1 // SPDX-License-Identifier: GPL-2.0 2 /* CPU control. 3 * (C) 2001, 2002, 2003, 2004 Rusty Russell 4 */ 5 #include <linux/sched/mm.h> 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/delay.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/scs.h> 35 #include <linux/percpu-rwsem.h> 36 #include <linux/cpuset.h> 37 #include <linux/random.h> 38 #include <linux/cc_platform.h> 39 #include <linux/parser.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 /* 252 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 253 */ 254 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 255 { 256 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 257 } 258 259 #ifdef CONFIG_SMP 260 static bool cpuhp_is_ap_state(enum cpuhp_state state) 261 { 262 /* 263 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 264 * purposes as that state is handled explicitly in cpu_down. 265 */ 266 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 267 } 268 269 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 270 { 271 struct completion *done = bringup ? &st->done_up : &st->done_down; 272 wait_for_completion(done); 273 } 274 275 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 276 { 277 struct completion *done = bringup ? &st->done_up : &st->done_down; 278 complete(done); 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 static bool cpu_hotplug_offline_disabled __ro_after_init; 487 488 void cpus_read_lock(void) 489 { 490 percpu_down_read(&cpu_hotplug_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 494 int cpus_read_trylock(void) 495 { 496 return percpu_down_read_trylock(&cpu_hotplug_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); 499 500 void cpus_read_unlock(void) 501 { 502 percpu_up_read(&cpu_hotplug_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 506 void cpus_write_lock(void) 507 { 508 percpu_down_write(&cpu_hotplug_lock); 509 } 510 511 void cpus_write_unlock(void) 512 { 513 percpu_up_write(&cpu_hotplug_lock); 514 } 515 516 void lockdep_assert_cpus_held(void) 517 { 518 /* 519 * We can't have hotplug operations before userspace starts running, 520 * and some init codepaths will knowingly not take the hotplug lock. 521 * This is all valid, so mute lockdep until it makes sense to report 522 * unheld locks. 523 */ 524 if (system_state < SYSTEM_RUNNING) 525 return; 526 527 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 529 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held); 530 531 #ifdef CONFIG_LOCKDEP 532 int lockdep_is_cpus_held(void) 533 { 534 return percpu_rwsem_is_held(&cpu_hotplug_lock); 535 } 536 537 int lockdep_is_cpus_write_held(void) 538 { 539 return percpu_rwsem_is_write_held(&cpu_hotplug_lock); 540 } 541 #endif 542 543 static void lockdep_acquire_cpus_lock(void) 544 { 545 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 546 } 547 548 static void lockdep_release_cpus_lock(void) 549 { 550 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 551 } 552 553 /* Declare CPU offlining not supported */ 554 void cpu_hotplug_disable_offlining(void) 555 { 556 cpu_maps_update_begin(); 557 cpu_hotplug_offline_disabled = true; 558 cpu_maps_update_done(); 559 } 560 561 /* 562 * Wait for currently running CPU hotplug operations to complete (if any) and 563 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 564 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 565 * hotplug path before performing hotplug operations. So acquiring that lock 566 * guarantees mutual exclusion from any currently running hotplug operations. 567 */ 568 void cpu_hotplug_disable(void) 569 { 570 cpu_maps_update_begin(); 571 cpu_hotplug_disabled++; 572 cpu_maps_update_done(); 573 } 574 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 575 576 static void __cpu_hotplug_enable(void) 577 { 578 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 579 return; 580 cpu_hotplug_disabled--; 581 } 582 583 void cpu_hotplug_enable(void) 584 { 585 cpu_maps_update_begin(); 586 __cpu_hotplug_enable(); 587 cpu_maps_update_done(); 588 } 589 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 590 591 #else 592 593 static void lockdep_acquire_cpus_lock(void) 594 { 595 } 596 597 static void lockdep_release_cpus_lock(void) 598 { 599 } 600 601 #endif /* CONFIG_HOTPLUG_CPU */ 602 603 /* 604 * Architectures that need SMT-specific errata handling during SMT hotplug 605 * should override this. 606 */ 607 void __weak arch_smt_update(void) { } 608 609 #ifdef CONFIG_HOTPLUG_SMT 610 611 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 612 static unsigned int cpu_smt_max_threads __ro_after_init; 613 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 614 615 void __init cpu_smt_disable(bool force) 616 { 617 if (!cpu_smt_possible()) 618 return; 619 620 if (force) { 621 pr_info("SMT: Force disabled\n"); 622 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 623 } else { 624 pr_info("SMT: disabled\n"); 625 cpu_smt_control = CPU_SMT_DISABLED; 626 } 627 cpu_smt_num_threads = 1; 628 } 629 630 /* 631 * The decision whether SMT is supported can only be done after the full 632 * CPU identification. Called from architecture code. 633 */ 634 void __init cpu_smt_set_num_threads(unsigned int num_threads, 635 unsigned int max_threads) 636 { 637 WARN_ON(!num_threads || (num_threads > max_threads)); 638 639 if (max_threads == 1) 640 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 641 642 cpu_smt_max_threads = max_threads; 643 644 /* 645 * If SMT has been disabled via the kernel command line or SMT is 646 * not supported, set cpu_smt_num_threads to 1 for consistency. 647 * If enabled, take the architecture requested number of threads 648 * to bring up into account. 649 */ 650 if (cpu_smt_control != CPU_SMT_ENABLED) 651 cpu_smt_num_threads = 1; 652 else if (num_threads < cpu_smt_num_threads) 653 cpu_smt_num_threads = num_threads; 654 } 655 656 static int __init smt_cmdline_disable(char *str) 657 { 658 cpu_smt_disable(str && !strcmp(str, "force")); 659 return 0; 660 } 661 early_param("nosmt", smt_cmdline_disable); 662 663 /* 664 * For Archicture supporting partial SMT states check if the thread is allowed. 665 * Otherwise this has already been checked through cpu_smt_max_threads when 666 * setting the SMT level. 667 */ 668 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 669 { 670 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 671 return topology_smt_thread_allowed(cpu); 672 #else 673 return true; 674 #endif 675 } 676 677 static inline bool cpu_bootable(unsigned int cpu) 678 { 679 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 680 return true; 681 682 /* All CPUs are bootable if controls are not configured */ 683 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 684 return true; 685 686 /* All CPUs are bootable if CPU is not SMT capable */ 687 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 688 return true; 689 690 if (topology_is_primary_thread(cpu)) 691 return true; 692 693 /* 694 * On x86 it's required to boot all logical CPUs at least once so 695 * that the init code can get a chance to set CR4.MCE on each 696 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 697 * core will shutdown the machine. 698 */ 699 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 700 } 701 702 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 703 bool cpu_smt_possible(void) 704 { 705 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 706 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 707 } 708 EXPORT_SYMBOL_GPL(cpu_smt_possible); 709 710 #else 711 static inline bool cpu_bootable(unsigned int cpu) { return true; } 712 #endif 713 714 static inline enum cpuhp_state 715 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 716 { 717 enum cpuhp_state prev_state = st->state; 718 bool bringup = st->state < target; 719 720 st->rollback = false; 721 st->last = NULL; 722 723 st->target = target; 724 st->single = false; 725 st->bringup = bringup; 726 if (cpu_dying(cpu) != !bringup) 727 set_cpu_dying(cpu, !bringup); 728 729 return prev_state; 730 } 731 732 static inline void 733 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 734 enum cpuhp_state prev_state) 735 { 736 bool bringup = !st->bringup; 737 738 st->target = prev_state; 739 740 /* 741 * Already rolling back. No need invert the bringup value or to change 742 * the current state. 743 */ 744 if (st->rollback) 745 return; 746 747 st->rollback = true; 748 749 /* 750 * If we have st->last we need to undo partial multi_instance of this 751 * state first. Otherwise start undo at the previous state. 752 */ 753 if (!st->last) { 754 if (st->bringup) 755 st->state--; 756 else 757 st->state++; 758 } 759 760 st->bringup = bringup; 761 if (cpu_dying(cpu) != !bringup) 762 set_cpu_dying(cpu, !bringup); 763 } 764 765 /* Regular hotplug invocation of the AP hotplug thread */ 766 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 767 { 768 if (!st->single && st->state == st->target) 769 return; 770 771 st->result = 0; 772 /* 773 * Make sure the above stores are visible before should_run becomes 774 * true. Paired with the mb() above in cpuhp_thread_fun() 775 */ 776 smp_mb(); 777 st->should_run = true; 778 wake_up_process(st->thread); 779 wait_for_ap_thread(st, st->bringup); 780 } 781 782 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 783 enum cpuhp_state target) 784 { 785 enum cpuhp_state prev_state; 786 int ret; 787 788 prev_state = cpuhp_set_state(cpu, st, target); 789 __cpuhp_kick_ap(st); 790 if ((ret = st->result)) { 791 cpuhp_reset_state(cpu, st, prev_state); 792 __cpuhp_kick_ap(st); 793 } 794 795 return ret; 796 } 797 798 static int bringup_wait_for_ap_online(unsigned int cpu) 799 { 800 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 801 802 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 803 wait_for_ap_thread(st, true); 804 if (WARN_ON_ONCE((!cpu_online(cpu)))) 805 return -ECANCELED; 806 807 /* Unpark the hotplug thread of the target cpu */ 808 kthread_unpark(st->thread); 809 810 /* 811 * SMT soft disabling on X86 requires to bring the CPU out of the 812 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 813 * CPU marked itself as booted_once in notify_cpu_starting() so the 814 * cpu_bootable() check will now return false if this is not the 815 * primary sibling. 