1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/scs.h> 35 #include <linux/percpu-rwsem.h> 36 #include <linux/cpuset.h> 37 38 #include <trace/events/power.h> 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/cpuhp.h> 41 42 #include "smpboot.h" 43 44 /** 45 * struct cpuhp_cpu_state - Per cpu hotplug state storage 46 * @state: The current cpu state 47 * @target: The target state 48 * @fail: Current CPU hotplug callback state 49 * @thread: Pointer to the hotplug thread 50 * @should_run: Thread should execute 51 * @rollback: Perform a rollback 52 * @single: Single callback invocation 53 * @bringup: Single callback bringup or teardown selector 54 * @cpu: CPU number 55 * @node: Remote CPU node; for multi-instance, do a 56 * single entry callback for install/remove 57 * @last: For multi-instance rollback, remember how far we got 58 * @cb_state: The state for a single callback (install/uninstall) 59 * @result: Result of the operation 60 * @done_up: Signal completion to the issuer of the task for cpu-up 61 * @done_down: Signal completion to the issuer of the task for cpu-down 62 */ 63 struct cpuhp_cpu_state { 64 enum cpuhp_state state; 65 enum cpuhp_state target; 66 enum cpuhp_state fail; 67 #ifdef CONFIG_SMP 68 struct task_struct *thread; 69 bool should_run; 70 bool rollback; 71 bool single; 72 bool bringup; 73 int cpu; 74 struct hlist_node *node; 75 struct hlist_node *last; 76 enum cpuhp_state cb_state; 77 int result; 78 struct completion done_up; 79 struct completion done_down; 80 #endif 81 }; 82 83 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 84 .fail = CPUHP_INVALID, 85 }; 86 87 #ifdef CONFIG_SMP 88 cpumask_t cpus_booted_once_mask; 89 #endif 90 91 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 92 static struct lockdep_map cpuhp_state_up_map = 93 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 94 static struct lockdep_map cpuhp_state_down_map = 95 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 96 97 98 static inline void cpuhp_lock_acquire(bool bringup) 99 { 100 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 101 } 102 103 static inline void cpuhp_lock_release(bool bringup) 104 { 105 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 106 } 107 #else 108 109 static inline void cpuhp_lock_acquire(bool bringup) { } 110 static inline void cpuhp_lock_release(bool bringup) { } 111 112 #endif 113 114 /** 115 * struct cpuhp_step - Hotplug state machine step 116 * @name: Name of the step 117 * @startup: Startup function of the step 118 * @teardown: Teardown function of the step 119 * @cant_stop: Bringup/teardown can't be stopped at this step 120 * @multi_instance: State has multiple instances which get added afterwards 121 */ 122 struct cpuhp_step { 123 const char *name; 124 union { 125 int (*single)(unsigned int cpu); 126 int (*multi)(unsigned int cpu, 127 struct hlist_node *node); 128 } startup; 129 union { 130 int (*single)(unsigned int cpu); 131 int (*multi)(unsigned int cpu, 132 struct hlist_node *node); 133 } teardown; 134 /* private: */ 135 struct hlist_head list; 136 /* public: */ 137 bool cant_stop; 138 bool multi_instance; 139 }; 140 141 static DEFINE_MUTEX(cpuhp_state_mutex); 142 static struct cpuhp_step cpuhp_hp_states[]; 143 144 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 145 { 146 return cpuhp_hp_states + state; 147 } 148 149 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 150 { 151 return bringup ? !step->startup.single : !step->teardown.single; 152 } 153 154 /** 155 * cpuhp_invoke_callback - Invoke the callbacks for a given state 156 * @cpu: The cpu for which the callback should be invoked 157 * @state: The state to do callbacks for 158 * @bringup: True if the bringup callback should be invoked 159 * @node: For multi-instance, do a single entry callback for install/remove 160 * @lastp: For multi-instance rollback, remember how far we got 161 * 162 * Called from cpu hotplug and from the state register machinery. 163 * 164 * Return: %0 on success or a negative errno code 165 */ 166 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 167 bool bringup, struct hlist_node *node, 168 struct hlist_node **lastp) 169 { 170 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 171 struct cpuhp_step *step = cpuhp_get_step(state); 172 int (*cbm)(unsigned int cpu, struct hlist_node *node); 173 int (*cb)(unsigned int cpu); 174 int ret, cnt; 175 176 if (st->fail == state) { 177 st->fail = CPUHP_INVALID; 178 return -EAGAIN; 179 } 180 181 if (cpuhp_step_empty(bringup, step)) { 182 WARN_ON_ONCE(1); 183 return 0; 184 } 185 186 if (!step->multi_instance) { 187 WARN_ON_ONCE(lastp && *lastp); 188 cb = bringup ? step->startup.single : step->teardown.single; 189 190 trace_cpuhp_enter(cpu, st->target, state, cb); 191 ret = cb(cpu); 192 trace_cpuhp_exit(cpu, st->state, state, ret); 193 return ret; 194 } 195 cbm = bringup ? step->startup.multi : step->teardown.multi; 196 197 /* Single invocation for instance add/remove */ 198 if (node) { 199 WARN_ON_ONCE(lastp && *lastp); 200 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 201 ret = cbm(cpu, node); 202 trace_cpuhp_exit(cpu, st->state, state, ret); 203 return ret; 204 } 205 206 /* State transition. Invoke on all instances */ 207 cnt = 0; 208 hlist_for_each(node, &step->list) { 209 if (lastp && node == *lastp) 210 break; 211 212 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 213 ret = cbm(cpu, node); 214 trace_cpuhp_exit(cpu, st->state, state, ret); 215 if (ret) { 216 if (!lastp) 217 goto err; 218 219 *lastp = node; 220 return ret; 221 } 222 cnt++; 223 } 224 if (lastp) 225 *lastp = NULL; 226 return 0; 227 err: 228 /* Rollback the instances if one failed */ 229 cbm = !bringup ? step->startup.multi : step->teardown.multi; 230 if (!cbm) 231 return ret; 232 233 hlist_for_each(node, &step->list) { 234 if (!cnt--) 235 break; 236 237 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 238 ret = cbm(cpu, node); 239 trace_cpuhp_exit(cpu, st->state, state, ret); 240 /* 241 * Rollback must not fail, 242 */ 243 WARN_ON_ONCE(ret); 244 } 245 return ret; 246 } 247 248 #ifdef CONFIG_SMP 249 static bool cpuhp_is_ap_state(enum cpuhp_state state) 250 { 251 /* 252 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 253 * purposes as that state is handled explicitly in cpu_down. 254 */ 255 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 256 } 257 258 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 259 { 260 struct completion *done = bringup ? &st->done_up : &st->done_down; 261 wait_for_completion(done); 262 } 263 264 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 265 { 266 struct completion *done = bringup ? &st->done_up : &st->done_down; 267 complete(done); 268 } 269 270 /* 271 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 272 */ 273 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 274 { 275 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 276 } 277 278 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 279 static DEFINE_MUTEX(cpu_add_remove_lock); 280 bool cpuhp_tasks_frozen; 281 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 282 283 /* 284 * The following two APIs (cpu_maps_update_begin/done) must be used when 285 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 286 */ 287 void cpu_maps_update_begin(void) 288 { 289 mutex_lock(&cpu_add_remove_lock); 290 } 291 292 void cpu_maps_update_done(void) 293 { 294 mutex_unlock(&cpu_add_remove_lock); 295 } 296 297 /* 298 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 299 * Should always be manipulated under cpu_add_remove_lock 300 */ 301 static int cpu_hotplug_disabled; 302 303 #ifdef CONFIG_HOTPLUG_CPU 304 305 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 306 307 void cpus_read_lock(void) 308 { 309 percpu_down_read(&cpu_hotplug_lock); 310 } 311 EXPORT_SYMBOL_GPL(cpus_read_lock); 312 313 int cpus_read_trylock(void) 314 { 315 return percpu_down_read_trylock(&cpu_hotplug_lock); 316 } 317 EXPORT_SYMBOL_GPL(cpus_read_trylock); 318 319 void cpus_read_unlock(void) 320 { 321 percpu_up_read(&cpu_hotplug_lock); 322 } 323 EXPORT_SYMBOL_GPL(cpus_read_unlock); 324 325 void cpus_write_lock(void) 326 { 327 percpu_down_write(&cpu_hotplug_lock); 328 } 329 330 void cpus_write_unlock(void) 331 { 332 percpu_up_write(&cpu_hotplug_lock); 333 } 334 335 void lockdep_assert_cpus_held(void) 336 { 337 /* 338 * We can't have hotplug operations before userspace starts running, 339 * and some init codepaths will knowingly not take the hotplug lock. 340 * This is all valid, so mute lockdep until it makes sense to report 341 * unheld locks. 342 */ 343 if (system_state < SYSTEM_RUNNING) 344 return; 345 346 percpu_rwsem_assert_held(&cpu_hotplug_lock); 347 } 348 349 #ifdef CONFIG_LOCKDEP 350 int lockdep_is_cpus_held(void) 351 { 352 return percpu_rwsem_is_held(&cpu_hotplug_lock); 353 } 354 #endif 355 356 static void lockdep_acquire_cpus_lock(void) 357 { 358 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 359 } 360 361 static void lockdep_release_cpus_lock(void) 362 { 363 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 364 } 365 366 /* 367 * Wait for currently running CPU hotplug operations to complete (if any) and 368 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 369 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 370 * hotplug path before performing hotplug operations. So acquiring that lock 371 * guarantees mutual exclusion from any currently running hotplug operations. 