1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 #include <linux/parser.h> 41 42 #include <trace/events/power.h> 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/cpuhp.h> 45 46 #include "smpboot.h" 47 48 /** 49 * struct cpuhp_cpu_state - Per cpu hotplug state storage 50 * @state: The current cpu state 51 * @target: The target state 52 * @fail: Current CPU hotplug callback state 53 * @thread: Pointer to the hotplug thread 54 * @should_run: Thread should execute 55 * @rollback: Perform a rollback 56 * @single: Single callback invocation 57 * @bringup: Single callback bringup or teardown selector 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 static bool cpu_hotplug_offline_disabled __ro_after_init; 488 489 void cpus_read_lock(void) 490 { 491 percpu_down_read(&cpu_hotplug_lock); 492 } 493 EXPORT_SYMBOL_GPL(cpus_read_lock); 494 495 int cpus_read_trylock(void) 496 { 497 return percpu_down_read_trylock(&cpu_hotplug_lock); 498 } 499 EXPORT_SYMBOL_GPL(cpus_read_trylock); 500 501 void cpus_read_unlock(void) 502 { 503 percpu_up_read(&cpu_hotplug_lock); 504 } 505 EXPORT_SYMBOL_GPL(cpus_read_unlock); 506 507 void cpus_write_lock(void) 508 { 509 percpu_down_write(&cpu_hotplug_lock); 510 } 511 512 void cpus_write_unlock(void) 513 { 514 percpu_up_write(&cpu_hotplug_lock); 515 } 516 517 void lockdep_assert_cpus_held(void) 518 { 519 /* 520 * We can't have hotplug operations before userspace starts running, 521 * and some init codepaths will knowingly not take the hotplug lock. 522 * This is all valid, so mute lockdep until it makes sense to report 523 * unheld locks. 524 */ 525 if (system_state < SYSTEM_RUNNING) 526 return; 527 528 percpu_rwsem_assert_held(&cpu_hotplug_lock); 529 } 530 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held); 531 532 #ifdef CONFIG_LOCKDEP 533 int lockdep_is_cpus_held(void) 534 { 535 return percpu_rwsem_is_held(&cpu_hotplug_lock); 536 } 537 #endif 538 539 static void lockdep_acquire_cpus_lock(void) 540 { 541 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 542 } 543 544 static void lockdep_release_cpus_lock(void) 545 { 546 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 547 } 548 549 /* Declare CPU offlining not supported */ 550 void cpu_hotplug_disable_offlining(void) 551 { 552 cpu_maps_update_begin(); 553 cpu_hotplug_offline_disabled = true; 554 cpu_maps_update_done(); 555 } 556 557 /* 558 * Wait for currently running CPU hotplug operations to complete (if any) and 559 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 560 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 561 * hotplug path before performing hotplug operations. So acquiring that lock 562 * guarantees mutual exclusion from any currently running hotplug operations. 563 */ 564 void cpu_hotplug_disable(void) 565 { 566 cpu_maps_update_begin(); 567 cpu_hotplug_disabled++; 568 cpu_maps_update_done(); 569 } 570 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 571 572 static void __cpu_hotplug_enable(void) 573 { 574 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 575 return; 576 cpu_hotplug_disabled--; 577 } 578 579 void cpu_hotplug_enable(void) 580 { 581 cpu_maps_update_begin(); 582 __cpu_hotplug_enable(); 583 cpu_maps_update_done(); 584 } 585 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 586 587 #else 588 589 static void lockdep_acquire_cpus_lock(void) 590 { 591 } 592 593 static void lockdep_release_cpus_lock(void) 594 { 595 } 596 597 #endif /* CONFIG_HOTPLUG_CPU */ 598 599 /* 600 * Architectures that need SMT-specific errata handling during SMT hotplug 601 * should override this. 602 */ 603 void __weak arch_smt_update(void) { } 604 605 #ifdef CONFIG_HOTPLUG_SMT 606 607 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 608 static unsigned int cpu_smt_max_threads __ro_after_init; 609 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 610 611 void __init cpu_smt_disable(bool force) 612 { 613 if (!cpu_smt_possible()) 614 return; 615 616 if (force) { 617 pr_info("SMT: Force disabled\n"); 618 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 619 } else { 620 pr_info("SMT: disabled\n"); 621 cpu_smt_control = CPU_SMT_DISABLED; 622 } 623 cpu_smt_num_threads = 1; 624 } 625 626 /* 627 * The decision whether SMT is supported can only be done after the full 628 * CPU identification. Called from architecture code. 629 */ 630 void __init cpu_smt_set_num_threads(unsigned int num_threads, 631 unsigned int max_threads) 632 { 633 WARN_ON(!num_threads || (num_threads > max_threads)); 634 635 if (max_threads == 1) 636 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 637 638 cpu_smt_max_threads = max_threads; 639 640 /* 641 * If SMT has been disabled via the kernel command line or SMT is 642 * not supported, set cpu_smt_num_threads to 1 for consistency. 643 * If enabled, take the architecture requested number of threads 644 * to bring up into account. 645 */ 646 if (cpu_smt_control != CPU_SMT_ENABLED) 647 cpu_smt_num_threads = 1; 648 else if (num_threads < cpu_smt_num_threads) 649 cpu_smt_num_threads = num_threads; 650 } 651 652 static int __init smt_cmdline_disable(char *str) 653 { 654 cpu_smt_disable(str && !strcmp(str, "force")); 655 return 0; 656 } 657 early_param("nosmt", smt_cmdline_disable); 658 659 /* 660 * For Archicture supporting partial SMT states check if the thread is allowed. 661 * Otherwise this has already been checked through cpu_smt_max_threads when 662 * setting the SMT level. 663 */ 664 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 665 { 666 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 667 return topology_smt_thread_allowed(cpu); 668 #else 669 return true; 670 #endif 671 } 672 673 static inline bool cpu_bootable(unsigned int cpu) 674 { 675 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 676 return true; 677 678 /* All CPUs are bootable if controls are not configured */ 679 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 680 return true; 681 682 /* All CPUs are bootable if CPU is not SMT capable */ 683 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 684 return true; 685 686 if (topology_is_primary_thread(cpu)) 687 return true; 688 689 /* 690 * On x86 it's required to boot all logical CPUs at least once so 691 * that the init code can get a chance to set CR4.MCE on each 692 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 693 * core will shutdown the machine. 694 */ 695 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 696 } 697 698 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 699 bool cpu_smt_possible(void) 700 { 701 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 702 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 703 } 704 EXPORT_SYMBOL_GPL(cpu_smt_possible); 705 706 #else 707 static inline bool cpu_bootable(unsigned int cpu) { return true; } 708 #endif 709 710 static inline enum cpuhp_state 711 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 712 { 713 enum cpuhp_state prev_state = st->state; 714 bool bringup = st->state < target; 715 716 st->rollback = false; 717 st->last = NULL; 718 719 st->target = target; 720 st->single = false; 721 st->bringup = bringup; 722 if (cpu_dying(cpu) != !bringup) 723 set_cpu_dying(cpu, !bringup); 724 725 return prev_state; 726 } 727 728 static inline void 729 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 730 enum cpuhp_state prev_state) 731 { 732 bool bringup = !st->bringup; 733 734 st->target = prev_state; 735 736 /* 737 * Already rolling back. No need invert the bringup value or to change 738 * the current state. 739 */ 740 if (st->rollback) 741 return; 742 743 st->rollback = true; 744 745 /* 746 * If we have st->last we need to undo partial multi_instance of this 747 * state first. Otherwise start undo at the previous state. 748 */ 749 if (!st->last) { 750 if (st->bringup) 751 st->state--; 752 else 753 st->state++; 754 } 755 756 st->bringup = bringup; 757 if (cpu_dying(cpu) != !bringup) 758 set_cpu_dying(cpu, !bringup); 759 } 760 761 /* Regular hotplug invocation of the AP hotplug thread */ 762 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 763 { 764 if (!st->single && st->state == st->target) 765 return; 766 767 st->result = 0; 768 /* 769 * Make sure the above stores are visible before should_run becomes 770 * true. Paired with the mb() above in cpuhp_thread_fun() 771 */ 772 smp_mb(); 773 st->should_run = true; 774 wake_up_process(st->thread); 775 wait_for_ap_thread(st, st->bringup); 776 } 777 778 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 779 enum cpuhp_state target) 780 { 781 enum cpuhp_state prev_state; 782 int ret; 783 784 prev_state = cpuhp_set_state(cpu, st, target); 785 __cpuhp_kick_ap(st); 786 if ((ret = st->result)) { 787 cpuhp_reset_state(cpu, st, prev_state); 788 __cpuhp_kick_ap(st); 789 } 790 791 return ret; 792 } 793 794 static int bringup_wait_for_ap_online(unsigned int cpu) 795 { 796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 797 798 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 799 wait_for_ap_thread(st, true); 800 if (WARN_ON_ONCE((!cpu_online(cpu)))) 801 return -ECANCELED; 802 803 /* Unpark the hotplug thread of the target cpu */ 804 kthread_unpark(st->thread); 805 806 /* 807 * SMT soft disabling on X86 requires to bring the CPU out of the 808 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 809 * CPU marked itself as booted_once in notify_cpu_starting() so the 810 * cpu_bootable() check will now return false if this is not the 811 * primary sibling. 812 */ 813 if (!cpu_bootable(cpu)) 814 return -ECANCELED; 815 return 0; 816 } 817 818 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 819 static int cpuhp_kick_ap_alive(unsigned int cpu) 820 { 821 if (!cpuhp_can_boot_ap(cpu)) 822 return -EAGAIN; 823 824 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 825 } 826 827 static int cpuhp_bringup_ap(unsigned int cpu) 828 { 829 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 830 int ret; 831 832 /* 833 * Some architectures have to walk the irq descriptors to 834 * setup the vector space for the cpu which comes online. 