts running,
520 	 * and some init codepaths will knowingly not take the hotplug lock.
521 	 * This is all valid, so mute lockdep until it makes sense to report
522 	 * unheld locks.
523 	 */
524 	if (system_state < SYSTEM_RUNNING)
525 		return;
526 
527 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held);
530 
531 #ifdef CONFIG_LOCKDEP
532 int lockdep_is_cpus_held(void)
533 {
534 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
535 }
536 
537 int lockdep_is_cpus_write_held(void)
538 {
539 	return percpu_rwsem_is_write_held(&cpu_hotplug_lock);
540 }
541 #endif
542 
543 static void lockdep_acquire_cpus_lock(void)
544 {
545 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
546 }
547 
548 static void lockdep_release_cpus_lock(void)
549 {
550 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
551 }
552 
553 /* Declare CPU offlining not supported */
554 void cpu_hotplug_disable_offlining(void)
555 {
556 	cpu_maps_update_begin();
557 	cpu_hotplug_offline_disabled = true;
558 	cpu_maps_update_done();
559 }
560 
561 /*
562  * Wait for currently running CPU hotplug operations to complete (if any) and
563  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
564  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
565  * hotplug path before performing hotplug operations. So acquiring that lock
566  * guarantees mutual exclusion from any currently running hotplug operations.
567  */
568 void cpu_hotplug_disable(void)
569 {
570 	cpu_maps_update_begin();
571 	cpu_hotplug_disabled++;
572 	cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
575 
576 static void __cpu_hotplug_enable(void)
577 {
578 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
579 		return;
580 	cpu_hotplug_disabled--;
581 }
582 
583 void cpu_hotplug_enable(void)
584 {
585 	cpu_maps_update_begin();
586 	__cpu_hotplug_enable();
587 	cpu_maps_update_done();
588 }
589 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
590 
591 #else
592 
593 static void lockdep_acquire_cpus_lock(void)
594 {
595 }
596 
597 static void lockdep_release_cpus_lock(void)
598 {
599 }
600 
601 #endif	/* CONFIG_HOTPLUG_CPU */
602 
603 /*
604  * Architectures that need SMT-specific errata handling during SMT hotplug
605  * should override this.
606  */
607 void __weak arch_smt_update(void) { }
608 
609 #ifdef CONFIG_HOTPLUG_SMT
610 
611 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
612 static unsigned int cpu_smt_max_threads __ro_after_init;
613 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
614 
615 void __init cpu_smt_disable(bool force)
616 {
617 	if (!cpu_smt_possible())
618 		return;
619 
620 	if (force) {
621 		pr_info("SMT: Force disabled\n");
622 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
623 	} else {
624 		pr_info("SMT: disabled\n");
625 		cpu_smt_control = CPU_SMT_DISABLED;
626 	}
627 	cpu_smt_num_threads = 1;
628 }
629 
630 /*
631  * The decision whether SMT is supported can only be done after the full
632  * CPU identification. Called from architecture code.
633  */
634 void __init cpu_smt_set_num_threads(unsigned int num_threads,
635 				    unsigned int max_threads)
636 {
637 	WARN_ON(!num_threads || (num_threads > max_threads));
638 
639 	if (max_threads == 1)
640 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
641 
642 	cpu_smt_max_threads = max_threads;
643 
644 	/*
645 	 * If SMT has been disabled via the kernel command line or SMT is
646 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
647 	 * If enabled, take the architecture requested number of threads
648 	 * to bring up into account.
649 	 */
650 	if (cpu_smt_control != CPU_SMT_ENABLED)
651 		cpu_smt_num_threads = 1;
652 	else if (num_threads < cpu_smt_num_threads)
653 		cpu_smt_num_threads = num_threads;
654 }
655 
656 static int __init smt_cmdline_disable(char *str)
657 {
658 	cpu_smt_disable(str && !strcmp(str, "force"));
659 	return 0;
660 }
661 early_param("nosmt", smt_cmdline_disable);
662 
663 /*
664  * For Archicture supporting partial SMT states check if the thread is allowed.
665  * Otherwise this has already been checked through cpu_smt_max_threads when
666  * setting the SMT level.
667  */
668 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
669 {
670 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
671 	return topology_smt_thread_allowed(cpu);
672 #else
673 	return true;
674 #endif
675 }
676 
677 static inline bool cpu_bootable(unsigned int cpu)
678 {
679 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
680 		return true;
681 
682 	/* All CPUs are bootable if controls are not configured */
683 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
684 		return true;
685 
686 	/* All CPUs are bootable if CPU is not SMT capable */
687 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
688 		return true;
689 
690 	if (topology_is_primary_thread(cpu))
691 		return true;
692 
693 	/*
694 	 * On x86 it's required to boot all logical CPUs at least once so
695 	 * that the init code can get a chance to set CR4.MCE on each
696 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
697 	 * core will shutdown the machine.
698 	 */
699 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
700 }
701 
702 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
703 bool cpu_smt_possible(void)
704 {
705 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
706 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
707 }
708 EXPORT_SYMBOL_GPL(cpu_smt_possible);
709 
710 #else
711 static inline bool cpu_bootable(unsigned int cpu) { return true; }
712 #endif
713 
714 static inline enum cpuhp_state
715 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
716 {
717 	enum cpuhp_state prev_state = st->state;
718 	bool bringup = st->state < target;
719 
720 	st->rollback = false;
721 	st->last = NULL;
722 
723 	st->target = target;
724 	st->single = false;
725 	st->bringup = bringup;
726 	if (cpu_dying(cpu) != !bringup)
727 		set_cpu_dying(cpu, !bringup);
728 
729 	return prev_state;
730 }
731 
732 static inline void
733 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
734 		  enum cpuhp_state prev_state)
735 {
736 	bool bringup = !st->bringup;
737 
738 	st->target = prev_state;
739 
740 	/*
741 	 * Already rolling back. No need invert the bringup value or to change
742 	 * the current state.
743 	 */
744 	if (st->rollback)
745 		return;
746 
747 	st->rollback = true;
748 
749 	/*
750 	 * If we have st->last we need to undo partial multi_instance of this
751 	 * state first. Otherwise start undo at the previous state.
752 	 */
753 	if (!st->last) {
754 		if (st->bringup)
755 			st->state--;
756 		else
757 			st->state++;
758 	}
759 
760 	st->bringup = bringup;
761 	if (cpu_dying(cpu) != !bringup)
762 		set_cpu_dying(cpu, !bringup);
763 }
764 
765 /* Regular hotplug invocation of the AP hotplug thread */
766 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
767 {
768 	if (!st->single && st->state == st->target)
769 		return;
770 
771 	st->result = 0;
772 	/*
773 	 * Make sure the above stores are visible before should_run becomes
774 	 * true. Paired with the mb() above in cpuhp_thread_fun()
775 	 */
776 	smp_mb();
777 	st->should_run = true;
778 	wake_up_process(st->thread);
779 	wait_for_ap_thread(st, st->bringup);
780 }
781 
782 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
783 			 enum cpuhp_state target)
784 {
785 	enum cpuhp_state prev_state;
786 	int ret;
787 
788 	prev_state = cpuhp_set_state(cpu, st, target);
789 	__cpuhp_kick_ap(st);
790 	if ((ret = st->result)) {
791 		cpuhp_reset_state(cpu, st, prev_state);
792 		__cpuhp_kick_ap(st);
793 	}
794 
795 	return ret;
796 }
797 
798 static int bringup_wait_for_ap_online(unsigned int cpu)
799 {
800 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
801 
802 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
803 	wait_for_ap_thread(st, true);
804 	if (WARN_ON_ONCE((!cpu_online(cpu))))
805 		return -ECANCELED;
806 
807 	/* Unpark the hotplug thread of the target cpu */
808 	kthread_unpark(st->thread);
809 
810 	/*
811 	 * SMT soft disabling on X86 requires to bring the CPU out of the
812 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
813 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
814 	 * cpu_bootable() check will now return false if this is not the
815 	 * primary sibling.
816 	 */
817 	if (!cpu_bootable(cpu))
818 		return -ECANCELED;
819 	return 0;
820 }
821 
822 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
823 static int cpuhp_kick_ap_alive(unsigned int cpu)
824 {
825 	if (!cpuhp_can_boot_ap(cpu))
826 		return -EAGAIN;
827 
828 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
829 }
830 
831 static int cpuhp_bringup_ap(unsigned int cpu)
832 {
833 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
834 	int ret;
835 
836 	/*
837 	 * Some architectures have to walk the irq descriptors to
838 	 * setup the vector space for the cpu which comes online.
839 	 * Prevent irq alloc/free across the bringup.
840 	 */
841 	irq_lock_sparse();
842 
843 	ret = cpuhp_bp_sync_alive(cpu);
844 	if (ret)
845 		goto out_unlock;
846 
847 	ret = bringup_wait_for_ap_online(cpu);
848 	if (ret)
849 		goto out_unlock;
850 
851 	irq_unlock_sparse();
852 
853 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
854 		return 0;
855 
856 	return cpuhp_kick_ap(cpu, st, st->target);
857 
858 out_unlock:
859 	irq_unlock_sparse();
860 	return ret;
861 }
862 #else
863 static int bringup_cpu(unsigned int cpu)
864 {
865 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
866 	struct task_struct *idle = idle_thread_get(cpu);
867 	int ret;
868 
869 	if (!cpuhp_can_boot_ap(cpu))
870 		return -EAGAIN;
871 
872 	/*
873 	 * Some architectures have to walk the irq descriptors to
874 	 * setup the vector space for the cpu which comes online.
875 	 *
876 	 * Prevent irq alloc/free across the bringup by acquiring the
877 	 * sparse irq lock. Hold it until the upcoming CPU completes the
878 	 * startup in cpuhp_online_idle() which allows to avoid
879 	 * intermediate synchronization points in the architecture code.
880 	 */
881 	irq_lock_sparse();
882 
883 	ret = __cpu_up(cpu, idle);
884 	if (ret)
885 		goto out_unlock;
886 
887 	ret = cpuhp_bp_sync_alive(cpu);
888 	if (ret)
889 		goto out_unlock;
890 
891 	ret = bringup_wait_for_ap_online(cpu);
892 	if (ret)
893 		goto out_unlock;
894 
895 	irq_unlock_sparse();
896 
897 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
898 		return 0;
899 
900 	return cpuhp_kick_ap(cpu, st, st->target);
901 
902 out_unlock:
903 	irq_unlock_sparse();
904 	return ret;
905 }
906 #endif
907 
908 static int finish_cpu(unsigned int cpu)
909 {
910 	struct task_struct *idle = idle_thread_get(cpu);
911 	struct mm_struct *mm = idle->active_mm;
912 
913 	/*
914 	 * sched_force_init_mm() ensured the use of &init_mm,
915 	 * drop that refcount now that the CPU has stopped.