372 */ 373 void cpu_hotplug_disable(void) 374 { 375 cpu_maps_update_begin(); 376 cpu_hotplug_disabled++; 377 cpu_maps_update_done(); 378 } 379 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 380 381 static void __cpu_hotplug_enable(void) 382 { 383 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 384 return; 385 cpu_hotplug_disabled--; 386 } 387 388 void cpu_hotplug_enable(void) 389 { 390 cpu_maps_update_begin(); 391 __cpu_hotplug_enable(); 392 cpu_maps_update_done(); 393 } 394 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 395 396 #else 397 398 static void lockdep_acquire_cpus_lock(void) 399 { 400 } 401 402 static void lockdep_release_cpus_lock(void) 403 { 404 } 405 406 #endif /* CONFIG_HOTPLUG_CPU */ 407 408 /* 409 * Architectures that need SMT-specific errata handling during SMT hotplug 410 * should override this. 411 */ 412 void __weak arch_smt_update(void) { } 413 414 #ifdef CONFIG_HOTPLUG_SMT 415 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 416 417 void __init cpu_smt_disable(bool force) 418 { 419 if (!cpu_smt_possible()) 420 return; 421 422 if (force) { 423 pr_info("SMT: Force disabled\n"); 424 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 425 } else { 426 pr_info("SMT: disabled\n"); 427 cpu_smt_control = CPU_SMT_DISABLED; 428 } 429 } 430 431 /* 432 * The decision whether SMT is supported can only be done after the full 433 * CPU identification. Called from architecture code. 434 */ 435 void __init cpu_smt_check_topology(void) 436 { 437 if (!topology_smt_supported()) 438 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 439 } 440 441 static int __init smt_cmdline_disable(char *str) 442 { 443 cpu_smt_disable(str && !strcmp(str, "force")); 444 return 0; 445 } 446 early_param("nosmt", smt_cmdline_disable); 447 448 static inline bool cpu_smt_allowed(unsigned int cpu) 449 { 450 if (cpu_smt_control == CPU_SMT_ENABLED) 451 return true; 452 453 if (topology_is_primary_thread(cpu)) 454 return true; 455 456 /* 457 * On x86 it's required to boot all logical CPUs at least once so 458 * that the init code can get a chance to set CR4.MCE on each 459 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 460 * core will shutdown the machine. 461 */ 462 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 463 } 464 465 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 466 bool cpu_smt_possible(void) 467 { 468 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 469 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 470 } 471 EXPORT_SYMBOL_GPL(cpu_smt_possible); 472 #else 473 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 474 #endif 475 476 static inline enum cpuhp_state 477 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 478 { 479 enum cpuhp_state prev_state = st->state; 480 bool bringup = st->state < target; 481 482 st->rollback = false; 483 st->last = NULL; 484 485 st->target = target; 486 st->single = false; 487 st->bringup = bringup; 488 if (cpu_dying(st->cpu) != !bringup) 489 set_cpu_dying(st->cpu, !bringup); 490 491 return prev_state; 492 } 493 494 static inline void 495 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 496 { 497 bool bringup = !st->bringup; 498 499 st->target = prev_state; 500 501 /* 502 * Already rolling back. No need invert the bringup value or to change 503 * the current state. 504 */ 505 if (st->rollback) 506 return; 507 508 st->rollback = true; 509 510 /* 511 * If we have st->last we need to undo partial multi_instance of this 512 * state first. Otherwise start undo at the previous state. 513 */ 514 if (!st->last) { 515 if (st->bringup) 516 st->state--; 517 else 518 st->state++; 519 } 520 521 st->bringup = bringup; 522 if (cpu_dying(st->cpu) != !bringup) 523 set_cpu_dying(st->cpu, !bringup); 524 } 525 526 /* Regular hotplug invocation of the AP hotplug thread */ 527 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 528 { 529 if (!st->single && st->state == st->target) 530 return; 531 532 st->result = 0; 533 /* 534 * Make sure the above stores are visible before should_run becomes 535 * true. Paired with the mb() above in cpuhp_thread_fun() 536 */ 537 smp_mb(); 538 st->should_run = true; 539 wake_up_process(st->thread); 540 wait_for_ap_thread(st, st->bringup); 541 } 542 543 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 544 { 545 enum cpuhp_state prev_state; 546 int ret; 547 548 prev_state = cpuhp_set_state(st, target); 549 __cpuhp_kick_ap(st); 550 if ((ret = st->result)) { 551 cpuhp_reset_state(st, prev_state); 552 __cpuhp_kick_ap(st); 553 } 554 555 return ret; 556 } 557 558 static int bringup_wait_for_ap(unsigned int cpu) 559 { 560 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 561 562 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 563 wait_for_ap_thread(st, true); 564 if (WARN_ON_ONCE((!cpu_online(cpu)))) 565 return -ECANCELED; 566 567 /* Unpark the hotplug thread of the target cpu */ 568 kthread_unpark(st->thread); 569 570 /* 571 * SMT soft disabling on X86 requires to bring the CPU out of the 572 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 573 * CPU marked itself as booted_once in notify_cpu_starting() so the 574 * cpu_smt_allowed() check will now return false if this is not the 575 * primary sibling. 576 */ 577 if (!cpu_smt_allowed(cpu)) 578 return -ECANCELED; 579 580 if (st->target <= CPUHP_AP_ONLINE_IDLE) 581 return 0; 582 583 return cpuhp_kick_ap(st, st->target); 584 } 585 586 static int bringup_cpu(unsigned int cpu) 587 { 588 struct task_struct *idle = idle_thread_get(cpu); 589 int ret; 590 591 /* 592 * Reset stale stack state from the last time this CPU was online. 593 */ 594 scs_task_reset(idle); 595 kasan_unpoison_task_stack(idle); 596 597 /* 598 * Some architectures have to walk the irq descriptors to 599 * setup the vector space for the cpu which comes online. 600 * Prevent irq alloc/free across the bringup. 601 */ 602 irq_lock_sparse(); 603 604 /* Arch-specific enabling code. */ 605 ret = __cpu_up(cpu, idle); 606 irq_unlock_sparse(); 607 if (ret) 608 return ret; 609 return bringup_wait_for_ap(cpu); 610 } 611 612 static int finish_cpu(unsigned int cpu) 613 { 614 struct task_struct *idle = idle_thread_get(cpu); 615 struct mm_struct *mm = idle->active_mm; 616 617 /* 618 * idle_task_exit() will have switched to &init_mm, now 619 * clean up any remaining active_mm state. 620 */ 621 if (mm != &init_mm) 622 idle->active_mm = &init_mm; 623 mmdrop(mm); 624 return 0; 625 } 626 627 /* 628 * Hotplug state machine related functions 629 */ 630 631 /* 632 * Get the next state to run. Empty ones will be skipped. Returns true if a 633 * state must be run. 634 * 635 * st->state will be modified ahead of time, to match state_to_run, as if it 636 * has already ran. 637 */ 638 static bool cpuhp_next_state(bool bringup, 639 enum cpuhp_state *state_to_run, 640 struct cpuhp_cpu_state *st, 641 enum cpuhp_state target) 642 { 643 do { 644 if (bringup) { 645 if (st->state >= target) 646 return false; 647 648 *state_to_run = ++st->state; 649 } else { 650 if (st->state <= target) 651 return false; 652 653 *state_to_run = st->state--; 654 } 655 656 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 657 break; 658 } while (true); 659 660 return true; 661 } 662 663 static int cpuhp_invoke_callback_range(bool bringup, 664 unsigned int cpu, 665 struct cpuhp_cpu_state *st, 666 enum cpuhp_state target) 667 { 668 enum cpuhp_state state; 669 int err = 0; 670 671 while (cpuhp_next_state(bringup, &state, st, target)) { 672 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 673 if (err) 674 break; 675 } 676 677 return err; 678 } 679 680 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 681 { 682 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 683 return true; 684 /* 685 * When CPU hotplug is disabled, then taking the CPU down is not 686 * possible because takedown_cpu() and the architecture and 687 * subsystem specific mechanisms are not available. So the CPU 688 * which would be completely unplugged again needs to stay around 689 * in the current state. 690 */ 691 return st->state <= CPUHP_BRINGUP_CPU; 692 } 693 694 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 695 enum cpuhp_state target) 696 { 697 enum cpuhp_state prev_state = st->state; 698 int ret = 0; 699 700 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 701 if (ret) { 702 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 703 ret, cpu, cpuhp_get_step(st->state)->name, 704 st->state); 705 706 cpuhp_reset_state(st, prev_state); 707 if (can_rollback_cpu(st)) 708 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 709 prev_state)); 710 } 711 return ret; 712 } 713 714 /* 715 * The cpu hotplug threads manage the bringup and teardown of the cpus 716 */ 717 static void cpuhp_create(unsigned int cpu) 718 { 719 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 720 721 init_completion(&st->done_up); 722 init_completion(&st->done_down); 723 st->cpu = cpu; 724 } 725 726 static int cpuhp_should_run(unsigned int cpu) 727 { 728 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 729 730 return st->should_run; 731 } 732 733 /* 734 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 735 * callbacks when a state gets [un]installed at runtime. 