816 */ 817 if (!cpu_bootable(cpu)) 818 return -ECANCELED; 819 return 0; 820 } 821 822 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 823 static int cpuhp_kick_ap_alive(unsigned int cpu) 824 { 825 if (!cpuhp_can_boot_ap(cpu)) 826 return -EAGAIN; 827 828 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 829 } 830 831 static int cpuhp_bringup_ap(unsigned int cpu) 832 { 833 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 834 int ret; 835 836 /* 837 * Some architectures have to walk the irq descriptors to 838 * setup the vector space for the cpu which comes online. 839 * Prevent irq alloc/free across the bringup. 840 */ 841 irq_lock_sparse(); 842 843 ret = cpuhp_bp_sync_alive(cpu); 844 if (ret) 845 goto out_unlock; 846 847 ret = bringup_wait_for_ap_online(cpu); 848 if (ret) 849 goto out_unlock; 850 851 irq_unlock_sparse(); 852 853 if (st->target <= CPUHP_AP_ONLINE_IDLE) 854 return 0; 855 856 return cpuhp_kick_ap(cpu, st, st->target); 857 858 out_unlock: 859 irq_unlock_sparse(); 860 return ret; 861 } 862 #else 863 static int bringup_cpu(unsigned int cpu) 864 { 865 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 866 struct task_struct *idle = idle_thread_get(cpu); 867 int ret; 868 869 if (!cpuhp_can_boot_ap(cpu)) 870 return -EAGAIN; 871 872 /* 873 * Some architectures have to walk the irq descriptors to 874 * setup the vector space for the cpu which comes online. 875 * 876 * Prevent irq alloc/free across the bringup by acquiring the 877 * sparse irq lock. Hold it until the upcoming CPU completes the 878 * startup in cpuhp_online_idle() which allows to avoid 879 * intermediate synchronization points in the architecture code. 880 */ 881 irq_lock_sparse(); 882 883 ret = __cpu_up(cpu, idle); 884 if (ret) 885 goto out_unlock; 886 887 ret = cpuhp_bp_sync_alive(cpu); 888 if (ret) 889 goto out_unlock; 890 891 ret = bringup_wait_for_ap_online(cpu); 892 if (ret) 893 goto out_unlock; 894 895 irq_unlock_sparse(); 896 897 if (st->target <= CPUHP_AP_ONLINE_IDLE) 898 return 0; 899 900 return cpuhp_kick_ap(cpu, st, st->target); 901 902 out_unlock: 903 irq_unlock_sparse(); 904 return ret; 905 } 906 #endif 907 908 static int finish_cpu(unsigned int cpu) 909 { 910 struct task_struct *idle = idle_thread_get(cpu); 911 struct mm_struct *mm = idle->active_mm; 912 913 /* 914 * sched_force_init_mm() ensured the use of &init_mm, 915 * drop that refcount now that the CPU has stopped. 916 */ 917 WARN_ON(mm != &init_mm); 918 idle->active_mm = NULL; 919 mmdrop_lazy_tlb(mm); 920 921 return 0; 922 } 923 924 /* 925 * Hotplug state machine related functions 926 */ 927 928 /* 929 * Get the next state to run. Empty ones will be skipped. Returns true if a 930 * state must be run. 931 * 932 * st->state will be modified ahead of time, to match state_to_run, as if it 933 * has already ran. 934 */ 935 static bool cpuhp_next_state(bool bringup, 936 enum cpuhp_state *state_to_run, 937 struct cpuhp_cpu_state *st, 938 enum cpuhp_state target) 939 { 940 do { 941 if (bringup) { 942 if (st->state >= target) 943 return false; 944 945 *state_to_run = ++st->state; 946 } else { 947 if (st->state <= target) 948 return false; 949 950 *state_to_run = st->state--; 951 } 952 953 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 954 break; 955 } while (true); 956 957 return true; 958 } 959 960 static int __cpuhp_invoke_callback_range(bool bringup, 961 unsigned int cpu, 962 struct cpuhp_cpu_state *st, 963 enum cpuhp_state target, 964 bool nofail) 965 { 966 enum cpuhp_state state; 967 int ret = 0; 968 969 while (cpuhp_next_state(bringup, &state, st, target)) { 970 int err; 971 972 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 973 if (!err) 974 continue; 975 976 if (nofail) { 977 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 978 cpu, bringup ? "UP" : "DOWN", 979 cpuhp_get_step(st->state)->name, 980 st->state, err); 981 ret = -1; 982 } else { 983 ret = err; 984 break; 985 } 986 } 987 988 return ret; 989 } 990 991 static inline int cpuhp_invoke_callback_range(bool bringup, 992 unsigned int cpu, 993 struct cpuhp_cpu_state *st, 994 enum cpuhp_state target) 995 { 996 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 997 } 998 999 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 1000 unsigned int cpu, 1001 struct cpuhp_cpu_state *st, 1002 enum cpuhp_state target) 1003 { 1004 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 1005 } 1006 1007 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1008 { 1009 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1010 return true; 1011 /* 1012 * When CPU hotplug is disabled, then taking the CPU down is not 1013 * possible because takedown_cpu() and the architecture and 1014 * subsystem specific mechanisms are not available. So the CPU 1015 * which would be completely unplugged again needs to stay around 1016 * in the current state. 1017 */ 1018 return st->state <= CPUHP_BRINGUP_CPU; 1019 } 1020 1021 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1022 enum cpuhp_state target) 1023 { 1024 enum cpuhp_state prev_state = st->state; 1025 int ret = 0; 1026 1027 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1028 if (ret) { 1029 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1030 ret, cpu, cpuhp_get_step(st->state)->name, 1031 st->state); 1032 1033 cpuhp_reset_state(cpu, st, prev_state); 1034 if (can_rollback_cpu(st)) 1035 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1036 prev_state)); 1037 } 1038 return ret; 1039 } 1040 1041 /* 1042 * The cpu hotplug threads manage the bringup and teardown of the cpus 1043 */ 1044 static int cpuhp_should_run(unsigned int cpu) 1045 { 1046 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1047 1048 return st->should_run; 1049 } 1050 1051 /* 1052 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1053 * callbacks when a state gets [un]installed at runtime. 1054 * 1055 * Each invocation of this function by the smpboot thread does a single AP 1056 * state callback. 1057 * 1058 * It has 3 modes of operation: 1059 * - single: runs st->cb_state 1060 * - up: runs ++st->state, while st->state < st->target 1061 * - down: runs st->state--, while st->state > st->target 1062 * 1063 * When complete or on error, should_run is cleared and the completion is fired. 1064 */ 1065 static void cpuhp_thread_fun(unsigned int cpu) 1066 { 1067 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1068 bool bringup = st->bringup; 1069 enum cpuhp_state state; 1070 1071 if (WARN_ON_ONCE(!st->should_run)) 1072 return; 1073 1074 /* 1075 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1076 * that if we see ->should_run we also see the rest of the state. 1077 */ 1078 smp_mb(); 1079 1080 /* 1081 * The BP holds the hotplug lock, but we're now running on the AP, 1082 * ensure that anybody asserting the lock is held, will actually find 1083 * it so. 1084 */ 1085 lockdep_acquire_cpus_lock(); 1086 cpuhp_lock_acquire(bringup); 1087 1088 if (st->single) { 1089 state = st->cb_state; 1090 st->should_run = false; 1091 } else { 1092 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1093 if (!st->should_run) 1094 goto end; 1095 } 1096 1097 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1098 1099 if (cpuhp_is_atomic_state(state)) { 1100 local_irq_disable(); 1101 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1102 local_irq_enable(); 1103 1104 /* 1105 * STARTING/DYING must not fail! 1106 */ 1107 WARN_ON_ONCE(st->result); 1108 } else { 1109 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1110 } 1111 1112 if (st->result) { 1113 /* 1114 * If we fail on a rollback, we're up a creek without no 1115 * paddle, no way forward, no way back. We loose, thanks for 1116 * playing. 1117 */ 1118 WARN_ON_ONCE(st->rollback); 1119 st->should_run = false; 1120 } 1121 1122 end: 1123 cpuhp_lock_release(bringup); 1124 lockdep_release_cpus_lock(); 1125 1126 if (!st->should_run) 1127 complete_ap_thread(st, bringup); 1128 } 1129 1130 /* Invoke a single callback on a remote cpu */ 1131 static int 1132 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1133 struct hlist_node *node) 1134 { 1135 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1136 int ret; 1137 1138 if (!cpu_online(cpu)) 1139 return 0; 1140 1141 cpuhp_lock_acquire(false); 1142 cpuhp_lock_release(false); 1143 1144 cpuhp_lock_acquire(true); 1145 cpuhp_lock_release(true); 1146 1147 /* 1148 * If we are up and running, use the hotplug thread. For early calls 1149 * we invoke the thread function directly. 1150 */ 1151 if (!st->thread) 1152 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1153 1154 st->rollback = false; 1155 st->last = NULL; 1156 1157 st->node = node; 1158 st->bringup = bringup; 1159 st->cb_state = state; 1160 st->single = true; 1161 1162 __cpuhp_kick_ap(st); 1163 1164 /* 1165 * If we failed and did a partial, do a rollback. 