xref: /linux/kernel/cpu.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @ap_sync_state:	State for AP synchronization
63  * @done_up:	Signal completion to the issuer of the task for cpu-up
64  * @done_down:	Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67 	enum cpuhp_state	state;
68 	enum cpuhp_state	target;
69 	enum cpuhp_state	fail;
70 #ifdef CONFIG_SMP
71 	struct task_struct	*thread;
72 	bool			should_run;
73 	bool			rollback;
74 	bool			single;
75 	bool			bringup;
76 	struct hlist_node	*node;
77 	struct hlist_node	*last;
78 	enum cpuhp_state	cb_state;
79 	int			result;
80 	atomic_t		ap_sync_state;
81 	struct completion	done_up;
82 	struct completion	done_down;
83 #endif
84 };
85 
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 	.fail = CPUHP_INVALID,
88 };
89 
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93 
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99 
100 
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:	Name of the step
120  * @startup:	Startup function of the step
121  * @teardown:	Teardown function of the step
122  * @cant_stop:	Bringup/teardown can't be stopped at this step
123  * @multi_instance:	State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126 	const char		*name;
127 	union {
128 		int		(*single)(unsigned int cpu);
129 		int		(*multi)(unsigned int cpu,
130 					 struct hlist_node *node);
131 	} startup;
132 	union {
133 		int		(*single)(unsigned int cpu);
134 		int		(*multi)(unsigned int cpu,
135 					 struct hlist_node *node);
136 	} teardown;
137 	/* private: */
138 	struct hlist_head	list;
139 	/* public: */
140 	bool			cant_stop;
141 	bool			multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 	return cpuhp_hp_states + state;
150 }
151 
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 	return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:	The cpu for which the callback should be invoked
160  * @state:	The state to do callbacks for
161  * @bringup:	True if the bringup callback should be invoked
162  * @node:	For multi-instance, do a single entry callback for install/remove
163  * @lastp:	For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 				 bool bringup, struct hlist_node *node,
171 				 struct hlist_node **lastp)
172 {
173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 	struct cpuhp_step *step = cpuhp_get_step(state);
175 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 	int (*cb)(unsigned int cpu);
177 	int ret, cnt;
178 
179 	if (st->fail == state) {
180 		st->fail = CPUHP_INVALID;
181 		return -EAGAIN;
182 	}
183 
184 	if (cpuhp_step_empty(bringup, step)) {
185 		WARN_ON_ONCE(1);
186 		return 0;
187 	}
188 
189 	if (!step->multi_instance) {
190 		WARN_ON_ONCE(lastp && *lastp);
191 		cb = bringup ? step->startup.single : step->teardown.single;
192 
193 		trace_cpuhp_enter(cpu, st->target, state, cb);
194 		ret = cb(cpu);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 	cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200 	/* Single invocation for instance add/remove */
201 	if (node) {
202 		WARN_ON_ONCE(lastp && *lastp);
203 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 		ret = cbm(cpu, node);
205 		trace_cpuhp_exit(cpu, st->state, state, ret);
206 		return ret;
207 	}
208 
209 	/* State transition. Invoke on all instances */
210 	cnt = 0;
211 	hlist_for_each(node, &step->list) {
212 		if (lastp && node == *lastp)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		if (ret) {
219 			if (!lastp)
220 				goto err;
221 
222 			*lastp = node;
223 			return ret;
224 		}
225 		cnt++;
226 	}
227 	if (lastp)
228 		*lastp = NULL;
229 	return 0;
230 err:
231 	/* Rollback the instances if one failed */
232 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 	if (!cbm)
234 		return ret;
235 
236 	hlist_for_each(node, &step->list) {
237 		if (!cnt--)
238 			break;
239 
240 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 		ret = cbm(cpu, node);
242 		trace_cpuhp_exit(cpu, st->state, state, ret);
243 		/*
244 		 * Rollback must not fail,
245 		 */
246 		WARN_ON_ONCE(ret);
247 	}
248 	return ret;
249 }
250 
251 #ifdef CONFIG_SMP
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254 	/*
255 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 	 * purposes as that state is handled explicitly in cpu_down.
257 	 */
258 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260 
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263 	struct completion *done = bringup ? &st->done_up : &st->done_down;
264 	wait_for_completion(done);
265 }
266 
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269 	struct completion *done = bringup ? &st->done_up : &st->done_down;
270 	complete(done);
271 }
272 
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 	SYNC_STATE_DEAD,
284 	SYNC_STATE_KICKED,
285 	SYNC_STATE_SHOULD_DIE,
286 	SYNC_STATE_ALIVE,
287 	SYNC_STATE_SHOULD_ONLINE,
288 	SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:	The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303 	(void)atomic_xchg(st, state);
304 }
305 
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 				      enum cpuhp_sync_state next_state)
310 {
311 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 	ktime_t now, end, start = ktime_get();
313 	int sync;
314 
315 	end = start + 10ULL * NSEC_PER_SEC;
316 
317 	sync = atomic_read(st);
318 	while (1) {
319 		if (sync == state) {
320 			if (!atomic_try_cmpxchg(st, &sync, next_state))
321 				continue;
322 			return true;
323 		}
324 
325 		now = ktime_get();
326 		if (now > end) {
327 			/* Timeout. Leave the state unchanged */
328 			return false;
329 		} else if (now - start < NSEC_PER_MSEC) {
330 			/* Poll for one millisecond */
331 			arch_cpuhp_sync_state_poll();
332 		} else {
333 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 		}
335 		sync = atomic_read(st);
336 	}
337 	return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 	int sync = atomic_read(st);
364 
365 	do {
366 		/* CPU can have reported dead already. Don't overwrite that! */
367 		if (sync == SYNC_STATE_DEAD)
368 			break;
369 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 		/* CPU reached dead state. Invoke the cleanup function */
373 		arch_cpuhp_cleanup_dead_cpu(cpu);
374 		return;
375 	}
376 
377 	/* No further action possible. Emit message and give up. */
378 	pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397 	/* Wait for the control CPU to release it. */
398 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 		cpu_relax();
400 }
401 
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 	int sync = atomic_read(st);
406 
407 again:
408 	switch (sync) {
409 	case SYNC_STATE_DEAD:
410 		/* CPU is properly dead */
411 		break;
412 	case SYNC_STATE_KICKED:
413 		/* CPU did not come up in previous attempt */
414 		break;
415 	case SYNC_STATE_ALIVE:
416 		/* CPU is stuck cpuhp_ap_sync_alive(). */
417 		break;
418 	default:
419 		/* CPU failed to report online or dead and is in limbo state. */
420 		return false;
421 	}
422 
423 	/* Prepare for booting */
424 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 		goto again;
426 
427 	return true;
428 }
429 
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 	int ret = 0;
439 
440 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 		return 0;
442 
443 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 		pr_err("CPU%u failed to report alive state\n", cpu);
445 		ret = -EIO;
446 	}
447 
448 	/* Let the architecture cleanup the kick alive mechanics. */
449 	arch_cpuhp_cleanup_kick_cpu(cpu);
450 	return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468 	mutex_lock(&cpu_add_remove_lock);
469 }
470 
471 void cpu_maps_update_done(void)
472 {
473 	mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487 
488 void cpus_read_lock(void)
489 {
490 	percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 
494 int cpus_read_trylock(void)
495 {
496 	return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 
500 void cpus_read_unlock(void)
501 {
502 	percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 
506 void cpus_write_lock(void)
507 {
508 	percpu_down_write(&cpu_hotplug_lock);
509 }
510 
511 void cpus_write_unlock(void)
512 {
513 	percpu_up_write(&cpu_hotplug_lock);
514 }
515 
516 void lockdep_assert_cpus_held(void)
517 {
518 	/*
519 	 * We can't have hotplug operations before userspace starts running,
520 	 * and some init codepaths will knowingly not take the hotplug lock.
521 	 * This is all valid, so mute lockdep until it makes sense to report
522 	 * unheld locks.
523 	 */
524 	if (system_state < SYSTEM_RUNNING)
525 		return;
526 
527 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 
530 #ifdef CONFIG_LOCKDEP
531 int lockdep_is_cpus_held(void)
532 {
533 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
534 }
535 #endif
536 
537 static void lockdep_acquire_cpus_lock(void)
538 {
539 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
540 }
541 
542 static void lockdep_release_cpus_lock(void)
543 {
544 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
545 }
546 
547 /* Declare CPU offlining not supported */
548 void cpu_hotplug_disable_offlining(void)
549 {
550 	cpu_maps_update_begin();
551 	cpu_hotplug_offline_disabled = true;
552 	cpu_maps_update_done();
553 }
554 
555 /*
556  * Wait for currently running CPU hotplug operations to complete (if any) and
557  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559  * hotplug path before performing hotplug operations. So acquiring that lock
560  * guarantees mutual exclusion from any currently running hotplug operations.
561  */
562 void cpu_hotplug_disable(void)
563 {
564 	cpu_maps_update_begin();
565 	cpu_hotplug_disabled++;
566 	cpu_maps_update_done();
567 }
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
569 
570 static void __cpu_hotplug_enable(void)
571 {
572 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
573 		return;
574 	cpu_hotplug_disabled--;
575 }
576 
577 void cpu_hotplug_enable(void)
578 {
579 	cpu_maps_update_begin();
580 	__cpu_hotplug_enable();
581 	cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
584 
585 #else
586 
587 static void lockdep_acquire_cpus_lock(void)
588 {
589 }
590 
591 static void lockdep_release_cpus_lock(void)
592 {
593 }
594 
595 #endif	/* CONFIG_HOTPLUG_CPU */
596 
597 /*
598  * Architectures that need SMT-specific errata handling during SMT hotplug
599  * should override this.
600  */
601 void __weak arch_smt_update(void) { }
602 
603 #ifdef CONFIG_HOTPLUG_SMT
604 
605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606 static unsigned int cpu_smt_max_threads __ro_after_init;
607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
608 
609 void __init cpu_smt_disable(bool force)
610 {
611 	if (!cpu_smt_possible())
612 		return;
613 
614 	if (force) {
615 		pr_info("SMT: Force disabled\n");
616 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
617 	} else {
618 		pr_info("SMT: disabled\n");
619 		cpu_smt_control = CPU_SMT_DISABLED;
620 	}
621 	cpu_smt_num_threads = 1;
622 }
623 
624 /*
625  * The decision whether SMT is supported can only be done after the full
626  * CPU identification. Called from architecture code.
627  */
628 void __init cpu_smt_set_num_threads(unsigned int num_threads,
629 				    unsigned int max_threads)
630 {
631 	WARN_ON(!num_threads || (num_threads > max_threads));
632 
633 	if (max_threads == 1)
634 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
635 
636 	cpu_smt_max_threads = max_threads;
637 
638 	/*
639 	 * If SMT has been disabled via the kernel command line or SMT is
640 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 	 * If enabled, take the architecture requested number of threads
642 	 * to bring up into account.