736 * 737 * Each invocation of this function by the smpboot thread does a single AP 738 * state callback. 739 * 740 * It has 3 modes of operation: 741 * - single: runs st->cb_state 742 * - up: runs ++st->state, while st->state < st->target 743 * - down: runs st->state--, while st->state > st->target 744 * 745 * When complete or on error, should_run is cleared and the completion is fired. 746 */ 747 static void cpuhp_thread_fun(unsigned int cpu) 748 { 749 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 750 bool bringup = st->bringup; 751 enum cpuhp_state state; 752 753 if (WARN_ON_ONCE(!st->should_run)) 754 return; 755 756 /* 757 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 758 * that if we see ->should_run we also see the rest of the state. 759 */ 760 smp_mb(); 761 762 /* 763 * The BP holds the hotplug lock, but we're now running on the AP, 764 * ensure that anybody asserting the lock is held, will actually find 765 * it so. 766 */ 767 lockdep_acquire_cpus_lock(); 768 cpuhp_lock_acquire(bringup); 769 770 if (st->single) { 771 state = st->cb_state; 772 st->should_run = false; 773 } else { 774 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 775 if (!st->should_run) 776 goto end; 777 } 778 779 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 780 781 if (cpuhp_is_atomic_state(state)) { 782 local_irq_disable(); 783 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 784 local_irq_enable(); 785 786 /* 787 * STARTING/DYING must not fail! 788 */ 789 WARN_ON_ONCE(st->result); 790 } else { 791 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 792 } 793 794 if (st->result) { 795 /* 796 * If we fail on a rollback, we're up a creek without no 797 * paddle, no way forward, no way back. We loose, thanks for 798 * playing. 799 */ 800 WARN_ON_ONCE(st->rollback); 801 st->should_run = false; 802 } 803 804 end: 805 cpuhp_lock_release(bringup); 806 lockdep_release_cpus_lock(); 807 808 if (!st->should_run) 809 complete_ap_thread(st, bringup); 810 } 811 812 /* Invoke a single callback on a remote cpu */ 813 static int 814 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 815 struct hlist_node *node) 816 { 817 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 818 int ret; 819 820 if (!cpu_online(cpu)) 821 return 0; 822 823 cpuhp_lock_acquire(false); 824 cpuhp_lock_release(false); 825 826 cpuhp_lock_acquire(true); 827 cpuhp_lock_release(true); 828 829 /* 830 * If we are up and running, use the hotplug thread. For early calls 831 * we invoke the thread function directly. 832 */ 833 if (!st->thread) 834 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 835 836 st->rollback = false; 837 st->last = NULL; 838 839 st->node = node; 840 st->bringup = bringup; 841 st->cb_state = state; 842 st->single = true; 843 844 __cpuhp_kick_ap(st); 845 846 /* 847 * If we failed and did a partial, do a rollback. 848 */ 849 if ((ret = st->result) && st->last) { 850 st->rollback = true; 851 st->bringup = !bringup; 852 853 __cpuhp_kick_ap(st); 854 } 855 856 /* 857 * Clean up the leftovers so the next hotplug operation wont use stale 858 * data. 859 */ 860 st->node = st->last = NULL; 861 return ret; 862 } 863 864 static int cpuhp_kick_ap_work(unsigned int cpu) 865 { 866 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 867 enum cpuhp_state prev_state = st->state; 868 int ret; 869 870 cpuhp_lock_acquire(false); 871 cpuhp_lock_release(false); 872 873 cpuhp_lock_acquire(true); 874 cpuhp_lock_release(true); 875 876 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 877 ret = cpuhp_kick_ap(st, st->target); 878 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 879 880 return ret; 881 } 882 883 static struct smp_hotplug_thread cpuhp_threads = { 884 .store = &cpuhp_state.thread, 885 .create = &cpuhp_create, 886 .thread_should_run = cpuhp_should_run, 887 .thread_fn = cpuhp_thread_fun, 888 .thread_comm = "cpuhp/%u", 889 .selfparking = true, 890 }; 891 892 void __init cpuhp_threads_init(void) 893 { 894 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 895 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 896 } 897 898 /* 899 * 900 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 901 * protected region. 902 * 903 * The operation is still serialized against concurrent CPU hotplug via 904 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 905 * serialized against other hotplug related activity like adding or 906 * removing of state callbacks and state instances, which invoke either the 907 * startup or the teardown callback of the affected state. 908 * 909 * This is required for subsystems which are unfixable vs. CPU hotplug and 910 * evade lock inversion problems by scheduling work which has to be 911 * completed _before_ cpu_up()/_cpu_down() returns. 912 * 913 * Don't even think about adding anything to this for any new code or even 914 * drivers. It's only purpose is to keep existing lock order trainwrecks 915 * working. 916 * 917 * For cpu_down() there might be valid reasons to finish cleanups which are 918 * not required to be done under cpu_hotplug_lock, but that's a different 919 * story and would be not invoked via this. 920 */ 921 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 922 { 923 /* 924 * cpusets delegate hotplug operations to a worker to "solve" the 925 * lock order problems. Wait for the worker, but only if tasks are 926 * _not_ frozen (suspend, hibernate) as that would wait forever. 927 * 928 * The wait is required because otherwise the hotplug operation 929 * returns with inconsistent state, which could even be observed in 930 * user space when a new CPU is brought up. The CPU plug uevent 931 * would be delivered and user space reacting on it would fail to 932 * move tasks to the newly plugged CPU up to the point where the 933 * work has finished because up to that point the newly plugged CPU 934 * is not assignable in cpusets/cgroups. On unplug that's not 935 * necessarily a visible issue, but it is still inconsistent state, 936 * which is the real problem which needs to be "fixed". This can't 937 * prevent the transient state between scheduling the work and 938 * returning from waiting for it. 939 */ 940 if (!tasks_frozen) 941 cpuset_wait_for_hotplug(); 942 } 943 944 #ifdef CONFIG_HOTPLUG_CPU 945 #ifndef arch_clear_mm_cpumask_cpu 946 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 947 #endif 948 949 /** 950 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 951 * @cpu: a CPU id 952 * 953 * This function walks all processes, finds a valid mm struct for each one and 954 * then clears a corresponding bit in mm's cpumask. While this all sounds 955 * trivial, there are various non-obvious corner cases, which this function 956 * tries to solve in a safe manner. 957 * 958 * Also note that the function uses a somewhat relaxed locking scheme, so it may 959 * be called only for an already offlined CPU. 960 */ 961 void clear_tasks_mm_cpumask(int cpu) 962 { 963 struct task_struct *p; 964 965 /* 966 * This function is called after the cpu is taken down and marked 967 * offline, so its not like new tasks will ever get this cpu set in 968 * their mm mask. -- Peter Zijlstra 969 * Thus, we may use rcu_read_lock() here, instead of grabbing 970 * full-fledged tasklist_lock. 971 */ 972 WARN_ON(cpu_online(cpu)); 973 rcu_read_lock(); 974 for_each_process(p) { 975 struct task_struct *t; 976 977 /* 978 * Main thread might exit, but other threads may still have 979 * a valid mm. Find one. 980 */ 981 t = find_lock_task_mm(p); 982 if (!t) 983 continue; 984 arch_clear_mm_cpumask_cpu(cpu, t->mm); 985 task_unlock(t); 986 } 987 rcu_read_unlock(); 988 } 989 990 /* Take this CPU down. */ 991 static int take_cpu_down(void *_param) 992 { 993 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 994 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 995 int err, cpu = smp_processor_id(); 996 int ret; 997 998 /* Ensure this CPU doesn't handle any more interrupts. */ 999 err = __cpu_disable(); 1000 if (err < 0) 1001 return err; 1002 1003 /* 1004 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1005 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1006 */ 1007 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1008 1009 /* Invoke the former CPU_DYING callbacks */ 1010 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1011 1012 /* 1013 * DYING must not fail! 1014 */ 1015 WARN_ON_ONCE(ret); 1016 1017 /* Give up timekeeping duties */ 1018 tick_handover_do_timer(); 1019 /* Remove CPU from timer broadcasting */ 1020 tick_offline_cpu(cpu); 1021 /* Park the stopper thread */ 1022 stop_machine_park(cpu); 1023 return 0; 1024 } 1025 1026 static int takedown_cpu(unsigned int cpu) 1027 { 1028 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1029 int err; 1030 1031 /* Park the smpboot threads */ 1032 kthread_park(st->thread); 1033 1034 /* 1035 * Prevent irq alloc/free while the dying cpu reorganizes the 1036 * interrupt affinities. 