835 * Prevent irq alloc/free across the bringup. 836 */ 837 irq_lock_sparse(); 838 839 ret = cpuhp_bp_sync_alive(cpu); 840 if (ret) 841 goto out_unlock; 842 843 ret = bringup_wait_for_ap_online(cpu); 844 if (ret) 845 goto out_unlock; 846 847 irq_unlock_sparse(); 848 849 if (st->target <= CPUHP_AP_ONLINE_IDLE) 850 return 0; 851 852 return cpuhp_kick_ap(cpu, st, st->target); 853 854 out_unlock: 855 irq_unlock_sparse(); 856 return ret; 857 } 858 #else 859 static int bringup_cpu(unsigned int cpu) 860 { 861 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 862 struct task_struct *idle = idle_thread_get(cpu); 863 int ret; 864 865 if (!cpuhp_can_boot_ap(cpu)) 866 return -EAGAIN; 867 868 /* 869 * Some architectures have to walk the irq descriptors to 870 * setup the vector space for the cpu which comes online. 871 * 872 * Prevent irq alloc/free across the bringup by acquiring the 873 * sparse irq lock. Hold it until the upcoming CPU completes the 874 * startup in cpuhp_online_idle() which allows to avoid 875 * intermediate synchronization points in the architecture code. 876 */ 877 irq_lock_sparse(); 878 879 ret = __cpu_up(cpu, idle); 880 if (ret) 881 goto out_unlock; 882 883 ret = cpuhp_bp_sync_alive(cpu); 884 if (ret) 885 goto out_unlock; 886 887 ret = bringup_wait_for_ap_online(cpu); 888 if (ret) 889 goto out_unlock; 890 891 irq_unlock_sparse(); 892 893 if (st->target <= CPUHP_AP_ONLINE_IDLE) 894 return 0; 895 896 return cpuhp_kick_ap(cpu, st, st->target); 897 898 out_unlock: 899 irq_unlock_sparse(); 900 return ret; 901 } 902 #endif 903 904 static int finish_cpu(unsigned int cpu) 905 { 906 struct task_struct *idle = idle_thread_get(cpu); 907 struct mm_struct *mm = idle->active_mm; 908 909 /* 910 * sched_force_init_mm() ensured the use of &init_mm, 911 * drop that refcount now that the CPU has stopped. 912 */ 913 WARN_ON(mm != &init_mm); 914 idle->active_mm = NULL; 915 mmdrop_lazy_tlb(mm); 916 917 return 0; 918 } 919 920 /* 921 * Hotplug state machine related functions 922 */ 923 924 /* 925 * Get the next state to run. Empty ones will be skipped. Returns true if a 926 * state must be run. 927 * 928 * st->state will be modified ahead of time, to match state_to_run, as if it 929 * has already ran. 930 */ 931 static bool cpuhp_next_state(bool bringup, 932 enum cpuhp_state *state_to_run, 933 struct cpuhp_cpu_state *st, 934 enum cpuhp_state target) 935 { 936 do { 937 if (bringup) { 938 if (st->state >= target) 939 return false; 940 941 *state_to_run = ++st->state; 942 } else { 943 if (st->state <= target) 944 return false; 945 946 *state_to_run = st->state--; 947 } 948 949 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 950 break; 951 } while (true); 952 953 return true; 954 } 955 956 static int __cpuhp_invoke_callback_range(bool bringup, 957 unsigned int cpu, 958 struct cpuhp_cpu_state *st, 959 enum cpuhp_state target, 960 bool nofail) 961 { 962 enum cpuhp_state state; 963 int ret = 0; 964 965 while (cpuhp_next_state(bringup, &state, st, target)) { 966 int err; 967 968 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 969 if (!err) 970 continue; 971 972 if (nofail) { 973 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 974 cpu, bringup ? "UP" : "DOWN", 975 cpuhp_get_step(st->state)->name, 976 st->state, err); 977 ret = -1; 978 } else { 979 ret = err; 980 break; 981 } 982 } 983 984 return ret; 985 } 986 987 static inline int cpuhp_invoke_callback_range(bool bringup, 988 unsigned int cpu, 989 struct cpuhp_cpu_state *st, 990 enum cpuhp_state target) 991 { 992 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 993 } 994 995 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 996 unsigned int cpu, 997 struct cpuhp_cpu_state *st, 998 enum cpuhp_state target) 999 { 1000 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 1001 } 1002 1003 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1004 { 1005 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1006 return true; 1007 /* 1008 * When CPU hotplug is disabled, then taking the CPU down is not 1009 * possible because takedown_cpu() and the architecture and 1010 * subsystem specific mechanisms are not available. So the CPU 1011 * which would be completely unplugged again needs to stay around 1012 * in the current state. 1013 */ 1014 return st->state <= CPUHP_BRINGUP_CPU; 1015 } 1016 1017 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1018 enum cpuhp_state target) 1019 { 1020 enum cpuhp_state prev_state = st->state; 1021 int ret = 0; 1022 1023 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1024 if (ret) { 1025 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1026 ret, cpu, cpuhp_get_step(st->state)->name, 1027 st->state); 1028 1029 cpuhp_reset_state(cpu, st, prev_state); 1030 if (can_rollback_cpu(st)) 1031 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1032 prev_state)); 1033 } 1034 return ret; 1035 } 1036 1037 /* 1038 * The cpu hotplug threads manage the bringup and teardown of the cpus 1039 */ 1040 static int cpuhp_should_run(unsigned int cpu) 1041 { 1042 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1043 1044 return st->should_run; 1045 } 1046 1047 /* 1048 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1049 * callbacks when a state gets [un]installed at runtime. 1050 * 1051 * Each invocation of this function by the smpboot thread does a single AP 1052 * state callback. 1053 * 1054 * It has 3 modes of operation: 1055 * - single: runs st->cb_state 1056 * - up: runs ++st->state, while st->state < st->target 1057 * - down: runs st->state--, while st->state > st->target 1058 * 1059 * When complete or on error, should_run is cleared and the completion is fired. 1060 */ 1061 static void cpuhp_thread_fun(unsigned int cpu) 1062 { 1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1064 bool bringup = st->bringup; 1065 enum cpuhp_state state; 1066 1067 if (WARN_ON_ONCE(!st->should_run)) 1068 return; 1069 1070 /* 1071 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1072 * that if we see ->should_run we also see the rest of the state. 1073 */ 1074 smp_mb(); 1075 1076 /* 1077 * The BP holds the hotplug lock, but we're now running on the AP, 1078 * ensure that anybody asserting the lock is held, will actually find 1079 * it so. 1080 */ 1081 lockdep_acquire_cpus_lock(); 1082 cpuhp_lock_acquire(bringup); 1083 1084 if (st->single) { 1085 state = st->cb_state; 1086 st->should_run = false; 1087 } else { 1088 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1089 if (!st->should_run) 1090 goto end; 1091 } 1092 1093 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1094 1095 if (cpuhp_is_atomic_state(state)) { 1096 local_irq_disable(); 1097 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1098 local_irq_enable(); 1099 1100 /* 1101 * STARTING/DYING must not fail! 1102 */ 1103 WARN_ON_ONCE(st->result); 1104 } else { 1105 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1106 } 1107 1108 if (st->result) { 1109 /* 1110 * If we fail on a rollback, we're up a creek without no 1111 * paddle, no way forward, no way back. We loose, thanks for 1112 * playing. 1113 */ 1114 WARN_ON_ONCE(st->rollback); 1115 st->should_run = false; 1116 } 1117 1118 end: 1119 cpuhp_lock_release(bringup); 1120 lockdep_release_cpus_lock(); 1121 1122 if (!st->should_run) 1123 complete_ap_thread(st, bringup); 1124 } 1125 1126 /* Invoke a single callback on a remote cpu */ 1127 static int 1128 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1129 struct hlist_node *node) 1130 { 1131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1132 int ret; 1133 1134 if (!cpu_online(cpu)) 1135 return 0; 1136 1137 cpuhp_lock_acquire(false); 1138 cpuhp_lock_release(false); 1139 1140 cpuhp_lock_acquire(true); 1141 cpuhp_lock_release(true); 1142 1143 /* 1144 * If we are up and running, use the hotplug thread. For early calls 1145 * we invoke the thread function directly. 1146 */ 1147 if (!st->thread) 1148 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1149 1150 st->rollback = false; 1151 st->last = NULL; 1152 1153 st->node = node; 1154 st->bringup = bringup; 1155 st->cb_state = state; 1156 st->single = true; 1157 1158 __cpuhp_kick_ap(st); 1159 1160 /* 1161 * If we failed and did a partial, do a rollback. 1162 */ 1163 if ((ret = st->result) && st->last) { 1164 st->rollback = true; 1165 st->bringup = !bringup; 1166 1167 __cpuhp_kick_ap(st); 1168 } 1169 1170 /* 1171 * Clean up the leftovers so the next hotplug operation wont use stale 1172 * data. 1173 */ 1174 st->node = st->last = NULL; 1175 return ret; 1176 } 1177 1178 static int cpuhp_kick_ap_work(unsigned int cpu) 1179 { 1180 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1181 enum cpuhp_state prev_state = st->state; 1182 int ret; 1183 1184 cpuhp_lock_acquire(false); 1185 cpuhp_lock_release(false); 1186 1187 cpuhp_lock_acquire(true); 1188 cpuhp_lock_release(true); 1189 1190 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1191 ret = cpuhp_kick_ap(cpu, st, st->target); 1192 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1193 1194 return ret; 1195 } 1196 1197 static struct smp_hotplug_thread cpuhp_threads = { 1198 .store = &cpuhp_state.thread, 1199 .thread_should_run = cpuhp_should_run, 1200 .thread_fn = cpuhp_thread_fun, 1201 .thread_comm = "cpuhp/%u", 1202 .selfparking = true, 1203 }; 1204 1205 static __init void cpuhp_init_state(void) 1206 { 1207 struct cpuhp_cpu_state *st; 1208 int cpu; 1209 1210 for_each_possible_cpu(cpu) { 1211 st = per_cpu_ptr(&cpuhp_state, cpu); 1212 init_completion(&st->done_up); 1213 init_completion(&st->done_down); 1214 } 1215 } 1216 1217 void __init cpuhp_threads_init(void) 1218 { 1219 cpuhp_init_state(); 1220 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1221 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1222 } 1223 1224 #ifdef CONFIG_HOTPLUG_CPU 1225 #ifndef arch_clear_mm_cpumask_cpu 1226 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1227 #endif 1228 1229 /** 1230 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1231 * @cpu: a CPU id 1232 * 1233 * This function walks all processes, finds a valid mm struct for each one and 1234 * then clears a corresponding bit in mm's cpumask. While this all sounds 1235 * trivial, there are various non-obvious corner cases, which this function 1236 * tries to solve in a safe manner. 