643 	 */
644 	if (cpu_smt_control != CPU_SMT_ENABLED)
645 		cpu_smt_num_threads = 1;
646 	else if (num_threads < cpu_smt_num_threads)
647 		cpu_smt_num_threads = num_threads;
648 }
649 
650 static int __init smt_cmdline_disable(char *str)
651 {
652 	cpu_smt_disable(str && !strcmp(str, "force"));
653 	return 0;
654 }
655 early_param("nosmt", smt_cmdline_disable);
656 
657 /*
658  * For Archicture supporting partial SMT states check if the thread is allowed.
659  * Otherwise this has already been checked through cpu_smt_max_threads when
660  * setting the SMT level.
661  */
662 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
663 {
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 	return topology_smt_thread_allowed(cpu);
666 #else
667 	return true;
668 #endif
669 }
670 
671 static inline bool cpu_bootable(unsigned int cpu)
672 {
673 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
674 		return true;
675 
676 	/* All CPUs are bootable if controls are not configured */
677 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
678 		return true;
679 
680 	/* All CPUs are bootable if CPU is not SMT capable */
681 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
682 		return true;
683 
684 	if (topology_is_primary_thread(cpu))
685 		return true;
686 
687 	/*
688 	 * On x86 it's required to boot all logical CPUs at least once so
689 	 * that the init code can get a chance to set CR4.MCE on each
690 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 	 * core will shutdown the machine.
692 	 */
693 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
694 }
695 
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697 bool cpu_smt_possible(void)
698 {
699 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
701 }
702 EXPORT_SYMBOL_GPL(cpu_smt_possible);
703 
704 #else
705 static inline bool cpu_bootable(unsigned int cpu) { return true; }
706 #endif
707 
708 static inline enum cpuhp_state
709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
710 {
711 	enum cpuhp_state prev_state = st->state;
712 	bool bringup = st->state < target;
713 
714 	st->rollback = false;
715 	st->last = NULL;
716 
717 	st->target = target;
718 	st->single = false;
719 	st->bringup = bringup;
720 	if (cpu_dying(cpu) != !bringup)
721 		set_cpu_dying(cpu, !bringup);
722 
723 	return prev_state;
724 }
725 
726 static inline void
727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728 		  enum cpuhp_state prev_state)
729 {
730 	bool bringup = !st->bringup;
731 
732 	st->target = prev_state;
733 
734 	/*
735 	 * Already rolling back. No need invert the bringup value or to change
736 	 * the current state.
737 	 */
738 	if (st->rollback)
739 		return;
740 
741 	st->rollback = true;
742 
743 	/*
744 	 * If we have st->last we need to undo partial multi_instance of this
745 	 * state first. Otherwise start undo at the previous state.
746 	 */
747 	if (!st->last) {
748 		if (st->bringup)
749 			st->state--;
750 		else
751 			st->state++;
752 	}
753 
754 	st->bringup = bringup;
755 	if (cpu_dying(cpu) != !bringup)
756 		set_cpu_dying(cpu, !bringup);
757 }
758 
759 /* Regular hotplug invocation of the AP hotplug thread */
760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
761 {
762 	if (!st->single && st->state == st->target)
763 		return;
764 
765 	st->result = 0;
766 	/*
767 	 * Make sure the above stores are visible before should_run becomes
768 	 * true. Paired with the mb() above in cpuhp_thread_fun()
769 	 */
770 	smp_mb();
771 	st->should_run = true;
772 	wake_up_process(st->thread);
773 	wait_for_ap_thread(st, st->bringup);
774 }
775 
776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777 			 enum cpuhp_state target)
778 {
779 	enum cpuhp_state prev_state;
780 	int ret;
781 
782 	prev_state = cpuhp_set_state(cpu, st, target);
783 	__cpuhp_kick_ap(st);
784 	if ((ret = st->result)) {
785 		cpuhp_reset_state(cpu, st, prev_state);
786 		__cpuhp_kick_ap(st);
787 	}
788 
789 	return ret;
790 }
791 
792 static int bringup_wait_for_ap_online(unsigned int cpu)
793 {
794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 
796 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 	wait_for_ap_thread(st, true);
798 	if (WARN_ON_ONCE((!cpu_online(cpu))))
799 		return -ECANCELED;
800 
801 	/* Unpark the hotplug thread of the target cpu */
802 	kthread_unpark(st->thread);
803 
804 	/*
805 	 * SMT soft disabling on X86 requires to bring the CPU out of the
806 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
807 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 	 * cpu_bootable() check will now return false if this is not the
809 	 * primary sibling.
810 	 */
811 	if (!cpu_bootable(cpu))
812 		return -ECANCELED;
813 	return 0;
814 }
815 
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817 static int cpuhp_kick_ap_alive(unsigned int cpu)
818 {
819 	if (!cpuhp_can_boot_ap(cpu))
820 		return -EAGAIN;
821 
822 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
823 }
824 
825 static int cpuhp_bringup_ap(unsigned int cpu)
826 {
827 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
828 	int ret;
829 
830 	/*
831 	 * Some architectures have to walk the irq descriptors to
832 	 * setup the vector space for the cpu which comes online.
833 	 * Prevent irq alloc/free across the bringup.
834 	 */
835 	irq_lock_sparse();
836 
837 	ret = cpuhp_bp_sync_alive(cpu);
838 	if (ret)
839 		goto out_unlock;
840 
841 	ret = bringup_wait_for_ap_online(cpu);
842 	if (ret)
843 		goto out_unlock;
844 
845 	irq_unlock_sparse();
846 
847 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
848 		return 0;
849 
850 	return cpuhp_kick_ap(cpu, st, st->target);
851 
852 out_unlock:
853 	irq_unlock_sparse();
854 	return ret;
855 }
856 #else
857 static int bringup_cpu(unsigned int cpu)
858 {
859 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 	struct task_struct *idle = idle_thread_get(cpu);
861 	int ret;
862 
863 	if (!cpuhp_can_boot_ap(cpu))
864 		return -EAGAIN;
865 
866 	/*
867 	 * Some architectures have to walk the irq descriptors to
868 	 * setup the vector space for the cpu which comes online.
869 	 *
870 	 * Prevent irq alloc/free across the bringup by acquiring the
871 	 * sparse irq lock. Hold it until the upcoming CPU completes the
872 	 * startup in cpuhp_online_idle() which allows to avoid
873 	 * intermediate synchronization points in the architecture code.
874 	 */
875 	irq_lock_sparse();
876 
877 	ret = __cpu_up(cpu, idle);
878 	if (ret)
879 		goto out_unlock;
880 
881 	ret = cpuhp_bp_sync_alive(cpu);
882 	if (ret)
883 		goto out_unlock;
884 
885 	ret = bringup_wait_for_ap_online(cpu);
886 	if (ret)
887 		goto out_unlock;
888 
889 	irq_unlock_sparse();
890 
891 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
892 		return 0;
893 
894 	return cpuhp_kick_ap(cpu, st, st->target);
895 
896 out_unlock:
897 	irq_unlock_sparse();
898 	return ret;
899 }
900 #endif
901 
902 static int finish_cpu(unsigned int cpu)
903 {
904 	struct task_struct *idle = idle_thread_get(cpu);
905 	struct mm_struct *mm = idle->active_mm;
906 
907 	/*
908 	 * idle_task_exit() will have switched to &init_mm, now
909 	 * clean up any remaining active_mm state.
910 	 */
911 	if (mm != &init_mm)
912 		idle->active_mm = &init_mm;
913 	mmdrop_lazy_tlb(mm);
914 	return 0;
915 }
916 
917 /*
918  * Hotplug state machine related functions
919  */
920 
921 /*
922  * Get the next state to run. Empty ones will be skipped. Returns true if a
923  * state must be run.
924  *
925  * st->state will be modified ahead of time, to match state_to_run, as if it
926  * has already ran.
927  */
928 static bool cpuhp_next_state(bool bringup,
929 			     enum cpuhp_state *state_to_run,
930 			     struct cpuhp_cpu_state *st,
931 			     enum cpuhp_state target)
932 {
933 	do {
934 		if (bringup) {
935 			if (st->state >= target)
936 				return false;
937 
938 			*state_to_run = ++st->state;
939 		} else {
940 			if (st->state <= target)
941 				return false;
942 
943 			*state_to_run = st->state--;
944 		}
945 
946 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
947 			break;
948 	} while (true);
949 
950 	return true;
951 }
952 
953 static int __cpuhp_invoke_callback_range(bool bringup,
954 					 unsigned int cpu,
955 					 struct cpuhp_cpu_state *st,
956 					 enum cpuhp_state target,
957 					 bool nofail)
958 {
959 	enum cpuhp_state state;
960 	int ret = 0;
961 
962 	while (cpuhp_next_state(bringup, &state, st, target)) {
963 		int err;
964 
965 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
966 		if (!err)
967 			continue;
968 
969 		if (nofail) {
970 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971 				cpu, bringup ? "UP" : "DOWN",
972 				cpuhp_get_step(st->state)->name,
973 				st->state, err);
974 			ret = -1;
975 		} else {
976 			ret = err;
977 			break;
978 		}
979 	}
980 
981 	return ret;
982 }
983 
984 static inline int cpuhp_invoke_callback_range(bool bringup,
985 					      unsigned int cpu,
986 					      struct cpuhp_cpu_state *st,
987 					      enum cpuhp_state target)
988 {
989 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
990 }
991 
992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
993 						      unsigned int cpu,
994 						      struct cpuhp_cpu_state *st,
995 						      enum cpuhp_state target)
996 {
997 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
998 }
999 
1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1001 {
1002 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1003 		return true;
1004 	/*
1005 	 * When CPU hotplug is disabled, then taking the CPU down is not
1006 	 * possible because takedown_cpu() and the architecture and
1007 	 * subsystem specific mechanisms are not available. So the CPU
1008 	 * which would be completely unplugged again needs to stay around
1009 	 * in the current state.
1010 	 */
1011 	return st->state <= CPUHP_BRINGUP_CPU;
1012 }
1013 
1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015 			      enum cpuhp_state target)
1016 {
1017 	enum cpuhp_state prev_state = st->state;
1018 	int ret = 0;
1019 
1020 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1021 	if (ret) {
1022 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023 			 ret, cpu, cpuhp_get_step(st->state)->name,
1024 			 st->state);
1025 
1026 		cpuhp_reset_state(cpu, st, prev_state);
1027 		if (can_rollback_cpu(st))
1028 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1029 							    prev_state));
1030 	}
1031 	return ret;
1032 }
1033 
1034 /*
1035  * The cpu hotplug threads manage the bringup and teardown of the cpus
1036  */
1037 static int cpuhp_should_run(unsigned int cpu)
1038 {
1039 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1040 
1041 	return st->should_run;
1042 }
1043 
1044 /*
1045  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046  * callbacks when a state gets [un]installed at runtime.