1037 */ 1038 irq_lock_sparse(); 1039 1040 /* 1041 * So now all preempt/rcu users must observe !cpu_active(). 1042 */ 1043 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1044 if (err) { 1045 /* CPU refused to die */ 1046 irq_unlock_sparse(); 1047 /* Unpark the hotplug thread so we can rollback there */ 1048 kthread_unpark(st->thread); 1049 return err; 1050 } 1051 BUG_ON(cpu_online(cpu)); 1052 1053 /* 1054 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1055 * all runnable tasks from the CPU, there's only the idle task left now 1056 * that the migration thread is done doing the stop_machine thing. 1057 * 1058 * Wait for the stop thread to go away. 1059 */ 1060 wait_for_ap_thread(st, false); 1061 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1062 1063 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1064 irq_unlock_sparse(); 1065 1066 hotplug_cpu__broadcast_tick_pull(cpu); 1067 /* This actually kills the CPU. */ 1068 __cpu_die(cpu); 1069 1070 tick_cleanup_dead_cpu(cpu); 1071 rcutree_migrate_callbacks(cpu); 1072 return 0; 1073 } 1074 1075 static void cpuhp_complete_idle_dead(void *arg) 1076 { 1077 struct cpuhp_cpu_state *st = arg; 1078 1079 complete_ap_thread(st, false); 1080 } 1081 1082 void cpuhp_report_idle_dead(void) 1083 { 1084 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1085 1086 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1087 rcu_report_dead(smp_processor_id()); 1088 st->state = CPUHP_AP_IDLE_DEAD; 1089 /* 1090 * We cannot call complete after rcu_report_dead() so we delegate it 1091 * to an online cpu. 1092 */ 1093 smp_call_function_single(cpumask_first(cpu_online_mask), 1094 cpuhp_complete_idle_dead, st, 0); 1095 } 1096 1097 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1098 enum cpuhp_state target) 1099 { 1100 enum cpuhp_state prev_state = st->state; 1101 int ret = 0; 1102 1103 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1104 if (ret) { 1105 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1106 ret, cpu, cpuhp_get_step(st->state)->name, 1107 st->state); 1108 1109 cpuhp_reset_state(st, prev_state); 1110 1111 if (st->state < prev_state) 1112 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1113 prev_state)); 1114 } 1115 1116 return ret; 1117 } 1118 1119 /* Requires cpu_add_remove_lock to be held */ 1120 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1121 enum cpuhp_state target) 1122 { 1123 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1124 int prev_state, ret = 0; 1125 1126 if (num_online_cpus() == 1) 1127 return -EBUSY; 1128 1129 if (!cpu_present(cpu)) 1130 return -EINVAL; 1131 1132 cpus_write_lock(); 1133 1134 cpuhp_tasks_frozen = tasks_frozen; 1135 1136 prev_state = cpuhp_set_state(st, target); 1137 /* 1138 * If the current CPU state is in the range of the AP hotplug thread, 1139 * then we need to kick the thread. 1140 */ 1141 if (st->state > CPUHP_TEARDOWN_CPU) { 1142 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1143 ret = cpuhp_kick_ap_work(cpu); 1144 /* 1145 * The AP side has done the error rollback already. Just 1146 * return the error code.. 1147 */ 1148 if (ret) 1149 goto out; 1150 1151 /* 1152 * We might have stopped still in the range of the AP hotplug 1153 * thread. Nothing to do anymore. 1154 */ 1155 if (st->state > CPUHP_TEARDOWN_CPU) 1156 goto out; 1157 1158 st->target = target; 1159 } 1160 /* 1161 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1162 * to do the further cleanups. 1163 */ 1164 ret = cpuhp_down_callbacks(cpu, st, target); 1165 if (ret && st->state < prev_state) { 1166 if (st->state == CPUHP_TEARDOWN_CPU) { 1167 cpuhp_reset_state(st, prev_state); 1168 __cpuhp_kick_ap(st); 1169 } else { 1170 WARN(1, "DEAD callback error for CPU%d", cpu); 1171 } 1172 } 1173 1174 out: 1175 cpus_write_unlock(); 1176 /* 1177 * Do post unplug cleanup. This is still protected against 1178 * concurrent CPU hotplug via cpu_add_remove_lock. 1179 */ 1180 lockup_detector_cleanup(); 1181 arch_smt_update(); 1182 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1183 return ret; 1184 } 1185 1186 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1187 { 1188 if (cpu_hotplug_disabled) 1189 return -EBUSY; 1190 return _cpu_down(cpu, 0, target); 1191 } 1192 1193 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1194 { 1195 int err; 1196 1197 cpu_maps_update_begin(); 1198 err = cpu_down_maps_locked(cpu, target); 1199 cpu_maps_update_done(); 1200 return err; 1201 } 1202 1203 /** 1204 * cpu_device_down - Bring down a cpu device 1205 * @dev: Pointer to the cpu device to offline 1206 * 1207 * This function is meant to be used by device core cpu subsystem only. 1208 * 1209 * Other subsystems should use remove_cpu() instead. 1210 * 1211 * Return: %0 on success or a negative errno code 1212 */ 1213 int cpu_device_down(struct device *dev) 1214 { 1215 return cpu_down(dev->id, CPUHP_OFFLINE); 1216 } 1217 1218 int remove_cpu(unsigned int cpu) 1219 { 1220 int ret; 1221 1222 lock_device_hotplug(); 1223 ret = device_offline(get_cpu_device(cpu)); 1224 unlock_device_hotplug(); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL_GPL(remove_cpu); 1229 1230 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1231 { 1232 unsigned int cpu; 1233 int error; 1234 1235 cpu_maps_update_begin(); 1236 1237 /* 1238 * Make certain the cpu I'm about to reboot on is online. 1239 * 1240 * This is inline to what migrate_to_reboot_cpu() already do. 1241 */ 1242 if (!cpu_online(primary_cpu)) 1243 primary_cpu = cpumask_first(cpu_online_mask); 1244 1245 for_each_online_cpu(cpu) { 1246 if (cpu == primary_cpu) 1247 continue; 1248 1249 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1250 if (error) { 1251 pr_err("Failed to offline CPU%d - error=%d", 1252 cpu, error); 1253 break; 1254 } 1255 } 1256 1257 /* 1258 * Ensure all but the reboot CPU are offline. 1259 */ 1260 BUG_ON(num_online_cpus() > 1); 1261 1262 /* 1263 * Make sure the CPUs won't be enabled by someone else after this 1264 * point. Kexec will reboot to a new kernel shortly resetting 1265 * everything along the way. 1266 */ 1267 cpu_hotplug_disabled++; 1268 1269 cpu_maps_update_done(); 1270 } 1271 1272 #else 1273 #define takedown_cpu NULL 1274 #endif /*CONFIG_HOTPLUG_CPU*/ 1275 1276 /** 1277 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1278 * @cpu: cpu that just started 1279 * 1280 * It must be called by the arch code on the new cpu, before the new cpu 1281 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1282 */ 1283 void notify_cpu_starting(unsigned int cpu) 1284 { 1285 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1286 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1287 int ret; 1288 1289 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1290 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1291 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1292 1293 /* 1294 * STARTING must not fail! 1295 */ 1296 WARN_ON_ONCE(ret); 1297 } 1298 1299 /* 1300 * Called from the idle task. Wake up the controlling task which brings the 1301 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1302 * online bringup to the hotplug thread. 1303 */ 1304 void cpuhp_online_idle(enum cpuhp_state state) 1305 { 1306 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1307 1308 /* Happens for the boot cpu */ 1309 if (state != CPUHP_AP_ONLINE_IDLE) 1310 return; 1311 1312 /* 1313 * Unpart the stopper thread before we start the idle loop (and start 1314 * scheduling); this ensures the stopper task is always available. 1315 */ 1316 stop_machine_unpark(smp_processor_id()); 1317 1318 st->state = CPUHP_AP_ONLINE_IDLE; 1319 complete_ap_thread(st, true); 1320 } 1321 1322 /* Requires cpu_add_remove_lock to be held */ 1323 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1324 { 1325 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1326 struct task_struct *idle; 1327 int ret = 0; 1328 1329 cpus_write_lock(); 1330 1331 if (!cpu_present(cpu)) { 1332 ret = -EINVAL; 1333 goto out; 1334 } 1335 1336 /* 1337 * The caller of cpu_up() might have raced with another 1338 * caller. Nothing to do. 1339 */ 1340 if (st->state >= target) 1341 goto out; 1342 1343 if (st->state == CPUHP_OFFLINE) { 1344 /* Let it fail before we try to bring the cpu up */ 1345 idle = idle_thread_get(cpu); 1346 if (IS_ERR(idle)) { 1347 ret = PTR_ERR(idle); 1348 goto out; 1349 } 1350 } 1351 1352 cpuhp_tasks_frozen = tasks_frozen; 1353 1354 cpuhp_set_state(st, target); 1355 /* 1356 * If the current CPU state is in the range of the AP hotplug thread, 1357 * then we need to kick the thread once more. 1358 */ 1359 if (st->state > CPUHP_BRINGUP_CPU) { 1360 ret = cpuhp_kick_ap_work(cpu); 1361 /* 1362 * The AP side has done the error rollback already. Just 1363 * return the error code.. 1364 */ 1365 if (ret) 1366 goto out; 1367 } 1368 1369 /* 1370 * Try to reach the target state. We max out on the BP at 1371 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1372 * responsible for bringing it up to the target state. 