1166 */ 1167 if ((ret = st->result) && st->last) { 1168 st->rollback = true; 1169 st->bringup = !bringup; 1170 1171 __cpuhp_kick_ap(st); 1172 } 1173 1174 /* 1175 * Clean up the leftovers so the next hotplug operation wont use stale 1176 * data. 1177 */ 1178 st->node = st->last = NULL; 1179 return ret; 1180 } 1181 1182 static int cpuhp_kick_ap_work(unsigned int cpu) 1183 { 1184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1185 enum cpuhp_state prev_state = st->state; 1186 int ret; 1187 1188 cpuhp_lock_acquire(false); 1189 cpuhp_lock_release(false); 1190 1191 cpuhp_lock_acquire(true); 1192 cpuhp_lock_release(true); 1193 1194 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1195 ret = cpuhp_kick_ap(cpu, st, st->target); 1196 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1197 1198 return ret; 1199 } 1200 1201 static struct smp_hotplug_thread cpuhp_threads = { 1202 .store = &cpuhp_state.thread, 1203 .thread_should_run = cpuhp_should_run, 1204 .thread_fn = cpuhp_thread_fun, 1205 .thread_comm = "cpuhp/%u", 1206 .selfparking = true, 1207 }; 1208 1209 static __init void cpuhp_init_state(void) 1210 { 1211 struct cpuhp_cpu_state *st; 1212 int cpu; 1213 1214 for_each_possible_cpu(cpu) { 1215 st = per_cpu_ptr(&cpuhp_state, cpu); 1216 init_completion(&st->done_up); 1217 init_completion(&st->done_down); 1218 } 1219 } 1220 1221 void __init cpuhp_threads_init(void) 1222 { 1223 cpuhp_init_state(); 1224 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1225 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1226 } 1227 1228 #ifdef CONFIG_HOTPLUG_CPU 1229 #ifndef arch_clear_mm_cpumask_cpu 1230 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1231 #endif 1232 1233 /** 1234 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1235 * @cpu: a CPU id 1236 * 1237 * This function walks all processes, finds a valid mm struct for each one and 1238 * then clears a corresponding bit in mm's cpumask. While this all sounds 1239 * trivial, there are various non-obvious corner cases, which this function 1240 * tries to solve in a safe manner. 1241 * 1242 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1243 * be called only for an already offlined CPU. 1244 */ 1245 void clear_tasks_mm_cpumask(int cpu) 1246 { 1247 struct task_struct *p; 1248 1249 /* 1250 * This function is called after the cpu is taken down and marked 1251 * offline, so its not like new tasks will ever get this cpu set in 1252 * their mm mask. -- Peter Zijlstra 1253 * Thus, we may use rcu_read_lock() here, instead of grabbing 1254 * full-fledged tasklist_lock. 1255 */ 1256 WARN_ON(cpu_online(cpu)); 1257 rcu_read_lock(); 1258 for_each_process(p) { 1259 struct task_struct *t; 1260 1261 /* 1262 * Main thread might exit, but other threads may still have 1263 * a valid mm. Find one. 1264 */ 1265 t = find_lock_task_mm(p); 1266 if (!t) 1267 continue; 1268 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1269 task_unlock(t); 1270 } 1271 rcu_read_unlock(); 1272 } 1273 1274 /* Take this CPU down. */ 1275 static int take_cpu_down(void *_param) 1276 { 1277 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1278 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1279 int err, cpu = smp_processor_id(); 1280 1281 /* Ensure this CPU doesn't handle any more interrupts. */ 1282 err = __cpu_disable(); 1283 if (err < 0) 1284 return err; 1285 1286 /* 1287 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1288 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1289 */ 1290 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1291 1292 /* 1293 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1294 */ 1295 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1296 1297 /* Park the stopper thread */ 1298 stop_machine_park(cpu); 1299 return 0; 1300 } 1301 1302 static int takedown_cpu(unsigned int cpu) 1303 { 1304 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1305 int err; 1306 1307 /* Park the smpboot threads */ 1308 kthread_park(st->thread); 1309 1310 /* 1311 * Prevent irq alloc/free while the dying cpu reorganizes the 1312 * interrupt affinities. 1313 */ 1314 irq_lock_sparse(); 1315 1316 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1317 if (err) { 1318 /* CPU refused to die */ 1319 irq_unlock_sparse(); 1320 /* Unpark the hotplug thread so we can rollback there */ 1321 kthread_unpark(st->thread); 1322 return err; 1323 } 1324 BUG_ON(cpu_online(cpu)); 1325 1326 /* 1327 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1328 * all runnable tasks from the CPU, there's only the idle task left now 1329 * that the migration thread is done doing the stop_machine thing. 1330 * 1331 * Wait for the stop thread to go away. 1332 */ 1333 wait_for_ap_thread(st, false); 1334 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1335 1336 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1337 irq_unlock_sparse(); 1338 1339 hotplug_cpu__broadcast_tick_pull(cpu); 1340 /* This actually kills the CPU. */ 1341 __cpu_die(cpu); 1342 1343 cpuhp_bp_sync_dead(cpu); 1344 1345 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); 1346 1347 /* 1348 * Callbacks must be re-integrated right away to the RCU state machine. 1349 * Otherwise an RCU callback could block a further teardown function 1350 * waiting for its completion. 1351 */ 1352 rcutree_migrate_callbacks(cpu); 1353 1354 return 0; 1355 } 1356 1357 static void cpuhp_complete_idle_dead(void *arg) 1358 { 1359 struct cpuhp_cpu_state *st = arg; 1360 1361 complete_ap_thread(st, false); 1362 } 1363 1364 void cpuhp_report_idle_dead(void) 1365 { 1366 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1367 1368 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1369 tick_assert_timekeeping_handover(); 1370 rcutree_report_cpu_dead(); 1371 st->state = CPUHP_AP_IDLE_DEAD; 1372 /* 1373 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1374 * to an online cpu. 1375 */ 1376 smp_call_function_single(cpumask_first(cpu_online_mask), 1377 cpuhp_complete_idle_dead, st, 0); 1378 } 1379 1380 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1381 enum cpuhp_state target) 1382 { 1383 enum cpuhp_state prev_state = st->state; 1384 int ret = 0; 1385 1386 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1387 if (ret) { 1388 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1389 ret, cpu, cpuhp_get_step(st->state)->name, 1390 st->state); 1391 1392 cpuhp_reset_state(cpu, st, prev_state); 1393 1394 if (st->state < prev_state) 1395 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1396 prev_state)); 1397 } 1398 1399 return ret; 1400 } 1401 1402 /* Requires cpu_add_remove_lock to be held */ 1403 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1404 enum cpuhp_state target) 1405 { 1406 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1407 int prev_state, ret = 0; 1408 1409 if (num_online_cpus() == 1) 1410 return -EBUSY; 1411 1412 if (!cpu_present(cpu)) 1413 return -EINVAL; 1414 1415 cpus_write_lock(); 1416 1417 /* 1418 * Keep at least one housekeeping cpu onlined to avoid generating 1419 * an empty sched_domain span. 1420 */ 1421 if (cpumask_any_and(cpu_online_mask, 1422 housekeeping_cpumask(HK_TYPE_DOMAIN)) >= nr_cpu_ids) { 1423 ret = -EBUSY; 1424 goto out; 1425 } 1426 1427 cpuhp_tasks_frozen = tasks_frozen; 1428 1429 prev_state = cpuhp_set_state(cpu, st, target); 1430 /* 1431 * If the current CPU state is in the range of the AP hotplug thread, 1432 * then we need to kick the thread. 1433 */ 1434 if (st->state > CPUHP_TEARDOWN_CPU) { 1435 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1436 ret = cpuhp_kick_ap_work(cpu); 1437 /* 1438 * The AP side has done the error rollback already. Just 1439 * return the error code.. 1440 */ 1441 if (ret) 1442 goto out; 1443 1444 /* 1445 * We might have stopped still in the range of the AP hotplug 1446 * thread. Nothing to do anymore. 1447 */ 1448 if (st->state > CPUHP_TEARDOWN_CPU) 1449 goto out; 1450 1451 st->target = target; 1452 } 1453 /* 1454 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1455 * to do the further cleanups. 1456 */ 1457 ret = cpuhp_down_callbacks(cpu, st, target); 1458 if (ret && st->state < prev_state) { 1459 if (st->state == CPUHP_TEARDOWN_CPU) { 1460 cpuhp_reset_state(cpu, st, prev_state); 1461 __cpuhp_kick_ap(st); 1462 } else { 1463 WARN(1, "DEAD callback error for CPU%d", cpu); 1464 } 1465 } 1466 1467 out: 1468 cpus_write_unlock(); 1469 arch_smt_update(); 1470 return ret; 1471 } 1472 1473 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1474 { 1475 /* 1476 * If the platform does not support hotplug, report it explicitly to 1477 * differentiate it from a transient offlining failure. 1478 */ 1479 if (cpu_hotplug_offline_disabled) 1480 return -EOPNOTSUPP; 1481 if (cpu_hotplug_disabled) 1482 return -EBUSY; 1483 return _cpu_down(cpu, 0, target); 1484 } 1485 1486 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1487 { 1488 int err; 1489 1490 cpu_maps_update_begin(); 1491 err = cpu_down_maps_locked(cpu, target); 1492 cpu_maps_update_done(); 1493 return err; 1494 } 1495 1496 /** 1497 * cpu_device_down - Bring down a cpu device 1498 * @dev: Pointer to the cpu device to offline 1499 * 1500 * This function is meant to be used by device core cpu subsystem only. 1501 * 1502 * Other subsystems should use remove_cpu() instead. 1503 * 1504 * Return: %0 on success or a negative errno code 1505 */ 1506 int cpu_device_down(struct device *dev) 1507 { 1508 return cpu_down(dev->id, CPUHP_OFFLINE); 1509 } 1510 1511 int remove_cpu(unsigned int cpu) 1512 { 1513 int ret; 1514 1515 lock_device_hotplug(); 1516 ret = device_offline(get_cpu_device(cpu)); 1517 unlock_device_hotplug(); 1518 1519 return ret; 1520 } 1521 EXPORT_SYMBOL_GPL(remove_cpu); 1522 1523 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1524 { 1525 unsigned int cpu; 1526 int error; 1527 1528 cpu_maps_update_begin(); 1529 1530 /* 1531 * Make certain the cpu I'm about to reboot on is online. 1532 * 1533 * This is inline to what migrate_to_reboot_cpu() already do. 1534 */ 1535 if (!cpu_online(primary_cpu)) 1536 primary_cpu = cpumask_first(cpu_online_mask); 1537 1538 for_each_online_cpu(cpu) { 1539 if (cpu == primary_cpu) 1540 continue; 1541 1542 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1543 if (error) { 1544 pr_err("Failed to offline CPU%d - error=%d", 1545 cpu, error); 1546 break; 1547 } 1548 } 1549 1550 /* 1551 * Ensure all but the reboot CPU are offline. 