1047  *
1048  * Each invocation of this function by the smpboot thread does a single AP
1049  * state callback.
1050  *
1051  * It has 3 modes of operation:
1052  *  - single: runs st->cb_state
1053  *  - up:     runs ++st->state, while st->state < st->target
1054  *  - down:   runs st->state--, while st->state > st->target
1055  *
1056  * When complete or on error, should_run is cleared and the completion is fired.
1057  */
1058 static void cpuhp_thread_fun(unsigned int cpu)
1059 {
1060 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061 	bool bringup = st->bringup;
1062 	enum cpuhp_state state;
1063 
1064 	if (WARN_ON_ONCE(!st->should_run))
1065 		return;
1066 
1067 	/*
1068 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069 	 * that if we see ->should_run we also see the rest of the state.
1070 	 */
1071 	smp_mb();
1072 
1073 	/*
1074 	 * The BP holds the hotplug lock, but we're now running on the AP,
1075 	 * ensure that anybody asserting the lock is held, will actually find
1076 	 * it so.
1077 	 */
1078 	lockdep_acquire_cpus_lock();
1079 	cpuhp_lock_acquire(bringup);
1080 
1081 	if (st->single) {
1082 		state = st->cb_state;
1083 		st->should_run = false;
1084 	} else {
1085 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086 		if (!st->should_run)
1087 			goto end;
1088 	}
1089 
1090 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1091 
1092 	if (cpuhp_is_atomic_state(state)) {
1093 		local_irq_disable();
1094 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1095 		local_irq_enable();
1096 
1097 		/*
1098 		 * STARTING/DYING must not fail!
1099 		 */
1100 		WARN_ON_ONCE(st->result);
1101 	} else {
1102 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103 	}
1104 
1105 	if (st->result) {
1106 		/*
1107 		 * If we fail on a rollback, we're up a creek without no
1108 		 * paddle, no way forward, no way back. We loose, thanks for
1109 		 * playing.
1110 		 */
1111 		WARN_ON_ONCE(st->rollback);
1112 		st->should_run = false;
1113 	}
1114 
1115 end:
1116 	cpuhp_lock_release(bringup);
1117 	lockdep_release_cpus_lock();
1118 
1119 	if (!st->should_run)
1120 		complete_ap_thread(st, bringup);
1121 }
1122 
1123 /* Invoke a single callback on a remote cpu */
1124 static int
1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126 			 struct hlist_node *node)
1127 {
1128 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129 	int ret;
1130 
1131 	if (!cpu_online(cpu))
1132 		return 0;
1133 
1134 	cpuhp_lock_acquire(false);
1135 	cpuhp_lock_release(false);
1136 
1137 	cpuhp_lock_acquire(true);
1138 	cpuhp_lock_release(true);
1139 
1140 	/*
1141 	 * If we are up and running, use the hotplug thread. For early calls
1142 	 * we invoke the thread function directly.
1143 	 */
1144 	if (!st->thread)
1145 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1146 
1147 	st->rollback = false;
1148 	st->last = NULL;
1149 
1150 	st->node = node;
1151 	st->bringup = bringup;
1152 	st->cb_state = state;
1153 	st->single = true;
1154 
1155 	__cpuhp_kick_ap(st);
1156 
1157 	/*
1158 	 * If we failed and did a partial, do a rollback.
1159 	 */
1160 	if ((ret = st->result) && st->last) {
1161 		st->rollback = true;
1162 		st->bringup = !bringup;
1163 
1164 		__cpuhp_kick_ap(st);
1165 	}
1166 
1167 	/*
1168 	 * Clean up the leftovers so the next hotplug operation wont use stale
1169 	 * data.
1170 	 */
1171 	st->node = st->last = NULL;
1172 	return ret;
1173 }
1174 
1175 static int cpuhp_kick_ap_work(unsigned int cpu)
1176 {
1177 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178 	enum cpuhp_state prev_state = st->state;
1179 	int ret;
1180 
1181 	cpuhp_lock_acquire(false);
1182 	cpuhp_lock_release(false);
1183 
1184 	cpuhp_lock_acquire(true);
1185 	cpuhp_lock_release(true);
1186 
1187 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188 	ret = cpuhp_kick_ap(cpu, st, st->target);
1189 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1190 
1191 	return ret;
1192 }
1193 
1194 static struct smp_hotplug_thread cpuhp_threads = {
1195 	.store			= &cpuhp_state.thread,
1196 	.thread_should_run	= cpuhp_should_run,
1197 	.thread_fn		= cpuhp_thread_fun,
1198 	.thread_comm		= "cpuhp/%u",
1199 	.selfparking		= true,
1200 };
1201 
1202 static __init void cpuhp_init_state(void)
1203 {
1204 	struct cpuhp_cpu_state *st;
1205 	int cpu;
1206 
1207 	for_each_possible_cpu(cpu) {
1208 		st = per_cpu_ptr(&cpuhp_state, cpu);
1209 		init_completion(&st->done_up);
1210 		init_completion(&st->done_down);
1211 	}
1212 }
1213 
1214 void __init cpuhp_threads_init(void)
1215 {
1216 	cpuhp_init_state();
1217 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1219 }
1220 
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 #ifndef arch_clear_mm_cpumask_cpu
1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1224 #endif
1225 
1226 /**
1227  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1228  * @cpu: a CPU id
1229  *
1230  * This function walks all processes, finds a valid mm struct for each one and
1231  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1232  * trivial, there are various non-obvious corner cases, which this function
1233  * tries to solve in a safe manner.
1234  *
1235  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236  * be called only for an already offlined CPU.
1237  */
1238 void clear_tasks_mm_cpumask(int cpu)
1239 {
1240 	struct task_struct *p;
1241 
1242 	/*
1243 	 * This function is called after the cpu is taken down and marked
1244 	 * offline, so its not like new tasks will ever get this cpu set in
1245 	 * their mm mask. -- Peter Zijlstra
1246 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247 	 * full-fledged tasklist_lock.
1248 	 */
1249 	WARN_ON(cpu_online(cpu));
1250 	rcu_read_lock();
1251 	for_each_process(p) {
1252 		struct task_struct *t;
1253 
1254 		/*
1255 		 * Main thread might exit, but other threads may still have
1256 		 * a valid mm. Find one.
1257 		 */
1258 		t = find_lock_task_mm(p);
1259 		if (!t)
1260 			continue;
1261 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1262 		task_unlock(t);
1263 	}
1264 	rcu_read_unlock();
1265 }
1266 
1267 /* Take this CPU down. */
1268 static int take_cpu_down(void *_param)
1269 {
1270 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272 	int err, cpu = smp_processor_id();
1273 
1274 	/* Ensure this CPU doesn't handle any more interrupts. */
1275 	err = __cpu_disable();
1276 	if (err < 0)
1277 		return err;
1278 
1279 	/*
1280 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1282 	 */
1283 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1284 
1285 	/*
1286 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1287 	 */
1288 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1289 
1290 	/* Park the stopper thread */
1291 	stop_machine_park(cpu);
1292 	return 0;
1293 }
1294 
1295 static int takedown_cpu(unsigned int cpu)
1296 {
1297 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298 	int err;
1299 
1300 	/* Park the smpboot threads */
1301 	kthread_park(st->thread);
1302 
1303 	/*
1304 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1305 	 * interrupt affinities.
1306 	 */
1307 	irq_lock_sparse();
1308 
1309 	/*
1310 	 * So now all preempt/rcu users must observe !cpu_active().
1311 	 */
1312 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313 	if (err) {
1314 		/* CPU refused to die */
1315 		irq_unlock_sparse();
1316 		/* Unpark the hotplug thread so we can rollback there */
1317 		kthread_unpark(st->thread);
1318 		return err;
1319 	}
1320 	BUG_ON(cpu_online(cpu));
1321 
1322 	/*
1323 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324 	 * all runnable tasks from the CPU, there's only the idle task left now
1325 	 * that the migration thread is done doing the stop_machine thing.
1326 	 *
1327 	 * Wait for the stop thread to go away.
1328 	 */
1329 	wait_for_ap_thread(st, false);
1330 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331 
1332 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333 	irq_unlock_sparse();
1334 
1335 	hotplug_cpu__broadcast_tick_pull(cpu);
1336 	/* This actually kills the CPU. */
1337 	__cpu_die(cpu);
1338 
1339 	cpuhp_bp_sync_dead(cpu);
1340 
1341 	tick_cleanup_dead_cpu(cpu);
1342 
1343 	/*
1344 	 * Callbacks must be re-integrated right away to the RCU state machine.
1345 	 * Otherwise an RCU callback could block a further teardown function
1346 	 * waiting for its completion.
1347 	 */
1348 	rcutree_migrate_callbacks(cpu);
1349 
1350 	return 0;
1351 }
1352 
1353 static void cpuhp_complete_idle_dead(void *arg)
1354 {
1355 	struct cpuhp_cpu_state *st = arg;
1356 
1357 	complete_ap_thread(st, false);
1358 }
1359 
1360 void cpuhp_report_idle_dead(void)
1361 {
1362 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1363 
1364 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365 	tick_assert_timekeeping_handover();
1366 	rcutree_report_cpu_dead();
1367 	st->state = CPUHP_AP_IDLE_DEAD;
1368 	/*
1369 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1370 	 * to an online cpu.
1371 	 */
1372 	smp_call_function_single(cpumask_first(cpu_online_mask),
1373 				 cpuhp_complete_idle_dead, st, 0);
1374 }
1375 
1376 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377 				enum cpuhp_state target)
1378 {
1379 	enum cpuhp_state prev_state = st->state;
1380 	int ret = 0;
1381 
1382 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1383 	if (ret) {
1384 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385 			 ret, cpu, cpuhp_get_step(st->state)->name,
1386 			 st->state);
1387 
1388 		cpuhp_reset_state(cpu, st, prev_state);
1389 
1390 		if (st->state < prev_state)
1391 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1392 							    prev_state));
1393 	}
1394 
1395 	return ret;
1396 }
1397 
1398 /* Requires cpu_add_remove_lock to be held */
1399 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400 			   enum cpuhp_state target)
1401 {
1402 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403 	int prev_state, ret = 0;
1404 
1405 	if (num_online_cpus() == 1)
1406 		return -EBUSY;
1407 
1408 	if (!cpu_present(cpu))
1409 		return -EINVAL;
1410 
1411 	cpus_write_lock();
1412 
1413 	cpuhp_tasks_frozen = tasks_frozen;
1414 
1415 	prev_state = cpuhp_set_state(cpu, st, target);
1416 	/*
1417 	 * If the current CPU state is in the range of the AP hotplug thread,
1418 	 * then we need to kick the thread.