1373 */ 1374 target = min((int)target, CPUHP_BRINGUP_CPU); 1375 ret = cpuhp_up_callbacks(cpu, st, target); 1376 out: 1377 cpus_write_unlock(); 1378 arch_smt_update(); 1379 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1380 return ret; 1381 } 1382 1383 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1384 { 1385 int err = 0; 1386 1387 if (!cpu_possible(cpu)) { 1388 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1389 cpu); 1390 #if defined(CONFIG_IA64) 1391 pr_err("please check additional_cpus= boot parameter\n"); 1392 #endif 1393 return -EINVAL; 1394 } 1395 1396 err = try_online_node(cpu_to_node(cpu)); 1397 if (err) 1398 return err; 1399 1400 cpu_maps_update_begin(); 1401 1402 if (cpu_hotplug_disabled) { 1403 err = -EBUSY; 1404 goto out; 1405 } 1406 if (!cpu_smt_allowed(cpu)) { 1407 err = -EPERM; 1408 goto out; 1409 } 1410 1411 err = _cpu_up(cpu, 0, target); 1412 out: 1413 cpu_maps_update_done(); 1414 return err; 1415 } 1416 1417 /** 1418 * cpu_device_up - Bring up a cpu device 1419 * @dev: Pointer to the cpu device to online 1420 * 1421 * This function is meant to be used by device core cpu subsystem only. 1422 * 1423 * Other subsystems should use add_cpu() instead. 1424 * 1425 * Return: %0 on success or a negative errno code 1426 */ 1427 int cpu_device_up(struct device *dev) 1428 { 1429 return cpu_up(dev->id, CPUHP_ONLINE); 1430 } 1431 1432 int add_cpu(unsigned int cpu) 1433 { 1434 int ret; 1435 1436 lock_device_hotplug(); 1437 ret = device_online(get_cpu_device(cpu)); 1438 unlock_device_hotplug(); 1439 1440 return ret; 1441 } 1442 EXPORT_SYMBOL_GPL(add_cpu); 1443 1444 /** 1445 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1446 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1447 * 1448 * On some architectures like arm64, we can hibernate on any CPU, but on 1449 * wake up the CPU we hibernated on might be offline as a side effect of 1450 * using maxcpus= for example. 1451 * 1452 * Return: %0 on success or a negative errno code 1453 */ 1454 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1455 { 1456 int ret; 1457 1458 if (!cpu_online(sleep_cpu)) { 1459 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1460 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1461 if (ret) { 1462 pr_err("Failed to bring hibernate-CPU up!\n"); 1463 return ret; 1464 } 1465 } 1466 return 0; 1467 } 1468 1469 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1470 { 1471 unsigned int cpu; 1472 1473 for_each_present_cpu(cpu) { 1474 if (num_online_cpus() >= setup_max_cpus) 1475 break; 1476 if (!cpu_online(cpu)) 1477 cpu_up(cpu, CPUHP_ONLINE); 1478 } 1479 } 1480 1481 #ifdef CONFIG_PM_SLEEP_SMP 1482 static cpumask_var_t frozen_cpus; 1483 1484 int freeze_secondary_cpus(int primary) 1485 { 1486 int cpu, error = 0; 1487 1488 cpu_maps_update_begin(); 1489 if (primary == -1) { 1490 primary = cpumask_first(cpu_online_mask); 1491 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1492 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1493 } else { 1494 if (!cpu_online(primary)) 1495 primary = cpumask_first(cpu_online_mask); 1496 } 1497 1498 /* 1499 * We take down all of the non-boot CPUs in one shot to avoid races 1500 * with the userspace trying to use the CPU hotplug at the same time 1501 */ 1502 cpumask_clear(frozen_cpus); 1503 1504 pr_info("Disabling non-boot CPUs ...\n"); 1505 for_each_online_cpu(cpu) { 1506 if (cpu == primary) 1507 continue; 1508 1509 if (pm_wakeup_pending()) { 1510 pr_info("Wakeup pending. Abort CPU freeze\n"); 1511 error = -EBUSY; 1512 break; 1513 } 1514 1515 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1516 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1517 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1518 if (!error) 1519 cpumask_set_cpu(cpu, frozen_cpus); 1520 else { 1521 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1522 break; 1523 } 1524 } 1525 1526 if (!error) 1527 BUG_ON(num_online_cpus() > 1); 1528 else 1529 pr_err("Non-boot CPUs are not disabled\n"); 1530 1531 /* 1532 * Make sure the CPUs won't be enabled by someone else. We need to do 1533 * this even in case of failure as all freeze_secondary_cpus() users are 1534 * supposed to do thaw_secondary_cpus() on the failure path. 1535 */ 1536 cpu_hotplug_disabled++; 1537 1538 cpu_maps_update_done(); 1539 return error; 1540 } 1541 1542 void __weak arch_thaw_secondary_cpus_begin(void) 1543 { 1544 } 1545 1546 void __weak arch_thaw_secondary_cpus_end(void) 1547 { 1548 } 1549 1550 void thaw_secondary_cpus(void) 1551 { 1552 int cpu, error; 1553 1554 /* Allow everyone to use the CPU hotplug again */ 1555 cpu_maps_update_begin(); 1556 __cpu_hotplug_enable(); 1557 if (cpumask_empty(frozen_cpus)) 1558 goto out; 1559 1560 pr_info("Enabling non-boot CPUs ...\n"); 1561 1562 arch_thaw_secondary_cpus_begin(); 1563 1564 for_each_cpu(cpu, frozen_cpus) { 1565 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1566 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1567 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1568 if (!error) { 1569 pr_info("CPU%d is up\n", cpu); 1570 continue; 1571 } 1572 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1573 } 1574 1575 arch_thaw_secondary_cpus_end(); 1576 1577 cpumask_clear(frozen_cpus); 1578 out: 1579 cpu_maps_update_done(); 1580 } 1581 1582 static int __init alloc_frozen_cpus(void) 1583 { 1584 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1585 return -ENOMEM; 1586 return 0; 1587 } 1588 core_initcall(alloc_frozen_cpus); 1589 1590 /* 1591 * When callbacks for CPU hotplug notifications are being executed, we must 1592 * ensure that the state of the system with respect to the tasks being frozen 1593 * or not, as reported by the notification, remains unchanged *throughout the 1594 * duration* of the execution of the callbacks. 1595 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1596 * 1597 * This synchronization is implemented by mutually excluding regular CPU 1598 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1599 * Hibernate notifications. 1600 */ 1601 static int 1602 cpu_hotplug_pm_callback(struct notifier_block *nb, 1603 unsigned long action, void *ptr) 1604 { 1605 switch (action) { 1606 1607 case PM_SUSPEND_PREPARE: 1608 case PM_HIBERNATION_PREPARE: 1609 cpu_hotplug_disable(); 1610 break; 1611 1612 case PM_POST_SUSPEND: 1613 case PM_POST_HIBERNATION: 1614 cpu_hotplug_enable(); 1615 break; 1616 1617 default: 1618 return NOTIFY_DONE; 1619 } 1620 1621 return NOTIFY_OK; 1622 } 1623 1624 1625 static int __init cpu_hotplug_pm_sync_init(void) 1626 { 1627 /* 1628 * cpu_hotplug_pm_callback has higher priority than x86 1629 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1630 * to disable cpu hotplug to avoid cpu hotplug race. 1631 */ 1632 pm_notifier(cpu_hotplug_pm_callback, 0); 1633 return 0; 1634 } 1635 core_initcall(cpu_hotplug_pm_sync_init); 1636 1637 #endif /* CONFIG_PM_SLEEP_SMP */ 1638 1639 int __boot_cpu_id; 1640 1641 #endif /* CONFIG_SMP */ 1642 1643 /* Boot processor state steps */ 1644 static struct cpuhp_step cpuhp_hp_states[] = { 1645 [CPUHP_OFFLINE] = { 1646 .name = "offline", 1647 .startup.single = NULL, 1648 .teardown.single = NULL, 1649 }, 1650 #ifdef CONFIG_SMP 1651 [CPUHP_CREATE_THREADS]= { 1652 .name = "threads:prepare", 1653 .startup.single = smpboot_create_threads, 1654 .teardown.single = NULL, 1655 .cant_stop = true, 1656 }, 1657 [CPUHP_PERF_PREPARE] = { 1658 .name = "perf:prepare", 1659 .startup.single = perf_event_init_cpu, 1660 .teardown.single = perf_event_exit_cpu, 1661 }, 1662 [CPUHP_WORKQUEUE_PREP] = { 1663 .name = "workqueue:prepare", 1664 .startup.single = workqueue_prepare_cpu, 1665 .teardown.single = NULL, 1666 }, 1667 [CPUHP_HRTIMERS_PREPARE] = { 1668 .name = "hrtimers:prepare", 1669 .startup.single = hrtimers_prepare_cpu, 1670 .teardown.single = hrtimers_dead_cpu, 1671 }, 1672 [CPUHP_SMPCFD_PREPARE] = { 1673 .name = "smpcfd:prepare", 1674 .startup.single = smpcfd_prepare_cpu, 1675 .teardown.single = smpcfd_dead_cpu, 1676 }, 1677 [CPUHP_RELAY_PREPARE] = { 1678 .name = "relay:prepare", 1679 .startup.single = relay_prepare_cpu, 1680 .teardown.single = NULL, 1681 }, 1682 [CPUHP_SLAB_PREPARE] = { 1683 .name = "slab:prepare", 1684 .startup.single = slab_prepare_cpu, 1685 .teardown.single = slab_dead_cpu, 1686 }, 1687 [CPUHP_RCUTREE_PREP] = { 1688 .name = "RCU/tree:prepare", 1689 .startup.single = rcutree_prepare_cpu, 1690 .teardown.single = rcutree_dead_cpu, 1691 }, 1692 /* 1693 * On the tear-down path, timers_dead_cpu() must be invoked 1694 * before blk_mq_queue_reinit_notify() from notify_dead(), 1695 * otherwise a RCU stall occurs. 1696 */ 1697 [CPUHP_TIMERS_PREPARE] = { 1698 .name = "timers:prepare", 1699 .startup.single = timers_prepare_cpu, 1700 .teardown.single = timers_dead_cpu, 1701 }, 1702 /* Kicks the plugged cpu into life */ 1703 [CPUHP_BRINGUP_CPU] = { 1704 .name = "cpu:bringup", 1705 .startup.single = bringup_cpu, 1706 .teardown.single = finish_cpu, 1707 .cant_stop = true, 1708 }, 1709 /* Final state before CPU kills itself */ 1710 [CPUHP_AP_IDLE_DEAD] = { 1711 .name = "idle:dead", 1712 }, 1713 /* 1714 * Last state before CPU enters the idle loop to die. Transient state 1715 * for synchronization. 