1552 */ 1553 BUG_ON(num_online_cpus() > 1); 1554 1555 /* 1556 * Make sure the CPUs won't be enabled by someone else after this 1557 * point. Kexec will reboot to a new kernel shortly resetting 1558 * everything along the way. 1559 */ 1560 cpu_hotplug_disabled++; 1561 1562 cpu_maps_update_done(); 1563 } 1564 1565 #else 1566 #define takedown_cpu NULL 1567 #endif /*CONFIG_HOTPLUG_CPU*/ 1568 1569 /** 1570 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1571 * @cpu: cpu that just started 1572 * 1573 * It must be called by the arch code on the new cpu, before the new cpu 1574 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1575 */ 1576 void notify_cpu_starting(unsigned int cpu) 1577 { 1578 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1579 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1580 1581 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1582 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1583 1584 /* 1585 * STARTING must not fail! 1586 */ 1587 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1588 } 1589 1590 /* 1591 * Called from the idle task. Wake up the controlling task which brings the 1592 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1593 * online bringup to the hotplug thread. 1594 */ 1595 void cpuhp_online_idle(enum cpuhp_state state) 1596 { 1597 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1598 1599 /* Happens for the boot cpu */ 1600 if (state != CPUHP_AP_ONLINE_IDLE) 1601 return; 1602 1603 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1604 1605 /* 1606 * Unpark the stopper thread before we start the idle loop (and start 1607 * scheduling); this ensures the stopper task is always available. 1608 */ 1609 stop_machine_unpark(smp_processor_id()); 1610 1611 st->state = CPUHP_AP_ONLINE_IDLE; 1612 complete_ap_thread(st, true); 1613 } 1614 1615 /* Requires cpu_add_remove_lock to be held */ 1616 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1617 { 1618 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1619 struct task_struct *idle; 1620 int ret = 0; 1621 1622 cpus_write_lock(); 1623 1624 if (!cpu_present(cpu)) { 1625 ret = -EINVAL; 1626 goto out; 1627 } 1628 1629 /* 1630 * The caller of cpu_up() might have raced with another 1631 * caller. Nothing to do. 1632 */ 1633 if (st->state >= target) 1634 goto out; 1635 1636 if (st->state == CPUHP_OFFLINE) { 1637 /* Let it fail before we try to bring the cpu up */ 1638 idle = idle_thread_get(cpu); 1639 if (IS_ERR(idle)) { 1640 ret = PTR_ERR(idle); 1641 goto out; 1642 } 1643 1644 /* 1645 * Reset stale stack state from the last time this CPU was online. 1646 */ 1647 scs_task_reset(idle); 1648 kasan_unpoison_task_stack(idle); 1649 } 1650 1651 cpuhp_tasks_frozen = tasks_frozen; 1652 1653 cpuhp_set_state(cpu, st, target); 1654 /* 1655 * If the current CPU state is in the range of the AP hotplug thread, 1656 * then we need to kick the thread once more. 1657 */ 1658 if (st->state > CPUHP_BRINGUP_CPU) { 1659 ret = cpuhp_kick_ap_work(cpu); 1660 /* 1661 * The AP side has done the error rollback already. Just 1662 * return the error code.. 1663 */ 1664 if (ret) 1665 goto out; 1666 } 1667 1668 /* 1669 * Try to reach the target state. We max out on the BP at 1670 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1671 * responsible for bringing it up to the target state. 1672 */ 1673 target = min((int)target, CPUHP_BRINGUP_CPU); 1674 ret = cpuhp_up_callbacks(cpu, st, target); 1675 out: 1676 cpus_write_unlock(); 1677 arch_smt_update(); 1678 return ret; 1679 } 1680 1681 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1682 { 1683 int err = 0; 1684 1685 if (!cpu_possible(cpu)) { 1686 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1687 cpu); 1688 return -EINVAL; 1689 } 1690 1691 err = try_online_node(cpu_to_node(cpu)); 1692 if (err) 1693 return err; 1694 1695 cpu_maps_update_begin(); 1696 1697 if (cpu_hotplug_disabled) { 1698 err = -EBUSY; 1699 goto out; 1700 } 1701 if (!cpu_bootable(cpu)) { 1702 err = -EPERM; 1703 goto out; 1704 } 1705 1706 err = _cpu_up(cpu, 0, target); 1707 out: 1708 cpu_maps_update_done(); 1709 return err; 1710 } 1711 1712 /** 1713 * cpu_device_up - Bring up a cpu device 1714 * @dev: Pointer to the cpu device to online 1715 * 1716 * This function is meant to be used by device core cpu subsystem only. 1717 * 1718 * Other subsystems should use add_cpu() instead. 1719 * 1720 * Return: %0 on success or a negative errno code 1721 */ 1722 int cpu_device_up(struct device *dev) 1723 { 1724 return cpu_up(dev->id, CPUHP_ONLINE); 1725 } 1726 1727 int add_cpu(unsigned int cpu) 1728 { 1729 int ret; 1730 1731 lock_device_hotplug(); 1732 ret = device_online(get_cpu_device(cpu)); 1733 unlock_device_hotplug(); 1734 1735 return ret; 1736 } 1737 EXPORT_SYMBOL_GPL(add_cpu); 1738 1739 /** 1740 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1741 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1742 * 1743 * On some architectures like arm64, we can hibernate on any CPU, but on 1744 * wake up the CPU we hibernated on might be offline as a side effect of 1745 * using maxcpus= for example. 1746 * 1747 * Return: %0 on success or a negative errno code 1748 */ 1749 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1750 { 1751 int ret; 1752 1753 if (!cpu_online(sleep_cpu)) { 1754 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1755 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1756 if (ret) { 1757 pr_err("Failed to bring hibernate-CPU up!\n"); 1758 return ret; 1759 } 1760 } 1761 return 0; 1762 } 1763 1764 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1765 enum cpuhp_state target) 1766 { 1767 unsigned int cpu; 1768 1769 for_each_cpu(cpu, mask) { 1770 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1771 1772 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1773 /* 1774 * If this failed then cpu_up() might have only 1775 * rolled back to CPUHP_BP_KICK_AP for the final 1776 * online. Clean it up. NOOP if already rolled back. 1777 */ 1778 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1779 } 1780 1781 if (!--ncpus) 1782 break; 1783 } 1784 } 1785 1786 #ifdef CONFIG_HOTPLUG_PARALLEL 1787 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1788 1789 static int __init parallel_bringup_parse_param(char *arg) 1790 { 1791 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1792 } 1793 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1794 1795 #ifdef CONFIG_HOTPLUG_SMT 1796 static inline bool cpuhp_smt_aware(void) 1797 { 1798 return cpu_smt_max_threads > 1; 1799 } 1800 1801 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1802 { 1803 return cpu_primary_thread_mask; 1804 } 1805 #else 1806 static inline bool cpuhp_smt_aware(void) 1807 { 1808 return false; 1809 } 1810 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1811 { 1812 return cpu_none_mask; 1813 } 1814 #endif 1815 1816 bool __weak arch_cpuhp_init_parallel_bringup(void) 1817 { 1818 return true; 1819 } 1820 1821 /* 1822 * On architectures which have enabled parallel bringup this invokes all BP 1823 * prepare states for each of the to be onlined APs first. The last state 1824 * sends the startup IPI to the APs. The APs proceed through the low level 1825 * bringup code in parallel and then wait for the control CPU to release 1826 * them one by one for the final onlining procedure. 1827 * 1828 * This avoids waiting for each AP to respond to the startup IPI in 1829 * CPUHP_BRINGUP_CPU. 1830 */ 1831 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1832 { 1833 const struct cpumask *mask = cpu_present_mask; 1834 1835 if (__cpuhp_parallel_bringup) 1836 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1837 if (!__cpuhp_parallel_bringup) 1838 return false; 1839 1840 if (cpuhp_smt_aware()) { 1841 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1842 static struct cpumask tmp_mask __initdata; 1843 1844 /* 1845 * X86 requires to prevent that SMT siblings stopped while 1846 * the primary thread does a microcode update for various 1847 * reasons. Bring the primary threads up first. 1848 */ 1849 cpumask_and(&tmp_mask, mask, pmask); 1850 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1851 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1852 /* Account for the online CPUs */ 1853 ncpus -= num_online_cpus(); 1854 if (!ncpus) 1855 return true; 1856 /* Create the mask for secondary CPUs */ 1857 cpumask_andnot(&tmp_mask, mask, pmask); 1858 mask = &tmp_mask; 1859 } 1860 1861 /* Bring the not-yet started CPUs up */ 1862 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1863 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1864 return true; 1865 } 1866 #else 1867 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1868 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1869 1870 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1871 { 1872 if (!max_cpus) 1873 return; 1874 1875 /* Try parallel bringup optimization if enabled */ 1876 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1877 return; 1878 1879 /* Full per CPU serialized bringup */ 1880 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1881 } 1882 1883 #ifdef CONFIG_PM_SLEEP_SMP 1884 static cpumask_var_t frozen_cpus; 1885 1886 int freeze_secondary_cpus(int primary) 1887 { 1888 int cpu, error = 0; 1889 1890 cpu_maps_update_begin(); 1891 if (primary == -1) { 1892 primary = cpumask_first(cpu_online_mask); 1893 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1894 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1895 } else { 1896 if (!cpu_online(primary)) 1897 primary = cpumask_first(cpu_online_mask); 1898 } 1899 1900 /* 1901 * We take down all of the non-boot CPUs in one shot to avoid races 1902 * with the userspace trying to use the CPU hotplug at the same time 1903 */ 1904 cpumask_clear(frozen_cpus); 1905 1906 pr_info("Disabling non-boot CPUs ...\n"); 1907 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1908 if (!cpu_online(cpu) || cpu == primary) 1909 continue; 1910 1911 if (pm_wakeup_pending()) { 1912 pr_info("Wakeup pending. Abort CPU freeze\n"); 1913 error = -EBUSY; 1914 break; 1915 } 1916 1917 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1918 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1919 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1920 if (!error) 1921 cpumask_set_cpu(cpu, frozen_cpus); 1922 else { 1923 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1924 break; 1925 } 1926 } 1927 1928 if (!error) 1929 BUG_ON(num_online_cpus() > 1); 1930 else 1931 pr_err("Non-boot CPUs are not disabled\n"); 1932 1933 /* 1934 * Make sure the CPUs won't be enabled by someone else. We need to do 1935 * this even in case of failure as all freeze_secondary_cpus() users are 1936 * supposed to do thaw_secondary_cpus() on the failure path. 1937 */ 1938 cpu_hotplug_disabled++; 1939 1940 cpu_maps_update_done(); 1941 return error; 1942 } 1943 1944 void __weak arch_thaw_secondary_cpus_begin(void) 1945 { 1946 } 1947 1948 void __weak arch_thaw_secondary_cpus_end(void) 1949 { 1950 } 1951 1952 void thaw_secondary_cpus(void) 1953 { 1954 int cpu, error; 1955 1956 /* Allow everyone to use the CPU hotplug again */ 1957 cpu_maps_update_begin(); 1958 __cpu_hotplug_enable(); 1959 if (cpumask_empty(frozen_cpus)) 1960 goto out; 1961 1962 pr_info("Enabling non-boot CPUs ...