916 	 */
917 	WARN_ON(mm != &init_mm);
918 	idle->active_mm = NULL;
919 	mmdrop_lazy_tlb(mm);
920 
921 	return 0;
922 }
923 
924 /*
925  * Hotplug state machine related functions
926  */
927 
928 /*
929  * Get the next state to run. Empty ones will be skipped. Returns true if a
930  * state must be run.
931  *
932  * st->state will be modified ahead of time, to match state_to_run, as if it
933  * has already ran.
934  */
935 static bool cpuhp_next_state(bool bringup,
936 			     enum cpuhp_state *state_to_run,
937 			     struct cpuhp_cpu_state *st,
938 			     enum cpuhp_state target)
939 {
940 	do {
941 		if (bringup) {
942 			if (st->state >= target)
943 				return false;
944 
945 			*state_to_run = ++st->state;
946 		} else {
947 			if (st->state <= target)
948 				return false;
949 
950 			*state_to_run = st->state--;
951 		}
952 
953 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
954 			break;
955 	} while (true);
956 
957 	return true;
958 }
959 
960 static int __cpuhp_invoke_callback_range(bool bringup,
961 					 unsigned int cpu,
962 					 struct cpuhp_cpu_state *st,
963 					 enum cpuhp_state target,
964 					 bool nofail)
965 {
966 	enum cpuhp_state state;
967 	int ret = 0;
968 
969 	while (cpuhp_next_state(bringup, &state, st, target)) {
970 		int err;
971 
972 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
973 		if (!err)
974 			continue;
975 
976 		if (nofail) {
977 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
978 				cpu, bringup ? "UP" : "DOWN",
979 				cpuhp_get_step(st->state)->name,
980 				st->state, err);
981 			ret = -1;
982 		} else {
983 			ret = err;
984 			break;
985 		}
986 	}
987 
988 	return ret;
989 }
990 
991 static inline int cpuhp_invoke_callback_range(bool bringup,
992 					      unsigned int cpu,
993 					      struct cpuhp_cpu_state *st,
994 					      enum cpuhp_state target)
995 {
996 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
997 }
998 
999 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
1000 						      unsigned int cpu,
1001 						      struct cpuhp_cpu_state *st,
1002 						      enum cpuhp_state target)
1003 {
1004 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1005 }
1006 
1007 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1008 {
1009 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1010 		return true;
1011 	/*
1012 	 * When CPU hotplug is disabled, then taking the CPU down is not
1013 	 * possible because takedown_cpu() and the architecture and
1014 	 * subsystem specific mechanisms are not available. So the CPU
1015 	 * which would be completely unplugged again needs to stay around
1016 	 * in the current state.
1017 	 */
1018 	return st->state <= CPUHP_BRINGUP_CPU;
1019 }
1020 
1021 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1022 			      enum cpuhp_state target)
1023 {
1024 	enum cpuhp_state prev_state = st->state;
1025 	int ret = 0;
1026 
1027 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1028 	if (ret) {
1029 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1030 			 ret, cpu, cpuhp_get_step(st->state)->name,
1031 			 st->state);
1032 
1033 		cpuhp_reset_state(cpu, st, prev_state);
1034 		if (can_rollback_cpu(st))
1035 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1036 							    prev_state));
1037 	}
1038 	return ret;
1039 }
1040 
1041 /*
1042  * The cpu hotplug threads manage the bringup and teardown of the cpus
1043  */
1044 static int cpuhp_should_run(unsigned int cpu)
1045 {
1046 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1047 
1048 	return st->should_run;
1049 }
1050 
1051 /*
1052  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1053  * callbacks when a state gets [un]installed at runtime.
1054  *
1055  * Each invocation of this function by the smpboot thread does a single AP
1056  * state callback.
1057  *
1058  * It has 3 modes of operation:
1059  *  - single: runs st->cb_state
1060  *  - up:     runs ++st->state, while st->state < st->target
1061  *  - down:   runs st->state--, while st->state > st->target
1062  *
1063  * When complete or on error, should_run is cleared and the completion is fired.
1064  */
1065 static void cpuhp_thread_fun(unsigned int cpu)
1066 {
1067 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1068 	bool bringup = st->bringup;
1069 	enum cpuhp_state state;
1070 
1071 	if (WARN_ON_ONCE(!st->should_run))
1072 		return;
1073 
1074 	/*
1075 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1076 	 * that if we see ->should_run we also see the rest of the state.
1077 	 */
1078 	smp_mb();
1079 
1080 	/*
1081 	 * The BP holds the hotplug lock, but we're now running on the AP,
1082 	 * ensure that anybody asserting the lock is held, will actually find
1083 	 * it so.
1084 	 */
1085 	lockdep_acquire_cpus_lock();
1086 	cpuhp_lock_acquire(bringup);
1087 
1088 	if (st->single) {
1089 		state = st->cb_state;
1090 		st->should_run = false;
1091 	} else {
1092 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1093 		if (!st->should_run)
1094 			goto end;
1095 	}
1096 
1097 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1098 
1099 	if (cpuhp_is_atomic_state(state)) {
1100 		local_irq_disable();
1101 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1102 		local_irq_enable();
1103 
1104 		/*
1105 		 * STARTING/DYING must not fail!
1106 		 */
1107 		WARN_ON_ONCE(st->result);
1108 	} else {
1109 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1110 	}
1111 
1112 	if (st->result) {
1113 		/*
1114 		 * If we fail on a rollback, we're up a creek without no
1115 		 * paddle, no way forward, no way back. We loose, thanks for
1116 		 * playing.
1117 		 */
1118 		WARN_ON_ONCE(st->rollback);
1119 		st->should_run = false;
1120 	}
1121 
1122 end:
1123 	cpuhp_lock_release(bringup);
1124 	lockdep_release_cpus_lock();
1125 
1126 	if (!st->should_run)
1127 		complete_ap_thread(st, bringup);
1128 }
1129 
1130 /* Invoke a single callback on a remote cpu */
1131 static int
1132 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1133 			 struct hlist_node *node)
1134 {
1135 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1136 	int ret;
1137 
1138 	if (!cpu_online(cpu))
1139 		return 0;
1140 
1141 	cpuhp_lock_acquire(false);
1142 	cpuhp_lock_release(false);
1143 
1144 	cpuhp_lock_acquire(true);
1145 	cpuhp_lock_release(true);
1146 
1147 	/*
1148 	 * If we are up and running, use the hotplug thread. For early calls
1149 	 * we invoke the thread function directly.
1150 	 */
1151 	if (!st->thread)
1152 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1153 
1154 	st->rollback = false;
1155 	st->last = NULL;
1156 
1157 	st->node = node;
1158 	st->bringup = bringup;
1159 	st->cb_state = state;
1160 	st->single = true;
1161 
1162 	__cpuhp_kick_ap(st);
1163 
1164 	/*
1165 	 * If we failed and did a partial, do a rollback.
1166 	 */
1167 	if ((ret = st->result) && st->last) {
1168 		st->rollback = true;
1169 		st->bringup = !bringup;
1170 
1171 		__cpuhp_kick_ap(st);
1172 	}
1173 
1174 	/*
1175 	 * Clean up the leftovers so the next hotplug operation wont use stale
1176 	 * data.
1177 	 */
1178 	st->node = st->last = NULL;
1179 	return ret;
1180 }
1181 
1182 static int cpuhp_kick_ap_work(unsigned int cpu)
1183 {
1184 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1185 	enum cpuhp_state prev_state = st->state;
1186 	int ret;
1187 
1188 	cpuhp_lock_acquire(false);
1189 	cpuhp_lock_release(false);
1190 
1191 	cpuhp_lock_acquire(true);
1192 	cpuhp_lock_release(true);
1193 
1194 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1195 	ret = cpuhp_kick_ap(cpu, st, st->target);
1196 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1197 
1198 	return ret;
1199 }
1200 
1201 static struct smp_hotplug_thread cpuhp_threads = {
1202 	.store			= &cpuhp_state.thread,
1203 	.thread_should_run	= cpuhp_should_run,
1204 	.thread_fn		= cpuhp_thread_fun,
1205 	.thread_comm		= "cpuhp/%u",
1206 	.selfparking		= true,
1207 };
1208 
1209 static __init void cpuhp_init_state(void)
1210 {
1211 	struct cpuhp_cpu_state *st;
1212 	int cpu;
1213 
1214 	for_each_possible_cpu(cpu) {
1215 		st = per_cpu_ptr(&cpuhp_state, cpu);
1216 		init_completion(&st->done_up);
1217 		init_completion(&st->done_down);
1218 	}
1219 }
1220 
1221 void __init cpuhp_threads_init(void)
1222 {
1223 	cpuhp_init_state();
1224 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1225 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1226 }
1227 
1228 #ifdef CONFIG_HOTPLUG_CPU
1229 #ifndef arch_clear_mm_cpumask_cpu
1230 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1231 #endif
1232 
1233 /**
1234  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1235  * @cpu: a CPU id
1236  *
1237  * This function walks all processes, finds a valid mm struct for each one and
1238  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1239  * trivial, there are various non-obvious corner cases, which this function
1240  * tries to solve in a safe manner.
1241  *
1242  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1243  * be called only for an already offlined CPU.
1244  */
1245 void clear_tasks_mm_cpumask(int cpu)
1246 {
1247 	struct task_struct *p;
1248 
1249 	/*
1250 	 * This function is called after the cpu is taken down and marked
1251 	 * offline, so its not like new tasks will ever get this cpu set in
1252 	 * their mm mask. -- Peter Zijlstra
1253 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1254 	 * full-fledged tasklist_lock.
1255 	 */
1256 	WARN_ON(cpu_online(cpu));
1257 	rcu_read_lock();
1258 	for_each_process(p) {
1259 		struct task_struct *t;
1260 
1261 		/*
1262 		 * Main thread might exit, but other threads may still have
1263 		 * a valid mm. Find one.
1264 		 */
1265 		t = find_lock_task_mm(p);
1266 		if (!t)
1267 			continue;
1268 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1269 		task_unlock(t);
1270 	}
1271 	rcu_read_unlock();
1272 }
1273 
1274 /* Take this CPU down. */
1275 static int take_cpu_down(void *_param)
1276 {
1277 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1278 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1279 	int err, cpu = smp_processor_id();
1280 
1281 	/* Ensure this CPU doesn't handle any more interrupts. */
1282 	err = __cpu_disable();
1283 	if (err < 0)
1284 		return err;
1285 
1286 	/*
1287 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1288 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1289 	 */
1290 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1291 
1292 	/*
1293 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1294 	 */
1295 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1296 
1297 	/* Park the stopper thread */
1298 	stop_machine_park(cpu);
1299 	return 0;
1300 }
1301 
1302 static int takedown_cpu(unsigned int cpu)
1303 {
1304 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1305 	int err;
1306 
1307 	/* Park the smpboot threads */
1308 	kthread_park(st->thread);
1309 
1310 	/*
1311 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1312 	 * interrupt affinities.