1237 * 1238 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1239 * be called only for an already offlined CPU. 1240 */ 1241 void clear_tasks_mm_cpumask(int cpu) 1242 { 1243 struct task_struct *p; 1244 1245 /* 1246 * This function is called after the cpu is taken down and marked 1247 * offline, so its not like new tasks will ever get this cpu set in 1248 * their mm mask. -- Peter Zijlstra 1249 * Thus, we may use rcu_read_lock() here, instead of grabbing 1250 * full-fledged tasklist_lock. 1251 */ 1252 WARN_ON(cpu_online(cpu)); 1253 rcu_read_lock(); 1254 for_each_process(p) { 1255 struct task_struct *t; 1256 1257 /* 1258 * Main thread might exit, but other threads may still have 1259 * a valid mm. Find one. 1260 */ 1261 t = find_lock_task_mm(p); 1262 if (!t) 1263 continue; 1264 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1265 task_unlock(t); 1266 } 1267 rcu_read_unlock(); 1268 } 1269 1270 /* Take this CPU down. */ 1271 static int take_cpu_down(void *_param) 1272 { 1273 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1274 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1275 int err, cpu = smp_processor_id(); 1276 1277 /* Ensure this CPU doesn't handle any more interrupts. */ 1278 err = __cpu_disable(); 1279 if (err < 0) 1280 return err; 1281 1282 /* 1283 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1284 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1285 */ 1286 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1287 1288 /* 1289 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1290 */ 1291 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1292 1293 /* Park the stopper thread */ 1294 stop_machine_park(cpu); 1295 return 0; 1296 } 1297 1298 static int takedown_cpu(unsigned int cpu) 1299 { 1300 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1301 int err; 1302 1303 /* Park the smpboot threads */ 1304 kthread_park(st->thread); 1305 1306 /* 1307 * Prevent irq alloc/free while the dying cpu reorganizes the 1308 * interrupt affinities. 1309 */ 1310 irq_lock_sparse(); 1311 1312 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1313 if (err) { 1314 /* CPU refused to die */ 1315 irq_unlock_sparse(); 1316 /* Unpark the hotplug thread so we can rollback there */ 1317 kthread_unpark(st->thread); 1318 return err; 1319 } 1320 BUG_ON(cpu_online(cpu)); 1321 1322 /* 1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1324 * all runnable tasks from the CPU, there's only the idle task left now 1325 * that the migration thread is done doing the stop_machine thing. 1326 * 1327 * Wait for the stop thread to go away. 1328 */ 1329 wait_for_ap_thread(st, false); 1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1331 1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1333 irq_unlock_sparse(); 1334 1335 hotplug_cpu__broadcast_tick_pull(cpu); 1336 /* This actually kills the CPU. */ 1337 __cpu_die(cpu); 1338 1339 cpuhp_bp_sync_dead(cpu); 1340 1341 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu)); 1342 1343 /* 1344 * Callbacks must be re-integrated right away to the RCU state machine. 1345 * Otherwise an RCU callback could block a further teardown function 1346 * waiting for its completion. 1347 */ 1348 rcutree_migrate_callbacks(cpu); 1349 1350 return 0; 1351 } 1352 1353 static void cpuhp_complete_idle_dead(void *arg) 1354 { 1355 struct cpuhp_cpu_state *st = arg; 1356 1357 complete_ap_thread(st, false); 1358 } 1359 1360 void cpuhp_report_idle_dead(void) 1361 { 1362 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1363 1364 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1365 tick_assert_timekeeping_handover(); 1366 rcutree_report_cpu_dead(); 1367 st->state = CPUHP_AP_IDLE_DEAD; 1368 /* 1369 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1370 * to an online cpu. 1371 */ 1372 smp_call_function_single(cpumask_first(cpu_online_mask), 1373 cpuhp_complete_idle_dead, st, 0); 1374 } 1375 1376 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1377 enum cpuhp_state target) 1378 { 1379 enum cpuhp_state prev_state = st->state; 1380 int ret = 0; 1381 1382 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1383 if (ret) { 1384 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1385 ret, cpu, cpuhp_get_step(st->state)->name, 1386 st->state); 1387 1388 cpuhp_reset_state(cpu, st, prev_state); 1389 1390 if (st->state < prev_state) 1391 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1392 prev_state)); 1393 } 1394 1395 return ret; 1396 } 1397 1398 /* Requires cpu_add_remove_lock to be held */ 1399 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1400 enum cpuhp_state target) 1401 { 1402 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1403 int prev_state, ret = 0; 1404 1405 if (num_online_cpus() == 1) 1406 return -EBUSY; 1407 1408 if (!cpu_present(cpu)) 1409 return -EINVAL; 1410 1411 cpus_write_lock(); 1412 1413 cpuhp_tasks_frozen = tasks_frozen; 1414 1415 prev_state = cpuhp_set_state(cpu, st, target); 1416 /* 1417 * If the current CPU state is in the range of the AP hotplug thread, 1418 * then we need to kick the thread. 1419 */ 1420 if (st->state > CPUHP_TEARDOWN_CPU) { 1421 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1422 ret = cpuhp_kick_ap_work(cpu); 1423 /* 1424 * The AP side has done the error rollback already. Just 1425 * return the error code.. 1426 */ 1427 if (ret) 1428 goto out; 1429 1430 /* 1431 * We might have stopped still in the range of the AP hotplug 1432 * thread. Nothing to do anymore. 1433 */ 1434 if (st->state > CPUHP_TEARDOWN_CPU) 1435 goto out; 1436 1437 st->target = target; 1438 } 1439 /* 1440 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1441 * to do the further cleanups. 1442 */ 1443 ret = cpuhp_down_callbacks(cpu, st, target); 1444 if (ret && st->state < prev_state) { 1445 if (st->state == CPUHP_TEARDOWN_CPU) { 1446 cpuhp_reset_state(cpu, st, prev_state); 1447 __cpuhp_kick_ap(st); 1448 } else { 1449 WARN(1, "DEAD callback error for CPU%d", cpu); 1450 } 1451 } 1452 1453 out: 1454 cpus_write_unlock(); 1455 arch_smt_update(); 1456 return ret; 1457 } 1458 1459 struct cpu_down_work { 1460 unsigned int cpu; 1461 enum cpuhp_state target; 1462 }; 1463 1464 static long __cpu_down_maps_locked(void *arg) 1465 { 1466 struct cpu_down_work *work = arg; 1467 1468 return _cpu_down(work->cpu, 0, work->target); 1469 } 1470 1471 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1472 { 1473 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1474 1475 /* 1476 * If the platform does not support hotplug, report it explicitly to 1477 * differentiate it from a transient offlining failure. 1478 */ 1479 if (cpu_hotplug_offline_disabled) 1480 return -EOPNOTSUPP; 1481 if (cpu_hotplug_disabled) 1482 return -EBUSY; 1483 1484 /* 1485 * Ensure that the control task does not run on the to be offlined 1486 * CPU to prevent a deadlock against cfs_b->period_timer. 1487 * Also keep at least one housekeeping cpu onlined to avoid generating 1488 * an empty sched_domain span. 1489 */ 1490 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1491 if (cpu != work.cpu) 1492 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1493 } 1494 return -EBUSY; 1495 } 1496 1497 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1498 { 1499 int err; 1500 1501 cpu_maps_update_begin(); 1502 err = cpu_down_maps_locked(cpu, target); 1503 cpu_maps_update_done(); 1504 return err; 1505 } 1506 1507 /** 1508 * cpu_device_down - Bring down a cpu device 1509 * @dev: Pointer to the cpu device to offline 1510 * 1511 * This function is meant to be used by device core cpu subsystem only. 1512 * 1513 * Other subsystems should use remove_cpu() instead. 1514 * 1515 * Return: %0 on success or a negative errno code 1516 */ 1517 int cpu_device_down(struct device *dev) 1518 { 1519 return cpu_down(dev->id, CPUHP_OFFLINE); 1520 } 1521 1522 int remove_cpu(unsigned int cpu) 1523 { 1524 int ret; 1525 1526 lock_device_hotplug(); 1527 ret = device_offline(get_cpu_device(cpu)); 1528 unlock_device_hotplug(); 1529 1530 return ret; 1531 } 1532 EXPORT_SYMBOL_GPL(remove_cpu); 1533 1534 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1535 { 1536 unsigned int cpu; 1537 int error; 1538 1539 cpu_maps_update_begin(); 1540 1541 /* 1542 * Make certain the cpu I'm about to reboot on is online. 1543 * 1544 * This is inline to what migrate_to_reboot_cpu() already do. 1545 */ 1546 if (!cpu_online(primary_cpu)) 1547 primary_cpu = cpumask_first(cpu_online_mask); 1548 1549 for_each_online_cpu(cpu) { 1550 if (cpu == primary_cpu) 1551 continue; 1552 1553 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1554 if (error) { 1555 pr_err("Failed to offline CPU%d - error=%d", 1556 cpu, error); 1557 break; 1558 } 1559 } 1560 1561 /* 1562 * Ensure all but the reboot CPU are offline. 