\n"); 1963 1964 arch_thaw_secondary_cpus_begin(); 1965 1966 for_each_cpu(cpu, frozen_cpus) { 1967 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1968 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1969 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1970 if (!error) { 1971 pr_info("CPU%d is up\n", cpu); 1972 continue; 1973 } 1974 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1975 } 1976 1977 arch_thaw_secondary_cpus_end(); 1978 1979 cpumask_clear(frozen_cpus); 1980 out: 1981 cpu_maps_update_done(); 1982 } 1983 1984 static int __init alloc_frozen_cpus(void) 1985 { 1986 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1987 return -ENOMEM; 1988 return 0; 1989 } 1990 core_initcall(alloc_frozen_cpus); 1991 1992 /* 1993 * When callbacks for CPU hotplug notifications are being executed, we must 1994 * ensure that the state of the system with respect to the tasks being frozen 1995 * or not, as reported by the notification, remains unchanged *throughout the 1996 * duration* of the execution of the callbacks. 1997 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1998 * 1999 * This synchronization is implemented by mutually excluding regular CPU 2000 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2001 * Hibernate notifications. 2002 */ 2003 static int 2004 cpu_hotplug_pm_callback(struct notifier_block *nb, 2005 unsigned long action, void *ptr) 2006 { 2007 switch (action) { 2008 2009 case PM_SUSPEND_PREPARE: 2010 case PM_HIBERNATION_PREPARE: 2011 cpu_hotplug_disable(); 2012 break; 2013 2014 case PM_POST_SUSPEND: 2015 case PM_POST_HIBERNATION: 2016 cpu_hotplug_enable(); 2017 break; 2018 2019 default: 2020 return NOTIFY_DONE; 2021 } 2022 2023 return NOTIFY_OK; 2024 } 2025 2026 2027 static int __init cpu_hotplug_pm_sync_init(void) 2028 { 2029 /* 2030 * cpu_hotplug_pm_callback has higher priority than x86 2031 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2032 * to disable cpu hotplug to avoid cpu hotplug race. 2033 */ 2034 pm_notifier(cpu_hotplug_pm_callback, 0); 2035 return 0; 2036 } 2037 core_initcall(cpu_hotplug_pm_sync_init); 2038 2039 #endif /* CONFIG_PM_SLEEP_SMP */ 2040 2041 int __boot_cpu_id; 2042 2043 #endif /* CONFIG_SMP */ 2044 2045 /* Boot processor state steps */ 2046 static struct cpuhp_step cpuhp_hp_states[] = { 2047 [CPUHP_OFFLINE] = { 2048 .name = "offline", 2049 .startup.single = NULL, 2050 .teardown.single = NULL, 2051 }, 2052 #ifdef CONFIG_SMP 2053 [CPUHP_CREATE_THREADS]= { 2054 .name = "threads:prepare", 2055 .startup.single = smpboot_create_threads, 2056 .teardown.single = NULL, 2057 .cant_stop = true, 2058 }, 2059 [CPUHP_RANDOM_PREPARE] = { 2060 .name = "random:prepare", 2061 .startup.single = random_prepare_cpu, 2062 .teardown.single = NULL, 2063 }, 2064 [CPUHP_WORKQUEUE_PREP] = { 2065 .name = "workqueue:prepare", 2066 .startup.single = workqueue_prepare_cpu, 2067 .teardown.single = NULL, 2068 }, 2069 [CPUHP_HRTIMERS_PREPARE] = { 2070 .name = "hrtimers:prepare", 2071 .startup.single = hrtimers_prepare_cpu, 2072 .teardown.single = NULL, 2073 }, 2074 [CPUHP_SMPCFD_PREPARE] = { 2075 .name = "smpcfd:prepare", 2076 .startup.single = smpcfd_prepare_cpu, 2077 .teardown.single = smpcfd_dead_cpu, 2078 }, 2079 [CPUHP_RELAY_PREPARE] = { 2080 .name = "relay:prepare", 2081 .startup.single = relay_prepare_cpu, 2082 .teardown.single = NULL, 2083 }, 2084 [CPUHP_RCUTREE_PREP] = { 2085 .name = "RCU/tree:prepare", 2086 .startup.single = rcutree_prepare_cpu, 2087 .teardown.single = rcutree_dead_cpu, 2088 }, 2089 /* 2090 * On the tear-down path, timers_dead_cpu() must be invoked 2091 * before blk_mq_queue_reinit_notify() from notify_dead(), 2092 * otherwise a RCU stall occurs. 2093 */ 2094 [CPUHP_TIMERS_PREPARE] = { 2095 .name = "timers:prepare", 2096 .startup.single = timers_prepare_cpu, 2097 .teardown.single = timers_dead_cpu, 2098 }, 2099 2100 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2101 /* 2102 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2103 * the next step will release it. 2104 */ 2105 [CPUHP_BP_KICK_AP] = { 2106 .name = "cpu:kick_ap", 2107 .startup.single = cpuhp_kick_ap_alive, 2108 }, 2109 2110 /* 2111 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2112 * releases it for the complete bringup. 2113 */ 2114 [CPUHP_BRINGUP_CPU] = { 2115 .name = "cpu:bringup", 2116 .startup.single = cpuhp_bringup_ap, 2117 .teardown.single = finish_cpu, 2118 .cant_stop = true, 2119 }, 2120 #else 2121 /* 2122 * All-in-one CPU bringup state which includes the kick alive. 2123 */ 2124 [CPUHP_BRINGUP_CPU] = { 2125 .name = "cpu:bringup", 2126 .startup.single = bringup_cpu, 2127 .teardown.single = finish_cpu, 2128 .cant_stop = true, 2129 }, 2130 #endif 2131 /* Final state before CPU kills itself */ 2132 [CPUHP_AP_IDLE_DEAD] = { 2133 .name = "idle:dead", 2134 }, 2135 /* 2136 * Last state before CPU enters the idle loop to die. Transient state 2137 * for synchronization. 2138 */ 2139 [CPUHP_AP_OFFLINE] = { 2140 .name = "ap:offline", 2141 .cant_stop = true, 2142 }, 2143 /* First state is scheduler control. Interrupts are disabled */ 2144 [CPUHP_AP_SCHED_STARTING] = { 2145 .name = "sched:starting", 2146 .startup.single = sched_cpu_starting, 2147 .teardown.single = sched_cpu_dying, 2148 }, 2149 [CPUHP_AP_RCUTREE_DYING] = { 2150 .name = "RCU/tree:dying", 2151 .startup.single = NULL, 2152 .teardown.single = rcutree_dying_cpu, 2153 }, 2154 [CPUHP_AP_SMPCFD_DYING] = { 2155 .name = "smpcfd:dying", 2156 .startup.single = NULL, 2157 .teardown.single = smpcfd_dying_cpu, 2158 }, 2159 [CPUHP_AP_HRTIMERS_DYING] = { 2160 .name = "hrtimers:dying", 2161 .startup.single = hrtimers_cpu_starting, 2162 .teardown.single = hrtimers_cpu_dying, 2163 }, 2164 [CPUHP_AP_TICK_DYING] = { 2165 .name = "tick:dying", 2166 .startup.single = NULL, 2167 .teardown.single = tick_cpu_dying, 2168 }, 2169 /* Entry state on starting. Interrupts enabled from here on. Transient 2170 * state for synchronsization */ 2171 [CPUHP_AP_ONLINE] = { 2172 .name = "ap:online", 2173 }, 2174 /* 2175 * Handled on control processor until the plugged processor manages 2176 * this itself. 2177 */ 2178 [CPUHP_TEARDOWN_CPU] = { 2179 .name = "cpu:teardown", 2180 .startup.single = NULL, 2181 .teardown.single = takedown_cpu, 2182 .cant_stop = true, 2183 }, 2184 2185 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2186 .name = "sched:waitempty", 2187 .startup.single = NULL, 2188 .teardown.single = sched_cpu_wait_empty, 2189 }, 2190 2191 /* Handle smpboot threads park/unpark */ 2192 [CPUHP_AP_SMPBOOT_THREADS] = { 2193 .name = "smpboot/threads:online", 2194 .startup.single = smpboot_unpark_threads, 2195 .teardown.single = smpboot_park_threads, 2196 }, 2197 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2198 .name = "irq/affinity:online", 2199 .startup.single = irq_affinity_online_cpu, 2200 .teardown.single = NULL, 2201 }, 2202 [CPUHP_AP_PERF_ONLINE] = { 2203 .name = "perf:online", 2204 .startup.single = perf_event_init_cpu, 2205 .teardown.single = perf_event_exit_cpu, 2206 }, 2207 [CPUHP_AP_WATCHDOG_ONLINE] = { 2208 .name = "lockup_detector:online", 2209 .startup.single = lockup_detector_online_cpu, 2210 .teardown.single = lockup_detector_offline_cpu, 2211 }, 2212 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2213 .name = "workqueue:online", 2214 .startup.single = workqueue_online_cpu, 2215 .teardown.single = workqueue_offline_cpu, 2216 }, 2217 [CPUHP_AP_RANDOM_ONLINE] = { 2218 .name = "random:online", 2219 .startup.single = random_online_cpu, 2220 .teardown.single = NULL, 2221 }, 2222 [CPUHP_AP_RCUTREE_ONLINE] = { 2223 .name = "RCU/tree:online", 2224 .startup.single = rcutree_online_cpu, 2225 .teardown.single = rcutree_offline_cpu, 2226 }, 2227 #endif 2228 /* 2229 * The dynamically registered state space is here 2230 */ 2231 2232 #ifdef CONFIG_SMP 2233 /* Last state is scheduler control setting the cpu active */ 2234 [CPUHP_AP_ACTIVE] = { 2235 .name = "sched:active", 2236 .startup.single = sched_cpu_activate, 2237 .teardown.single = sched_cpu_deactivate, 2238 }, 2239 #endif 2240 2241 /* CPU is fully up and running. */ 2242 [CPUHP_ONLINE] = { 2243 .name = "online", 2244 .startup.single = NULL, 2245 .teardown.single = NULL, 2246 }, 2247 }; 2248 2249 /* Sanity check for callbacks */ 2250 static int cpuhp_cb_check(enum cpuhp_state state) 2251 { 2252 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2253 return -EINVAL; 2254 return 0; 2255 } 2256 2257 /* 2258 * Returns a free for dynamic slot assignment of the Online state. The states 2259 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2260 * by having no name assigned. 2261 */ 2262 static int cpuhp_reserve_state(enum cpuhp_state state) 2263 { 2264 enum cpuhp_state i, end; 2265 struct cpuhp_step *step; 2266 2267 switch (state) { 2268 case CPUHP_AP_ONLINE_DYN: 2269 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2270 end = CPUHP_AP_ONLINE_DYN_END; 2271 break; 2272 case CPUHP_BP_PREPARE_DYN: 2273 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2274 end = CPUHP_BP_PREPARE_DYN_END; 2275 break; 2276 default: 2277 return -EINVAL; 2278 } 2279 2280 for (i = state; i <= end; i++, step++) { 2281 if (!step->name) 2282 return i; 2283 } 2284 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2285 return -ENOSPC; 2286 } 2287 2288 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2289 int (*startup)(unsigned int cpu), 2290 int (*teardown)(unsigned int cpu), 2291 bool multi_instance) 2292 { 2293 /* (Un)Install the callbacks for further cpu hotplug operations */ 2294 struct cpuhp_step *sp; 2295 int ret = 0; 2296 2297 /* 2298 * If name is NULL, then the state gets removed. 