1313 	 */
1314 	irq_lock_sparse();
1315 
1316 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1317 	if (err) {
1318 		/* CPU refused to die */
1319 		irq_unlock_sparse();
1320 		/* Unpark the hotplug thread so we can rollback there */
1321 		kthread_unpark(st->thread);
1322 		return err;
1323 	}
1324 	BUG_ON(cpu_online(cpu));
1325 
1326 	/*
1327 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1328 	 * all runnable tasks from the CPU, there's only the idle task left now
1329 	 * that the migration thread is done doing the stop_machine thing.
1330 	 *
1331 	 * Wait for the stop thread to go away.
1332 	 */
1333 	wait_for_ap_thread(st, false);
1334 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1335 
1336 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1337 	irq_unlock_sparse();
1338 
1339 	hotplug_cpu__broadcast_tick_pull(cpu);
1340 	/* This actually kills the CPU. */
1341 	__cpu_die(cpu);
1342 
1343 	cpuhp_bp_sync_dead(cpu);
1344 
1345 	lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1346 
1347 	/*
1348 	 * Callbacks must be re-integrated right away to the RCU state machine.
1349 	 * Otherwise an RCU callback could block a further teardown function
1350 	 * waiting for its completion.
1351 	 */
1352 	rcutree_migrate_callbacks(cpu);
1353 
1354 	return 0;
1355 }
1356 
1357 static void cpuhp_complete_idle_dead(void *arg)
1358 {
1359 	struct cpuhp_cpu_state *st = arg;
1360 
1361 	complete_ap_thread(st, false);
1362 }
1363 
1364 void cpuhp_report_idle_dead(void)
1365 {
1366 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1367 
1368 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1369 	tick_assert_timekeeping_handover();
1370 	rcutree_report_cpu_dead();
1371 	st->state = CPUHP_AP_IDLE_DEAD;
1372 	/*
1373 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1374 	 * to an online cpu.
1375 	 */
1376 	smp_call_function_single(cpumask_first(cpu_online_mask),
1377 				 cpuhp_complete_idle_dead, st, 0);
1378 }
1379 
1380 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1381 				enum cpuhp_state target)
1382 {
1383 	enum cpuhp_state prev_state = st->state;
1384 	int ret = 0;
1385 
1386 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1387 	if (ret) {
1388 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1389 			 ret, cpu, cpuhp_get_step(st->state)->name,
1390 			 st->state);
1391 
1392 		cpuhp_reset_state(cpu, st, prev_state);
1393 
1394 		if (st->state < prev_state)
1395 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1396 							    prev_state));
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 /* Requires cpu_add_remove_lock to be held */
1403 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1404 			   enum cpuhp_state target)
1405 {
1406 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1407 	int prev_state, ret = 0;
1408 
1409 	if (num_online_cpus() == 1)
1410 		return -EBUSY;
1411 
1412 	if (!cpu_present(cpu))
1413 		return -EINVAL;
1414 
1415 	cpus_write_lock();
1416 
1417 	/*
1418 	 * Keep at least one housekeeping cpu onlined to avoid generating
1419 	 * an empty sched_domain span.
1420 	 */
1421 	if (cpumask_any_and(cpu_online_mask,
1422 			    housekeeping_cpumask(HK_TYPE_DOMAIN)) >= nr_cpu_ids) {
1423 		ret = -EBUSY;
1424 		goto out;
1425 	}
1426 
1427 	cpuhp_tasks_frozen = tasks_frozen;
1428 
1429 	prev_state = cpuhp_set_state(cpu, st, target);
1430 	/*
1431 	 * If the current CPU state is in the range of the AP hotplug thread,
1432 	 * then we need to kick the thread.
1433 	 */
1434 	if (st->state > CPUHP_TEARDOWN_CPU) {
1435 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1436 		ret = cpuhp_kick_ap_work(cpu);
1437 		/*
1438 		 * The AP side has done the error rollback already. Just
1439 		 * return the error code..
1440 		 */
1441 		if (ret)
1442 			goto out;
1443 
1444 		/*
1445 		 * We might have stopped still in the range of the AP hotplug
1446 		 * thread. Nothing to do anymore.
1447 		 */
1448 		if (st->state > CPUHP_TEARDOWN_CPU)
1449 			goto out;
1450 
1451 		st->target = target;
1452 	}
1453 	/*
1454 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1455 	 * to do the further cleanups.
1456 	 */
1457 	ret = cpuhp_down_callbacks(cpu, st, target);
1458 	if (ret && st->state < prev_state) {
1459 		if (st->state == CPUHP_TEARDOWN_CPU) {
1460 			cpuhp_reset_state(cpu, st, prev_state);
1461 			__cpuhp_kick_ap(st);
1462 		} else {
1463 			WARN(1, "DEAD callback error for CPU%d", cpu);
1464 		}
1465 	}
1466 
1467 out:
1468 	cpus_write_unlock();
1469 	arch_smt_update();
1470 	return ret;
1471 }
1472 
1473 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1474 {
1475 	/*
1476 	 * If the platform does not support hotplug, report it explicitly to
1477 	 * differentiate it from a transient offlining failure.
1478 	 */
1479 	if (cpu_hotplug_offline_disabled)
1480 		return -EOPNOTSUPP;
1481 	if (cpu_hotplug_disabled)
1482 		return -EBUSY;
1483 	return _cpu_down(cpu, 0, target);
1484 }
1485 
1486 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1487 {
1488 	int err;
1489 
1490 	cpu_maps_update_begin();
1491 	err = cpu_down_maps_locked(cpu, target);
1492 	cpu_maps_update_done();
1493 	return err;
1494 }
1495 
1496 /**
1497  * cpu_device_down - Bring down a cpu device
1498  * @dev: Pointer to the cpu device to offline
1499  *
1500  * This function is meant to be used by device core cpu subsystem only.
1501  *
1502  * Other subsystems should use remove_cpu() instead.
1503  *
1504  * Return: %0 on success or a negative errno code
1505  */
1506 int cpu_device_down(struct device *dev)
1507 {
1508 	return cpu_down(dev->id, CPUHP_OFFLINE);
1509 }
1510 
1511 int remove_cpu(unsigned int cpu)
1512 {
1513 	int ret;
1514 
1515 	lock_device_hotplug();
1516 	ret = device_offline(get_cpu_device(cpu));
1517 	unlock_device_hotplug();
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(remove_cpu);
1522 
1523 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1524 {
1525 	unsigned int cpu;
1526 	int error;
1527 
1528 	cpu_maps_update_begin();
1529 
1530 	/*
1531 	 * Make certain the cpu I'm about to reboot on is online.
1532 	 *
1533 	 * This is inline to what migrate_to_reboot_cpu() already do.
1534 	 */
1535 	if (!cpu_online(primary_cpu))
1536 		primary_cpu = cpumask_first(cpu_online_mask);
1537 
1538 	for_each_online_cpu(cpu) {
1539 		if (cpu == primary_cpu)
1540 			continue;
1541 
1542 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1543 		if (error) {
1544 			pr_err("Failed to offline CPU%d - error=%d",
1545 				cpu, error);
1546 			break;
1547 		}
1548 	}
1549 
1550 	/*
1551 	 * Ensure all but the reboot CPU are offline.
1552 	 */
1553 	BUG_ON(num_online_cpus() > 1);
1554 
1555 	/*
1556 	 * Make sure the CPUs won't be enabled by someone else after this
1557 	 * point. Kexec will reboot to a new kernel shortly resetting
1558 	 * everything along the way.
1559 	 */
1560 	cpu_hotplug_disabled++;
1561 
1562 	cpu_maps_update_done();
1563 }
1564 
1565 #else
1566 #define takedown_cpu		NULL
1567 #endif /*CONFIG_HOTPLUG_CPU*/
1568 
1569 /**
1570  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1571  * @cpu: cpu that just started
1572  *
1573  * It must be called by the arch code on the new cpu, before the new cpu
1574  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1575  */
1576 void notify_cpu_starting(unsigned int cpu)
1577 {
1578 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1579 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1580 
1581 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1582 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1583 
1584 	/*
1585 	 * STARTING must not fail!
1586 	 */
1587 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1588 }
1589 
1590 /*
1591  * Called from the idle task. Wake up the controlling task which brings the
1592  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1593  * online bringup to the hotplug thread.
1594  */
1595 void cpuhp_online_idle(enum cpuhp_state state)
1596 {
1597 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1598 
1599 	/* Happens for the boot cpu */
1600 	if (state != CPUHP_AP_ONLINE_IDLE)
1601 		return;
1602 
1603 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1604 
1605 	/*
1606 	 * Unpark the stopper thread before we start the idle loop (and start
1607 	 * scheduling); this ensures the stopper task is always available.
1608 	 */
1609 	stop_machine_unpark(smp_processor_id());
1610 
1611 	st->state = CPUHP_AP_ONLINE_IDLE;
1612 	complete_ap_thread(st, true);
1613 }
1614 
1615 /* Requires cpu_add_remove_lock to be held */
1616 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1617 {
1618 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1619 	struct task_struct *idle;
1620 	int ret = 0;
1621 
1622 	cpus_write_lock();
1623 
1624 	if (!cpu_present(cpu)) {
1625 		ret = -EINVAL;
1626 		goto out;
1627 	}
1628 
1629 	/*
1630 	 * The caller of cpu_up() might have raced with another
1631 	 * caller. Nothing to do.
1632 	 */
1633 	if (st->state >= target)
1634 		goto out;
1635 
1636 	if (st->state == CPUHP_OFFLINE) {
1637 		/* Let it fail before we try to bring the cpu up */
1638 		idle = idle_thread_get(cpu);
1639 		if (IS_ERR(idle)) {
1640 			ret = PTR_ERR(idle);
1641 			goto out;
1642 		}
1643 
1644 		/*
1645 		 * Reset stale stack state from the last time this CPU was online.
1646 		 */
1647 		scs_task_reset(idle);
1648 		kasan_unpoison_task_stack(idle);
1649 	}
1650 
1651 	cpuhp_tasks_frozen = tasks_frozen;
1652 
1653 	cpuhp_set_state(cpu, st, target);
1654 	/*
1655 	 * If the current CPU state is in the range of the AP hotplug thread,
1656 	 * then we need to kick the thread once more.