1716 */ 1717 [CPUHP_AP_OFFLINE] = { 1718 .name = "ap:offline", 1719 .cant_stop = true, 1720 }, 1721 /* First state is scheduler control. Interrupts are disabled */ 1722 [CPUHP_AP_SCHED_STARTING] = { 1723 .name = "sched:starting", 1724 .startup.single = sched_cpu_starting, 1725 .teardown.single = sched_cpu_dying, 1726 }, 1727 [CPUHP_AP_RCUTREE_DYING] = { 1728 .name = "RCU/tree:dying", 1729 .startup.single = NULL, 1730 .teardown.single = rcutree_dying_cpu, 1731 }, 1732 [CPUHP_AP_SMPCFD_DYING] = { 1733 .name = "smpcfd:dying", 1734 .startup.single = NULL, 1735 .teardown.single = smpcfd_dying_cpu, 1736 }, 1737 /* Entry state on starting. Interrupts enabled from here on. Transient 1738 * state for synchronsization */ 1739 [CPUHP_AP_ONLINE] = { 1740 .name = "ap:online", 1741 }, 1742 /* 1743 * Handled on control processor until the plugged processor manages 1744 * this itself. 1745 */ 1746 [CPUHP_TEARDOWN_CPU] = { 1747 .name = "cpu:teardown", 1748 .startup.single = NULL, 1749 .teardown.single = takedown_cpu, 1750 .cant_stop = true, 1751 }, 1752 1753 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1754 .name = "sched:waitempty", 1755 .startup.single = NULL, 1756 .teardown.single = sched_cpu_wait_empty, 1757 }, 1758 1759 /* Handle smpboot threads park/unpark */ 1760 [CPUHP_AP_SMPBOOT_THREADS] = { 1761 .name = "smpboot/threads:online", 1762 .startup.single = smpboot_unpark_threads, 1763 .teardown.single = smpboot_park_threads, 1764 }, 1765 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1766 .name = "irq/affinity:online", 1767 .startup.single = irq_affinity_online_cpu, 1768 .teardown.single = NULL, 1769 }, 1770 [CPUHP_AP_PERF_ONLINE] = { 1771 .name = "perf:online", 1772 .startup.single = perf_event_init_cpu, 1773 .teardown.single = perf_event_exit_cpu, 1774 }, 1775 [CPUHP_AP_WATCHDOG_ONLINE] = { 1776 .name = "lockup_detector:online", 1777 .startup.single = lockup_detector_online_cpu, 1778 .teardown.single = lockup_detector_offline_cpu, 1779 }, 1780 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1781 .name = "workqueue:online", 1782 .startup.single = workqueue_online_cpu, 1783 .teardown.single = workqueue_offline_cpu, 1784 }, 1785 [CPUHP_AP_RCUTREE_ONLINE] = { 1786 .name = "RCU/tree:online", 1787 .startup.single = rcutree_online_cpu, 1788 .teardown.single = rcutree_offline_cpu, 1789 }, 1790 #endif 1791 /* 1792 * The dynamically registered state space is here 1793 */ 1794 1795 #ifdef CONFIG_SMP 1796 /* Last state is scheduler control setting the cpu active */ 1797 [CPUHP_AP_ACTIVE] = { 1798 .name = "sched:active", 1799 .startup.single = sched_cpu_activate, 1800 .teardown.single = sched_cpu_deactivate, 1801 }, 1802 #endif 1803 1804 /* CPU is fully up and running. */ 1805 [CPUHP_ONLINE] = { 1806 .name = "online", 1807 .startup.single = NULL, 1808 .teardown.single = NULL, 1809 }, 1810 }; 1811 1812 /* Sanity check for callbacks */ 1813 static int cpuhp_cb_check(enum cpuhp_state state) 1814 { 1815 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1816 return -EINVAL; 1817 return 0; 1818 } 1819 1820 /* 1821 * Returns a free for dynamic slot assignment of the Online state. The states 1822 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1823 * by having no name assigned. 1824 */ 1825 static int cpuhp_reserve_state(enum cpuhp_state state) 1826 { 1827 enum cpuhp_state i, end; 1828 struct cpuhp_step *step; 1829 1830 switch (state) { 1831 case CPUHP_AP_ONLINE_DYN: 1832 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1833 end = CPUHP_AP_ONLINE_DYN_END; 1834 break; 1835 case CPUHP_BP_PREPARE_DYN: 1836 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1837 end = CPUHP_BP_PREPARE_DYN_END; 1838 break; 1839 default: 1840 return -EINVAL; 1841 } 1842 1843 for (i = state; i <= end; i++, step++) { 1844 if (!step->name) 1845 return i; 1846 } 1847 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1848 return -ENOSPC; 1849 } 1850 1851 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1852 int (*startup)(unsigned int cpu), 1853 int (*teardown)(unsigned int cpu), 1854 bool multi_instance) 1855 { 1856 /* (Un)Install the callbacks for further cpu hotplug operations */ 1857 struct cpuhp_step *sp; 1858 int ret = 0; 1859 1860 /* 1861 * If name is NULL, then the state gets removed. 1862 * 1863 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1864 * the first allocation from these dynamic ranges, so the removal 1865 * would trigger a new allocation and clear the wrong (already 1866 * empty) state, leaving the callbacks of the to be cleared state 1867 * dangling, which causes wreckage on the next hotplug operation. 1868 */ 1869 if (name && (state == CPUHP_AP_ONLINE_DYN || 1870 state == CPUHP_BP_PREPARE_DYN)) { 1871 ret = cpuhp_reserve_state(state); 1872 if (ret < 0) 1873 return ret; 1874 state = ret; 1875 } 1876 sp = cpuhp_get_step(state); 1877 if (name && sp->name) 1878 return -EBUSY; 1879 1880 sp->startup.single = startup; 1881 sp->teardown.single = teardown; 1882 sp->name = name; 1883 sp->multi_instance = multi_instance; 1884 INIT_HLIST_HEAD(&sp->list); 1885 return ret; 1886 } 1887 1888 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1889 { 1890 return cpuhp_get_step(state)->teardown.single; 1891 } 1892 1893 /* 1894 * Call the startup/teardown function for a step either on the AP or 1895 * on the current CPU. 1896 */ 1897 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1898 struct hlist_node *node) 1899 { 1900 struct cpuhp_step *sp = cpuhp_get_step(state); 1901 int ret; 1902 1903 /* 1904 * If there's nothing to do, we done. 1905 * Relies on the union for multi_instance. 1906 */ 1907 if (cpuhp_step_empty(bringup, sp)) 1908 return 0; 1909 /* 1910 * The non AP bound callbacks can fail on bringup. On teardown 1911 * e.g. module removal we crash for now. 1912 */ 1913 #ifdef CONFIG_SMP 1914 if (cpuhp_is_ap_state(state)) 1915 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1916 else 1917 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1918 #else 1919 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1920 #endif 1921 BUG_ON(ret && !bringup); 1922 return ret; 1923 } 1924 1925 /* 1926 * Called from __cpuhp_setup_state on a recoverable failure. 1927 * 1928 * Note: The teardown callbacks for rollback are not allowed to fail! 1929 */ 1930 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1931 struct hlist_node *node) 1932 { 1933 int cpu; 1934 1935 /* Roll back the already executed steps on the other cpus */ 1936 for_each_present_cpu(cpu) { 1937 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1938 int cpustate = st->state; 1939 1940 if (cpu >= failedcpu) 1941 break; 1942 1943 /* Did we invoke the startup call on that cpu ? */ 1944 if (cpustate >= state) 1945 cpuhp_issue_call(cpu, state, false, node); 1946 } 1947 } 1948 1949 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1950 struct hlist_node *node, 1951 bool invoke) 1952 { 1953 struct cpuhp_step *sp; 1954 int cpu; 1955 int ret; 1956 1957 lockdep_assert_cpus_held(); 1958 1959 sp = cpuhp_get_step(state); 1960 if (sp->multi_instance == false) 1961 return -EINVAL; 1962 1963 mutex_lock(&cpuhp_state_mutex); 1964 1965 if (!invoke || !sp->startup.multi) 1966 goto add_node; 1967 1968 /* 1969 * Try to call the startup callback for each present cpu 1970 * depending on the hotplug state of the cpu. 1971 */ 1972 for_each_present_cpu(cpu) { 1973 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1974 int cpustate = st->state; 1975 1976 if (cpustate < state) 1977 continue; 1978 1979 ret = cpuhp_issue_call(cpu, state, true, node); 1980 if (ret) { 1981 if (sp->teardown.multi) 1982 cpuhp_rollback_install(cpu, state, node); 1983 goto unlock; 1984 } 1985 } 1986 add_node: 1987 ret = 0; 1988 hlist_add_head(node, &sp->list); 1989 unlock: 1990 mutex_unlock(&cpuhp_state_mutex); 1991 return ret; 1992 } 1993 1994 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1995 bool invoke) 1996 { 1997 int ret; 1998 1999 cpus_read_lock(); 2000 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2001 cpus_read_unlock(); 2002 return ret; 2003 } 2004 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2005 2006 /** 2007 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2008 * @state: The state to setup 2009 * @name: Name of the step 2010 * @invoke: If true, the startup function is invoked for cpus where 2011 * cpu state >= @state 2012 * @startup: startup callback function 2013 * @teardown: teardown callback function 2014 * @multi_instance: State is set up for multiple instances which get 2015 * added afterwards. 2016 * 2017 * The caller needs to hold cpus read locked while calling this function. 2018 * Return: 2019 * On success: 2020 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2021 * 0 for all other states 2022 * On failure: proper (negative) error code 2023 */ 2024 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2025 const char *name, bool invoke, 2026 int (*startup)(unsigned int cpu), 2027 int (*teardown)(unsigned int cpu), 2028 bool multi_instance) 2029 { 2030 int cpu, ret = 0; 2031 bool dynstate; 2032 2033 lockdep_assert_cpus_held(); 2034 2035 if (cpuhp_cb_check(state) || !name) 2036 return -EINVAL; 2037 2038 mutex_lock(&cpuhp_state_mutex); 2039 2040 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2041 multi_instance); 2042 2043 dynstate = state == CPUHP_AP_ONLINE_DYN; 2044 if (ret > 0 && dynstate) { 2045 state = ret; 2046 ret = 0; 2047 } 2048 2049 if (ret || !invoke || !startup) 2050 goto out; 2051 2052 /* 2053 * Try to call the startup callback for each present cpu 2054 * depending on the hotplug state of the cpu. 2055 */ 2056 for_each_present_cpu(cpu) { 2057 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2058 int cpustate = st->state; 2059 2060 if (cpustate < state) 2061 continue; 2062 2063 ret = cpuhp_issue_call(cpu, state, true, NULL); 2064 if (ret) { 2065 if (teardown) 2066 cpuhp_rollback_install(cpu, state, NULL); 2067 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2068 goto out; 2069 } 2070 } 2071 out: 2072 mutex_unlock(&cpuhp_state_mutex); 2073 /* 2074 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2075 * dynamically allocated state in case of success. 