1419 	 */
1420 	if (st->state > CPUHP_TEARDOWN_CPU) {
1421 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422 		ret = cpuhp_kick_ap_work(cpu);
1423 		/*
1424 		 * The AP side has done the error rollback already. Just
1425 		 * return the error code..
1426 		 */
1427 		if (ret)
1428 			goto out;
1429 
1430 		/*
1431 		 * We might have stopped still in the range of the AP hotplug
1432 		 * thread. Nothing to do anymore.
1433 		 */
1434 		if (st->state > CPUHP_TEARDOWN_CPU)
1435 			goto out;
1436 
1437 		st->target = target;
1438 	}
1439 	/*
1440 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441 	 * to do the further cleanups.
1442 	 */
1443 	ret = cpuhp_down_callbacks(cpu, st, target);
1444 	if (ret && st->state < prev_state) {
1445 		if (st->state == CPUHP_TEARDOWN_CPU) {
1446 			cpuhp_reset_state(cpu, st, prev_state);
1447 			__cpuhp_kick_ap(st);
1448 		} else {
1449 			WARN(1, "DEAD callback error for CPU%d", cpu);
1450 		}
1451 	}
1452 
1453 out:
1454 	cpus_write_unlock();
1455 	/*
1456 	 * Do post unplug cleanup. This is still protected against
1457 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1458 	 */
1459 	lockup_detector_cleanup();
1460 	arch_smt_update();
1461 	return ret;
1462 }
1463 
1464 struct cpu_down_work {
1465 	unsigned int		cpu;
1466 	enum cpuhp_state	target;
1467 };
1468 
1469 static long __cpu_down_maps_locked(void *arg)
1470 {
1471 	struct cpu_down_work *work = arg;
1472 
1473 	return _cpu_down(work->cpu, 0, work->target);
1474 }
1475 
1476 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1477 {
1478 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1479 
1480 	/*
1481 	 * If the platform does not support hotplug, report it explicitly to
1482 	 * differentiate it from a transient offlining failure.
1483 	 */
1484 	if (cpu_hotplug_offline_disabled)
1485 		return -EOPNOTSUPP;
1486 	if (cpu_hotplug_disabled)
1487 		return -EBUSY;
1488 
1489 	/*
1490 	 * Ensure that the control task does not run on the to be offlined
1491 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1492 	 * Also keep at least one housekeeping cpu onlined to avoid generating
1493 	 * an empty sched_domain span.
1494 	 */
1495 	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1496 		if (cpu != work.cpu)
1497 			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1498 	}
1499 	return -EBUSY;
1500 }
1501 
1502 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1503 {
1504 	int err;
1505 
1506 	cpu_maps_update_begin();
1507 	err = cpu_down_maps_locked(cpu, target);
1508 	cpu_maps_update_done();
1509 	return err;
1510 }
1511 
1512 /**
1513  * cpu_device_down - Bring down a cpu device
1514  * @dev: Pointer to the cpu device to offline
1515  *
1516  * This function is meant to be used by device core cpu subsystem only.
1517  *
1518  * Other subsystems should use remove_cpu() instead.
1519  *
1520  * Return: %0 on success or a negative errno code
1521  */
1522 int cpu_device_down(struct device *dev)
1523 {
1524 	return cpu_down(dev->id, CPUHP_OFFLINE);
1525 }
1526 
1527 int remove_cpu(unsigned int cpu)
1528 {
1529 	int ret;
1530 
1531 	lock_device_hotplug();
1532 	ret = device_offline(get_cpu_device(cpu));
1533 	unlock_device_hotplug();
1534 
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(remove_cpu);
1538 
1539 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1540 {
1541 	unsigned int cpu;
1542 	int error;
1543 
1544 	cpu_maps_update_begin();
1545 
1546 	/*
1547 	 * Make certain the cpu I'm about to reboot on is online.
1548 	 *
1549 	 * This is inline to what migrate_to_reboot_cpu() already do.
1550 	 */
1551 	if (!cpu_online(primary_cpu))
1552 		primary_cpu = cpumask_first(cpu_online_mask);
1553 
1554 	for_each_online_cpu(cpu) {
1555 		if (cpu == primary_cpu)
1556 			continue;
1557 
1558 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1559 		if (error) {
1560 			pr_err("Failed to offline CPU%d - error=%d",
1561 				cpu, error);
1562 			break;
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * Ensure all but the reboot CPU are offline.
1568 	 */
1569 	BUG_ON(num_online_cpus() > 1);
1570 
1571 	/*
1572 	 * Make sure the CPUs won't be enabled by someone else after this
1573 	 * point. Kexec will reboot to a new kernel shortly resetting
1574 	 * everything along the way.
1575 	 */
1576 	cpu_hotplug_disabled++;
1577 
1578 	cpu_maps_update_done();
1579 }
1580 
1581 #else
1582 #define takedown_cpu		NULL
1583 #endif /*CONFIG_HOTPLUG_CPU*/
1584 
1585 /**
1586  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587  * @cpu: cpu that just started
1588  *
1589  * It must be called by the arch code on the new cpu, before the new cpu
1590  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1591  */
1592 void notify_cpu_starting(unsigned int cpu)
1593 {
1594 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1596 
1597 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1598 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1599 
1600 	/*
1601 	 * STARTING must not fail!
1602 	 */
1603 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1604 }
1605 
1606 /*
1607  * Called from the idle task. Wake up the controlling task which brings the
1608  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609  * online bringup to the hotplug thread.
1610  */
1611 void cpuhp_online_idle(enum cpuhp_state state)
1612 {
1613 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1614 
1615 	/* Happens for the boot cpu */
1616 	if (state != CPUHP_AP_ONLINE_IDLE)
1617 		return;
1618 
1619 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1620 
1621 	/*
1622 	 * Unpark the stopper thread before we start the idle loop (and start
1623 	 * scheduling); this ensures the stopper task is always available.
1624 	 */
1625 	stop_machine_unpark(smp_processor_id());
1626 
1627 	st->state = CPUHP_AP_ONLINE_IDLE;
1628 	complete_ap_thread(st, true);
1629 }
1630 
1631 /* Requires cpu_add_remove_lock to be held */
1632 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1633 {
1634 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635 	struct task_struct *idle;
1636 	int ret = 0;
1637 
1638 	cpus_write_lock();
1639 
1640 	if (!cpu_present(cpu)) {
1641 		ret = -EINVAL;
1642 		goto out;
1643 	}
1644 
1645 	/*
1646 	 * The caller of cpu_up() might have raced with another
1647 	 * caller. Nothing to do.
1648 	 */
1649 	if (st->state >= target)
1650 		goto out;
1651 
1652 	if (st->state == CPUHP_OFFLINE) {
1653 		/* Let it fail before we try to bring the cpu up */
1654 		idle = idle_thread_get(cpu);
1655 		if (IS_ERR(idle)) {
1656 			ret = PTR_ERR(idle);
1657 			goto out;
1658 		}
1659 
1660 		/*
1661 		 * Reset stale stack state from the last time this CPU was online.
1662 		 */
1663 		scs_task_reset(idle);
1664 		kasan_unpoison_task_stack(idle);
1665 	}
1666 
1667 	cpuhp_tasks_frozen = tasks_frozen;
1668 
1669 	cpuhp_set_state(cpu, st, target);
1670 	/*
1671 	 * If the current CPU state is in the range of the AP hotplug thread,
1672 	 * then we need to kick the thread once more.
1673 	 */
1674 	if (st->state > CPUHP_BRINGUP_CPU) {
1675 		ret = cpuhp_kick_ap_work(cpu);
1676 		/*
1677 		 * The AP side has done the error rollback already. Just
1678 		 * return the error code..
1679 		 */
1680 		if (ret)
1681 			goto out;
1682 	}
1683 
1684 	/*
1685 	 * Try to reach the target state. We max out on the BP at
1686 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687 	 * responsible for bringing it up to the target state.
1688 	 */
1689 	target = min((int)target, CPUHP_BRINGUP_CPU);
1690 	ret = cpuhp_up_callbacks(cpu, st, target);
1691 out:
1692 	cpus_write_unlock();
1693 	arch_smt_update();
1694 	return ret;
1695 }
1696 
1697 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1698 {
1699 	int err = 0;
1700 
1701 	if (!cpu_possible(cpu)) {
1702 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1703 		       cpu);
1704 		return -EINVAL;
1705 	}
1706 
1707 	err = try_online_node(cpu_to_node(cpu));
1708 	if (err)
1709 		return err;
1710 
1711 	cpu_maps_update_begin();
1712 
1713 	if (cpu_hotplug_disabled) {
1714 		err = -EBUSY;
1715 		goto out;
1716 	}
1717 	if (!cpu_bootable(cpu)) {
1718 		err = -EPERM;
1719 		goto out;
1720 	}
1721 
1722 	err = _cpu_up(cpu, 0, target);
1723 out:
1724 	cpu_maps_update_done();
1725 	return err;
1726 }
1727 
1728 /**
1729  * cpu_device_up - Bring up a cpu device
1730  * @dev: Pointer to the cpu device to online
1731  *
1732  * This function is meant to be used by device core cpu subsystem only.
1733  *
1734  * Other subsystems should use add_cpu() instead.
1735  *
1736  * Return: %0 on success or a negative errno code
1737  */
1738 int cpu_device_up(struct device *dev)
1739 {
1740 	return cpu_up(dev->id, CPUHP_ONLINE);
1741 }
1742 
1743 int add_cpu(unsigned int cpu)
1744 {
1745 	int ret;
1746 
1747 	lock_device_hotplug();
1748 	ret = device_online(get_cpu_device(cpu));
1749 	unlock_device_hotplug();
1750 
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(add_cpu);
1754 
1755 /**
1756  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1758  *
1759  * On some architectures like arm64, we can hibernate on any CPU, but on
1760  * wake up the CPU we hibernated on might be offline as a side effect of
1761  * using maxcpus= for example.
1762  *
1763  * Return: %0 on success or a negative errno code
1764  */
1765 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1766 {
1767 	int ret;
1768 
1769 	if (!cpu_online(sleep_cpu)) {
1770 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1772 		if (ret) {
1773 			pr_err("Failed to bring hibernate-CPU up!\n");
1774 			return ret;
1775 		}
1776 	}
1777 	return 0;
1778 }
1779 
1780 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1781 				      enum cpuhp_state target)
1782 {
1783 	unsigned int cpu;
1784 
1785 	for_each_cpu(cpu, mask) {
1786 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1787 
1788 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1789 			/*
1790 			 * If this failed then cpu_up() might have only
1791 			 * rolled back to CPUHP_BP_KICK_AP for the final
1792 			 * online. Clean it up. NOOP if already rolled back.