1657 	 */
1658 	if (st->state > CPUHP_BRINGUP_CPU) {
1659 		ret = cpuhp_kick_ap_work(cpu);
1660 		/*
1661 		 * The AP side has done the error rollback already. Just
1662 		 * return the error code..
1663 		 */
1664 		if (ret)
1665 			goto out;
1666 	}
1667 
1668 	/*
1669 	 * Try to reach the target state. We max out on the BP at
1670 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1671 	 * responsible for bringing it up to the target state.
1672 	 */
1673 	target = min((int)target, CPUHP_BRINGUP_CPU);
1674 	ret = cpuhp_up_callbacks(cpu, st, target);
1675 out:
1676 	cpus_write_unlock();
1677 	arch_smt_update();
1678 	return ret;
1679 }
1680 
1681 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1682 {
1683 	int err = 0;
1684 
1685 	if (!cpu_possible(cpu)) {
1686 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1687 		       cpu);
1688 		return -EINVAL;
1689 	}
1690 
1691 	err = try_online_node(cpu_to_node(cpu));
1692 	if (err)
1693 		return err;
1694 
1695 	cpu_maps_update_begin();
1696 
1697 	if (cpu_hotplug_disabled) {
1698 		err = -EBUSY;
1699 		goto out;
1700 	}
1701 	if (!cpu_bootable(cpu)) {
1702 		err = -EPERM;
1703 		goto out;
1704 	}
1705 
1706 	err = _cpu_up(cpu, 0, target);
1707 out:
1708 	cpu_maps_update_done();
1709 	return err;
1710 }
1711 
1712 /**
1713  * cpu_device_up - Bring up a cpu device
1714  * @dev: Pointer to the cpu device to online
1715  *
1716  * This function is meant to be used by device core cpu subsystem only.
1717  *
1718  * Other subsystems should use add_cpu() instead.
1719  *
1720  * Return: %0 on success or a negative errno code
1721  */
1722 int cpu_device_up(struct device *dev)
1723 {
1724 	return cpu_up(dev->id, CPUHP_ONLINE);
1725 }
1726 
1727 int add_cpu(unsigned int cpu)
1728 {
1729 	int ret;
1730 
1731 	lock_device_hotplug();
1732 	ret = device_online(get_cpu_device(cpu));
1733 	unlock_device_hotplug();
1734 
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(add_cpu);
1738 
1739 /**
1740  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1741  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1742  *
1743  * On some architectures like arm64, we can hibernate on any CPU, but on
1744  * wake up the CPU we hibernated on might be offline as a side effect of
1745  * using maxcpus= for example.
1746  *
1747  * Return: %0 on success or a negative errno code
1748  */
1749 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1750 {
1751 	int ret;
1752 
1753 	if (!cpu_online(sleep_cpu)) {
1754 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1755 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1756 		if (ret) {
1757 			pr_err("Failed to bring hibernate-CPU up!\n");
1758 			return ret;
1759 		}
1760 	}
1761 	return 0;
1762 }
1763 
1764 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1765 				      enum cpuhp_state target)
1766 {
1767 	unsigned int cpu;
1768 
1769 	for_each_cpu(cpu, mask) {
1770 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1771 
1772 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1773 			/*
1774 			 * If this failed then cpu_up() might have only
1775 			 * rolled back to CPUHP_BP_KICK_AP for the final
1776 			 * online. Clean it up. NOOP if already rolled back.
1777 			 */
1778 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1779 		}
1780 
1781 		if (!--ncpus)
1782 			break;
1783 	}
1784 }
1785 
1786 #ifdef CONFIG_HOTPLUG_PARALLEL
1787 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1788 
1789 static int __init parallel_bringup_parse_param(char *arg)
1790 {
1791 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1792 }
1793 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1794 
1795 #ifdef CONFIG_HOTPLUG_SMT
1796 static inline bool cpuhp_smt_aware(void)
1797 {
1798 	return cpu_smt_max_threads > 1;
1799 }
1800 
1801 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1802 {
1803 	return cpu_primary_thread_mask;
1804 }
1805 #else
1806 static inline bool cpuhp_smt_aware(void)
1807 {
1808 	return false;
1809 }
1810 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1811 {
1812 	return cpu_none_mask;
1813 }
1814 #endif
1815 
1816 bool __weak arch_cpuhp_init_parallel_bringup(void)
1817 {
1818 	return true;
1819 }
1820 
1821 /*
1822  * On architectures which have enabled parallel bringup this invokes all BP
1823  * prepare states for each of the to be onlined APs first. The last state
1824  * sends the startup IPI to the APs. The APs proceed through the low level
1825  * bringup code in parallel and then wait for the control CPU to release
1826  * them one by one for the final onlining procedure.
1827  *
1828  * This avoids waiting for each AP to respond to the startup IPI in
1829  * CPUHP_BRINGUP_CPU.
1830  */
1831 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1832 {
1833 	const struct cpumask *mask = cpu_present_mask;
1834 
1835 	if (__cpuhp_parallel_bringup)
1836 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1837 	if (!__cpuhp_parallel_bringup)
1838 		return false;
1839 
1840 	if (cpuhp_smt_aware()) {
1841 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1842 		static struct cpumask tmp_mask __initdata;
1843 
1844 		/*
1845 		 * X86 requires to prevent that SMT siblings stopped while
1846 		 * the primary thread does a microcode update for various
1847 		 * reasons. Bring the primary threads up first.
1848 		 */
1849 		cpumask_and(&tmp_mask, mask, pmask);
1850 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1851 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1852 		/* Account for the online CPUs */
1853 		ncpus -= num_online_cpus();
1854 		if (!ncpus)
1855 			return true;
1856 		/* Create the mask for secondary CPUs */
1857 		cpumask_andnot(&tmp_mask, mask, pmask);
1858 		mask = &tmp_mask;
1859 	}
1860 
1861 	/* Bring the not-yet started CPUs up */
1862 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1863 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1864 	return true;
1865 }
1866 #else
1867 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1868 #endif /* CONFIG_HOTPLUG_PARALLEL */
1869 
1870 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1871 {
1872 	if (!max_cpus)
1873 		return;
1874 
1875 	/* Try parallel bringup optimization if enabled */
1876 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1877 		return;
1878 
1879 	/* Full per CPU serialized bringup */
1880 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1881 }
1882 
1883 #ifdef CONFIG_PM_SLEEP_SMP
1884 static cpumask_var_t frozen_cpus;
1885 
1886 int freeze_secondary_cpus(int primary)
1887 {
1888 	int cpu, error = 0;
1889 
1890 	cpu_maps_update_begin();
1891 	if (primary == -1) {
1892 		primary = cpumask_first(cpu_online_mask);
1893 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1894 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1895 	} else {
1896 		if (!cpu_online(primary))
1897 			primary = cpumask_first(cpu_online_mask);
1898 	}
1899 
1900 	/*
1901 	 * We take down all of the non-boot CPUs in one shot to avoid races
1902 	 * with the userspace trying to use the CPU hotplug at the same time
1903 	 */
1904 	cpumask_clear(frozen_cpus);
1905 
1906 	pr_info("Disabling non-boot CPUs ...\n");
1907 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1908 		if (!cpu_online(cpu) || cpu == primary)
1909 			continue;
1910 
1911 		if (pm_wakeup_pending()) {
1912 			pr_info("Wakeup pending. Abort CPU freeze\n");
1913 			error = -EBUSY;
1914 			break;
1915 		}
1916 
1917 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1918 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1919 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1920 		if (!error)
1921 			cpumask_set_cpu(cpu, frozen_cpus);
1922 		else {
1923 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1924 			break;
1925 		}
1926 	}
1927 
1928 	if (!error)
1929 		BUG_ON(num_online_cpus() > 1);
1930 	else
1931 		pr_err("Non-boot CPUs are not disabled\n");
1932 
1933 	/*
1934 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1935 	 * this even in case of failure as all freeze_secondary_cpus() users are
1936 	 * supposed to do thaw_secondary_cpus() on the failure path.
1937 	 */
1938 	cpu_hotplug_disabled++;
1939 
1940 	cpu_maps_update_done();
1941 	return error;
1942 }
1943 
1944 void __weak arch_thaw_secondary_cpus_begin(void)
1945 {
1946 }
1947 
1948 void __weak arch_thaw_secondary_cpus_end(void)
1949 {
1950 }
1951 
1952 void thaw_secondary_cpus(void)
1953 {
1954 	int cpu, error;
1955 
1956 	/* Allow everyone to use the CPU hotplug again */
1957 	cpu_maps_update_begin();
1958 	__cpu_hotplug_enable();
1959 	if (cpumask_empty(frozen_cpus))
1960 		goto out;
1961 
1962 	pr_info("Enabling non-boot CPUs ...\n");
1963 
1964 	arch_thaw_secondary_cpus_begin();
1965 
1966 	for_each_cpu(cpu, frozen_cpus) {
1967 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1968 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1969 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1970 		if (!error) {
1971 			pr_info("CPU%d is up\n", cpu);
1972 			continue;
1973 		}
1974 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1975 	}
1976 
1977 	arch_thaw_secondary_cpus_end();
1978 
1979 	cpumask_clear(frozen_cpus);
1980 out:
1981 	cpu_maps_update_done();
1982 }
1983 
1984 static int __init alloc_frozen_cpus(void)
1985 {
1986 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1987 		return -ENOMEM;
1988 	return 0;
1989 }
1990 core_initcall(alloc_frozen_cpus);
1991 
1992 /*
1993  * When callbacks for CPU hotplug notifications are being executed, we must
1994  * ensure that the state of the system with respect to the tasks being frozen
1995  * or not, as reported by the notification, remains unchanged *throughout the
1996  * duration* of the execution of the callbacks.
1997  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1998  *
1999  * This synchronization is implemented by mutually excluding regular CPU
2000  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2001  * Hibernate notifications.
2002  */
2003 static int
2004 cpu_hotplug_pm_callback(struct notifier_block *nb,
2005 			unsigned long action, void *ptr)
2006 {
2007 	switch (action) {
2008 
2009 	case PM_SUSPEND_PREPARE:
2010 	case PM_HIBERNATION_PREPARE:
2011 		cpu_hotplug_disable();
2012 		break;
2013 
2014 	case PM_POST_SUSPEND:
2015 	case PM_POST_HIBERNATION:
2016 		cpu_hotplug_enable();
2017 		break;
2018 
2019 	default:
2020 		return NOTIFY_DONE;
2021 	}
2022 
2023 	return NOTIFY_OK;
2024 }
2025 
2026 
2027 static int __init cpu_hotplug_pm_sync_init(void)
2028 {
2029 	/*
2030 	 * cpu_hotplug_pm_callback has higher priority than x86
2031 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2032 	 * to disable cpu hotplug to avoid cpu hotplug race.