1563 */ 1564 BUG_ON(num_online_cpus() > 1); 1565 1566 /* 1567 * Make sure the CPUs won't be enabled by someone else after this 1568 * point. Kexec will reboot to a new kernel shortly resetting 1569 * everything along the way. 1570 */ 1571 cpu_hotplug_disabled++; 1572 1573 cpu_maps_update_done(); 1574 } 1575 1576 #else 1577 #define takedown_cpu NULL 1578 #endif /*CONFIG_HOTPLUG_CPU*/ 1579 1580 /** 1581 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1582 * @cpu: cpu that just started 1583 * 1584 * It must be called by the arch code on the new cpu, before the new cpu 1585 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1586 */ 1587 void notify_cpu_starting(unsigned int cpu) 1588 { 1589 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1590 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1591 1592 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1593 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1594 1595 /* 1596 * STARTING must not fail! 1597 */ 1598 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1599 } 1600 1601 /* 1602 * Called from the idle task. Wake up the controlling task which brings the 1603 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1604 * online bringup to the hotplug thread. 1605 */ 1606 void cpuhp_online_idle(enum cpuhp_state state) 1607 { 1608 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1609 1610 /* Happens for the boot cpu */ 1611 if (state != CPUHP_AP_ONLINE_IDLE) 1612 return; 1613 1614 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1615 1616 /* 1617 * Unpark the stopper thread before we start the idle loop (and start 1618 * scheduling); this ensures the stopper task is always available. 1619 */ 1620 stop_machine_unpark(smp_processor_id()); 1621 1622 st->state = CPUHP_AP_ONLINE_IDLE; 1623 complete_ap_thread(st, true); 1624 } 1625 1626 /* Requires cpu_add_remove_lock to be held */ 1627 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1628 { 1629 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1630 struct task_struct *idle; 1631 int ret = 0; 1632 1633 cpus_write_lock(); 1634 1635 if (!cpu_present(cpu)) { 1636 ret = -EINVAL; 1637 goto out; 1638 } 1639 1640 /* 1641 * The caller of cpu_up() might have raced with another 1642 * caller. Nothing to do. 1643 */ 1644 if (st->state >= target) 1645 goto out; 1646 1647 if (st->state == CPUHP_OFFLINE) { 1648 /* Let it fail before we try to bring the cpu up */ 1649 idle = idle_thread_get(cpu); 1650 if (IS_ERR(idle)) { 1651 ret = PTR_ERR(idle); 1652 goto out; 1653 } 1654 1655 /* 1656 * Reset stale stack state from the last time this CPU was online. 1657 */ 1658 scs_task_reset(idle); 1659 kasan_unpoison_task_stack(idle); 1660 } 1661 1662 cpuhp_tasks_frozen = tasks_frozen; 1663 1664 cpuhp_set_state(cpu, st, target); 1665 /* 1666 * If the current CPU state is in the range of the AP hotplug thread, 1667 * then we need to kick the thread once more. 1668 */ 1669 if (st->state > CPUHP_BRINGUP_CPU) { 1670 ret = cpuhp_kick_ap_work(cpu); 1671 /* 1672 * The AP side has done the error rollback already. Just 1673 * return the error code.. 1674 */ 1675 if (ret) 1676 goto out; 1677 } 1678 1679 /* 1680 * Try to reach the target state. We max out on the BP at 1681 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1682 * responsible for bringing it up to the target state. 1683 */ 1684 target = min((int)target, CPUHP_BRINGUP_CPU); 1685 ret = cpuhp_up_callbacks(cpu, st, target); 1686 out: 1687 cpus_write_unlock(); 1688 arch_smt_update(); 1689 return ret; 1690 } 1691 1692 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1693 { 1694 int err = 0; 1695 1696 if (!cpu_possible(cpu)) { 1697 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1698 cpu); 1699 return -EINVAL; 1700 } 1701 1702 err = try_online_node(cpu_to_node(cpu)); 1703 if (err) 1704 return err; 1705 1706 cpu_maps_update_begin(); 1707 1708 if (cpu_hotplug_disabled) { 1709 err = -EBUSY; 1710 goto out; 1711 } 1712 if (!cpu_bootable(cpu)) { 1713 err = -EPERM; 1714 goto out; 1715 } 1716 1717 err = _cpu_up(cpu, 0, target); 1718 out: 1719 cpu_maps_update_done(); 1720 return err; 1721 } 1722 1723 /** 1724 * cpu_device_up - Bring up a cpu device 1725 * @dev: Pointer to the cpu device to online 1726 * 1727 * This function is meant to be used by device core cpu subsystem only. 1728 * 1729 * Other subsystems should use add_cpu() instead. 1730 * 1731 * Return: %0 on success or a negative errno code 1732 */ 1733 int cpu_device_up(struct device *dev) 1734 { 1735 return cpu_up(dev->id, CPUHP_ONLINE); 1736 } 1737 1738 int add_cpu(unsigned int cpu) 1739 { 1740 int ret; 1741 1742 lock_device_hotplug(); 1743 ret = device_online(get_cpu_device(cpu)); 1744 unlock_device_hotplug(); 1745 1746 return ret; 1747 } 1748 EXPORT_SYMBOL_GPL(add_cpu); 1749 1750 /** 1751 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1752 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1753 * 1754 * On some architectures like arm64, we can hibernate on any CPU, but on 1755 * wake up the CPU we hibernated on might be offline as a side effect of 1756 * using maxcpus= for example. 1757 * 1758 * Return: %0 on success or a negative errno code 1759 */ 1760 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1761 { 1762 int ret; 1763 1764 if (!cpu_online(sleep_cpu)) { 1765 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1766 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1767 if (ret) { 1768 pr_err("Failed to bring hibernate-CPU up!\n"); 1769 return ret; 1770 } 1771 } 1772 return 0; 1773 } 1774 1775 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1776 enum cpuhp_state target) 1777 { 1778 unsigned int cpu; 1779 1780 for_each_cpu(cpu, mask) { 1781 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1782 1783 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1784 /* 1785 * If this failed then cpu_up() might have only 1786 * rolled back to CPUHP_BP_KICK_AP for the final 1787 * online. Clean it up. NOOP if already rolled back. 1788 */ 1789 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1790 } 1791 1792 if (!--ncpus) 1793 break; 1794 } 1795 } 1796 1797 #ifdef CONFIG_HOTPLUG_PARALLEL 1798 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1799 1800 static int __init parallel_bringup_parse_param(char *arg) 1801 { 1802 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1803 } 1804 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1805 1806 #ifdef CONFIG_HOTPLUG_SMT 1807 static inline bool cpuhp_smt_aware(void) 1808 { 1809 return cpu_smt_max_threads > 1; 1810 } 1811 1812 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1813 { 1814 return cpu_primary_thread_mask; 1815 } 1816 #else 1817 static inline bool cpuhp_smt_aware(void) 1818 { 1819 return false; 1820 } 1821 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1822 { 1823 return cpu_none_mask; 1824 } 1825 #endif 1826 1827 bool __weak arch_cpuhp_init_parallel_bringup(void) 1828 { 1829 return true; 1830 } 1831 1832 /* 1833 * On architectures which have enabled parallel bringup this invokes all BP 1834 * prepare states for each of the to be onlined APs first. The last state 1835 * sends the startup IPI to the APs. The APs proceed through the low level 1836 * bringup code in parallel and then wait for the control CPU to release 1837 * them one by one for the final onlining procedure. 1838 * 1839 * This avoids waiting for each AP to respond to the startup IPI in 1840 * CPUHP_BRINGUP_CPU. 1841 */ 1842 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1843 { 1844 const struct cpumask *mask = cpu_present_mask; 1845 1846 if (__cpuhp_parallel_bringup) 1847 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1848 if (!__cpuhp_parallel_bringup) 1849 return false; 1850 1851 if (cpuhp_smt_aware()) { 1852 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1853 static struct cpumask tmp_mask __initdata; 1854 1855 /* 1856 * X86 requires to prevent that SMT siblings stopped while 1857 * the primary thread does a microcode update for various 1858 * reasons. Bring the primary threads up first. 1859 */ 1860 cpumask_and(&tmp_mask, mask, pmask); 1861 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1862 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1863 /* Account for the online CPUs */ 1864 ncpus -= num_online_cpus(); 1865 if (!ncpus) 1866 return true; 1867 /* Create the mask for secondary CPUs */ 1868 cpumask_andnot(&tmp_mask, mask, pmask); 1869 mask = &tmp_mask; 1870 } 1871 1872 /* Bring the not-yet started CPUs up */ 1873 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1874 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1875 return true; 1876 } 1877 #else 1878 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1879 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1880 1881 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1882 { 1883 if (!max_cpus) 1884 return; 1885 1886 /* Try parallel bringup optimization if enabled */ 1887 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1888 return; 1889 1890 /* Full per CPU serialized bringup */ 1891 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1892 } 1893 1894 #ifdef CONFIG_PM_SLEEP_SMP 1895 static cpumask_var_t frozen_cpus; 1896 1897 int freeze_secondary_cpus(int primary) 1898 { 1899 int cpu, error = 0; 1900 1901 cpu_maps_update_begin(); 1902 if (primary == -1) { 1903 primary = cpumask_first(cpu_online_mask); 1904 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1905 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1906 } else { 1907 if (!cpu_online(primary)) 1908 primary = cpumask_first(cpu_online_mask); 1909 } 1910 1911 /* 1912 * We take down all of the non-boot CPUs in one shot to avoid races 1913 * with the userspace trying to use the CPU hotplug at the same time 1914 */ 1915 cpumask_clear(frozen_cpus); 1916 1917 pr_info("Disabling non-boot CPUs ...