2299 * 2300 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2301 * the first allocation from these dynamic ranges, so the removal 2302 * would trigger a new allocation and clear the wrong (already 2303 * empty) state, leaving the callbacks of the to be cleared state 2304 * dangling, which causes wreckage on the next hotplug operation. 2305 */ 2306 if (name && (state == CPUHP_AP_ONLINE_DYN || 2307 state == CPUHP_BP_PREPARE_DYN)) { 2308 ret = cpuhp_reserve_state(state); 2309 if (ret < 0) 2310 return ret; 2311 state = ret; 2312 } 2313 sp = cpuhp_get_step(state); 2314 if (name && sp->name) 2315 return -EBUSY; 2316 2317 sp->startup.single = startup; 2318 sp->teardown.single = teardown; 2319 sp->name = name; 2320 sp->multi_instance = multi_instance; 2321 INIT_HLIST_HEAD(&sp->list); 2322 return ret; 2323 } 2324 2325 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2326 { 2327 return cpuhp_get_step(state)->teardown.single; 2328 } 2329 2330 /* 2331 * Call the startup/teardown function for a step either on the AP or 2332 * on the current CPU. 2333 */ 2334 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2335 struct hlist_node *node) 2336 { 2337 struct cpuhp_step *sp = cpuhp_get_step(state); 2338 int ret; 2339 2340 /* 2341 * If there's nothing to do, we done. 2342 * Relies on the union for multi_instance. 2343 */ 2344 if (cpuhp_step_empty(bringup, sp)) 2345 return 0; 2346 /* 2347 * The non AP bound callbacks can fail on bringup. On teardown 2348 * e.g. module removal we crash for now. 2349 */ 2350 #ifdef CONFIG_SMP 2351 if (cpuhp_is_ap_state(state)) 2352 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2353 else 2354 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2355 #else 2356 if (cpuhp_is_atomic_state(state)) { 2357 guard(irqsave)(); 2358 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2359 /* STARTING/DYING must not fail! */ 2360 WARN_ON_ONCE(ret); 2361 } else { 2362 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2363 } 2364 #endif 2365 BUG_ON(ret && !bringup); 2366 return ret; 2367 } 2368 2369 /* 2370 * Called from __cpuhp_setup_state on a recoverable failure. 2371 * 2372 * Note: The teardown callbacks for rollback are not allowed to fail! 2373 */ 2374 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2375 struct hlist_node *node) 2376 { 2377 int cpu; 2378 2379 /* Roll back the already executed steps on the other cpus */ 2380 for_each_present_cpu(cpu) { 2381 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2382 int cpustate = st->state; 2383 2384 if (cpu >= failedcpu) 2385 break; 2386 2387 /* Did we invoke the startup call on that cpu ? */ 2388 if (cpustate >= state) 2389 cpuhp_issue_call(cpu, state, false, node); 2390 } 2391 } 2392 2393 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2394 struct hlist_node *node, 2395 bool invoke) 2396 { 2397 struct cpuhp_step *sp; 2398 int cpu; 2399 int ret; 2400 2401 lockdep_assert_cpus_held(); 2402 2403 sp = cpuhp_get_step(state); 2404 if (sp->multi_instance == false) 2405 return -EINVAL; 2406 2407 mutex_lock(&cpuhp_state_mutex); 2408 2409 if (!invoke || !sp->startup.multi) 2410 goto add_node; 2411 2412 /* 2413 * Try to call the startup callback for each present cpu 2414 * depending on the hotplug state of the cpu. 2415 */ 2416 for_each_present_cpu(cpu) { 2417 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2418 int cpustate = st->state; 2419 2420 if (cpustate < state) 2421 continue; 2422 2423 ret = cpuhp_issue_call(cpu, state, true, node); 2424 if (ret) { 2425 if (sp->teardown.multi) 2426 cpuhp_rollback_install(cpu, state, node); 2427 goto unlock; 2428 } 2429 } 2430 add_node: 2431 ret = 0; 2432 hlist_add_head(node, &sp->list); 2433 unlock: 2434 mutex_unlock(&cpuhp_state_mutex); 2435 return ret; 2436 } 2437 2438 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2439 bool invoke) 2440 { 2441 int ret; 2442 2443 cpus_read_lock(); 2444 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2445 cpus_read_unlock(); 2446 return ret; 2447 } 2448 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2449 2450 /** 2451 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2452 * @state: The state to setup 2453 * @name: Name of the step 2454 * @invoke: If true, the startup function is invoked for cpus where 2455 * cpu state >= @state 2456 * @startup: startup callback function 2457 * @teardown: teardown callback function 2458 * @multi_instance: State is set up for multiple instances which get 2459 * added afterwards. 2460 * 2461 * The caller needs to hold cpus read locked while calling this function. 2462 * Return: 2463 * On success: 2464 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2465 * 0 for all other states 2466 * On failure: proper (negative) error code 2467 */ 2468 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2469 const char *name, bool invoke, 2470 int (*startup)(unsigned int cpu), 2471 int (*teardown)(unsigned int cpu), 2472 bool multi_instance) 2473 { 2474 int cpu, ret = 0; 2475 bool dynstate; 2476 2477 lockdep_assert_cpus_held(); 2478 2479 if (cpuhp_cb_check(state) || !name) 2480 return -EINVAL; 2481 2482 mutex_lock(&cpuhp_state_mutex); 2483 2484 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2485 multi_instance); 2486 2487 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2488 if (ret > 0 && dynstate) { 2489 state = ret; 2490 ret = 0; 2491 } 2492 2493 if (ret || !invoke || !startup) 2494 goto out; 2495 2496 /* 2497 * Try to call the startup callback for each present cpu 2498 * depending on the hotplug state of the cpu. 2499 */ 2500 for_each_present_cpu(cpu) { 2501 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2502 int cpustate = st->state; 2503 2504 if (cpustate < state) 2505 continue; 2506 2507 ret = cpuhp_issue_call(cpu, state, true, NULL); 2508 if (ret) { 2509 if (teardown) 2510 cpuhp_rollback_install(cpu, state, NULL); 2511 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2512 goto out; 2513 } 2514 } 2515 out: 2516 mutex_unlock(&cpuhp_state_mutex); 2517 /* 2518 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2519 * return the dynamically allocated state in case of success. 2520 */ 2521 if (!ret && dynstate) 2522 return state; 2523 return ret; 2524 } 2525 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2526 2527 int __cpuhp_setup_state(enum cpuhp_state state, 2528 const char *name, bool invoke, 2529 int (*startup)(unsigned int cpu), 2530 int (*teardown)(unsigned int cpu), 2531 bool multi_instance) 2532 { 2533 int ret; 2534 2535 cpus_read_lock(); 2536 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2537 teardown, multi_instance); 2538 cpus_read_unlock(); 2539 return ret; 2540 } 2541 EXPORT_SYMBOL(__cpuhp_setup_state); 2542 2543 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2544 struct hlist_node *node, bool invoke) 2545 { 2546 struct cpuhp_step *sp = cpuhp_get_step(state); 2547 int cpu; 2548 2549 BUG_ON(cpuhp_cb_check(state)); 2550 2551 if (!sp->multi_instance) 2552 return -EINVAL; 2553 2554 cpus_read_lock(); 2555 mutex_lock(&cpuhp_state_mutex); 2556 2557 if (!invoke || !cpuhp_get_teardown_cb(state)) 2558 goto remove; 2559 /* 2560 * Call the teardown callback for each present cpu depending 2561 * on the hotplug state of the cpu. This function is not 2562 * allowed to fail currently! 2563 */ 2564 for_each_present_cpu(cpu) { 2565 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2566 int cpustate = st->state; 2567 2568 if (cpustate >= state) 2569 cpuhp_issue_call(cpu, state, false, node); 2570 } 2571 2572 remove: 2573 hlist_del(node); 2574 mutex_unlock(&cpuhp_state_mutex); 2575 cpus_read_unlock(); 2576 2577 return 0; 2578 } 2579 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2580 2581 /** 2582 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2583 * @state: The state to remove 2584 * @invoke: If true, the teardown function is invoked for cpus where 2585 * cpu state >= @state 2586 * 2587 * The caller needs to hold cpus read locked while calling this function. 2588 * The teardown callback is currently not allowed to fail. Think 2589 * about module removal! 2590 */ 2591 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2592 { 2593 struct cpuhp_step *sp = cpuhp_get_step(state); 2594 int cpu; 2595 2596 BUG_ON(cpuhp_cb_check(state)); 2597 2598 lockdep_assert_cpus_held(); 2599 2600 mutex_lock(&cpuhp_state_mutex); 2601 if (sp->multi_instance) { 2602 WARN(!hlist_empty(&sp->list), 2603 "Error: Removing state %d which has instances left.\n", 2604 state); 2605 goto remove; 2606 } 2607 2608 if (!invoke || !cpuhp_get_teardown_cb(state)) 2609 goto remove; 2610 2611 /* 2612 * Call the teardown callback for each present cpu depending 2613 * on the hotplug state of the cpu. This function is not 2614 * allowed to fail currently! 