1793 			 */
1794 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1795 		}
1796 
1797 		if (!--ncpus)
1798 			break;
1799 	}
1800 }
1801 
1802 #ifdef CONFIG_HOTPLUG_PARALLEL
1803 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1804 
1805 static int __init parallel_bringup_parse_param(char *arg)
1806 {
1807 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1808 }
1809 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1810 
1811 #ifdef CONFIG_HOTPLUG_SMT
1812 static inline bool cpuhp_smt_aware(void)
1813 {
1814 	return cpu_smt_max_threads > 1;
1815 }
1816 
1817 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1818 {
1819 	return cpu_primary_thread_mask;
1820 }
1821 #else
1822 static inline bool cpuhp_smt_aware(void)
1823 {
1824 	return false;
1825 }
1826 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1827 {
1828 	return cpu_none_mask;
1829 }
1830 #endif
1831 
1832 bool __weak arch_cpuhp_init_parallel_bringup(void)
1833 {
1834 	return true;
1835 }
1836 
1837 /*
1838  * On architectures which have enabled parallel bringup this invokes all BP
1839  * prepare states for each of the to be onlined APs first. The last state
1840  * sends the startup IPI to the APs. The APs proceed through the low level
1841  * bringup code in parallel and then wait for the control CPU to release
1842  * them one by one for the final onlining procedure.
1843  *
1844  * This avoids waiting for each AP to respond to the startup IPI in
1845  * CPUHP_BRINGUP_CPU.
1846  */
1847 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1848 {
1849 	const struct cpumask *mask = cpu_present_mask;
1850 
1851 	if (__cpuhp_parallel_bringup)
1852 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1853 	if (!__cpuhp_parallel_bringup)
1854 		return false;
1855 
1856 	if (cpuhp_smt_aware()) {
1857 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1858 		static struct cpumask tmp_mask __initdata;
1859 
1860 		/*
1861 		 * X86 requires to prevent that SMT siblings stopped while
1862 		 * the primary thread does a microcode update for various
1863 		 * reasons. Bring the primary threads up first.
1864 		 */
1865 		cpumask_and(&tmp_mask, mask, pmask);
1866 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1867 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1868 		/* Account for the online CPUs */
1869 		ncpus -= num_online_cpus();
1870 		if (!ncpus)
1871 			return true;
1872 		/* Create the mask for secondary CPUs */
1873 		cpumask_andnot(&tmp_mask, mask, pmask);
1874 		mask = &tmp_mask;
1875 	}
1876 
1877 	/* Bring the not-yet started CPUs up */
1878 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1879 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1880 	return true;
1881 }
1882 #else
1883 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1884 #endif /* CONFIG_HOTPLUG_PARALLEL */
1885 
1886 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1887 {
1888 	if (!max_cpus)
1889 		return;
1890 
1891 	/* Try parallel bringup optimization if enabled */
1892 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1893 		return;
1894 
1895 	/* Full per CPU serialized bringup */
1896 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1897 }
1898 
1899 #ifdef CONFIG_PM_SLEEP_SMP
1900 static cpumask_var_t frozen_cpus;
1901 
1902 int freeze_secondary_cpus(int primary)
1903 {
1904 	int cpu, error = 0;
1905 
1906 	cpu_maps_update_begin();
1907 	if (primary == -1) {
1908 		primary = cpumask_first(cpu_online_mask);
1909 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1910 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1911 	} else {
1912 		if (!cpu_online(primary))
1913 			primary = cpumask_first(cpu_online_mask);
1914 	}
1915 
1916 	/*
1917 	 * We take down all of the non-boot CPUs in one shot to avoid races
1918 	 * with the userspace trying to use the CPU hotplug at the same time
1919 	 */
1920 	cpumask_clear(frozen_cpus);
1921 
1922 	pr_info("Disabling non-boot CPUs ...\n");
1923 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1924 		if (!cpu_online(cpu) || cpu == primary)
1925 			continue;
1926 
1927 		if (pm_wakeup_pending()) {
1928 			pr_info("Wakeup pending. Abort CPU freeze\n");
1929 			error = -EBUSY;
1930 			break;
1931 		}
1932 
1933 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1934 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1935 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1936 		if (!error)
1937 			cpumask_set_cpu(cpu, frozen_cpus);
1938 		else {
1939 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1940 			break;
1941 		}
1942 	}
1943 
1944 	if (!error)
1945 		BUG_ON(num_online_cpus() > 1);
1946 	else
1947 		pr_err("Non-boot CPUs are not disabled\n");
1948 
1949 	/*
1950 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1951 	 * this even in case of failure as all freeze_secondary_cpus() users are
1952 	 * supposed to do thaw_secondary_cpus() on the failure path.
1953 	 */
1954 	cpu_hotplug_disabled++;
1955 
1956 	cpu_maps_update_done();
1957 	return error;
1958 }
1959 
1960 void __weak arch_thaw_secondary_cpus_begin(void)
1961 {
1962 }
1963 
1964 void __weak arch_thaw_secondary_cpus_end(void)
1965 {
1966 }
1967 
1968 void thaw_secondary_cpus(void)
1969 {
1970 	int cpu, error;
1971 
1972 	/* Allow everyone to use the CPU hotplug again */
1973 	cpu_maps_update_begin();
1974 	__cpu_hotplug_enable();
1975 	if (cpumask_empty(frozen_cpus))
1976 		goto out;
1977 
1978 	pr_info("Enabling non-boot CPUs ...\n");
1979 
1980 	arch_thaw_secondary_cpus_begin();
1981 
1982 	for_each_cpu(cpu, frozen_cpus) {
1983 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1984 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1985 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1986 		if (!error) {
1987 			pr_info("CPU%d is up\n", cpu);
1988 			continue;
1989 		}
1990 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1991 	}
1992 
1993 	arch_thaw_secondary_cpus_end();
1994 
1995 	cpumask_clear(frozen_cpus);
1996 out:
1997 	cpu_maps_update_done();
1998 }
1999 
2000 static int __init alloc_frozen_cpus(void)
2001 {
2002 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2003 		return -ENOMEM;
2004 	return 0;
2005 }
2006 core_initcall(alloc_frozen_cpus);
2007 
2008 /*
2009  * When callbacks for CPU hotplug notifications are being executed, we must
2010  * ensure that the state of the system with respect to the tasks being frozen
2011  * or not, as reported by the notification, remains unchanged *throughout the
2012  * duration* of the execution of the callbacks.
2013  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2014  *
2015  * This synchronization is implemented by mutually excluding regular CPU
2016  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2017  * Hibernate notifications.
2018  */
2019 static int
2020 cpu_hotplug_pm_callback(struct notifier_block *nb,
2021 			unsigned long action, void *ptr)
2022 {
2023 	switch (action) {
2024 
2025 	case PM_SUSPEND_PREPARE:
2026 	case PM_HIBERNATION_PREPARE:
2027 		cpu_hotplug_disable();
2028 		break;
2029 
2030 	case PM_POST_SUSPEND:
2031 	case PM_POST_HIBERNATION:
2032 		cpu_hotplug_enable();
2033 		break;
2034 
2035 	default:
2036 		return NOTIFY_DONE;
2037 	}
2038 
2039 	return NOTIFY_OK;
2040 }
2041 
2042 
2043 static int __init cpu_hotplug_pm_sync_init(void)
2044 {
2045 	/*
2046 	 * cpu_hotplug_pm_callback has higher priority than x86
2047 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2048 	 * to disable cpu hotplug to avoid cpu hotplug race.
2049 	 */
2050 	pm_notifier(cpu_hotplug_pm_callback, 0);
2051 	return 0;
2052 }
2053 core_initcall(cpu_hotplug_pm_sync_init);
2054 
2055 #endif /* CONFIG_PM_SLEEP_SMP */
2056 
2057 int __boot_cpu_id;
2058 
2059 #endif /* CONFIG_SMP */
2060 
2061 /* Boot processor state steps */
2062 static struct cpuhp_step cpuhp_hp_states[] = {
2063 	[CPUHP_OFFLINE] = {
2064 		.name			= "offline",
2065 		.startup.single		= NULL,
2066 		.teardown.single	= NULL,
2067 	},
2068 #ifdef CONFIG_SMP
2069 	[CPUHP_CREATE_THREADS]= {
2070 		.name			= "threads:prepare",
2071 		.startup.single		= smpboot_create_threads,
2072 		.teardown.single	= NULL,
2073 		.cant_stop		= true,
2074 	},
2075 	[CPUHP_PERF_PREPARE] = {
2076 		.name			= "perf:prepare",
2077 		.startup.single		= perf_event_init_cpu,
2078 		.teardown.single	= perf_event_exit_cpu,
2079 	},
2080 	[CPUHP_RANDOM_PREPARE] = {
2081 		.name			= "random:prepare",
2082 		.startup.single		= random_prepare_cpu,
2083 		.teardown.single	= NULL,
2084 	},
2085 	[CPUHP_WORKQUEUE_PREP] = {
2086 		.name			= "workqueue:prepare",
2087 		.startup.single		= workqueue_prepare_cpu,
2088 		.teardown.single	= NULL,
2089 	},
2090 	[CPUHP_HRTIMERS_PREPARE] = {
2091 		.name			= "hrtimers:prepare",
2092 		.startup.single		= hrtimers_prepare_cpu,
2093 		.teardown.single	= NULL,
2094 	},
2095 	[CPUHP_SMPCFD_PREPARE] = {
2096 		.name			= "smpcfd:prepare",
2097 		.startup.single		= smpcfd_prepare_cpu,
2098 		.teardown.single	= smpcfd_dead_cpu,
2099 	},
2100 	[CPUHP_RELAY_PREPARE] = {
2101 		.name			= "relay:prepare",
2102 		.startup.single		= relay_prepare_cpu,
2103 		.teardown.single	= NULL,
2104 	},
2105 	[CPUHP_RCUTREE_PREP] = {
2106 		.name			= "RCU/tree:prepare",
2107 		.startup.single		= rcutree_prepare_cpu,
2108 		.teardown.single	= rcutree_dead_cpu,
2109 	},
2110 	/*
2111 	 * On the tear-down path, timers_dead_cpu() must be invoked
2112 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2113 	 * otherwise a RCU stall occurs.
2114 	 */
2115 	[CPUHP_TIMERS_PREPARE] = {
2116 		.name			= "timers:prepare",
2117 		.startup.single		= timers_prepare_cpu,
2118 		.teardown.single	= timers_dead_cpu,
2119 	},
2120 
2121 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2122 	/*
2123 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2124 	 * the next step will release it.