2033 	 */
2034 	pm_notifier(cpu_hotplug_pm_callback, 0);
2035 	return 0;
2036 }
2037 core_initcall(cpu_hotplug_pm_sync_init);
2038 
2039 #endif /* CONFIG_PM_SLEEP_SMP */
2040 
2041 int __boot_cpu_id;
2042 
2043 #endif /* CONFIG_SMP */
2044 
2045 /* Boot processor state steps */
2046 static struct cpuhp_step cpuhp_hp_states[] = {
2047 	[CPUHP_OFFLINE] = {
2048 		.name			= "offline",
2049 		.startup.single		= NULL,
2050 		.teardown.single	= NULL,
2051 	},
2052 #ifdef CONFIG_SMP
2053 	[CPUHP_CREATE_THREADS]= {
2054 		.name			= "threads:prepare",
2055 		.startup.single		= smpboot_create_threads,
2056 		.teardown.single	= NULL,
2057 		.cant_stop		= true,
2058 	},
2059 	[CPUHP_RANDOM_PREPARE] = {
2060 		.name			= "random:prepare",
2061 		.startup.single		= random_prepare_cpu,
2062 		.teardown.single	= NULL,
2063 	},
2064 	[CPUHP_WORKQUEUE_PREP] = {
2065 		.name			= "workqueue:prepare",
2066 		.startup.single		= workqueue_prepare_cpu,
2067 		.teardown.single	= NULL,
2068 	},
2069 	[CPUHP_HRTIMERS_PREPARE] = {
2070 		.name			= "hrtimers:prepare",
2071 		.startup.single		= hrtimers_prepare_cpu,
2072 		.teardown.single	= NULL,
2073 	},
2074 	[CPUHP_SMPCFD_PREPARE] = {
2075 		.name			= "smpcfd:prepare",
2076 		.startup.single		= smpcfd_prepare_cpu,
2077 		.teardown.single	= smpcfd_dead_cpu,
2078 	},
2079 	[CPUHP_RELAY_PREPARE] = {
2080 		.name			= "relay:prepare",
2081 		.startup.single		= relay_prepare_cpu,
2082 		.teardown.single	= NULL,
2083 	},
2084 	[CPUHP_RCUTREE_PREP] = {
2085 		.name			= "RCU/tree:prepare",
2086 		.startup.single		= rcutree_prepare_cpu,
2087 		.teardown.single	= rcutree_dead_cpu,
2088 	},
2089 	/*
2090 	 * On the tear-down path, timers_dead_cpu() must be invoked
2091 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2092 	 * otherwise a RCU stall occurs.
2093 	 */
2094 	[CPUHP_TIMERS_PREPARE] = {
2095 		.name			= "timers:prepare",
2096 		.startup.single		= timers_prepare_cpu,
2097 		.teardown.single	= timers_dead_cpu,
2098 	},
2099 
2100 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2101 	/*
2102 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2103 	 * the next step will release it.
2104 	 */
2105 	[CPUHP_BP_KICK_AP] = {
2106 		.name			= "cpu:kick_ap",
2107 		.startup.single		= cpuhp_kick_ap_alive,
2108 	},
2109 
2110 	/*
2111 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2112 	 * releases it for the complete bringup.
2113 	 */
2114 	[CPUHP_BRINGUP_CPU] = {
2115 		.name			= "cpu:bringup",
2116 		.startup.single		= cpuhp_bringup_ap,
2117 		.teardown.single	= finish_cpu,
2118 		.cant_stop		= true,
2119 	},
2120 #else
2121 	/*
2122 	 * All-in-one CPU bringup state which includes the kick alive.
2123 	 */
2124 	[CPUHP_BRINGUP_CPU] = {
2125 		.name			= "cpu:bringup",
2126 		.startup.single		= bringup_cpu,
2127 		.teardown.single	= finish_cpu,
2128 		.cant_stop		= true,
2129 	},
2130 #endif
2131 	/* Final state before CPU kills itself */
2132 	[CPUHP_AP_IDLE_DEAD] = {
2133 		.name			= "idle:dead",
2134 	},
2135 	/*
2136 	 * Last state before CPU enters the idle loop to die. Transient state
2137 	 * for synchronization.
2138 	 */
2139 	[CPUHP_AP_OFFLINE] = {
2140 		.name			= "ap:offline",
2141 		.cant_stop		= true,
2142 	},
2143 	/* First state is scheduler control. Interrupts are disabled */
2144 	[CPUHP_AP_SCHED_STARTING] = {
2145 		.name			= "sched:starting",
2146 		.startup.single		= sched_cpu_starting,
2147 		.teardown.single	= sched_cpu_dying,
2148 	},
2149 	[CPUHP_AP_RCUTREE_DYING] = {
2150 		.name			= "RCU/tree:dying",
2151 		.startup.single		= NULL,
2152 		.teardown.single	= rcutree_dying_cpu,
2153 	},
2154 	[CPUHP_AP_SMPCFD_DYING] = {
2155 		.name			= "smpcfd:dying",
2156 		.startup.single		= NULL,
2157 		.teardown.single	= smpcfd_dying_cpu,
2158 	},
2159 	[CPUHP_AP_HRTIMERS_DYING] = {
2160 		.name			= "hrtimers:dying",
2161 		.startup.single		= hrtimers_cpu_starting,
2162 		.teardown.single	= hrtimers_cpu_dying,
2163 	},
2164 	[CPUHP_AP_TICK_DYING] = {
2165 		.name			= "tick:dying",
2166 		.startup.single		= NULL,
2167 		.teardown.single	= tick_cpu_dying,
2168 	},
2169 	/* Entry state on starting. Interrupts enabled from here on. Transient
2170 	 * state for synchronsization */
2171 	[CPUHP_AP_ONLINE] = {
2172 		.name			= "ap:online",
2173 	},
2174 	/*
2175 	 * Handled on control processor until the plugged processor manages
2176 	 * this itself.
2177 	 */
2178 	[CPUHP_TEARDOWN_CPU] = {
2179 		.name			= "cpu:teardown",
2180 		.startup.single		= NULL,
2181 		.teardown.single	= takedown_cpu,
2182 		.cant_stop		= true,
2183 	},
2184 
2185 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2186 		.name			= "sched:waitempty",
2187 		.startup.single		= NULL,
2188 		.teardown.single	= sched_cpu_wait_empty,
2189 	},
2190 
2191 	/* Handle smpboot threads park/unpark */
2192 	[CPUHP_AP_SMPBOOT_THREADS] = {
2193 		.name			= "smpboot/threads:online",
2194 		.startup.single		= smpboot_unpark_threads,
2195 		.teardown.single	= smpboot_park_threads,
2196 	},
2197 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2198 		.name			= "irq/affinity:online",
2199 		.startup.single		= irq_affinity_online_cpu,
2200 		.teardown.single	= NULL,
2201 	},
2202 	[CPUHP_AP_PERF_ONLINE] = {
2203 		.name			= "perf:online",
2204 		.startup.single		= perf_event_init_cpu,
2205 		.teardown.single	= perf_event_exit_cpu,
2206 	},
2207 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2208 		.name			= "lockup_detector:online",
2209 		.startup.single		= lockup_detector_online_cpu,
2210 		.teardown.single	= lockup_detector_offline_cpu,
2211 	},
2212 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2213 		.name			= "workqueue:online",
2214 		.startup.single		= workqueue_online_cpu,
2215 		.teardown.single	= workqueue_offline_cpu,
2216 	},
2217 	[CPUHP_AP_RANDOM_ONLINE] = {
2218 		.name			= "random:online",
2219 		.startup.single		= random_online_cpu,
2220 		.teardown.single	= NULL,
2221 	},
2222 	[CPUHP_AP_RCUTREE_ONLINE] = {
2223 		.name			= "RCU/tree:online",
2224 		.startup.single		= rcutree_online_cpu,
2225 		.teardown.single	= rcutree_offline_cpu,
2226 	},
2227 #endif
2228 	/*
2229 	 * The dynamically registered state space is here
2230 	 */
2231 
2232 #ifdef CONFIG_SMP
2233 	/* Last state is scheduler control setting the cpu active */
2234 	[CPUHP_AP_ACTIVE] = {
2235 		.name			= "sched:active",
2236 		.startup.single		= sched_cpu_activate,
2237 		.teardown.single	= sched_cpu_deactivate,
2238 	},
2239 #endif
2240 
2241 	/* CPU is fully up and running. */
2242 	[CPUHP_ONLINE] = {
2243 		.name			= "online",
2244 		.startup.single		= NULL,
2245 		.teardown.single	= NULL,
2246 	},
2247 };
2248 
2249 /* Sanity check for callbacks */
2250 static int cpuhp_cb_check(enum cpuhp_state state)
2251 {
2252 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2253 		return -EINVAL;
2254 	return 0;
2255 }
2256 
2257 /*
2258  * Returns a free for dynamic slot assignment of the Online state. The states
2259  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2260  * by having no name assigned.
2261  */
2262 static int cpuhp_reserve_state(enum cpuhp_state state)
2263 {
2264 	enum cpuhp_state i, end;
2265 	struct cpuhp_step *step;
2266 
2267 	switch (state) {
2268 	case CPUHP_AP_ONLINE_DYN:
2269 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2270 		end = CPUHP_AP_ONLINE_DYN_END;
2271 		break;
2272 	case CPUHP_BP_PREPARE_DYN:
2273 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2274 		end = CPUHP_BP_PREPARE_DYN_END;
2275 		break;
2276 	default:
2277 		return -EINVAL;
2278 	}
2279 
2280 	for (i = state; i <= end; i++, step++) {
2281 		if (!step->name)
2282 			return i;
2283 	}
2284 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2285 	return -ENOSPC;
2286 }
2287 
2288 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2289 				 int (*startup)(unsigned int cpu),
2290 				 int (*teardown)(unsigned int cpu),
2291 				 bool multi_instance)
2292 {
2293 	/* (Un)Install the callbacks for further cpu hotplug operations */
2294 	struct cpuhp_step *sp;
2295 	int ret = 0;
2296 
2297 	/*
2298 	 * If name is NULL, then the state gets removed.
2299 	 *
2300 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2301 	 * the first allocation from these dynamic ranges, so the removal
2302 	 * would trigger a new allocation and clear the wrong (already
2303 	 * empty) state, leaving the callbacks of the to be cleared state
2304 	 * dangling, which causes wreckage on the next hotplug operation.