\n"); 1918 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1919 if (!cpu_online(cpu) || cpu == primary) 1920 continue; 1921 1922 if (pm_wakeup_pending()) { 1923 pr_info("Wakeup pending. Abort CPU freeze\n"); 1924 error = -EBUSY; 1925 break; 1926 } 1927 1928 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1929 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1930 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1931 if (!error) 1932 cpumask_set_cpu(cpu, frozen_cpus); 1933 else { 1934 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1935 break; 1936 } 1937 } 1938 1939 if (!error) 1940 BUG_ON(num_online_cpus() > 1); 1941 else 1942 pr_err("Non-boot CPUs are not disabled\n"); 1943 1944 /* 1945 * Make sure the CPUs won't be enabled by someone else. We need to do 1946 * this even in case of failure as all freeze_secondary_cpus() users are 1947 * supposed to do thaw_secondary_cpus() on the failure path. 1948 */ 1949 cpu_hotplug_disabled++; 1950 1951 cpu_maps_update_done(); 1952 return error; 1953 } 1954 1955 void __weak arch_thaw_secondary_cpus_begin(void) 1956 { 1957 } 1958 1959 void __weak arch_thaw_secondary_cpus_end(void) 1960 { 1961 } 1962 1963 void thaw_secondary_cpus(void) 1964 { 1965 int cpu, error; 1966 1967 /* Allow everyone to use the CPU hotplug again */ 1968 cpu_maps_update_begin(); 1969 __cpu_hotplug_enable(); 1970 if (cpumask_empty(frozen_cpus)) 1971 goto out; 1972 1973 pr_info("Enabling non-boot CPUs ...\n"); 1974 1975 arch_thaw_secondary_cpus_begin(); 1976 1977 for_each_cpu(cpu, frozen_cpus) { 1978 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1979 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1980 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1981 if (!error) { 1982 pr_info("CPU%d is up\n", cpu); 1983 continue; 1984 } 1985 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1986 } 1987 1988 arch_thaw_secondary_cpus_end(); 1989 1990 cpumask_clear(frozen_cpus); 1991 out: 1992 cpu_maps_update_done(); 1993 } 1994 1995 static int __init alloc_frozen_cpus(void) 1996 { 1997 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1998 return -ENOMEM; 1999 return 0; 2000 } 2001 core_initcall(alloc_frozen_cpus); 2002 2003 /* 2004 * When callbacks for CPU hotplug notifications are being executed, we must 2005 * ensure that the state of the system with respect to the tasks being frozen 2006 * or not, as reported by the notification, remains unchanged *throughout the 2007 * duration* of the execution of the callbacks. 2008 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2009 * 2010 * This synchronization is implemented by mutually excluding regular CPU 2011 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2012 * Hibernate notifications. 2013 */ 2014 static int 2015 cpu_hotplug_pm_callback(struct notifier_block *nb, 2016 unsigned long action, void *ptr) 2017 { 2018 switch (action) { 2019 2020 case PM_SUSPEND_PREPARE: 2021 case PM_HIBERNATION_PREPARE: 2022 cpu_hotplug_disable(); 2023 break; 2024 2025 case PM_POST_SUSPEND: 2026 case PM_POST_HIBERNATION: 2027 cpu_hotplug_enable(); 2028 break; 2029 2030 default: 2031 return NOTIFY_DONE; 2032 } 2033 2034 return NOTIFY_OK; 2035 } 2036 2037 2038 static int __init cpu_hotplug_pm_sync_init(void) 2039 { 2040 /* 2041 * cpu_hotplug_pm_callback has higher priority than x86 2042 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2043 * to disable cpu hotplug to avoid cpu hotplug race. 2044 */ 2045 pm_notifier(cpu_hotplug_pm_callback, 0); 2046 return 0; 2047 } 2048 core_initcall(cpu_hotplug_pm_sync_init); 2049 2050 #endif /* CONFIG_PM_SLEEP_SMP */ 2051 2052 int __boot_cpu_id; 2053 2054 #endif /* CONFIG_SMP */ 2055 2056 /* Boot processor state steps */ 2057 static struct cpuhp_step cpuhp_hp_states[] = { 2058 [CPUHP_OFFLINE] = { 2059 .name = "offline", 2060 .startup.single = NULL, 2061 .teardown.single = NULL, 2062 }, 2063 #ifdef CONFIG_SMP 2064 [CPUHP_CREATE_THREADS]= { 2065 .name = "threads:prepare", 2066 .startup.single = smpboot_create_threads, 2067 .teardown.single = NULL, 2068 .cant_stop = true, 2069 }, 2070 [CPUHP_RANDOM_PREPARE] = { 2071 .name = "random:prepare", 2072 .startup.single = random_prepare_cpu, 2073 .teardown.single = NULL, 2074 }, 2075 [CPUHP_WORKQUEUE_PREP] = { 2076 .name = "workqueue:prepare", 2077 .startup.single = workqueue_prepare_cpu, 2078 .teardown.single = NULL, 2079 }, 2080 [CPUHP_HRTIMERS_PREPARE] = { 2081 .name = "hrtimers:prepare", 2082 .startup.single = hrtimers_prepare_cpu, 2083 .teardown.single = NULL, 2084 }, 2085 [CPUHP_SMPCFD_PREPARE] = { 2086 .name = "smpcfd:prepare", 2087 .startup.single = smpcfd_prepare_cpu, 2088 .teardown.single = smpcfd_dead_cpu, 2089 }, 2090 [CPUHP_RELAY_PREPARE] = { 2091 .name = "relay:prepare", 2092 .startup.single = relay_prepare_cpu, 2093 .teardown.single = NULL, 2094 }, 2095 [CPUHP_RCUTREE_PREP] = { 2096 .name = "RCU/tree:prepare", 2097 .startup.single = rcutree_prepare_cpu, 2098 .teardown.single = rcutree_dead_cpu, 2099 }, 2100 /* 2101 * On the tear-down path, timers_dead_cpu() must be invoked 2102 * before blk_mq_queue_reinit_notify() from notify_dead(), 2103 * otherwise a RCU stall occurs. 2104 */ 2105 [CPUHP_TIMERS_PREPARE] = { 2106 .name = "timers:prepare", 2107 .startup.single = timers_prepare_cpu, 2108 .teardown.single = timers_dead_cpu, 2109 }, 2110 2111 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2112 /* 2113 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2114 * the next step will release it. 2115 */ 2116 [CPUHP_BP_KICK_AP] = { 2117 .name = "cpu:kick_ap", 2118 .startup.single = cpuhp_kick_ap_alive, 2119 }, 2120 2121 /* 2122 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2123 * releases it for the complete bringup. 2124 */ 2125 [CPUHP_BRINGUP_CPU] = { 2126 .name = "cpu:bringup", 2127 .startup.single = cpuhp_bringup_ap, 2128 .teardown.single = finish_cpu, 2129 .cant_stop = true, 2130 }, 2131 #else 2132 /* 2133 * All-in-one CPU bringup state which includes the kick alive. 2134 */ 2135 [CPUHP_BRINGUP_CPU] = { 2136 .name = "cpu:bringup", 2137 .startup.single = bringup_cpu, 2138 .teardown.single = finish_cpu, 2139 .cant_stop = true, 2140 }, 2141 #endif 2142 /* Final state before CPU kills itself */ 2143 [CPUHP_AP_IDLE_DEAD] = { 2144 .name = "idle:dead", 2145 }, 2146 /* 2147 * Last state before CPU enters the idle loop to die. Transient state 2148 * for synchronization. 2149 */ 2150 [CPUHP_AP_OFFLINE] = { 2151 .name = "ap:offline", 2152 .cant_stop = true, 2153 }, 2154 /* First state is scheduler control. Interrupts are disabled */ 2155 [CPUHP_AP_SCHED_STARTING] = { 2156 .name = "sched:starting", 2157 .startup.single = sched_cpu_starting, 2158 .teardown.single = sched_cpu_dying, 2159 }, 2160 [CPUHP_AP_RCUTREE_DYING] = { 2161 .name = "RCU/tree:dying", 2162 .startup.single = NULL, 2163 .teardown.single = rcutree_dying_cpu, 2164 }, 2165 [CPUHP_AP_SMPCFD_DYING] = { 2166 .name = "smpcfd:dying", 2167 .startup.single = NULL, 2168 .teardown.single = smpcfd_dying_cpu, 2169 }, 2170 [CPUHP_AP_HRTIMERS_DYING] = { 2171 .name = "hrtimers:dying", 2172 .startup.single = hrtimers_cpu_starting, 2173 .teardown.single = hrtimers_cpu_dying, 2174 }, 2175 [CPUHP_AP_TICK_DYING] = { 2176 .name = "tick:dying", 2177 .startup.single = NULL, 2178 .teardown.single = tick_cpu_dying, 2179 }, 2180 /* Entry state on starting. Interrupts enabled from here on. Transient 2181 * state for synchronsization */ 2182 [CPUHP_AP_ONLINE] = { 2183 .name = "ap:online", 2184 }, 2185 /* 2186 * Handled on control processor until the plugged processor manages 2187 * this itself. 2188 */ 2189 [CPUHP_TEARDOWN_CPU] = { 2190 .name = "cpu:teardown", 2191 .startup.single = NULL, 2192 .teardown.single = takedown_cpu, 2193 .cant_stop = true, 2194 }, 2195 2196 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2197 .name = "sched:waitempty", 2198 .startup.single = NULL, 2199 .teardown.single = sched_cpu_wait_empty, 2200 }, 2201 2202 /* Handle smpboot threads park/unpark */ 2203 [CPUHP_AP_SMPBOOT_THREADS] = { 2204 .name = "smpboot/threads:online", 2205 .startup.single = smpboot_unpark_threads, 2206 .teardown.single = smpboot_park_threads, 2207 }, 2208 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2209 .name = "irq/affinity:online", 2210 .startup.single = irq_affinity_online_cpu, 2211 .teardown.single = NULL, 2212 }, 2213 [CPUHP_AP_PERF_ONLINE] = { 2214 .name = "perf:online", 2215 .startup.single = perf_event_init_cpu, 2216 .teardown.single = perf_event_exit_cpu, 2217 }, 2218 [CPUHP_AP_WATCHDOG_ONLINE] = { 2219 .name = "lockup_detector:online", 2220 .startup.single = lockup_detector_online_cpu, 2221 .teardown.single = lockup_detector_offline_cpu, 2222 }, 2223 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2224 .name = "workqueue:online", 2225 .startup.single = workqueue_online_cpu, 2226 .teardown.single = workqueue_offline_cpu, 2227 }, 2228 [CPUHP_AP_RANDOM_ONLINE] = { 2229 .name = "random:online", 2230 .startup.single = random_online_cpu, 2231 .teardown.single = NULL, 2232 }, 2233 [CPUHP_AP_RCUTREE_ONLINE] = { 2234 .name = "RCU/tree:online", 2235 .startup.single = rcutree_online_cpu, 2236 .teardown.single = rcutree_offline_cpu, 2237 }, 2238 #endif 2239 /* 2240 * The dynamically registered state space is here 2241 */ 2242 2243 #ifdef CONFIG_SMP 2244 /* Last state is scheduler control setting the cpu active */ 2245 [CPUHP_AP_ACTIVE] = { 2246 .name = "sched:active", 2247 .startup.single = sched_cpu_activate, 2248 .teardown.single = sched_cpu_deactivate, 2249 }, 2250 #endif 2251 2252 /* CPU is fully up and running. */ 2253 [CPUHP_ONLINE] = { 2254 .name = "online", 2255 .startup.single = NULL, 2256 .teardown.single = NULL, 2257 }, 2258 }; 2259 2260 /* Sanity check for callbacks */ 2261 static int cpuhp_cb_check(enum cpuhp_state state) 2262 { 2263 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2264 return -EINVAL; 2265 return 0; 2266 } 2267 2268 /* 2269 * Returns a free for dynamic slot assignment of the Online state. The states 2270 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2271 * by having no name assigned. 