2615 */ 2616 for_each_present_cpu(cpu) { 2617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2618 int cpustate = st->state; 2619 2620 if (cpustate >= state) 2621 cpuhp_issue_call(cpu, state, false, NULL); 2622 } 2623 remove: 2624 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2625 mutex_unlock(&cpuhp_state_mutex); 2626 } 2627 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2628 2629 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2630 { 2631 cpus_read_lock(); 2632 __cpuhp_remove_state_cpuslocked(state, invoke); 2633 cpus_read_unlock(); 2634 } 2635 EXPORT_SYMBOL(__cpuhp_remove_state); 2636 2637 #ifdef CONFIG_HOTPLUG_SMT 2638 static void cpuhp_offline_cpu_device(unsigned int cpu) 2639 { 2640 struct device *dev = get_cpu_device(cpu); 2641 2642 dev->offline = true; 2643 /* Tell user space about the state change */ 2644 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2645 } 2646 2647 static void cpuhp_online_cpu_device(unsigned int cpu) 2648 { 2649 struct device *dev = get_cpu_device(cpu); 2650 2651 dev->offline = false; 2652 /* Tell user space about the state change */ 2653 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2654 } 2655 2656 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2657 { 2658 int cpu, ret = 0; 2659 2660 cpu_maps_update_begin(); 2661 for_each_online_cpu(cpu) { 2662 if (topology_is_primary_thread(cpu)) 2663 continue; 2664 /* 2665 * Disable can be called with CPU_SMT_ENABLED when changing 2666 * from a higher to lower number of SMT threads per core. 2667 */ 2668 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2669 continue; 2670 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2671 if (ret) 2672 break; 2673 /* 2674 * As this needs to hold the cpu maps lock it's impossible 2675 * to call device_offline() because that ends up calling 2676 * cpu_down() which takes cpu maps lock. cpu maps lock 2677 * needs to be held as this might race against in kernel 2678 * abusers of the hotplug machinery (thermal management). 2679 * 2680 * So nothing would update device:offline state. That would 2681 * leave the sysfs entry stale and prevent onlining after 2682 * smt control has been changed to 'off' again. This is 2683 * called under the sysfs hotplug lock, so it is properly 2684 * serialized against the regular offline usage. 2685 */ 2686 cpuhp_offline_cpu_device(cpu); 2687 } 2688 if (!ret) 2689 cpu_smt_control = ctrlval; 2690 cpu_maps_update_done(); 2691 return ret; 2692 } 2693 2694 /* Check if the core a CPU belongs to is online */ 2695 #if !defined(topology_is_core_online) 2696 static inline bool topology_is_core_online(unsigned int cpu) 2697 { 2698 return true; 2699 } 2700 #endif 2701 2702 int cpuhp_smt_enable(void) 2703 { 2704 int cpu, ret = 0; 2705 2706 cpu_maps_update_begin(); 2707 cpu_smt_control = CPU_SMT_ENABLED; 2708 for_each_present_cpu(cpu) { 2709 /* Skip online CPUs and CPUs on offline nodes */ 2710 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2711 continue; 2712 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2713 continue; 2714 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2715 if (ret) 2716 break; 2717 /* See comment in cpuhp_smt_disable() */ 2718 cpuhp_online_cpu_device(cpu); 2719 } 2720 cpu_maps_update_done(); 2721 return ret; 2722 } 2723 #endif 2724 2725 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2726 static ssize_t state_show(struct device *dev, 2727 struct device_attribute *attr, char *buf) 2728 { 2729 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2730 2731 return sprintf(buf, "%d\n", st->state); 2732 } 2733 static DEVICE_ATTR_RO(state); 2734 2735 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2736 const char *buf, size_t count) 2737 { 2738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2739 struct cpuhp_step *sp; 2740 int target, ret; 2741 2742 ret = kstrtoint(buf, 10, &target); 2743 if (ret) 2744 return ret; 2745 2746 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2747 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2748 return -EINVAL; 2749 #else 2750 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2751 return -EINVAL; 2752 #endif 2753 2754 ret = lock_device_hotplug_sysfs(); 2755 if (ret) 2756 return ret; 2757 2758 mutex_lock(&cpuhp_state_mutex); 2759 sp = cpuhp_get_step(target); 2760 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2761 mutex_unlock(&cpuhp_state_mutex); 2762 if (ret) 2763 goto out; 2764 2765 if (st->state < target) 2766 ret = cpu_up(dev->id, target); 2767 else if (st->state > target) 2768 ret = cpu_down(dev->id, target); 2769 else if (WARN_ON(st->target != target)) 2770 st->target = target; 2771 out: 2772 unlock_device_hotplug(); 2773 return ret ? ret : count; 2774 } 2775 2776 static ssize_t target_show(struct device *dev, 2777 struct device_attribute *attr, char *buf) 2778 { 2779 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2780 2781 return sprintf(buf, "%d\n", st->target); 2782 } 2783 static DEVICE_ATTR_RW(target); 2784 2785 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2786 const char *buf, size_t count) 2787 { 2788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2789 struct cpuhp_step *sp; 2790 int fail, ret; 2791 2792 ret = kstrtoint(buf, 10, &fail); 2793 if (ret) 2794 return ret; 2795 2796 if (fail == CPUHP_INVALID) { 2797 st->fail = fail; 2798 return count; 2799 } 2800 2801 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2802 return -EINVAL; 2803 2804 /* 2805 * Cannot fail STARTING/DYING callbacks. 2806 */ 2807 if (cpuhp_is_atomic_state(fail)) 2808 return -EINVAL; 2809 2810 /* 2811 * DEAD callbacks cannot fail... 2812 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2813 * triggering STARTING callbacks, a failure in this state would 2814 * hinder rollback. 2815 */ 2816 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2817 return -EINVAL; 2818 2819 /* 2820 * Cannot fail anything that doesn't have callbacks. 2821 */ 2822 mutex_lock(&cpuhp_state_mutex); 2823 sp = cpuhp_get_step(fail); 2824 if (!sp->startup.single && !sp->teardown.single) 2825 ret = -EINVAL; 2826 mutex_unlock(&cpuhp_state_mutex); 2827 if (ret) 2828 return ret; 2829 2830 st->fail = fail; 2831 2832 return count; 2833 } 2834 2835 static ssize_t fail_show(struct device *dev, 2836 struct device_attribute *attr, char *buf) 2837 { 2838 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2839 2840 return sprintf(buf, "%d\n", st->fail); 2841 } 2842 2843 static DEVICE_ATTR_RW(fail); 2844 2845 static struct attribute *cpuhp_cpu_attrs[] = { 2846 &dev_attr_state.attr, 2847 &dev_attr_target.attr, 2848 &dev_attr_fail.attr, 2849 NULL 2850 }; 2851 2852 static const struct attribute_group cpuhp_cpu_attr_group = { 2853 .attrs = cpuhp_cpu_attrs, 2854 .name = "hotplug", 2855 }; 2856 2857 static ssize_t states_show(struct device *dev, 2858 struct device_attribute *attr, char *buf) 2859 { 2860 ssize_t cur, res = 0; 2861 int i; 2862 2863 mutex_lock(&cpuhp_state_mutex); 2864 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2865 struct cpuhp_step *sp = cpuhp_get_step(i); 2866 2867 if (sp->name) { 2868 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2869 buf += cur; 2870 res += cur; 2871 } 2872 } 2873 mutex_unlock(&cpuhp_state_mutex); 2874 return res; 2875 } 2876 static DEVICE_ATTR_RO(states); 2877 2878 static struct attribute *cpuhp_cpu_root_attrs[] = { 2879 &dev_attr_states.attr, 2880 NULL 2881 }; 2882 2883 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2884 .attrs = cpuhp_cpu_root_attrs, 2885 .name = "hotplug", 2886 }; 2887 2888 #ifdef CONFIG_HOTPLUG_SMT 2889 2890 static bool cpu_smt_num_threads_valid(unsigned int threads) 2891 { 2892 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2893 return threads >= 1 && threads <= cpu_smt_max_threads; 2894 return threads == 1 || threads == cpu_smt_max_threads; 2895 } 2896 2897 static ssize_t 2898 __store_smt_control(struct device *dev, struct device_attribute *attr, 2899 const char *buf, size_t count) 2900 { 2901 int ctrlval, ret, num_threads, orig_threads; 2902 bool force_off; 2903 2904 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2905 return -EPERM; 2906 2907 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2908 return -ENODEV; 2909 2910 if (sysfs_streq(buf, "on")) { 2911 ctrlval = CPU_SMT_ENABLED; 2912 num_threads = cpu_smt_max_threads; 2913 } else if (sysfs_streq(buf, "off")) { 2914 ctrlval = CPU_SMT_DISABLED; 2915 num_threads = 1; 2916 } else if (sysfs_streq(buf, "forceoff")) { 2917 ctrlval = CPU_SMT_FORCE_DISABLED; 2918 num_threads = 1; 2919 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2920 if (num_threads == 1) 2921 ctrlval = CPU_SMT_DISABLED; 2922 else if (cpu_smt_num_threads_valid(num_threads)) 2923 ctrlval = CPU_SMT_ENABLED; 2924 else 2925 return -EINVAL; 2926 } else { 2927 return -EINVAL; 2928 } 2929 2930 ret = lock_device_hotplug_sysfs(); 2931 if (ret) 2932 return ret; 2933 2934 orig_threads = cpu_smt_num_threads; 2935 cpu_smt_num_threads = num_threads; 2936 2937 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2938 2939 if (num_threads > orig_threads) 2940 ret = cpuhp_smt_enable(); 2941 else if (num_threads < orig_threads || force_off) 2942 ret = cpuhp_smt_disable(ctrlval); 2943 2944 unlock_device_hotplug(); 2945 return ret ? ret : count; 2946 } 2947 2948 #else /* !CONFIG_HOTPLUG_SMT */ 2949 static ssize_t 2950 __store_smt_control(struct device *dev, struct device_attribute *attr, 2951 const char *buf, size_t count) 2952 { 2953 return -ENODEV; 2954 } 2955 #endif /* CONFIG_HOTPLUG_SMT */ 2956 2957 static const char *smt_states[] = { 2958 [CPU_SMT_ENABLED] = "on", 2959 [CPU_SMT_DISABLED] = "off", 2960 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2961 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2962 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2963 }; 2964 2965 static ssize_t control_show(struct device *dev, 2966 struct device_attribute *attr, char *buf) 2967 { 2968 const char *state = smt_states[cpu_smt_control]; 2969 2970 #ifdef CONFIG_HOTPLUG_SMT 2971 /* 2972 * If SMT is enabled but not all threads are enabled then show the 2973 * number of threads. If all threads are enabled show "on". Otherwise 2974 * show the state name. 2975 */ 2976 if (cpu_smt_control == CPU_SMT_ENABLED && 2977 cpu_smt_num_threads != cpu_smt_max_threads) 2978 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2979 #endif 2980 2981 return sysfs_emit(buf, "%s\n", state); 2982 } 2983 2984 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2985 const char *buf, size_t count) 2986 { 2987 return __store_smt_control(dev, attr, buf, count); 2988 } 2989 static DEVICE_ATTR_RW(control); 2990 2991 static ssize_t active_show(struct device *dev, 2992 struct device_attribute *attr, char *buf) 2993 { 2994 return sysfs_emit(buf, "%d\n", sched_smt_active()); 2995 } 2996 static DEVICE_ATTR_RO(active); 2997 2998 static struct attribute *cpuhp_smt_attrs[] = { 2999 &dev_attr_control.attr, 3000 &dev_attr_active.attr, 3001 NULL 3002 }; 3003 3004 static const struct attribute_group