2305 	 */
2306 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2307 		     state == CPUHP_BP_PREPARE_DYN)) {
2308 		ret = cpuhp_reserve_state(state);
2309 		if (ret < 0)
2310 			return ret;
2311 		state = ret;
2312 	}
2313 	sp = cpuhp_get_step(state);
2314 	if (name && sp->name)
2315 		return -EBUSY;
2316 
2317 	sp->startup.single = startup;
2318 	sp->teardown.single = teardown;
2319 	sp->name = name;
2320 	sp->multi_instance = multi_instance;
2321 	INIT_HLIST_HEAD(&sp->list);
2322 	return ret;
2323 }
2324 
2325 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2326 {
2327 	return cpuhp_get_step(state)->teardown.single;
2328 }
2329 
2330 /*
2331  * Call the startup/teardown function for a step either on the AP or
2332  * on the current CPU.
2333  */
2334 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2335 			    struct hlist_node *node)
2336 {
2337 	struct cpuhp_step *sp = cpuhp_get_step(state);
2338 	int ret;
2339 
2340 	/*
2341 	 * If there's nothing to do, we done.
2342 	 * Relies on the union for multi_instance.
2343 	 */
2344 	if (cpuhp_step_empty(bringup, sp))
2345 		return 0;
2346 	/*
2347 	 * The non AP bound callbacks can fail on bringup. On teardown
2348 	 * e.g. module removal we crash for now.
2349 	 */
2350 #ifdef CONFIG_SMP
2351 	if (cpuhp_is_ap_state(state))
2352 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2353 	else
2354 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2355 #else
2356 	if (cpuhp_is_atomic_state(state)) {
2357 		guard(irqsave)();
2358 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2359 		/* STARTING/DYING must not fail! */
2360 		WARN_ON_ONCE(ret);
2361 	} else {
2362 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2363 	}
2364 #endif
2365 	BUG_ON(ret && !bringup);
2366 	return ret;
2367 }
2368 
2369 /*
2370  * Called from __cpuhp_setup_state on a recoverable failure.
2371  *
2372  * Note: The teardown callbacks for rollback are not allowed to fail!
2373  */
2374 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2375 				   struct hlist_node *node)
2376 {
2377 	int cpu;
2378 
2379 	/* Roll back the already executed steps on the other cpus */
2380 	for_each_present_cpu(cpu) {
2381 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2382 		int cpustate = st->state;
2383 
2384 		if (cpu >= failedcpu)
2385 			break;
2386 
2387 		/* Did we invoke the startup call on that cpu ? */
2388 		if (cpustate >= state)
2389 			cpuhp_issue_call(cpu, state, false, node);
2390 	}
2391 }
2392 
2393 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2394 					  struct hlist_node *node,
2395 					  bool invoke)
2396 {
2397 	struct cpuhp_step *sp;
2398 	int cpu;
2399 	int ret;
2400 
2401 	lockdep_assert_cpus_held();
2402 
2403 	sp = cpuhp_get_step(state);
2404 	if (sp->multi_instance == false)
2405 		return -EINVAL;
2406 
2407 	mutex_lock(&cpuhp_state_mutex);
2408 
2409 	if (!invoke || !sp->startup.multi)
2410 		goto add_node;
2411 
2412 	/*
2413 	 * Try to call the startup callback for each present cpu
2414 	 * depending on the hotplug state of the cpu.
2415 	 */
2416 	for_each_present_cpu(cpu) {
2417 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2418 		int cpustate = st->state;
2419 
2420 		if (cpustate < state)
2421 			continue;
2422 
2423 		ret = cpuhp_issue_call(cpu, state, true, node);
2424 		if (ret) {
2425 			if (sp->teardown.multi)
2426 				cpuhp_rollback_install(cpu, state, node);
2427 			goto unlock;
2428 		}
2429 	}
2430 add_node:
2431 	ret = 0;
2432 	hlist_add_head(node, &sp->list);
2433 unlock:
2434 	mutex_unlock(&cpuhp_state_mutex);
2435 	return ret;
2436 }
2437 
2438 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2439 			       bool invoke)
2440 {
2441 	int ret;
2442 
2443 	cpus_read_lock();
2444 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2445 	cpus_read_unlock();
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2449 
2450 /**
2451  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2452  * @state:		The state to setup
2453  * @name:		Name of the step
2454  * @invoke:		If true, the startup function is invoked for cpus where
2455  *			cpu state >= @state
2456  * @startup:		startup callback function
2457  * @teardown:		teardown callback function
2458  * @multi_instance:	State is set up for multiple instances which get
2459  *			added afterwards.
2460  *
2461  * The caller needs to hold cpus read locked while calling this function.
2462  * Return:
2463  *   On success:
2464  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2465  *      0 for all other states
2466  *   On failure: proper (negative) error code
2467  */
2468 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2469 				   const char *name, bool invoke,
2470 				   int (*startup)(unsigned int cpu),
2471 				   int (*teardown)(unsigned int cpu),
2472 				   bool multi_instance)
2473 {
2474 	int cpu, ret = 0;
2475 	bool dynstate;
2476 
2477 	lockdep_assert_cpus_held();
2478 
2479 	if (cpuhp_cb_check(state) || !name)
2480 		return -EINVAL;
2481 
2482 	mutex_lock(&cpuhp_state_mutex);
2483 
2484 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2485 				    multi_instance);
2486 
2487 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2488 	if (ret > 0 && dynstate) {
2489 		state = ret;
2490 		ret = 0;
2491 	}
2492 
2493 	if (ret || !invoke || !startup)
2494 		goto out;
2495 
2496 	/*
2497 	 * Try to call the startup callback for each present cpu
2498 	 * depending on the hotplug state of the cpu.
2499 	 */
2500 	for_each_present_cpu(cpu) {
2501 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2502 		int cpustate = st->state;
2503 
2504 		if (cpustate < state)
2505 			continue;
2506 
2507 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2508 		if (ret) {
2509 			if (teardown)
2510 				cpuhp_rollback_install(cpu, state, NULL);
2511 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2512 			goto out;
2513 		}
2514 	}
2515 out:
2516 	mutex_unlock(&cpuhp_state_mutex);
2517 	/*
2518 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2519 	 * return the dynamically allocated state in case of success.
2520 	 */
2521 	if (!ret && dynstate)
2522 		return state;
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2526 
2527 int __cpuhp_setup_state(enum cpuhp_state state,
2528 			const char *name, bool invoke,
2529 			int (*startup)(unsigned int cpu),
2530 			int (*teardown)(unsigned int cpu),
2531 			bool multi_instance)
2532 {
2533 	int ret;
2534 
2535 	cpus_read_lock();
2536 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2537 					     teardown, multi_instance);
2538 	cpus_read_unlock();
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL(__cpuhp_setup_state);
2542 
2543 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2544 				  struct hlist_node *node, bool invoke)
2545 {
2546 	struct cpuhp_step *sp = cpuhp_get_step(state);
2547 	int cpu;
2548 
2549 	BUG_ON(cpuhp_cb_check(state));
2550 
2551 	if (!sp->multi_instance)
2552 		return -EINVAL;
2553 
2554 	cpus_read_lock();
2555 	mutex_lock(&cpuhp_state_mutex);
2556 
2557 	if (!invoke || !cpuhp_get_teardown_cb(state))
2558 		goto remove;
2559 	/*
2560 	 * Call the teardown callback for each present cpu depending
2561 	 * on the hotplug state of the cpu. This function is not
2562 	 * allowed to fail currently!
2563 	 */
2564 	for_each_present_cpu(cpu) {
2565 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2566 		int cpustate = st->state;
2567 
2568 		if (cpustate >= state)
2569 			cpuhp_issue_call(cpu, state, false, node);
2570 	}
2571 
2572 remove:
2573 	hlist_del(node);
2574 	mutex_unlock(&cpuhp_state_mutex);
2575 	cpus_read_unlock();
2576 
2577 	return 0;
2578 }
2579 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2580 
2581 /**
2582  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2583  * @state:	The state to remove
2584  * @invoke:	If true, the teardown function is invoked for cpus where
2585  *		cpu state >= @state
2586  *
2587  * The caller needs to hold cpus read locked while calling this function.
2588  * The teardown callback is currently not allowed to fail. Think
2589  * about module removal!
2590  */
2591 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2592 {
2593 	struct cpuhp_step *sp = cpuhp_get_step(state);
2594 	int cpu;
2595 
2596 	BUG_ON(cpuhp_cb_check(state));
2597 
2598 	lockdep_assert_cpus_held();
2599 
2600 	mutex_lock(&cpuhp_state_mutex);
2601 	if (sp->multi_instance) {
2602 		WARN(!hlist_empty(&sp->list),
2603 		     "Error: Removing state %d which has instances left.\n",
2604 		     state);
2605 		goto remove;
2606 	}
2607 
2608 	if (!invoke || !cpuhp_get_teardown_cb(state))
2609 		goto remove;
2610 
2611 	/*
2612 	 * Call the teardown callback for each present cpu depending
2613 	 * on the hotplug state of the cpu. This function is not
2614 	 * allowed to fail currently!
2615 	 */
2616 	for_each_present_cpu(cpu) {
2617 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2618 		int cpustate = st->state;
2619 
2620 		if (cpustate >= state)
2621 			cpuhp_issue_call(cpu, state, false, NULL);
2622 	}
2623 remove:
2624 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2625 	mutex_unlock(&cpuhp_state_mutex);
2626 }
2627 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2628 
2629 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2630 {
2631 	cpus_read_lock();
2632 	__cpuhp_remove_state_cpuslocked(state, invoke);
2633 	cpus_read_unlock();
2634 }
2635 EXPORT_SYMBOL(__cpuhp_remove_state);
2636 
2637 #ifdef CONFIG_HOTPLUG_SMT
2638 static void cpuhp_offline_cpu_device(unsigned int cpu)
2639 {
2640 	struct device *dev = get_cpu_device(cpu);
2641 
2642 	dev->offline = true;
2643 	/* Tell user space about the state change */
2644 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2645 }
2646 
2647 static void cpuhp_online_cpu_device(unsigned int cpu)
2648 {
2649 	struct device *dev = get_cpu_device(cpu);
2650 
2651 	dev->offline = false;
2652 	/* Tell user space about the state change */
2653 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2654 }
2655 
2656 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2657 {
2658 	int cpu, ret = 0;
2659 
2660 	cpu_maps_update_begin();
2661 	for_each_online_cpu(cpu) {
2662 		if (topology_is_primary_thread(cpu))
2663 			continue;
2664 		/*
2665 		 * Disable can be called with CPU_SMT_ENABLED when changing
2666 		 * from a higher to lower number of SMT threads per core.