2076 */ 2077 if (!ret && dynstate) 2078 return state; 2079 return ret; 2080 } 2081 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2082 2083 int __cpuhp_setup_state(enum cpuhp_state state, 2084 const char *name, bool invoke, 2085 int (*startup)(unsigned int cpu), 2086 int (*teardown)(unsigned int cpu), 2087 bool multi_instance) 2088 { 2089 int ret; 2090 2091 cpus_read_lock(); 2092 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2093 teardown, multi_instance); 2094 cpus_read_unlock(); 2095 return ret; 2096 } 2097 EXPORT_SYMBOL(__cpuhp_setup_state); 2098 2099 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2100 struct hlist_node *node, bool invoke) 2101 { 2102 struct cpuhp_step *sp = cpuhp_get_step(state); 2103 int cpu; 2104 2105 BUG_ON(cpuhp_cb_check(state)); 2106 2107 if (!sp->multi_instance) 2108 return -EINVAL; 2109 2110 cpus_read_lock(); 2111 mutex_lock(&cpuhp_state_mutex); 2112 2113 if (!invoke || !cpuhp_get_teardown_cb(state)) 2114 goto remove; 2115 /* 2116 * Call the teardown callback for each present cpu depending 2117 * on the hotplug state of the cpu. This function is not 2118 * allowed to fail currently! 2119 */ 2120 for_each_present_cpu(cpu) { 2121 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2122 int cpustate = st->state; 2123 2124 if (cpustate >= state) 2125 cpuhp_issue_call(cpu, state, false, node); 2126 } 2127 2128 remove: 2129 hlist_del(node); 2130 mutex_unlock(&cpuhp_state_mutex); 2131 cpus_read_unlock(); 2132 2133 return 0; 2134 } 2135 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2136 2137 /** 2138 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2139 * @state: The state to remove 2140 * @invoke: If true, the teardown function is invoked for cpus where 2141 * cpu state >= @state 2142 * 2143 * The caller needs to hold cpus read locked while calling this function. 2144 * The teardown callback is currently not allowed to fail. Think 2145 * about module removal! 2146 */ 2147 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2148 { 2149 struct cpuhp_step *sp = cpuhp_get_step(state); 2150 int cpu; 2151 2152 BUG_ON(cpuhp_cb_check(state)); 2153 2154 lockdep_assert_cpus_held(); 2155 2156 mutex_lock(&cpuhp_state_mutex); 2157 if (sp->multi_instance) { 2158 WARN(!hlist_empty(&sp->list), 2159 "Error: Removing state %d which has instances left.\n", 2160 state); 2161 goto remove; 2162 } 2163 2164 if (!invoke || !cpuhp_get_teardown_cb(state)) 2165 goto remove; 2166 2167 /* 2168 * Call the teardown callback for each present cpu depending 2169 * on the hotplug state of the cpu. This function is not 2170 * allowed to fail currently! 2171 */ 2172 for_each_present_cpu(cpu) { 2173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2174 int cpustate = st->state; 2175 2176 if (cpustate >= state) 2177 cpuhp_issue_call(cpu, state, false, NULL); 2178 } 2179 remove: 2180 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2181 mutex_unlock(&cpuhp_state_mutex); 2182 } 2183 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2184 2185 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2186 { 2187 cpus_read_lock(); 2188 __cpuhp_remove_state_cpuslocked(state, invoke); 2189 cpus_read_unlock(); 2190 } 2191 EXPORT_SYMBOL(__cpuhp_remove_state); 2192 2193 #ifdef CONFIG_HOTPLUG_SMT 2194 static void cpuhp_offline_cpu_device(unsigned int cpu) 2195 { 2196 struct device *dev = get_cpu_device(cpu); 2197 2198 dev->offline = true; 2199 /* Tell user space about the state change */ 2200 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2201 } 2202 2203 static void cpuhp_online_cpu_device(unsigned int cpu) 2204 { 2205 struct device *dev = get_cpu_device(cpu); 2206 2207 dev->offline = false; 2208 /* Tell user space about the state change */ 2209 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2210 } 2211 2212 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2213 { 2214 int cpu, ret = 0; 2215 2216 cpu_maps_update_begin(); 2217 for_each_online_cpu(cpu) { 2218 if (topology_is_primary_thread(cpu)) 2219 continue; 2220 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2221 if (ret) 2222 break; 2223 /* 2224 * As this needs to hold the cpu maps lock it's impossible 2225 * to call device_offline() because that ends up calling 2226 * cpu_down() which takes cpu maps lock. cpu maps lock 2227 * needs to be held as this might race against in kernel 2228 * abusers of the hotplug machinery (thermal management). 2229 * 2230 * So nothing would update device:offline state. That would 2231 * leave the sysfs entry stale and prevent onlining after 2232 * smt control has been changed to 'off' again. This is 2233 * called under the sysfs hotplug lock, so it is properly 2234 * serialized against the regular offline usage. 2235 */ 2236 cpuhp_offline_cpu_device(cpu); 2237 } 2238 if (!ret) 2239 cpu_smt_control = ctrlval; 2240 cpu_maps_update_done(); 2241 return ret; 2242 } 2243 2244 int cpuhp_smt_enable(void) 2245 { 2246 int cpu, ret = 0; 2247 2248 cpu_maps_update_begin(); 2249 cpu_smt_control = CPU_SMT_ENABLED; 2250 for_each_present_cpu(cpu) { 2251 /* Skip online CPUs and CPUs on offline nodes */ 2252 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2253 continue; 2254 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2255 if (ret) 2256 break; 2257 /* See comment in cpuhp_smt_disable() */ 2258 cpuhp_online_cpu_device(cpu); 2259 } 2260 cpu_maps_update_done(); 2261 return ret; 2262 } 2263 #endif 2264 2265 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2266 static ssize_t state_show(struct device *dev, 2267 struct device_attribute *attr, char *buf) 2268 { 2269 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2270 2271 return sprintf(buf, "%d\n", st->state); 2272 } 2273 static DEVICE_ATTR_RO(state); 2274 2275 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2276 const char *buf, size_t count) 2277 { 2278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2279 struct cpuhp_step *sp; 2280 int target, ret; 2281 2282 ret = kstrtoint(buf, 10, &target); 2283 if (ret) 2284 return ret; 2285 2286 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2287 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2288 return -EINVAL; 2289 #else 2290 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2291 return -EINVAL; 2292 #endif 2293 2294 ret = lock_device_hotplug_sysfs(); 2295 if (ret) 2296 return ret; 2297 2298 mutex_lock(&cpuhp_state_mutex); 2299 sp = cpuhp_get_step(target); 2300 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2301 mutex_unlock(&cpuhp_state_mutex); 2302 if (ret) 2303 goto out; 2304 2305 if (st->state < target) 2306 ret = cpu_up(dev->id, target); 2307 else 2308 ret = cpu_down(dev->id, target); 2309 out: 2310 unlock_device_hotplug(); 2311 return ret ? ret : count; 2312 } 2313 2314 static ssize_t target_show(struct device *dev, 2315 struct device_attribute *attr, char *buf) 2316 { 2317 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2318 2319 return sprintf(buf, "%d\n", st->target); 2320 } 2321 static DEVICE_ATTR_RW(target); 2322 2323 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2324 const char *buf, size_t count) 2325 { 2326 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2327 struct cpuhp_step *sp; 2328 int fail, ret; 2329 2330 ret = kstrtoint(buf, 10, &fail); 2331 if (ret) 2332 return ret; 2333 2334 if (fail == CPUHP_INVALID) { 2335 st->fail = fail; 2336 return count; 2337 } 2338 2339 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2340 return -EINVAL; 2341 2342 /* 2343 * Cannot fail STARTING/DYING callbacks. 2344 */ 2345 if (cpuhp_is_atomic_state(fail)) 2346 return -EINVAL; 2347 2348 /* 2349 * DEAD callbacks cannot fail... 2350 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2351 * triggering STARTING callbacks, a failure in this state would 2352 * hinder rollback. 2353 */ 2354 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2355 return -EINVAL; 2356 2357 /* 2358 * Cannot fail anything that doesn't have callbacks. 