2125 	 */
2126 	[CPUHP_BP_KICK_AP] = {
2127 		.name			= "cpu:kick_ap",
2128 		.startup.single		= cpuhp_kick_ap_alive,
2129 	},
2130 
2131 	/*
2132 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2133 	 * releases it for the complete bringup.
2134 	 */
2135 	[CPUHP_BRINGUP_CPU] = {
2136 		.name			= "cpu:bringup",
2137 		.startup.single		= cpuhp_bringup_ap,
2138 		.teardown.single	= finish_cpu,
2139 		.cant_stop		= true,
2140 	},
2141 #else
2142 	/*
2143 	 * All-in-one CPU bringup state which includes the kick alive.
2144 	 */
2145 	[CPUHP_BRINGUP_CPU] = {
2146 		.name			= "cpu:bringup",
2147 		.startup.single		= bringup_cpu,
2148 		.teardown.single	= finish_cpu,
2149 		.cant_stop		= true,
2150 	},
2151 #endif
2152 	/* Final state before CPU kills itself */
2153 	[CPUHP_AP_IDLE_DEAD] = {
2154 		.name			= "idle:dead",
2155 	},
2156 	/*
2157 	 * Last state before CPU enters the idle loop to die. Transient state
2158 	 * for synchronization.
2159 	 */
2160 	[CPUHP_AP_OFFLINE] = {
2161 		.name			= "ap:offline",
2162 		.cant_stop		= true,
2163 	},
2164 	/* First state is scheduler control. Interrupts are disabled */
2165 	[CPUHP_AP_SCHED_STARTING] = {
2166 		.name			= "sched:starting",
2167 		.startup.single		= sched_cpu_starting,
2168 		.teardown.single	= sched_cpu_dying,
2169 	},
2170 	[CPUHP_AP_RCUTREE_DYING] = {
2171 		.name			= "RCU/tree:dying",
2172 		.startup.single		= NULL,
2173 		.teardown.single	= rcutree_dying_cpu,
2174 	},
2175 	[CPUHP_AP_SMPCFD_DYING] = {
2176 		.name			= "smpcfd:dying",
2177 		.startup.single		= NULL,
2178 		.teardown.single	= smpcfd_dying_cpu,
2179 	},
2180 	[CPUHP_AP_HRTIMERS_DYING] = {
2181 		.name			= "hrtimers:dying",
2182 		.startup.single		= NULL,
2183 		.teardown.single	= hrtimers_cpu_dying,
2184 	},
2185 	[CPUHP_AP_TICK_DYING] = {
2186 		.name			= "tick:dying",
2187 		.startup.single		= NULL,
2188 		.teardown.single	= tick_cpu_dying,
2189 	},
2190 	/* Entry state on starting. Interrupts enabled from here on. Transient
2191 	 * state for synchronsization */
2192 	[CPUHP_AP_ONLINE] = {
2193 		.name			= "ap:online",
2194 	},
2195 	/*
2196 	 * Handled on control processor until the plugged processor manages
2197 	 * this itself.
2198 	 */
2199 	[CPUHP_TEARDOWN_CPU] = {
2200 		.name			= "cpu:teardown",
2201 		.startup.single		= NULL,
2202 		.teardown.single	= takedown_cpu,
2203 		.cant_stop		= true,
2204 	},
2205 
2206 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2207 		.name			= "sched:waitempty",
2208 		.startup.single		= NULL,
2209 		.teardown.single	= sched_cpu_wait_empty,
2210 	},
2211 
2212 	/* Handle smpboot threads park/unpark */
2213 	[CPUHP_AP_SMPBOOT_THREADS] = {
2214 		.name			= "smpboot/threads:online",
2215 		.startup.single		= smpboot_unpark_threads,
2216 		.teardown.single	= smpboot_park_threads,
2217 	},
2218 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2219 		.name			= "irq/affinity:online",
2220 		.startup.single		= irq_affinity_online_cpu,
2221 		.teardown.single	= NULL,
2222 	},
2223 	[CPUHP_AP_PERF_ONLINE] = {
2224 		.name			= "perf:online",
2225 		.startup.single		= perf_event_init_cpu,
2226 		.teardown.single	= perf_event_exit_cpu,
2227 	},
2228 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2229 		.name			= "lockup_detector:online",
2230 		.startup.single		= lockup_detector_online_cpu,
2231 		.teardown.single	= lockup_detector_offline_cpu,
2232 	},
2233 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2234 		.name			= "workqueue:online",
2235 		.startup.single		= workqueue_online_cpu,
2236 		.teardown.single	= workqueue_offline_cpu,
2237 	},
2238 	[CPUHP_AP_RANDOM_ONLINE] = {
2239 		.name			= "random:online",
2240 		.startup.single		= random_online_cpu,
2241 		.teardown.single	= NULL,
2242 	},
2243 	[CPUHP_AP_RCUTREE_ONLINE] = {
2244 		.name			= "RCU/tree:online",
2245 		.startup.single		= rcutree_online_cpu,
2246 		.teardown.single	= rcutree_offline_cpu,
2247 	},
2248 #endif
2249 	/*
2250 	 * The dynamically registered state space is here
2251 	 */
2252 
2253 #ifdef CONFIG_SMP
2254 	/* Last state is scheduler control setting the cpu active */
2255 	[CPUHP_AP_ACTIVE] = {
2256 		.name			= "sched:active",
2257 		.startup.single		= sched_cpu_activate,
2258 		.teardown.single	= sched_cpu_deactivate,
2259 	},
2260 #endif
2261 
2262 	/* CPU is fully up and running. */
2263 	[CPUHP_ONLINE] = {
2264 		.name			= "online",
2265 		.startup.single		= NULL,
2266 		.teardown.single	= NULL,
2267 	},
2268 };
2269 
2270 /* Sanity check for callbacks */
2271 static int cpuhp_cb_check(enum cpuhp_state state)
2272 {
2273 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2274 		return -EINVAL;
2275 	return 0;
2276 }
2277 
2278 /*
2279  * Returns a free for dynamic slot assignment of the Online state. The states
2280  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2281  * by having no name assigned.
2282  */
2283 static int cpuhp_reserve_state(enum cpuhp_state state)
2284 {
2285 	enum cpuhp_state i, end;
2286 	struct cpuhp_step *step;
2287 
2288 	switch (state) {
2289 	case CPUHP_AP_ONLINE_DYN:
2290 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2291 		end = CPUHP_AP_ONLINE_DYN_END;
2292 		break;
2293 	case CPUHP_BP_PREPARE_DYN:
2294 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2295 		end = CPUHP_BP_PREPARE_DYN_END;
2296 		break;
2297 	default:
2298 		return -EINVAL;
2299 	}
2300 
2301 	for (i = state; i <= end; i++, step++) {
2302 		if (!step->name)
2303 			return i;
2304 	}
2305 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2306 	return -ENOSPC;
2307 }
2308 
2309 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2310 				 int (*startup)(unsigned int cpu),
2311 				 int (*teardown)(unsigned int cpu),
2312 				 bool multi_instance)
2313 {
2314 	/* (Un)Install the callbacks for further cpu hotplug operations */
2315 	struct cpuhp_step *sp;
2316 	int ret = 0;
2317 
2318 	/*
2319 	 * If name is NULL, then the state gets removed.
2320 	 *
2321 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2322 	 * the first allocation from these dynamic ranges, so the removal
2323 	 * would trigger a new allocation and clear the wrong (already
2324 	 * empty) state, leaving the callbacks of the to be cleared state
2325 	 * dangling, which causes wreckage on the next hotplug operation.
2326 	 */
2327 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2328 		     state == CPUHP_BP_PREPARE_DYN)) {
2329 		ret = cpuhp_reserve_state(state);
2330 		if (ret < 0)
2331 			return ret;
2332 		state = ret;
2333 	}
2334 	sp = cpuhp_get_step(state);
2335 	if (name && sp->name)
2336 		return -EBUSY;
2337 
2338 	sp->startup.single = startup;
2339 	sp->teardown.single = teardown;
2340 	sp->name = name;
2341 	sp->multi_instance = multi_instance;
2342 	INIT_HLIST_HEAD(&sp->list);
2343 	return ret;
2344 }
2345 
2346 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2347 {
2348 	return cpuhp_get_step(state)->teardown.single;
2349 }
2350 
2351 /*
2352  * Call the startup/teardown function for a step either on the AP or
2353  * on the current CPU.
2354  */
2355 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2356 			    struct hlist_node *node)
2357 {
2358 	struct cpuhp_step *sp = cpuhp_get_step(state);
2359 	int ret;
2360 
2361 	/*
2362 	 * If there's nothing to do, we done.
2363 	 * Relies on the union for multi_instance.
2364 	 */
2365 	if (cpuhp_step_empty(bringup, sp))
2366 		return 0;
2367 	/*
2368 	 * The non AP bound callbacks can fail on bringup. On teardown
2369 	 * e.g. module removal we crash for now.
2370 	 */
2371 #ifdef CONFIG_SMP
2372 	if (cpuhp_is_ap_state(state))
2373 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2374 	else
2375 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2376 #else
2377 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2378 #endif
2379 	BUG_ON(ret && !bringup);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * Called from __cpuhp_setup_state on a recoverable failure.
2385  *
2386  * Note: The teardown callbacks for rollback are not allowed to fail!
2387  */
2388 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2389 				   struct hlist_node *node)
2390 {
2391 	int cpu;
2392 
2393 	/* Roll back the already executed steps on the other cpus */
2394 	for_each_present_cpu(cpu) {
2395 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2396 		int cpustate = st->state;
2397 
2398 		if (cpu >= failedcpu)
2399 			break;
2400 
2401 		/* Did we invoke the startup call on that cpu ? */
2402 		if (cpustate >= state)
2403 			cpuhp_issue_call(cpu, state, false, node);
2404 	}
2405 }
2406 
2407 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2408 					  struct hlist_node *node,
2409 					  bool invoke)
2410 {
2411 	struct cpuhp_step *sp;
2412 	int cpu;
2413 	int ret;
2414 
2415 	lockdep_assert_cpus_held();
2416 
2417 	sp = cpuhp_get_step(state);
2418 	if (sp->multi_instance == false)
2419 		return -EINVAL;
2420 
2421 	mutex_lock(&cpuhp_state_mutex);
2422 
2423 	if (!invoke || !sp->startup.multi)
2424 		goto add_node;
2425 
2426 	/*
2427 	 * Try to call the startup callback for each present cpu
2428 	 * depending on the hotplug state of the cpu.