2272 */ 2273 static int cpuhp_reserve_state(enum cpuhp_state state) 2274 { 2275 enum cpuhp_state i, end; 2276 struct cpuhp_step *step; 2277 2278 switch (state) { 2279 case CPUHP_AP_ONLINE_DYN: 2280 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2281 end = CPUHP_AP_ONLINE_DYN_END; 2282 break; 2283 case CPUHP_BP_PREPARE_DYN: 2284 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2285 end = CPUHP_BP_PREPARE_DYN_END; 2286 break; 2287 default: 2288 return -EINVAL; 2289 } 2290 2291 for (i = state; i <= end; i++, step++) { 2292 if (!step->name) 2293 return i; 2294 } 2295 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2296 return -ENOSPC; 2297 } 2298 2299 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2300 int (*startup)(unsigned int cpu), 2301 int (*teardown)(unsigned int cpu), 2302 bool multi_instance) 2303 { 2304 /* (Un)Install the callbacks for further cpu hotplug operations */ 2305 struct cpuhp_step *sp; 2306 int ret = 0; 2307 2308 /* 2309 * If name is NULL, then the state gets removed. 2310 * 2311 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2312 * the first allocation from these dynamic ranges, so the removal 2313 * would trigger a new allocation and clear the wrong (already 2314 * empty) state, leaving the callbacks of the to be cleared state 2315 * dangling, which causes wreckage on the next hotplug operation. 2316 */ 2317 if (name && (state == CPUHP_AP_ONLINE_DYN || 2318 state == CPUHP_BP_PREPARE_DYN)) { 2319 ret = cpuhp_reserve_state(state); 2320 if (ret < 0) 2321 return ret; 2322 state = ret; 2323 } 2324 sp = cpuhp_get_step(state); 2325 if (name && sp->name) 2326 return -EBUSY; 2327 2328 sp->startup.single = startup; 2329 sp->teardown.single = teardown; 2330 sp->name = name; 2331 sp->multi_instance = multi_instance; 2332 INIT_HLIST_HEAD(&sp->list); 2333 return ret; 2334 } 2335 2336 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2337 { 2338 return cpuhp_get_step(state)->teardown.single; 2339 } 2340 2341 /* 2342 * Call the startup/teardown function for a step either on the AP or 2343 * on the current CPU. 2344 */ 2345 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2346 struct hlist_node *node) 2347 { 2348 struct cpuhp_step *sp = cpuhp_get_step(state); 2349 int ret; 2350 2351 /* 2352 * If there's nothing to do, we done. 2353 * Relies on the union for multi_instance. 2354 */ 2355 if (cpuhp_step_empty(bringup, sp)) 2356 return 0; 2357 /* 2358 * The non AP bound callbacks can fail on bringup. On teardown 2359 * e.g. module removal we crash for now. 2360 */ 2361 #ifdef CONFIG_SMP 2362 if (cpuhp_is_ap_state(state)) 2363 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2364 else 2365 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2366 #else 2367 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2368 #endif 2369 BUG_ON(ret && !bringup); 2370 return ret; 2371 } 2372 2373 /* 2374 * Called from __cpuhp_setup_state on a recoverable failure. 2375 * 2376 * Note: The teardown callbacks for rollback are not allowed to fail! 2377 */ 2378 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2379 struct hlist_node *node) 2380 { 2381 int cpu; 2382 2383 /* Roll back the already executed steps on the other cpus */ 2384 for_each_present_cpu(cpu) { 2385 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2386 int cpustate = st->state; 2387 2388 if (cpu >= failedcpu) 2389 break; 2390 2391 /* Did we invoke the startup call on that cpu ? */ 2392 if (cpustate >= state) 2393 cpuhp_issue_call(cpu, state, false, node); 2394 } 2395 } 2396 2397 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2398 struct hlist_node *node, 2399 bool invoke) 2400 { 2401 struct cpuhp_step *sp; 2402 int cpu; 2403 int ret; 2404 2405 lockdep_assert_cpus_held(); 2406 2407 sp = cpuhp_get_step(state); 2408 if (sp->multi_instance == false) 2409 return -EINVAL; 2410 2411 mutex_lock(&cpuhp_state_mutex); 2412 2413 if (!invoke || !sp->startup.multi) 2414 goto add_node; 2415 2416 /* 2417 * Try to call the startup callback for each present cpu 2418 * depending on the hotplug state of the cpu. 2419 */ 2420 for_each_present_cpu(cpu) { 2421 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2422 int cpustate = st->state; 2423 2424 if (cpustate < state) 2425 continue; 2426 2427 ret = cpuhp_issue_call(cpu, state, true, node); 2428 if (ret) { 2429 if (sp->teardown.multi) 2430 cpuhp_rollback_install(cpu, state, node); 2431 goto unlock; 2432 } 2433 } 2434 add_node: 2435 ret = 0; 2436 hlist_add_head(node, &sp->list); 2437 unlock: 2438 mutex_unlock(&cpuhp_state_mutex); 2439 return ret; 2440 } 2441 2442 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2443 bool invoke) 2444 { 2445 int ret; 2446 2447 cpus_read_lock(); 2448 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2449 cpus_read_unlock(); 2450 return ret; 2451 } 2452 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2453 2454 /** 2455 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2456 * @state: The state to setup 2457 * @name: Name of the step 2458 * @invoke: If true, the startup function is invoked for cpus where 2459 * cpu state >= @state 2460 * @startup: startup callback function 2461 * @teardown: teardown callback function 2462 * @multi_instance: State is set up for multiple instances which get 2463 * added afterwards. 2464 * 2465 * The caller needs to hold cpus read locked while calling this function. 2466 * Return: 2467 * On success: 2468 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2469 * 0 for all other states 2470 * On failure: proper (negative) error code 2471 */ 2472 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2473 const char *name, bool invoke, 2474 int (*startup)(unsigned int cpu), 2475 int (*teardown)(unsigned int cpu), 2476 bool multi_instance) 2477 { 2478 int cpu, ret = 0; 2479 bool dynstate; 2480 2481 lockdep_assert_cpus_held(); 2482 2483 if (cpuhp_cb_check(state) || !name) 2484 return -EINVAL; 2485 2486 mutex_lock(&cpuhp_state_mutex); 2487 2488 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2489 multi_instance); 2490 2491 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2492 if (ret > 0 && dynstate) { 2493 state = ret; 2494 ret = 0; 2495 } 2496 2497 if (ret || !invoke || !startup) 2498 goto out; 2499 2500 /* 2501 * Try to call the startup callback for each present cpu 2502 * depending on the hotplug state of the cpu. 2503 */ 2504 for_each_present_cpu(cpu) { 2505 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2506 int cpustate = st->state; 2507 2508 if (cpustate < state) 2509 continue; 2510 2511 ret = cpuhp_issue_call(cpu, state, true, NULL); 2512 if (ret) { 2513 if (teardown) 2514 cpuhp_rollback_install(cpu, state, NULL); 2515 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2516 goto out; 2517 } 2518 } 2519 out: 2520 mutex_unlock(&cpuhp_state_mutex); 2521 /* 2522 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2523 * return the dynamically allocated state in case of success. 2524 */ 2525 if (!ret && dynstate) 2526 return state; 2527 return ret; 2528 } 2529 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2530 2531 int __cpuhp_setup_state(enum cpuhp_state state, 2532 const char *name, bool invoke, 2533 int (*startup)(unsigned int cpu), 2534 int (*teardown)(unsigned int cpu), 2535 bool multi_instance) 2536 { 2537 int ret; 2538 2539 cpus_read_lock(); 2540 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2541 teardown, multi_instance); 2542 cpus_read_unlock(); 2543 return ret; 2544 } 2545 EXPORT_SYMBOL(__cpuhp_setup_state); 2546 2547 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2548 struct hlist_node *node, bool invoke) 2549 { 2550 struct cpuhp_step *sp = cpuhp_get_step(state); 2551 int cpu; 2552 2553 BUG_ON(cpuhp_cb_check(state)); 2554 2555 if (!sp->multi_instance) 2556 return -EINVAL; 2557 2558 cpus_read_lock(); 2559 mutex_lock(&cpuhp_state_mutex); 2560 2561 if (!invoke || !cpuhp_get_teardown_cb(state)) 2562 goto remove; 2563 /* 2564 * Call the teardown callback for each present cpu depending 2565 * on the hotplug state of the cpu. This function is not 2566 * allowed to fail currently! 2567 */ 2568 for_each_present_cpu(cpu) { 2569 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2570 int cpustate = st->state; 2571 2572 if (cpustate >= state) 2573 cpuhp_issue_call(cpu, state, false, node); 2574 } 2575 2576 remove: 2577 hlist_del(node); 2578 mutex_unlock(&cpuhp_state_mutex); 2579 cpus_read_unlock(); 2580 2581 return 0; 2582 } 2583 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2584 2585 /** 2586 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2587 * @state: The state to remove 2588 * @invoke: If true, the teardown function is invoked for cpus where 2589 * cpu state >= @state 2590 * 2591 * The caller needs to hold cpus read locked while calling this function. 2592 * The teardown callback is currently not allowed to fail. Think 2593 * about module removal! 2594 */ 2595 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2596 { 2597 struct cpuhp_step *sp = cpuhp_get_step(state); 2598 int cpu; 2599 2600 BUG_ON(cpuhp_cb_check(state)); 2601 2602 lockdep_assert_cpus_held(); 2603 2604 mutex_lock(&cpuhp_state_mutex); 2605 if (sp->multi_instance) { 2606 WARN(!hlist_empty(&sp->list), 2607 "Error: Removing state %d which has instances left.\n", 2608 state); 2609 goto remove; 2610 } 2611 2612 if (!invoke || !cpuhp_get_teardown_cb(state)) 2613 goto remove; 2614 2615 /* 2616 * Call the teardown callback for each present cpu depending 2617 * on the hotplug state of the cpu. This function is not 2618 * allowed to fail currently! 