2667 		 */
2668 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2669 			continue;
2670 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2671 		if (ret)
2672 			break;
2673 		/*
2674 		 * As this needs to hold the cpu maps lock it's impossible
2675 		 * to call device_offline() because that ends up calling
2676 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2677 		 * needs to be held as this might race against in kernel
2678 		 * abusers of the hotplug machinery (thermal management).
2679 		 *
2680 		 * So nothing would update device:offline state. That would
2681 		 * leave the sysfs entry stale and prevent onlining after
2682 		 * smt control has been changed to 'off' again. This is
2683 		 * called under the sysfs hotplug lock, so it is properly
2684 		 * serialized against the regular offline usage.
2685 		 */
2686 		cpuhp_offline_cpu_device(cpu);
2687 	}
2688 	if (!ret)
2689 		cpu_smt_control = ctrlval;
2690 	cpu_maps_update_done();
2691 	return ret;
2692 }
2693 
2694 /* Check if the core a CPU belongs to is online */
2695 #if !defined(topology_is_core_online)
2696 static inline bool topology_is_core_online(unsigned int cpu)
2697 {
2698 	return true;
2699 }
2700 #endif
2701 
2702 int cpuhp_smt_enable(void)
2703 {
2704 	int cpu, ret = 0;
2705 
2706 	cpu_maps_update_begin();
2707 	cpu_smt_control = CPU_SMT_ENABLED;
2708 	for_each_present_cpu(cpu) {
2709 		/* Skip online CPUs and CPUs on offline nodes */
2710 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2711 			continue;
2712 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2713 			continue;
2714 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2715 		if (ret)
2716 			break;
2717 		/* See comment in cpuhp_smt_disable() */
2718 		cpuhp_online_cpu_device(cpu);
2719 	}
2720 	cpu_maps_update_done();
2721 	return ret;
2722 }
2723 #endif
2724 
2725 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2726 static ssize_t state_show(struct device *dev,
2727 			  struct device_attribute *attr, char *buf)
2728 {
2729 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2730 
2731 	return sprintf(buf, "%d\n", st->state);
2732 }
2733 static DEVICE_ATTR_RO(state);
2734 
2735 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2736 			    const char *buf, size_t count)
2737 {
2738 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2739 	struct cpuhp_step *sp;
2740 	int target, ret;
2741 
2742 	ret = kstrtoint(buf, 10, &target);
2743 	if (ret)
2744 		return ret;
2745 
2746 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2747 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2748 		return -EINVAL;
2749 #else
2750 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2751 		return -EINVAL;
2752 #endif
2753 
2754 	ret = lock_device_hotplug_sysfs();
2755 	if (ret)
2756 		return ret;
2757 
2758 	mutex_lock(&cpuhp_state_mutex);
2759 	sp = cpuhp_get_step(target);
2760 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2761 	mutex_unlock(&cpuhp_state_mutex);
2762 	if (ret)
2763 		goto out;
2764 
2765 	if (st->state < target)
2766 		ret = cpu_up(dev->id, target);
2767 	else if (st->state > target)
2768 		ret = cpu_down(dev->id, target);
2769 	else if (WARN_ON(st->target != target))
2770 		st->target = target;
2771 out:
2772 	unlock_device_hotplug();
2773 	return ret ? ret : count;
2774 }
2775 
2776 static ssize_t target_show(struct device *dev,
2777 			   struct device_attribute *attr, char *buf)
2778 {
2779 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2780 
2781 	return sprintf(buf, "%d\n", st->target);
2782 }
2783 static DEVICE_ATTR_RW(target);
2784 
2785 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2786 			  const char *buf, size_t count)
2787 {
2788 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789 	struct cpuhp_step *sp;
2790 	int fail, ret;
2791 
2792 	ret = kstrtoint(buf, 10, &fail);
2793 	if (ret)
2794 		return ret;
2795 
2796 	if (fail == CPUHP_INVALID) {
2797 		st->fail = fail;
2798 		return count;
2799 	}
2800 
2801 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2802 		return -EINVAL;
2803 
2804 	/*
2805 	 * Cannot fail STARTING/DYING callbacks.
2806 	 */
2807 	if (cpuhp_is_atomic_state(fail))
2808 		return -EINVAL;
2809 
2810 	/*
2811 	 * DEAD callbacks cannot fail...
2812 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2813 	 * triggering STARTING callbacks, a failure in this state would
2814 	 * hinder rollback.
2815 	 */
2816 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2817 		return -EINVAL;
2818 
2819 	/*
2820 	 * Cannot fail anything that doesn't have callbacks.
2821 	 */
2822 	mutex_lock(&cpuhp_state_mutex);
2823 	sp = cpuhp_get_step(fail);
2824 	if (!sp->startup.single && !sp->teardown.single)
2825 		ret = -EINVAL;
2826 	mutex_unlock(&cpuhp_state_mutex);
2827 	if (ret)
2828 		return ret;
2829 
2830 	st->fail = fail;
2831 
2832 	return count;
2833 }
2834 
2835 static ssize_t fail_show(struct device *dev,
2836 			 struct device_attribute *attr, char *buf)
2837 {
2838 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2839 
2840 	return sprintf(buf, "%d\n", st->fail);
2841 }
2842 
2843 static DEVICE_ATTR_RW(fail);
2844 
2845 static struct attribute *cpuhp_cpu_attrs[] = {
2846 	&dev_attr_state.attr,
2847 	&dev_attr_target.attr,
2848 	&dev_attr_fail.attr,
2849 	NULL
2850 };
2851 
2852 static const struct attribute_group cpuhp_cpu_attr_group = {
2853 	.attrs = cpuhp_cpu_attrs,
2854 	.name = "hotplug",
2855 };
2856 
2857 static ssize_t states_show(struct device *dev,
2858 				 struct device_attribute *attr, char *buf)
2859 {
2860 	ssize_t cur, res = 0;
2861 	int i;
2862 
2863 	mutex_lock(&cpuhp_state_mutex);
2864 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2865 		struct cpuhp_step *sp = cpuhp_get_step(i);
2866 
2867 		if (sp->name) {
2868 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2869 			buf += cur;
2870 			res += cur;
2871 		}
2872 	}
2873 	mutex_unlock(&cpuhp_state_mutex);
2874 	return res;
2875 }
2876 static DEVICE_ATTR_RO(states);
2877 
2878 static struct attribute *cpuhp_cpu_root_attrs[] = {
2879 	&dev_attr_states.attr,
2880 	NULL
2881 };
2882 
2883 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2884 	.attrs = cpuhp_cpu_root_attrs,
2885 	.name = "hotplug",
2886 };
2887 
2888 #ifdef CONFIG_HOTPLUG_SMT
2889 
2890 static bool cpu_smt_num_threads_valid(unsigned int threads)
2891 {
2892 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2893 		return threads >= 1 && threads <= cpu_smt_max_threads;
2894 	return threads == 1 || threads == cpu_smt_max_threads;
2895 }
2896 
2897 static ssize_t
2898 __store_smt_control(struct device *dev, struct device_attribute *attr,
2899 		    const char *buf, size_t count)
2900 {
2901 	int ctrlval, ret, num_threads, orig_threads;
2902 	bool force_off;
2903 
2904 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2905 		return -EPERM;
2906 
2907 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2908 		return -ENODEV;
2909 
2910 	if (sysfs_streq(buf, "on")) {
2911 		ctrlval = CPU_SMT_ENABLED;
2912 		num_threads = cpu_smt_max_threads;
2913 	} else if (sysfs_streq(buf, "off")) {
2914 		ctrlval = CPU_SMT_DISABLED;
2915 		num_threads = 1;
2916 	} else if (sysfs_streq(buf, "forceoff")) {
2917 		ctrlval = CPU_SMT_FORCE_DISABLED;
2918 		num_threads = 1;
2919 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2920 		if (num_threads == 1)
2921 			ctrlval = CPU_SMT_DISABLED;
2922 		else if (cpu_smt_num_threads_valid(num_threads))
2923 			ctrlval = CPU_SMT_ENABLED;
2924 		else
2925 			return -EINVAL;
2926 	} else {
2927 		return -EINVAL;
2928 	}
2929 
2930 	ret = lock_device_hotplug_sysfs();
2931 	if (ret)
2932 		return ret;
2933 
2934 	orig_threads = cpu_smt_num_threads;
2935 	cpu_smt_num_threads = num_threads;
2936 
2937 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2938 
2939 	if (num_threads > orig_threads)
2940 		ret = cpuhp_smt_enable();
2941 	else if (num_threads < orig_threads || force_off)
2942 		ret = cpuhp_smt_disable(ctrlval);
2943 
2944 	unlock_device_hotplug();
2945 	return ret ? ret : count;
2946 }
2947 
2948 #else /* !CONFIG_HOTPLUG_SMT */
2949 static ssize_t
2950 __store_smt_control(struct device *dev, struct device_attribute *attr,
2951 		    const char *buf, size_t count)
2952 {
2953 	return -ENODEV;
2954 }
2955 #endif /* CONFIG_HOTPLUG_SMT */
2956 
2957 static const char *smt_states[] = {
2958 	[CPU_SMT_ENABLED]		= "on",
2959 	[CPU_SMT_DISABLED]		= "off",
2960 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2961 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2962 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2963 };
2964 
2965 static ssize_t control_show(struct device *dev,
2966 			    struct device_attribute *attr, char *buf)
2967 {
2968 	const char *state = smt_states[cpu_smt_control];
2969 
2970 #ifdef CONFIG_HOTPLUG_SMT
2971 	/*
2972 	 * If SMT is enabled but not all threads are enabled then show the
2973 	 * number of threads. If all threads are enabled show "on". Otherwise
2974 	 * show the state name.