2429 	 */
2430 	for_each_present_cpu(cpu) {
2431 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2432 		int cpustate = st->state;
2433 
2434 		if (cpustate < state)
2435 			continue;
2436 
2437 		ret = cpuhp_issue_call(cpu, state, true, node);
2438 		if (ret) {
2439 			if (sp->teardown.multi)
2440 				cpuhp_rollback_install(cpu, state, node);
2441 			goto unlock;
2442 		}
2443 	}
2444 add_node:
2445 	ret = 0;
2446 	hlist_add_head(node, &sp->list);
2447 unlock:
2448 	mutex_unlock(&cpuhp_state_mutex);
2449 	return ret;
2450 }
2451 
2452 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2453 			       bool invoke)
2454 {
2455 	int ret;
2456 
2457 	cpus_read_lock();
2458 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2459 	cpus_read_unlock();
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2463 
2464 /**
2465  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2466  * @state:		The state to setup
2467  * @name:		Name of the step
2468  * @invoke:		If true, the startup function is invoked for cpus where
2469  *			cpu state >= @state
2470  * @startup:		startup callback function
2471  * @teardown:		teardown callback function
2472  * @multi_instance:	State is set up for multiple instances which get
2473  *			added afterwards.
2474  *
2475  * The caller needs to hold cpus read locked while calling this function.
2476  * Return:
2477  *   On success:
2478  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2479  *      0 for all other states
2480  *   On failure: proper (negative) error code
2481  */
2482 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2483 				   const char *name, bool invoke,
2484 				   int (*startup)(unsigned int cpu),
2485 				   int (*teardown)(unsigned int cpu),
2486 				   bool multi_instance)
2487 {
2488 	int cpu, ret = 0;
2489 	bool dynstate;
2490 
2491 	lockdep_assert_cpus_held();
2492 
2493 	if (cpuhp_cb_check(state) || !name)
2494 		return -EINVAL;
2495 
2496 	mutex_lock(&cpuhp_state_mutex);
2497 
2498 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2499 				    multi_instance);
2500 
2501 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2502 	if (ret > 0 && dynstate) {
2503 		state = ret;
2504 		ret = 0;
2505 	}
2506 
2507 	if (ret || !invoke || !startup)
2508 		goto out;
2509 
2510 	/*
2511 	 * Try to call the startup callback for each present cpu
2512 	 * depending on the hotplug state of the cpu.
2513 	 */
2514 	for_each_present_cpu(cpu) {
2515 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2516 		int cpustate = st->state;
2517 
2518 		if (cpustate < state)
2519 			continue;
2520 
2521 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2522 		if (ret) {
2523 			if (teardown)
2524 				cpuhp_rollback_install(cpu, state, NULL);
2525 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2526 			goto out;
2527 		}
2528 	}
2529 out:
2530 	mutex_unlock(&cpuhp_state_mutex);
2531 	/*
2532 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2533 	 * return the dynamically allocated state in case of success.
2534 	 */
2535 	if (!ret && dynstate)
2536 		return state;
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2540 
2541 int __cpuhp_setup_state(enum cpuhp_state state,
2542 			const char *name, bool invoke,
2543 			int (*startup)(unsigned int cpu),
2544 			int (*teardown)(unsigned int cpu),
2545 			bool multi_instance)
2546 {
2547 	int ret;
2548 
2549 	cpus_read_lock();
2550 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2551 					     teardown, multi_instance);
2552 	cpus_read_unlock();
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(__cpuhp_setup_state);
2556 
2557 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2558 				  struct hlist_node *node, bool invoke)
2559 {
2560 	struct cpuhp_step *sp = cpuhp_get_step(state);
2561 	int cpu;
2562 
2563 	BUG_ON(cpuhp_cb_check(state));
2564 
2565 	if (!sp->multi_instance)
2566 		return -EINVAL;
2567 
2568 	cpus_read_lock();
2569 	mutex_lock(&cpuhp_state_mutex);
2570 
2571 	if (!invoke || !cpuhp_get_teardown_cb(state))
2572 		goto remove;
2573 	/*
2574 	 * Call the teardown callback for each present cpu depending
2575 	 * on the hotplug state of the cpu. This function is not
2576 	 * allowed to fail currently!
2577 	 */
2578 	for_each_present_cpu(cpu) {
2579 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2580 		int cpustate = st->state;
2581 
2582 		if (cpustate >= state)
2583 			cpuhp_issue_call(cpu, state, false, node);
2584 	}
2585 
2586 remove:
2587 	hlist_del(node);
2588 	mutex_unlock(&cpuhp_state_mutex);
2589 	cpus_read_unlock();
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2594 
2595 /**
2596  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2597  * @state:	The state to remove
2598  * @invoke:	If true, the teardown function is invoked for cpus where
2599  *		cpu state >= @state
2600  *
2601  * The caller needs to hold cpus read locked while calling this function.
2602  * The teardown callback is currently not allowed to fail. Think
2603  * about module removal!
2604  */
2605 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2606 {
2607 	struct cpuhp_step *sp = cpuhp_get_step(state);
2608 	int cpu;
2609 
2610 	BUG_ON(cpuhp_cb_check(state));
2611 
2612 	lockdep_assert_cpus_held();
2613 
2614 	mutex_lock(&cpuhp_state_mutex);
2615 	if (sp->multi_instance) {
2616 		WARN(!hlist_empty(&sp->list),
2617 		     "Error: Removing state %d which has instances left.\n",
2618 		     state);
2619 		goto remove;
2620 	}
2621 
2622 	if (!invoke || !cpuhp_get_teardown_cb(state))
2623 		goto remove;
2624 
2625 	/*
2626 	 * Call the teardown callback for each present cpu depending
2627 	 * on the hotplug state of the cpu. This function is not
2628 	 * allowed to fail currently!
2629 	 */
2630 	for_each_present_cpu(cpu) {
2631 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2632 		int cpustate = st->state;
2633 
2634 		if (cpustate >= state)
2635 			cpuhp_issue_call(cpu, state, false, NULL);
2636 	}
2637 remove:
2638 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2639 	mutex_unlock(&cpuhp_state_mutex);
2640 }
2641 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2642 
2643 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2644 {
2645 	cpus_read_lock();
2646 	__cpuhp_remove_state_cpuslocked(state, invoke);
2647 	cpus_read_unlock();
2648 }
2649 EXPORT_SYMBOL(__cpuhp_remove_state);
2650 
2651 #ifdef CONFIG_HOTPLUG_SMT
2652 static void cpuhp_offline_cpu_device(unsigned int cpu)
2653 {
2654 	struct device *dev = get_cpu_device(cpu);
2655 
2656 	dev->offline = true;
2657 	/* Tell user space about the state change */
2658 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2659 }
2660 
2661 static void cpuhp_online_cpu_device(unsigned int cpu)
2662 {
2663 	struct device *dev = get_cpu_device(cpu);
2664 
2665 	dev->offline = false;
2666 	/* Tell user space about the state change */
2667 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2668 }
2669 
2670 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2671 {
2672 	int cpu, ret = 0;
2673 
2674 	cpu_maps_update_begin();
2675 	for_each_online_cpu(cpu) {
2676 		if (topology_is_primary_thread(cpu))
2677 			continue;
2678 		/*
2679 		 * Disable can be called with CPU_SMT_ENABLED when changing
2680 		 * from a higher to lower number of SMT threads per core.
2681 		 */
2682 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2683 			continue;
2684 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2685 		if (ret)
2686 			break;
2687 		/*
2688 		 * As this needs to hold the cpu maps lock it's impossible
2689 		 * to call device_offline() because that ends up calling
2690 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2691 		 * needs to be held as this might race against in kernel
2692 		 * abusers of the hotplug machinery (thermal management).
2693 		 *
2694 		 * So nothing would update device:offline state. That would
2695 		 * leave the sysfs entry stale and prevent onlining after
2696 		 * smt control has been changed to 'off' again. This is
2697 		 * called under the sysfs hotplug lock, so it is properly
2698 		 * serialized against the regular offline usage.
2699 		 */
2700 		cpuhp_offline_cpu_device(cpu);
2701 	}
2702 	if (!ret)
2703 		cpu_smt_control = ctrlval;
2704 	cpu_maps_update_done();
2705 	return ret;
2706 }
2707 
2708 /* Check if the core a CPU belongs to is online */
2709 #if !defined(topology_is_core_online)
2710 static inline bool topology_is_core_online(unsigned int cpu)
2711 {
2712 	return true;
2713 }
2714 #endif
2715 
2716 int cpuhp_smt_enable(void)
2717 {
2718 	int cpu, ret = 0;
2719 
2720 	cpu_maps_update_begin();
2721 	cpu_smt_control = CPU_SMT_ENABLED;
2722 	for_each_present_cpu(cpu) {
2723 		/* Skip online CPUs and CPUs on offline nodes */
2724 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2725 			continue;
2726 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2727 			continue;
2728 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2729 		if (ret)
2730 			break;
2731 		/* See comment in cpuhp_smt_disable() */
2732 		cpuhp_online_cpu_device(cpu);
2733 	}
2734 	cpu_maps_update_done();
2735 	return ret;
2736 }
2737 #endif
2738 
2739 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2740 static ssize_t state_show(struct device *dev,
2741 			  struct device_attribute *attr, char *buf)
2742 {
2743 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2744 
2745 	return sprintf(buf, "%d\n", st->state);
2746 }
2747 static DEVICE_ATTR_RO(state);
2748 
2749 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2750 			    const char *buf, size_t count)
2751 {
2752 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2753 	struct cpuhp_step *sp;
2754 	int target, ret;
2755 
2756 	ret = kstrtoint(buf, 10, &target);
2757 	if (ret)
2758 		return ret;
2759 
2760 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2761 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2762 		return -EINVAL;
2763 #else
2764 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2765 		return -EINVAL;
2766 #endif
2767 
2768 	ret = lock_device_hotplug_sysfs();
2769 	if (ret)
2770 		return ret;
2771 
2772 	mutex_lock(&cpuhp_state_mutex);
2773 	sp = cpuhp_get_step(target);
2774 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2775 	mutex_unlock(&cpuhp_state_mutex);
2776 	if (ret)
2777 		goto out;
2778 
2779 	if (st->state < target)
2780 		ret = cpu_up(dev->id, target);
2781 	else if (st->state > target)
2782 		ret = cpu_down(dev->id, target);
2783 	else if (WARN_ON(st->target != target))
2784 		st->target = target;
2785 out:
2786 	unlock_device_hotplug();
2787 	return ret ? ret : count;
2788 }
2789 
2790 static ssize_t target_show(struct device *dev,
2791 			   struct device_attribute *attr, char *buf)
2792 {
2793 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2794 
2795 	return sprintf(buf, "%d\n", st->target);
2796 }
2797 static DEVICE_ATTR_RW(target);
2798 
2799 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2800 			  const char *buf, size_t count)
2801 {
2802 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2803 	struct cpuhp_step *sp;
2804 	int fail, ret;
2805 
2806 	ret = kstrtoint(buf, 10, &fail);
2807 	if (ret)
2808 		return ret;
2809 
2810 	if (fail == CPUHP_INVALID) {
2811 		st->fail = fail;
2812 		return count;
2813 	}
2814 
2815 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2816 		return -EINVAL;
2817 
2818 	/*
2819 	 * Cannot fail STARTING/DYING callbacks.