2619 */ 2620 for_each_present_cpu(cpu) { 2621 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2622 int cpustate = st->state; 2623 2624 if (cpustate >= state) 2625 cpuhp_issue_call(cpu, state, false, NULL); 2626 } 2627 remove: 2628 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2629 mutex_unlock(&cpuhp_state_mutex); 2630 } 2631 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2632 2633 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2634 { 2635 cpus_read_lock(); 2636 __cpuhp_remove_state_cpuslocked(state, invoke); 2637 cpus_read_unlock(); 2638 } 2639 EXPORT_SYMBOL(__cpuhp_remove_state); 2640 2641 #ifdef CONFIG_HOTPLUG_SMT 2642 static void cpuhp_offline_cpu_device(unsigned int cpu) 2643 { 2644 struct device *dev = get_cpu_device(cpu); 2645 2646 dev->offline = true; 2647 /* Tell user space about the state change */ 2648 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2649 } 2650 2651 static void cpuhp_online_cpu_device(unsigned int cpu) 2652 { 2653 struct device *dev = get_cpu_device(cpu); 2654 2655 dev->offline = false; 2656 /* Tell user space about the state change */ 2657 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2658 } 2659 2660 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2661 { 2662 int cpu, ret = 0; 2663 2664 cpu_maps_update_begin(); 2665 for_each_online_cpu(cpu) { 2666 if (topology_is_primary_thread(cpu)) 2667 continue; 2668 /* 2669 * Disable can be called with CPU_SMT_ENABLED when changing 2670 * from a higher to lower number of SMT threads per core. 2671 */ 2672 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2673 continue; 2674 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2675 if (ret) 2676 break; 2677 /* 2678 * As this needs to hold the cpu maps lock it's impossible 2679 * to call device_offline() because that ends up calling 2680 * cpu_down() which takes cpu maps lock. cpu maps lock 2681 * needs to be held as this might race against in kernel 2682 * abusers of the hotplug machinery (thermal management). 2683 * 2684 * So nothing would update device:offline state. That would 2685 * leave the sysfs entry stale and prevent onlining after 2686 * smt control has been changed to 'off' again. This is 2687 * called under the sysfs hotplug lock, so it is properly 2688 * serialized against the regular offline usage. 2689 */ 2690 cpuhp_offline_cpu_device(cpu); 2691 } 2692 if (!ret) 2693 cpu_smt_control = ctrlval; 2694 cpu_maps_update_done(); 2695 return ret; 2696 } 2697 2698 /* Check if the core a CPU belongs to is online */ 2699 #if !defined(topology_is_core_online) 2700 static inline bool topology_is_core_online(unsigned int cpu) 2701 { 2702 return true; 2703 } 2704 #endif 2705 2706 int cpuhp_smt_enable(void) 2707 { 2708 int cpu, ret = 0; 2709 2710 cpu_maps_update_begin(); 2711 cpu_smt_control = CPU_SMT_ENABLED; 2712 for_each_present_cpu(cpu) { 2713 /* Skip online CPUs and CPUs on offline nodes */ 2714 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2715 continue; 2716 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2717 continue; 2718 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2719 if (ret) 2720 break; 2721 /* See comment in cpuhp_smt_disable() */ 2722 cpuhp_online_cpu_device(cpu); 2723 } 2724 cpu_maps_update_done(); 2725 return ret; 2726 } 2727 #endif 2728 2729 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2730 static ssize_t state_show(struct device *dev, 2731 struct device_attribute *attr, char *buf) 2732 { 2733 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2734 2735 return sprintf(buf, "%d\n", st->state); 2736 } 2737 static DEVICE_ATTR_RO(state); 2738 2739 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2740 const char *buf, size_t count) 2741 { 2742 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2743 struct cpuhp_step *sp; 2744 int target, ret; 2745 2746 ret = kstrtoint(buf, 10, &target); 2747 if (ret) 2748 return ret; 2749 2750 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2751 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2752 return -EINVAL; 2753 #else 2754 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2755 return -EINVAL; 2756 #endif 2757 2758 ret = lock_device_hotplug_sysfs(); 2759 if (ret) 2760 return ret; 2761 2762 mutex_lock(&cpuhp_state_mutex); 2763 sp = cpuhp_get_step(target); 2764 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2765 mutex_unlock(&cpuhp_state_mutex); 2766 if (ret) 2767 goto out; 2768 2769 if (st->state < target) 2770 ret = cpu_up(dev->id, target); 2771 else if (st->state > target) 2772 ret = cpu_down(dev->id, target); 2773 else if (WARN_ON(st->target != target)) 2774 st->target = target; 2775 out: 2776 unlock_device_hotplug(); 2777 return ret ? ret : count; 2778 } 2779 2780 static ssize_t target_show(struct device *dev, 2781 struct device_attribute *attr, char *buf) 2782 { 2783 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2784 2785 return sprintf(buf, "%d\n", st->target); 2786 } 2787 static DEVICE_ATTR_RW(target); 2788 2789 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2790 const char *buf, size_t count) 2791 { 2792 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2793 struct cpuhp_step *sp; 2794 int fail, ret; 2795 2796 ret = kstrtoint(buf, 10, &fail); 2797 if (ret) 2798 return ret; 2799 2800 if (fail == CPUHP_INVALID) { 2801 st->fail = fail; 2802 return count; 2803 } 2804 2805 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2806 return -EINVAL; 2807 2808 /* 2809 * Cannot fail STARTING/DYING callbacks. 2810 */ 2811 if (cpuhp_is_atomic_state(fail)) 2812 return -EINVAL; 2813 2814 /* 2815 * DEAD callbacks cannot fail... 2816 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2817 * triggering STARTING callbacks, a failure in this state would 2818 * hinder rollback. 2819 */ 2820 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2821 return -EINVAL; 2822 2823 /* 2824 * Cannot fail anything that doesn't have callbacks. 2825 */ 2826 mutex_lock(&cpuhp_state_mutex); 2827 sp = cpuhp_get_step(fail); 2828 if (!sp->startup.single && !sp->teardown.single) 2829 ret = -EINVAL; 2830 mutex_unlock(&cpuhp_state_mutex); 2831 if (ret) 2832 return ret; 2833 2834 st->fail = fail; 2835 2836 return count; 2837 } 2838 2839 static ssize_t fail_show(struct device *dev, 2840 struct device_attribute *attr, char *buf) 2841 { 2842 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2843 2844 return sprintf(buf, "%d\n", st->fail); 2845 } 2846 2847 static DEVICE_ATTR_RW(fail); 2848 2849 static struct attribute *cpuhp_cpu_attrs[] = { 2850 &dev_attr_state.attr, 2851 &dev_attr_target.attr, 2852 &dev_attr_fail.attr, 2853 NULL 2854 }; 2855 2856 static const struct attribute_group cpuhp_cpu_attr_group = { 2857 .attrs = cpuhp_cpu_attrs, 2858 .name = "hotplug", 2859 }; 2860 2861 static ssize_t states_show(struct device *dev, 2862 struct device_attribute *attr, char *buf) 2863 { 2864 ssize_t cur, res = 0; 2865 int i; 2866 2867 mutex_lock(&cpuhp_state_mutex); 2868 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2869 struct cpuhp_step *sp = cpuhp_get_step(i); 2870 2871 if (sp->name) { 2872 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2873 buf += cur; 2874 res += cur; 2875 } 2876 } 2877 mutex_unlock(&cpuhp_state_mutex); 2878 return res; 2879 } 2880 static DEVICE_ATTR_RO(states); 2881 2882 static struct attribute *cpuhp_cpu_root_attrs[] = { 2883 &dev_attr_states.attr, 2884 NULL 2885 }; 2886 2887 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2888 .attrs = cpuhp_cpu_root_attrs, 2889 .name = "hotplug", 2890 }; 2891 2892 #ifdef CONFIG_HOTPLUG_SMT 2893 2894 static bool cpu_smt_num_threads_valid(unsigned int threads) 2895 { 2896 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2897 return threads >= 1 && threads <= cpu_smt_max_threads; 2898 return threads == 1 || threads == cpu_smt_max_threads; 2899 } 2900 2901 static ssize_t 2902 __store_smt_control(struct device *dev, struct device_attribute *attr, 2903 const char *buf, size_t count) 2904 { 2905 int ctrlval, ret, num_threads, orig_threads; 2906 bool force_off; 2907 2908 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2909 return -EPERM; 2910 2911 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2912 return -ENODEV; 2913 2914 if (sysfs_streq(buf, "on")) { 2915 ctrlval = CPU_SMT_ENABLED; 2916 num_threads = cpu_smt_max_threads; 2917 } else if (sysfs_streq(buf, "off")) { 2918 ctrlval = CPU_SMT_DISABLED; 2919 num_threads = 1; 2920 } else if (sysfs_streq(buf, "forceoff")) { 2921 ctrlval = CPU_SMT_FORCE_DISABLED; 2922 num_threads = 1; 2923 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2924 if (num_threads == 1) 2925 ctrlval = CPU_SMT_DISABLED; 2926 else if (cpu_smt_num_threads_valid(num_threads)) 2927 ctrlval = CPU_SMT_ENABLED; 2928 else 2929 return -EINVAL; 2930 } else { 2931 return -EINVAL; 2932 } 2933 2934 ret = lock_device_hotplug_sysfs(); 2935 if (ret) 2936 return ret; 2937 2938 orig_threads = cpu_smt_num_threads; 2939 cpu_smt_num_threads = num_threads; 2940 2941 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2942 2943 if (num_threads > orig_threads) 2944 ret = cpuhp_smt_enable(); 2945 else if (num_threads < orig_threads || force_off) 2946 ret = cpuhp_smt_disable(ctrlval); 2947 2948 unlock_device_hotplug(); 2949 return ret ? ret : count; 2950 } 2951 2952 #else /* !CONFIG_HOTPLUG_SMT */ 2953 static ssize_t 2954 __store_smt_control(struct device *dev, struct device_attribute *attr, 2955 const char *buf, size_t count) 2956 { 2957 return -ENODEV; 2958 } 2959 #endif /* CONFIG_HOTPLUG_SMT */ 2960 2961 static const char *smt_states[] = { 2962 [CPU_SMT_ENABLED] = "on", 2963 [CPU_SMT_DISABLED] = "off", 2964 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2965 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2966 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2967 }; 2968 2969 static ssize_t control_show(struct device *dev, 2970 struct device_attribute *attr, char *buf) 2971 { 2972 const char *state = smt_states[cpu_smt_control]; 2973 2974 #ifdef CONFIG_HOTPLUG_SMT 2975 /* 2976 * If SMT is enabled but not all threads are enabled then show the 2977 * number of threads. If all threads are enabled show "on". Otherwise 2978 * show the state name. 2979 */ 2980 if (cpu_smt_control == CPU_SMT_ENABLED && 2981 cpu_smt_num_threads != cpu_smt_max_threads) 2982 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2983 #endif 2984 2985 return sysfs_emit(buf, "%s\n", state); 2986 } 2987 2988 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2989 const char *buf, size_t count) 2990 { 2991 return __store_smt_control(dev, attr, buf, count); 2992 } 2993 static DEVICE_ATTR_RW(control); 2994 2995 static ssize_t active_show(struct device *dev, 2996 struct device_attribute *attr, char *buf) 2997 { 2998 return sysfs_emit(buf, "%d\n", sched_smt_active()); 2999 } 3000 static DEVICE_ATTR_RO(active); 3001 3002 static struct attribute *cpuhp_smt_attrs[] = { 3003 &dev_attr_control.attr, 3004 &dev_attr_active.attr, 3005 NULL 3006 }; 3007 3008 static const struct attribute_group cpuhp_smt_attr_group = { 3009 .attrs = cpuhp_smt_attrs, 3010 .name = "smt", 3011 }; 3012 3013 static int __init cpu_smt_sysfs_init(void) 3014 { 3015 struct device *dev_root; 3016 int ret = -ENODEV; 3017 3018 dev_root = bus_get_dev_root(&cpu_subsys); 3019 if (dev_root) { 3020 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3021 put_device(dev_root); 3022 } 3023 return ret; 3024 } 3025 3026 static int __init cpuhp_sysfs_init(void) 3027 { 3028 struct device *dev_root; 3029 int cpu, ret; 3030 3031 ret = cpu_smt_sysfs_init(); 3032 if (ret) 3033 return ret; 3034 3035 dev_root = bus_get_dev_root(&cpu_subsys); 3036 if (dev_root) { 3037 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3038 put_device(dev_root); 3039 if (ret) 3040 return ret; 3041 } 3042 3043 for_each_possible_cpu(cpu) { 3044 struct device *dev = get_cpu_device(cpu); 3045 3046 if (!dev) 3047 continue; 3048 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3049 if (ret) 3050 return ret; 3051 } 3052 return 0; 3053 } 3054 device_initcall(cpuhp_sysfs_init); 3055 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3056 3057 /* 3058 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3059 * represents all NR_CPUS bits binary values of 1<<nr. 3060 * 3061 * It is used by cpumask_of() to get a constant address to a CPU 3062 * mask value that has a single bit set only. 3063 */ 3064 3065 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3066 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3067 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3068 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3069 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3070 3071 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3072 3073 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3074 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3075 #if BITS_PER_LONG > 32 3076 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3077 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3078 #endif 3079 }; 3080 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3081 3082 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3083 EXPORT_SYMBOL(cpu_all_bits); 3084 3085 #ifdef CONFIG_INIT_ALL_POSSIBLE 3086 struct cpumask __cpu_possible_mask __ro_after_init 3087 = {CPU_BITS_ALL}; 3088 #else 3089 struct cpumask __cpu_possible_mask __ro_after_init; 3090 #endif 3091 EXPORT_SYMBOL(__cpu_possible_mask); 3092 3093 struct cpumask __cpu_online_mask __read_mostly; 3094 EXPORT_SYMBOL(__cpu_online_mask); 3095 3096 struct cpumask __cpu_enabled_mask __read_mostly; 3097 EXPORT_SYMBOL(__cpu_enabled_mask); 3098 3099 struct cpumask __cpu_present_mask __read_mostly; 3100 EXPORT_SYMBOL(__cpu_present_mask); 3101 3102 struct cpumask __cpu_active_mask __read_mostly; 3103 EXPORT_SYMBOL(__cpu_active_mask); 3104 3105 struct cpumask __cpu_dying_mask __read_mostly; 3106 EXPORT_SYMBOL(__cpu_dying_mask); 3107 3108 atomic_t __num_online_cpus __read_mostly; 3109 EXPORT_SYMBOL(__num_online_cpus); 3110 3111 void init_cpu_present(const struct cpumask *src) 3112 { 3113 cpumask_copy(&__cpu_present_mask, src); 3114 } 3115 3116 void init_cpu_possible(const struct cpumask *src) 3117 { 3118 cpumask_copy(&__cpu_possible_mask, src); 3119 } 3120 3121 void set_cpu_online(unsigned int cpu, bool online) 3122 { 3123 /* 3124 * atomic_inc/dec() is required to handle the horrid abuse of this 3125 * function by the reboot and kexec code which invoke it from 3126 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3127 * regular CPU hotplug is properly serialized. 3128 * 3129 * Note, that the fact that __num_online_cpus is of type atomic_t 3130 * does not protect readers which are not serialized against 3131 * concurrent hotplug operations. 3132 */ 3133 if (online) { 3134 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3135 atomic_inc(&__num_online_cpus); 3136 } else { 3137 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3138 atomic_dec(&__num_online_cpus); 3139 } 3140 } 3141 3142 /* 3143 * Activate the first processor. 3144 */ 3145 void __init boot_cpu_init(void) 3146 { 3147 int cpu = smp_processor_id(); 3148 3149 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3150 set_cpu_online(cpu, true); 3151 set_cpu_active(cpu, true); 3152 set_cpu_present(cpu, true); 3153 set_cpu_possible(cpu, true); 3154 3155 #ifdef CONFIG_SMP 3156 __boot_cpu_id = cpu; 3157 #endif 3158 } 3159 3160 /* 3161 * Must be called _AFTER_ setting up the per_cpu areas 3162 */ 3163 void __init boot_cpu_hotplug_init(void) 3164 { 3165 #ifdef CONFIG_SMP 3166 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3167 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3168 #endif 3169 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3170 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3171 } 3172 3173 #ifdef CONFIG_CPU_MITIGATIONS 3174 /* 3175 * All except the cross-thread attack vector are mitigated by default. 3176 * Cross-thread mitigation often requires disabling SMT which is expensive 3177 * so cross-thread mitigations are only partially enabled by default. 3178 * 3179 * Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is 3180 * present. 3181 */ 3182 static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = { 3183 [CPU_MITIGATE_USER_KERNEL] = true, 3184 [CPU_MITIGATE_USER_USER] = true, 3185 [CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM), 3186 [CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM), 3187 }; 3188 3189 bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v) 3190 { 3191 if (v < NR_CPU_ATTACK_VECTORS) 3192 return attack_vectors[v]; 3193 3194 WARN_ONCE(1, "Invalid attack vector %d\n", v); 3195 return false; 3196 } 3197 3198 /* 3199 * There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally 3200 * be combined with attack-vector disables which follow them. 3201 * 3202 * Examples: 3203 * mitigations=auto,no_user_kernel,no_user_user,no_cross_thread 3204 * mitigations=auto,nosmt,no_guest_host,no_guest_guest 3205 * 3206 * mitigations=off is equivalent to disabling all attack vectors. 3207 */ 3208 enum cpu_mitigations { 3209 CPU_MITIGATIONS_OFF, 3210 CPU_MITIGATIONS_AUTO, 3211 CPU_MITIGATIONS_AUTO_NOSMT, 3212 }; 3213 3214 enum { 3215 NO_USER_KERNEL, 3216 NO_USER_USER, 3217 NO_GUEST_HOST, 3218 NO_GUEST_GUEST, 3219 NO_CROSS_THREAD, 3220 NR_VECTOR_PARAMS, 3221 }; 3222 3223 enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO; 3224 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3225 3226 static const match_table_t global_mitigations = { 3227 { CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt"}, 3228 { CPU_MITIGATIONS_AUTO, "auto"}, 3229 { CPU_MITIGATIONS_OFF, "off"}, 3230 }; 3231 3232 static const match_table_t vector_mitigations = { 3233 { NO_USER_KERNEL, "no_user_kernel"}, 3234 { NO_USER_USER, "no_user_user"}, 3235 { NO_GUEST_HOST, "no_guest_host"}, 3236 { NO_GUEST_GUEST, "no_guest_guest"}, 3237 { NO_CROSS_THREAD, "no_cross_thread"}, 3238 { NR_VECTOR_PARAMS, NULL}, 3239 }; 3240 3241 static int __init mitigations_parse_global_opt(char *arg) 3242 { 3243 int i; 3244 3245 for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) { 3246 const char *pattern = global_mitigations[i].pattern; 3247 3248 if (!strncmp(arg, pattern, strlen(pattern))) { 3249 cpu_mitigations = global_mitigations[i].token; 3250 return strlen(pattern); 3251 } 3252 } 3253 3254 return 0; 3255 } 3256 3257 static int __init mitigations_parse_cmdline(char *arg) 3258 { 3259 char *s, *p; 3260 int len; 3261 3262 len = mitigations_parse_global_opt(arg); 3263 3264 if (cpu_mitigations_off()) { 3265 memset(attack_vectors, 0, sizeof(attack_vectors)); 3266 smt_mitigations = SMT_MITIGATIONS_OFF; 3267 } else if (cpu_mitigations_auto_nosmt()) { 3268 smt_mitigations = SMT_MITIGATIONS_ON; 3269 } 3270 3271 p = arg + len; 3272 3273 if (!*p) 3274 return 0; 3275 3276 /* Attack vector controls may come after the ',' */ 3277 if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) { 3278 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg); 3279 return 0; 3280 } 3281 3282 while ((s = strsep(&p, ",")) != NULL) { 3283 switch (match_token(s, vector_mitigations, NULL)) { 3284 case NO_USER_KERNEL: 3285 attack_vectors[CPU_MITIGATE_USER_KERNEL] = false; 3286 break; 3287 case NO_USER_USER: 3288 attack_vectors[CPU_MITIGATE_USER_USER] = false; 3289 break; 3290 case NO_GUEST_HOST: 3291 attack_vectors[CPU_MITIGATE_GUEST_HOST] = false; 3292 break; 3293 case NO_GUEST_GUEST: 3294 attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false; 3295 break; 3296 case NO_CROSS_THREAD: 3297 smt_mitigations = SMT_MITIGATIONS_OFF; 3298 break; 3299 default: 3300 pr_crit("Unsupported mitigations options %s\n", s); 3301 return 0; 3302 } 3303 } 3304 3305 return 0; 3306 } 3307 3308 /* mitigations=off */ 3309 bool cpu_mitigations_off(void) 3310 { 3311 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3312 } 3313 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3314 3315 /* mitigations=auto,nosmt */ 3316 bool cpu_mitigations_auto_nosmt(void) 3317 { 3318 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3319 } 3320 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3321 #else 3322 static int __init mitigations_parse_cmdline(char *arg) 3323 { 3324 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3325 return 0; 3326 } 3327 #endif 3328 early_param("mitigations", mitigations_parse_cmdline); 3329