2359 */ 2360 mutex_lock(&cpuhp_state_mutex); 2361 sp = cpuhp_get_step(fail); 2362 if (!sp->startup.single && !sp->teardown.single) 2363 ret = -EINVAL; 2364 mutex_unlock(&cpuhp_state_mutex); 2365 if (ret) 2366 return ret; 2367 2368 st->fail = fail; 2369 2370 return count; 2371 } 2372 2373 static ssize_t fail_show(struct device *dev, 2374 struct device_attribute *attr, char *buf) 2375 { 2376 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2377 2378 return sprintf(buf, "%d\n", st->fail); 2379 } 2380 2381 static DEVICE_ATTR_RW(fail); 2382 2383 static struct attribute *cpuhp_cpu_attrs[] = { 2384 &dev_attr_state.attr, 2385 &dev_attr_target.attr, 2386 &dev_attr_fail.attr, 2387 NULL 2388 }; 2389 2390 static const struct attribute_group cpuhp_cpu_attr_group = { 2391 .attrs = cpuhp_cpu_attrs, 2392 .name = "hotplug", 2393 NULL 2394 }; 2395 2396 static ssize_t states_show(struct device *dev, 2397 struct device_attribute *attr, char *buf) 2398 { 2399 ssize_t cur, res = 0; 2400 int i; 2401 2402 mutex_lock(&cpuhp_state_mutex); 2403 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2404 struct cpuhp_step *sp = cpuhp_get_step(i); 2405 2406 if (sp->name) { 2407 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2408 buf += cur; 2409 res += cur; 2410 } 2411 } 2412 mutex_unlock(&cpuhp_state_mutex); 2413 return res; 2414 } 2415 static DEVICE_ATTR_RO(states); 2416 2417 static struct attribute *cpuhp_cpu_root_attrs[] = { 2418 &dev_attr_states.attr, 2419 NULL 2420 }; 2421 2422 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2423 .attrs = cpuhp_cpu_root_attrs, 2424 .name = "hotplug", 2425 NULL 2426 }; 2427 2428 #ifdef CONFIG_HOTPLUG_SMT 2429 2430 static ssize_t 2431 __store_smt_control(struct device *dev, struct device_attribute *attr, 2432 const char *buf, size_t count) 2433 { 2434 int ctrlval, ret; 2435 2436 if (sysfs_streq(buf, "on")) 2437 ctrlval = CPU_SMT_ENABLED; 2438 else if (sysfs_streq(buf, "off")) 2439 ctrlval = CPU_SMT_DISABLED; 2440 else if (sysfs_streq(buf, "forceoff")) 2441 ctrlval = CPU_SMT_FORCE_DISABLED; 2442 else 2443 return -EINVAL; 2444 2445 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2446 return -EPERM; 2447 2448 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2449 return -ENODEV; 2450 2451 ret = lock_device_hotplug_sysfs(); 2452 if (ret) 2453 return ret; 2454 2455 if (ctrlval != cpu_smt_control) { 2456 switch (ctrlval) { 2457 case CPU_SMT_ENABLED: 2458 ret = cpuhp_smt_enable(); 2459 break; 2460 case CPU_SMT_DISABLED: 2461 case CPU_SMT_FORCE_DISABLED: 2462 ret = cpuhp_smt_disable(ctrlval); 2463 break; 2464 } 2465 } 2466 2467 unlock_device_hotplug(); 2468 return ret ? ret : count; 2469 } 2470 2471 #else /* !CONFIG_HOTPLUG_SMT */ 2472 static ssize_t 2473 __store_smt_control(struct device *dev, struct device_attribute *attr, 2474 const char *buf, size_t count) 2475 { 2476 return -ENODEV; 2477 } 2478 #endif /* CONFIG_HOTPLUG_SMT */ 2479 2480 static const char *smt_states[] = { 2481 [CPU_SMT_ENABLED] = "on", 2482 [CPU_SMT_DISABLED] = "off", 2483 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2484 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2485 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2486 }; 2487 2488 static ssize_t control_show(struct device *dev, 2489 struct device_attribute *attr, char *buf) 2490 { 2491 const char *state = smt_states[cpu_smt_control]; 2492 2493 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2494 } 2495 2496 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2497 const char *buf, size_t count) 2498 { 2499 return __store_smt_control(dev, attr, buf, count); 2500 } 2501 static DEVICE_ATTR_RW(control); 2502 2503 static ssize_t active_show(struct device *dev, 2504 struct device_attribute *attr, char *buf) 2505 { 2506 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2507 } 2508 static DEVICE_ATTR_RO(active); 2509 2510 static struct attribute *cpuhp_smt_attrs[] = { 2511 &dev_attr_control.attr, 2512 &dev_attr_active.attr, 2513 NULL 2514 }; 2515 2516 static const struct attribute_group cpuhp_smt_attr_group = { 2517 .attrs = cpuhp_smt_attrs, 2518 .name = "smt", 2519 NULL 2520 }; 2521 2522 static int __init cpu_smt_sysfs_init(void) 2523 { 2524 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2525 &cpuhp_smt_attr_group); 2526 } 2527 2528 static int __init cpuhp_sysfs_init(void) 2529 { 2530 int cpu, ret; 2531 2532 ret = cpu_smt_sysfs_init(); 2533 if (ret) 2534 return ret; 2535 2536 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2537 &cpuhp_cpu_root_attr_group); 2538 if (ret) 2539 return ret; 2540 2541 for_each_possible_cpu(cpu) { 2542 struct device *dev = get_cpu_device(cpu); 2543 2544 if (!dev) 2545 continue; 2546 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2547 if (ret) 2548 return ret; 2549 } 2550 return 0; 2551 } 2552 device_initcall(cpuhp_sysfs_init); 2553 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2554 2555 /* 2556 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2557 * represents all NR_CPUS bits binary values of 1<<nr. 2558 * 2559 * It is used by cpumask_of() to get a constant address to a CPU 2560 * mask value that has a single bit set only. 2561 */ 2562 2563 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2564 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2565 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2566 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2567 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2568 2569 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2570 2571 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2572 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2573 #if BITS_PER_LONG > 32 2574 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2575 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2576 #endif 2577 }; 2578 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2579 2580 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2581 EXPORT_SYMBOL(cpu_all_bits); 2582 2583 #ifdef CONFIG_INIT_ALL_POSSIBLE 2584 struct cpumask __cpu_possible_mask __read_mostly 2585 = {CPU_BITS_ALL}; 2586 #else 2587 struct cpumask __cpu_possible_mask __read_mostly; 2588 #endif 2589 EXPORT_SYMBOL(__cpu_possible_mask); 2590 2591 struct cpumask __cpu_online_mask __read_mostly; 2592 EXPORT_SYMBOL(__cpu_online_mask); 2593 2594 struct cpumask __cpu_present_mask __read_mostly; 2595 EXPORT_SYMBOL(__cpu_present_mask); 2596 2597 struct cpumask __cpu_active_mask __read_mostly; 2598 EXPORT_SYMBOL(__cpu_active_mask); 2599 2600 struct cpumask __cpu_dying_mask __read_mostly; 2601 EXPORT_SYMBOL(__cpu_dying_mask); 2602 2603 atomic_t __num_online_cpus __read_mostly; 2604 EXPORT_SYMBOL(__num_online_cpus); 2605 2606 void init_cpu_present(const struct cpumask *src) 2607 { 2608 cpumask_copy(&__cpu_present_mask, src); 2609 } 2610 2611 void init_cpu_possible(const struct cpumask *src) 2612 { 2613 cpumask_copy(&__cpu_possible_mask, src); 2614 } 2615 2616 void init_cpu_online(const struct cpumask *src) 2617 { 2618 cpumask_copy(&__cpu_online_mask, src); 2619 } 2620 2621 void set_cpu_online(unsigned int cpu, bool online) 2622 { 2623 /* 2624 * atomic_inc/dec() is required to handle the horrid abuse of this 2625 * function by the reboot and kexec code which invoke it from 2626 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2627 * regular CPU hotplug is properly serialized. 2628 * 2629 * Note, that the fact that __num_online_cpus is of type atomic_t 2630 * does not protect readers which are not serialized against 2631 * concurrent hotplug operations. 2632 */ 2633 if (online) { 2634 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2635 atomic_inc(&__num_online_cpus); 2636 } else { 2637 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2638 atomic_dec(&__num_online_cpus); 2639 } 2640 } 2641 2642 /* 2643 * Activate the first processor. 2644 */ 2645 void __init boot_cpu_init(void) 2646 { 2647 int cpu = smp_processor_id(); 2648 2649 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2650 set_cpu_online(cpu, true); 2651 set_cpu_active(cpu, true); 2652 set_cpu_present(cpu, true); 2653 set_cpu_possible(cpu, true); 2654 2655 #ifdef CONFIG_SMP 2656 __boot_cpu_id = cpu; 2657 #endif 2658 } 2659 2660 /* 2661 * Must be called _AFTER_ setting up the per_cpu areas 2662 */ 2663 void __init boot_cpu_hotplug_init(void) 2664 { 2665 #ifdef CONFIG_SMP 2666 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2667 #endif 2668 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2669 } 2670 2671 /* 2672 * These are used for a global "mitigations=" cmdline option for toggling 2673 * optional CPU mitigations. 2674 */ 2675 enum cpu_mitigations { 2676 CPU_MITIGATIONS_OFF, 2677 CPU_MITIGATIONS_AUTO, 2678 CPU_MITIGATIONS_AUTO_NOSMT, 2679 }; 2680 2681 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2682 CPU_MITIGATIONS_AUTO; 2683 2684 static int __init mitigations_parse_cmdline(char *arg) 2685 { 2686 if (!strcmp(arg, "off")) 2687 cpu_mitigations = CPU_MITIGATIONS_OFF; 2688 else if (!strcmp(arg, "auto")) 2689 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2690 else if (!strcmp(arg, "auto,nosmt")) 2691 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2692 else 2693 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2694 arg); 2695 2696 return 0; 2697 } 2698 early_param("mitigations", mitigations_parse_cmdline); 2699 2700 /* mitigations=off */ 2701 bool cpu_mitigations_off(void) 2702 { 2703 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2704 } 2705 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2706 2707 /* mitigations=auto,nosmt */ 2708 bool cpu_mitigations_auto_nosmt(void) 2709 { 2710 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2711 } 2712 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2713