2975 	 */
2976 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2977 	    cpu_smt_num_threads != cpu_smt_max_threads)
2978 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2979 #endif
2980 
2981 	return sysfs_emit(buf, "%s\n", state);
2982 }
2983 
2984 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2985 			     const char *buf, size_t count)
2986 {
2987 	return __store_smt_control(dev, attr, buf, count);
2988 }
2989 static DEVICE_ATTR_RW(control);
2990 
2991 static ssize_t active_show(struct device *dev,
2992 			   struct device_attribute *attr, char *buf)
2993 {
2994 	return sysfs_emit(buf, "%d\n", sched_smt_active());
2995 }
2996 static DEVICE_ATTR_RO(active);
2997 
2998 static struct attribute *cpuhp_smt_attrs[] = {
2999 	&dev_attr_control.attr,
3000 	&dev_attr_active.attr,
3001 	NULL
3002 };
3003 
3004 static const struct attribute_group cpuhp_smt_attr_group = {
3005 	.attrs = cpuhp_smt_attrs,
3006 	.name = "smt",
3007 };
3008 
3009 static int __init cpu_smt_sysfs_init(void)
3010 {
3011 	struct device *dev_root;
3012 	int ret = -ENODEV;
3013 
3014 	dev_root = bus_get_dev_root(&cpu_subsys);
3015 	if (dev_root) {
3016 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3017 		put_device(dev_root);
3018 	}
3019 	return ret;
3020 }
3021 
3022 static int __init cpuhp_sysfs_init(void)
3023 {
3024 	struct device *dev_root;
3025 	int cpu, ret;
3026 
3027 	ret = cpu_smt_sysfs_init();
3028 	if (ret)
3029 		return ret;
3030 
3031 	dev_root = bus_get_dev_root(&cpu_subsys);
3032 	if (dev_root) {
3033 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3034 		put_device(dev_root);
3035 		if (ret)
3036 			return ret;
3037 	}
3038 
3039 	for_each_possible_cpu(cpu) {
3040 		struct device *dev = get_cpu_device(cpu);
3041 
3042 		if (!dev)
3043 			continue;
3044 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3045 		if (ret)
3046 			return ret;
3047 	}
3048 	return 0;
3049 }
3050 device_initcall(cpuhp_sysfs_init);
3051 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3052 
3053 /*
3054  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3055  * represents all NR_CPUS bits binary values of 1<<nr.
3056  *
3057  * It is used by cpumask_of() to get a constant address to a CPU
3058  * mask value that has a single bit set only.
3059  */
3060 
3061 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3062 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3063 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3064 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3065 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3066 
3067 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3068 
3069 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3070 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3071 #if BITS_PER_LONG > 32
3072 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3073 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3074 #endif
3075 };
3076 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3077 
3078 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3079 EXPORT_SYMBOL(cpu_all_bits);
3080 
3081 #ifdef CONFIG_INIT_ALL_POSSIBLE
3082 struct cpumask __cpu_possible_mask __ro_after_init
3083 	= {CPU_BITS_ALL};
3084 unsigned int __num_possible_cpus __ro_after_init = NR_CPUS;
3085 #else
3086 struct cpumask __cpu_possible_mask __ro_after_init;
3087 unsigned int __num_possible_cpus __ro_after_init;
3088 #endif
3089 EXPORT_SYMBOL(__cpu_possible_mask);
3090 EXPORT_SYMBOL(__num_possible_cpus);
3091 
3092 struct cpumask __cpu_online_mask __read_mostly;
3093 EXPORT_SYMBOL(__cpu_online_mask);
3094 
3095 struct cpumask __cpu_enabled_mask __read_mostly;
3096 EXPORT_SYMBOL(__cpu_enabled_mask);
3097 
3098 struct cpumask __cpu_present_mask __read_mostly;
3099 EXPORT_SYMBOL(__cpu_present_mask);
3100 
3101 struct cpumask __cpu_active_mask __read_mostly;
3102 EXPORT_SYMBOL(__cpu_active_mask);
3103 
3104 struct cpumask __cpu_dying_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_dying_mask);
3106 
3107 atomic_t __num_online_cpus __read_mostly;
3108 EXPORT_SYMBOL(__num_online_cpus);
3109 
3110 void init_cpu_present(const struct cpumask *src)
3111 {
3112 	cpumask_copy(&__cpu_present_mask, src);
3113 }
3114 
3115 void init_cpu_possible(const struct cpumask *src)
3116 {
3117 	cpumask_copy(&__cpu_possible_mask, src);
3118 	__num_possible_cpus = cpumask_weight(&__cpu_possible_mask);
3119 }
3120 
3121 void set_cpu_online(unsigned int cpu, bool online)
3122 {
3123 	/*
3124 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3125 	 * function by the reboot and kexec code which invoke it from
3126 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3127 	 * regular CPU hotplug is properly serialized.
3128 	 *
3129 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3130 	 * does not protect readers which are not serialized against
3131 	 * concurrent hotplug operations.
3132 	 */
3133 	if (online) {
3134 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3135 			atomic_inc(&__num_online_cpus);
3136 	} else {
3137 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3138 			atomic_dec(&__num_online_cpus);
3139 	}
3140 }
3141 
3142 /*
3143  * This should be marked __init, but there is a boatload of call sites
3144  * which need to be fixed up to do so. Sigh...
3145  */
3146 void set_cpu_possible(unsigned int cpu, bool possible)
3147 {
3148 	if (possible) {
3149 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_possible_mask))
3150 			__num_possible_cpus++;
3151 	} else {
3152 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_possible_mask))
3153 			__num_possible_cpus--;
3154 	}
3155 }
3156 
3157 /*
3158  * Activate the first processor.
3159  */
3160 void __init boot_cpu_init(void)
3161 {
3162 	int cpu = smp_processor_id();
3163 
3164 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3165 	set_cpu_online(cpu, true);
3166 	set_cpu_active(cpu, true);
3167 	set_cpu_present(cpu, true);
3168 	set_cpu_possible(cpu, true);
3169 
3170 #ifdef CONFIG_SMP
3171 	__boot_cpu_id = cpu;
3172 #endif
3173 }
3174 
3175 /*
3176  * Must be called _AFTER_ setting up the per_cpu areas
3177  */
3178 void __init boot_cpu_hotplug_init(void)
3179 {
3180 #ifdef CONFIG_SMP
3181 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3182 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3183 #endif
3184 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3185 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3186 }
3187 
3188 #ifdef CONFIG_CPU_MITIGATIONS
3189 /*
3190  * All except the cross-thread attack vector are mitigated by default.
3191  * Cross-thread mitigation often requires disabling SMT which is expensive
3192  * so cross-thread mitigations are only partially enabled by default.
3193  *
3194  * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is
3195  * present.
3196  */
3197 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = {
3198 	[CPU_MITIGATE_USER_KERNEL] = true,
3199 	[CPU_MITIGATE_USER_USER] = true,
3200 	[CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM),
3201 	[CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM),
3202 };
3203 
3204 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v)
3205 {
3206 	if (v < NR_CPU_ATTACK_VECTORS)
3207 		return attack_vectors[v];
3208 
3209 	WARN_ONCE(1, "Invalid attack vector %d\n", v);
3210 	return false;
3211 }
3212 
3213 /*
3214  * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally
3215  * be combined with attack-vector disables which follow them.
3216  *
3217  * Examples:
3218  *   mitigations=auto,no_user_kernel,no_user_user,no_cross_thread
3219  *   mitigations=auto,nosmt,no_guest_host,no_guest_guest
3220  *
3221  * mitigations=off is equivalent to disabling all attack vectors.
3222  */
3223 enum cpu_mitigations {
3224 	CPU_MITIGATIONS_OFF,
3225 	CPU_MITIGATIONS_AUTO,
3226 	CPU_MITIGATIONS_AUTO_NOSMT,
3227 };
3228 
3229 enum {
3230 	NO_USER_KERNEL,
3231 	NO_USER_USER,
3232 	NO_GUEST_HOST,
3233 	NO_GUEST_GUEST,
3234 	NO_CROSS_THREAD,
3235 	NR_VECTOR_PARAMS,
3236 };
3237 
3238 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO;
3239 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3240 
3241 static const match_table_t global_mitigations = {
3242 	{ CPU_MITIGATIONS_AUTO_NOSMT,	"auto,nosmt"},
3243 	{ CPU_MITIGATIONS_AUTO,		"auto"},
3244 	{ CPU_MITIGATIONS_OFF,		"off"},
3245 };
3246 
3247 static const match_table_t vector_mitigations = {
3248 	{ NO_USER_KERNEL,	"no_user_kernel"},
3249 	{ NO_USER_USER,		"no_user_user"},
3250 	{ NO_GUEST_HOST,	"no_guest_host"},
3251 	{ NO_GUEST_GUEST,	"no_guest_guest"},
3252 	{ NO_CROSS_THREAD,	"no_cross_thread"},
3253 	{ NR_VECTOR_PARAMS,	NULL},
3254 };
3255 
3256 static int __init mitigations_parse_global_opt(char *arg)
3257 {
3258 	int i;
3259 
3260 	for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) {
3261 		const char *pattern = global_mitigations[i].pattern;
3262 
3263 		if (!strncmp(arg, pattern, strlen(pattern))) {
3264 			cpu_mitigations = global_mitigations[i].token;
3265 			return strlen(pattern);
3266 		}
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 static int __init mitigations_parse_cmdline(char *arg)
3273 {
3274 	char *s, *p;
3275 	int len;
3276 
3277 	len = mitigations_parse_global_opt(arg);
3278 
3279 	if (cpu_mitigations_off()) {
3280 		memset(attack_vectors, 0, sizeof(attack_vectors));
3281 		smt_mitigations = SMT_MITIGATIONS_OFF;
3282 	} else if (cpu_mitigations_auto_nosmt()) {
3283 		smt_mitigations = SMT_MITIGATIONS_ON;
3284 	}
3285 
3286 	p = arg + len;
3287 
3288 	if (!*p)
3289 		return 0;
3290 
3291 	/* Attack vector controls may come after the ',' */
3292 	if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) {
3293 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",	arg);
3294 		return 0;
3295 	}
3296 
3297 	while ((s = strsep(&p, ",")) != NULL) {
3298 		switch (match_token(s, vector_mitigations, NULL)) {
3299 		case NO_USER_KERNEL:
3300 			attack_vectors[CPU_MITIGATE_USER_KERNEL] = false;
3301 			break;
3302 		case NO_USER_USER:
3303 			attack_vectors[CPU_MITIGATE_USER_USER] = false;
3304 			break;
3305 		case NO_GUEST_HOST:
3306 			attack_vectors[CPU_MITIGATE_GUEST_HOST] = false;
3307 			break;
3308 		case NO_GUEST_GUEST:
3309 			attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false;
3310 			break;
3311 		case NO_CROSS_THREAD:
3312 			smt_mitigations = SMT_MITIGATIONS_OFF;
3313 			break;
3314 		default:
3315 			pr_crit("Unsupported mitigations options %s\n",	s);
3316 			return 0;
3317 		}
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 /* mitigations=off */
3324 bool cpu_mitigations_off(void)
3325 {
3326 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3327 }
3328 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3329 
3330 /* mitigations=auto,nosmt */
3331 bool cpu_mitigations_auto_nosmt(void)
3332 {
3333 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3334 }
3335 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3336 #else
3337 static int __init mitigations_parse_cmdline(char *arg)
3338 {
3339 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3340 	return 0;
3341 }
3342 #endif
3343 early_param("mitigations", mitigations_parse_cmdline);
3344