cpuhp_smt_attr_group = { 3005 .attrs = cpuhp_smt_attrs, 3006 .name = "smt", 3007 }; 3008 3009 static int __init cpu_smt_sysfs_init(void) 3010 { 3011 struct device *dev_root; 3012 int ret = -ENODEV; 3013 3014 dev_root = bus_get_dev_root(&cpu_subsys); 3015 if (dev_root) { 3016 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3017 put_device(dev_root); 3018 } 3019 return ret; 3020 } 3021 3022 static int __init cpuhp_sysfs_init(void) 3023 { 3024 struct device *dev_root; 3025 int cpu, ret; 3026 3027 ret = cpu_smt_sysfs_init(); 3028 if (ret) 3029 return ret; 3030 3031 dev_root = bus_get_dev_root(&cpu_subsys); 3032 if (dev_root) { 3033 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3034 put_device(dev_root); 3035 if (ret) 3036 return ret; 3037 } 3038 3039 for_each_possible_cpu(cpu) { 3040 struct device *dev = get_cpu_device(cpu); 3041 3042 if (!dev) 3043 continue; 3044 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3045 if (ret) 3046 return ret; 3047 } 3048 return 0; 3049 } 3050 device_initcall(cpuhp_sysfs_init); 3051 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3052 3053 /* 3054 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3055 * represents all NR_CPUS bits binary values of 1<<nr. 3056 * 3057 * It is used by cpumask_of() to get a constant address to a CPU 3058 * mask value that has a single bit set only. 3059 */ 3060 3061 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3062 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3063 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3064 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3065 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3066 3067 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3068 3069 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3070 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3071 #if BITS_PER_LONG > 32 3072 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3073 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3074 #endif 3075 }; 3076 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3077 3078 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3079 EXPORT_SYMBOL(cpu_all_bits); 3080 3081 #ifdef CONFIG_INIT_ALL_POSSIBLE 3082 struct cpumask __cpu_possible_mask __ro_after_init 3083 = {CPU_BITS_ALL}; 3084 unsigned int __num_possible_cpus __ro_after_init = NR_CPUS; 3085 #else 3086 struct cpumask __cpu_possible_mask __ro_after_init; 3087 unsigned int __num_possible_cpus __ro_after_init; 3088 #endif 3089 EXPORT_SYMBOL(__cpu_possible_mask); 3090 EXPORT_SYMBOL(__num_possible_cpus); 3091 3092 struct cpumask __cpu_online_mask __read_mostly; 3093 EXPORT_SYMBOL(__cpu_online_mask); 3094 3095 struct cpumask __cpu_enabled_mask __read_mostly; 3096 EXPORT_SYMBOL(__cpu_enabled_mask); 3097 3098 struct cpumask __cpu_present_mask __read_mostly; 3099 EXPORT_SYMBOL(__cpu_present_mask); 3100 3101 struct cpumask __cpu_active_mask __read_mostly; 3102 EXPORT_SYMBOL(__cpu_active_mask); 3103 3104 struct cpumask __cpu_dying_mask __read_mostly; 3105 EXPORT_SYMBOL(__cpu_dying_mask); 3106 3107 atomic_t __num_online_cpus __read_mostly; 3108 EXPORT_SYMBOL(__num_online_cpus); 3109 3110 void init_cpu_present(const struct cpumask *src) 3111 { 3112 cpumask_copy(&__cpu_present_mask, src); 3113 } 3114 3115 void init_cpu_possible(const struct cpumask *src) 3116 { 3117 cpumask_copy(&__cpu_possible_mask, src); 3118 __num_possible_cpus = cpumask_weight(&__cpu_possible_mask); 3119 } 3120 3121 void set_cpu_online(unsigned int cpu, bool online) 3122 { 3123 /* 3124 * atomic_inc/dec() is required to handle the horrid abuse of this 3125 * function by the reboot and kexec code which invoke it from 3126 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3127 * regular CPU hotplug is properly serialized. 3128 * 3129 * Note, that the fact that __num_online_cpus is of type atomic_t 3130 * does not protect readers which are not serialized against 3131 * concurrent hotplug operations. 3132 */ 3133 if (online) { 3134 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3135 atomic_inc(&__num_online_cpus); 3136 } else { 3137 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3138 atomic_dec(&__num_online_cpus); 3139 } 3140 } 3141 3142 /* 3143 * This should be marked __init, but there is a boatload of call sites 3144 * which need to be fixed up to do so. Sigh... 3145 */ 3146 void set_cpu_possible(unsigned int cpu, bool possible) 3147 { 3148 if (possible) { 3149 if (!cpumask_test_and_set_cpu(cpu, &__cpu_possible_mask)) 3150 __num_possible_cpus++; 3151 } else { 3152 if (cpumask_test_and_clear_cpu(cpu, &__cpu_possible_mask)) 3153 __num_possible_cpus--; 3154 } 3155 } 3156 3157 /* 3158 * Activate the first processor. 3159 */ 3160 void __init boot_cpu_init(void) 3161 { 3162 int cpu = smp_processor_id(); 3163 3164 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3165 set_cpu_online(cpu, true); 3166 set_cpu_active(cpu, true); 3167 set_cpu_present(cpu, true); 3168 set_cpu_possible(cpu, true); 3169 3170 #ifdef CONFIG_SMP 3171 __boot_cpu_id = cpu; 3172 #endif 3173 } 3174 3175 /* 3176 * Must be called _AFTER_ setting up the per_cpu areas 3177 */ 3178 void __init boot_cpu_hotplug_init(void) 3179 { 3180 #ifdef CONFIG_SMP 3181 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3182 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3183 #endif 3184 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3185 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3186 } 3187 3188 #ifdef CONFIG_CPU_MITIGATIONS 3189 /* 3190 * All except the cross-thread attack vector are mitigated by default. 3191 * Cross-thread mitigation often requires disabling SMT which is expensive 3192 * so cross-thread mitigations are only partially enabled by default. 3193 * 3194 * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is 3195 * present. 3196 */ 3197 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = { 3198 [CPU_MITIGATE_USER_KERNEL] = true, 3199 [CPU_MITIGATE_USER_USER] = true, 3200 [CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM), 3201 [CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM), 3202 }; 3203 3204 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v) 3205 { 3206 if (v < NR_CPU_ATTACK_VECTORS) 3207 return attack_vectors[v]; 3208 3209 WARN_ONCE(1, "Invalid attack vector %d\n", v); 3210 return false; 3211 } 3212 3213 /* 3214 * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally 3215 * be combined with attack-vector disables which follow them. 3216 * 3217 * Examples: 3218 * mitigations=auto,no_user_kernel,no_user_user,no_cross_thread 3219 * mitigations=auto,nosmt,no_guest_host,no_guest_guest 3220 * 3221 * mitigations=off is equivalent to disabling all attack vectors. 3222 */ 3223 enum cpu_mitigations { 3224 CPU_MITIGATIONS_OFF, 3225 CPU_MITIGATIONS_AUTO, 3226 CPU_MITIGATIONS_AUTO_NOSMT, 3227 }; 3228 3229 enum { 3230 NO_USER_KERNEL, 3231 NO_USER_USER, 3232 NO_GUEST_HOST, 3233 NO_GUEST_GUEST, 3234 NO_CROSS_THREAD, 3235 NR_VECTOR_PARAMS, 3236 }; 3237 3238 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO; 3239 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3240 3241 static const match_table_t global_mitigations = { 3242 { CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt"}, 3243 { CPU_MITIGATIONS_AUTO, "auto"}, 3244 { CPU_MITIGATIONS_OFF, "off"}, 3245 }; 3246 3247 static const match_table_t vector_mitigations = { 3248 { NO_USER_KERNEL, "no_user_kernel"}, 3249 { NO_USER_USER, "no_user_user"}, 3250 { NO_GUEST_HOST, "no_guest_host"}, 3251 { NO_GUEST_GUEST, "no_guest_guest"}, 3252 { NO_CROSS_THREAD, "no_cross_thread"}, 3253 { NR_VECTOR_PARAMS, NULL}, 3254 }; 3255 3256 static int __init mitigations_parse_global_opt(char *arg) 3257 { 3258 int i; 3259 3260 for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) { 3261 const char *pattern = global_mitigations[i].pattern; 3262 3263 if (!strncmp(arg, pattern, strlen(pattern))) { 3264 cpu_mitigations = global_mitigations[i].token; 3265 return strlen(pattern); 3266 } 3267 } 3268 3269 return 0; 3270 } 3271 3272 static int __init mitigations_parse_cmdline(char *arg) 3273 { 3274 char *s, *p; 3275 int len; 3276 3277 len = mitigations_parse_global_opt(arg); 3278 3279 if (cpu_mitigations_off()) { 3280 memset(attack_vectors, 0, sizeof(attack_vectors)); 3281 smt_mitigations = SMT_MITIGATIONS_OFF; 3282 } else if (cpu_mitigations_auto_nosmt()) { 3283 smt_mitigations = SMT_MITIGATIONS_ON; 3284 } 3285 3286 p = arg + len; 3287 3288 if (!*p) 3289 return 0; 3290 3291 /* Attack vector controls may come after the ',' */ 3292 if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) { 3293 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg); 3294 return 0; 3295 } 3296 3297 while ((s = strsep(&p, ",")) != NULL) { 3298 switch (match_token(s, vector_mitigations, NULL)) { 3299 case NO_USER_KERNEL: 3300 attack_vectors[CPU_MITIGATE_USER_KERNEL] = false; 3301 break; 3302 case NO_USER_USER: 3303 attack_vectors[CPU_MITIGATE_USER_USER] = false; 3304 break; 3305 case NO_GUEST_HOST: 3306 attack_vectors[CPU_MITIGATE_GUEST_HOST] = false; 3307 break; 3308 case NO_GUEST_GUEST: 3309 attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false; 3310 break; 3311 case NO_CROSS_THREAD: 3312 smt_mitigations = SMT_MITIGATIONS_OFF; 3313 break; 3314 default: 3315 pr_crit("Unsupported mitigations options %s\n", s); 3316 return 0; 3317 } 3318 } 3319 3320 return 0; 3321 } 3322 3323 /* mitigations=off */ 3324 bool cpu_mitigations_off(void) 3325 { 3326 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3327 } 3328 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3329 3330 /* mitigations=auto,nosmt */ 3331 bool cpu_mitigations_auto_nosmt(void) 3332 { 3333 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3334 } 3335 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3336 #else 3337 static int __init mitigations_parse_cmdline(char *arg) 3338 { 3339 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3340 return 0; 3341 } 3342 #endif 3343 early_param("mitigations", mitigations_parse_cmdline); 3344