2820 	 */
2821 	if (cpuhp_is_atomic_state(fail))
2822 		return -EINVAL;
2823 
2824 	/*
2825 	 * DEAD callbacks cannot fail...
2826 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2827 	 * triggering STARTING callbacks, a failure in this state would
2828 	 * hinder rollback.
2829 	 */
2830 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2831 		return -EINVAL;
2832 
2833 	/*
2834 	 * Cannot fail anything that doesn't have callbacks.
2835 	 */
2836 	mutex_lock(&cpuhp_state_mutex);
2837 	sp = cpuhp_get_step(fail);
2838 	if (!sp->startup.single && !sp->teardown.single)
2839 		ret = -EINVAL;
2840 	mutex_unlock(&cpuhp_state_mutex);
2841 	if (ret)
2842 		return ret;
2843 
2844 	st->fail = fail;
2845 
2846 	return count;
2847 }
2848 
2849 static ssize_t fail_show(struct device *dev,
2850 			 struct device_attribute *attr, char *buf)
2851 {
2852 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2853 
2854 	return sprintf(buf, "%d\n", st->fail);
2855 }
2856 
2857 static DEVICE_ATTR_RW(fail);
2858 
2859 static struct attribute *cpuhp_cpu_attrs[] = {
2860 	&dev_attr_state.attr,
2861 	&dev_attr_target.attr,
2862 	&dev_attr_fail.attr,
2863 	NULL
2864 };
2865 
2866 static const struct attribute_group cpuhp_cpu_attr_group = {
2867 	.attrs = cpuhp_cpu_attrs,
2868 	.name = "hotplug",
2869 	NULL
2870 };
2871 
2872 static ssize_t states_show(struct device *dev,
2873 				 struct device_attribute *attr, char *buf)
2874 {
2875 	ssize_t cur, res = 0;
2876 	int i;
2877 
2878 	mutex_lock(&cpuhp_state_mutex);
2879 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2880 		struct cpuhp_step *sp = cpuhp_get_step(i);
2881 
2882 		if (sp->name) {
2883 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2884 			buf += cur;
2885 			res += cur;
2886 		}
2887 	}
2888 	mutex_unlock(&cpuhp_state_mutex);
2889 	return res;
2890 }
2891 static DEVICE_ATTR_RO(states);
2892 
2893 static struct attribute *cpuhp_cpu_root_attrs[] = {
2894 	&dev_attr_states.attr,
2895 	NULL
2896 };
2897 
2898 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2899 	.attrs = cpuhp_cpu_root_attrs,
2900 	.name = "hotplug",
2901 	NULL
2902 };
2903 
2904 #ifdef CONFIG_HOTPLUG_SMT
2905 
2906 static bool cpu_smt_num_threads_valid(unsigned int threads)
2907 {
2908 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2909 		return threads >= 1 && threads <= cpu_smt_max_threads;
2910 	return threads == 1 || threads == cpu_smt_max_threads;
2911 }
2912 
2913 static ssize_t
2914 __store_smt_control(struct device *dev, struct device_attribute *attr,
2915 		    const char *buf, size_t count)
2916 {
2917 	int ctrlval, ret, num_threads, orig_threads;
2918 	bool force_off;
2919 
2920 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2921 		return -EPERM;
2922 
2923 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2924 		return -ENODEV;
2925 
2926 	if (sysfs_streq(buf, "on")) {
2927 		ctrlval = CPU_SMT_ENABLED;
2928 		num_threads = cpu_smt_max_threads;
2929 	} else if (sysfs_streq(buf, "off")) {
2930 		ctrlval = CPU_SMT_DISABLED;
2931 		num_threads = 1;
2932 	} else if (sysfs_streq(buf, "forceoff")) {
2933 		ctrlval = CPU_SMT_FORCE_DISABLED;
2934 		num_threads = 1;
2935 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2936 		if (num_threads == 1)
2937 			ctrlval = CPU_SMT_DISABLED;
2938 		else if (cpu_smt_num_threads_valid(num_threads))
2939 			ctrlval = CPU_SMT_ENABLED;
2940 		else
2941 			return -EINVAL;
2942 	} else {
2943 		return -EINVAL;
2944 	}
2945 
2946 	ret = lock_device_hotplug_sysfs();
2947 	if (ret)
2948 		return ret;
2949 
2950 	orig_threads = cpu_smt_num_threads;
2951 	cpu_smt_num_threads = num_threads;
2952 
2953 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2954 
2955 	if (num_threads > orig_threads)
2956 		ret = cpuhp_smt_enable();
2957 	else if (num_threads < orig_threads || force_off)
2958 		ret = cpuhp_smt_disable(ctrlval);
2959 
2960 	unlock_device_hotplug();
2961 	return ret ? ret : count;
2962 }
2963 
2964 #else /* !CONFIG_HOTPLUG_SMT */
2965 static ssize_t
2966 __store_smt_control(struct device *dev, struct device_attribute *attr,
2967 		    const char *buf, size_t count)
2968 {
2969 	return -ENODEV;
2970 }
2971 #endif /* CONFIG_HOTPLUG_SMT */
2972 
2973 static const char *smt_states[] = {
2974 	[CPU_SMT_ENABLED]		= "on",
2975 	[CPU_SMT_DISABLED]		= "off",
2976 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2977 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2978 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2979 };
2980 
2981 static ssize_t control_show(struct device *dev,
2982 			    struct device_attribute *attr, char *buf)
2983 {
2984 	const char *state = smt_states[cpu_smt_control];
2985 
2986 #ifdef CONFIG_HOTPLUG_SMT
2987 	/*
2988 	 * If SMT is enabled but not all threads are enabled then show the
2989 	 * number of threads. If all threads are enabled show "on". Otherwise
2990 	 * show the state name.
2991 	 */
2992 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2993 	    cpu_smt_num_threads != cpu_smt_max_threads)
2994 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2995 #endif
2996 
2997 	return sysfs_emit(buf, "%s\n", state);
2998 }
2999 
3000 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3001 			     const char *buf, size_t count)
3002 {
3003 	return __store_smt_control(dev, attr, buf, count);
3004 }
3005 static DEVICE_ATTR_RW(control);
3006 
3007 static ssize_t active_show(struct device *dev,
3008 			   struct device_attribute *attr, char *buf)
3009 {
3010 	return sysfs_emit(buf, "%d\n", sched_smt_active());
3011 }
3012 static DEVICE_ATTR_RO(active);
3013 
3014 static struct attribute *cpuhp_smt_attrs[] = {
3015 	&dev_attr_control.attr,
3016 	&dev_attr_active.attr,
3017 	NULL
3018 };
3019 
3020 static const struct attribute_group cpuhp_smt_attr_group = {
3021 	.attrs = cpuhp_smt_attrs,
3022 	.name = "smt",
3023 	NULL
3024 };
3025 
3026 static int __init cpu_smt_sysfs_init(void)
3027 {
3028 	struct device *dev_root;
3029 	int ret = -ENODEV;
3030 
3031 	dev_root = bus_get_dev_root(&cpu_subsys);
3032 	if (dev_root) {
3033 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3034 		put_device(dev_root);
3035 	}
3036 	return ret;
3037 }
3038 
3039 static int __init cpuhp_sysfs_init(void)
3040 {
3041 	struct device *dev_root;
3042 	int cpu, ret;
3043 
3044 	ret = cpu_smt_sysfs_init();
3045 	if (ret)
3046 		return ret;
3047 
3048 	dev_root = bus_get_dev_root(&cpu_subsys);
3049 	if (dev_root) {
3050 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3051 		put_device(dev_root);
3052 		if (ret)
3053 			return ret;
3054 	}
3055 
3056 	for_each_possible_cpu(cpu) {
3057 		struct device *dev = get_cpu_device(cpu);
3058 
3059 		if (!dev)
3060 			continue;
3061 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3062 		if (ret)
3063 			return ret;
3064 	}
3065 	return 0;
3066 }
3067 device_initcall(cpuhp_sysfs_init);
3068 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3069 
3070 /*
3071  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3072  * represents all NR_CPUS bits binary values of 1<<nr.
3073  *
3074  * It is used by cpumask_of() to get a constant address to a CPU
3075  * mask value that has a single bit set only.
3076  */
3077 
3078 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3079 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3080 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3081 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3082 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3083 
3084 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3085 
3086 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3087 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3088 #if BITS_PER_LONG > 32
3089 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3090 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3091 #endif
3092 };
3093 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3094 
3095 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3096 EXPORT_SYMBOL(cpu_all_bits);
3097 
3098 #ifdef CONFIG_INIT_ALL_POSSIBLE
3099 struct cpumask __cpu_possible_mask __ro_after_init
3100 	= {CPU_BITS_ALL};
3101 #else
3102 struct cpumask __cpu_possible_mask __ro_after_init;
3103 #endif
3104 EXPORT_SYMBOL(__cpu_possible_mask);
3105 
3106 struct cpumask __cpu_online_mask __read_mostly;
3107 EXPORT_SYMBOL(__cpu_online_mask);
3108 
3109 struct cpumask __cpu_enabled_mask __read_mostly;
3110 EXPORT_SYMBOL(__cpu_enabled_mask);
3111 
3112 struct cpumask __cpu_present_mask __read_mostly;
3113 EXPORT_SYMBOL(__cpu_present_mask);
3114 
3115 struct cpumask __cpu_active_mask __read_mostly;
3116 EXPORT_SYMBOL(__cpu_active_mask);
3117 
3118 struct cpumask __cpu_dying_mask __read_mostly;
3119 EXPORT_SYMBOL(__cpu_dying_mask);
3120 
3121 atomic_t __num_online_cpus __read_mostly;
3122 EXPORT_SYMBOL(__num_online_cpus);
3123 
3124 void init_cpu_present(const struct cpumask *src)
3125 {
3126 	cpumask_copy(&__cpu_present_mask, src);
3127 }
3128 
3129 void init_cpu_possible(const struct cpumask *src)
3130 {
3131 	cpumask_copy(&__cpu_possible_mask, src);
3132 }
3133 
3134 void init_cpu_online(const struct cpumask *src)
3135 {
3136 	cpumask_copy(&__cpu_online_mask, src);
3137 }
3138 
3139 void set_cpu_online(unsigned int cpu, bool online)
3140 {
3141 	/*
3142 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3143 	 * function by the reboot and kexec code which invoke it from
3144 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3145 	 * regular CPU hotplug is properly serialized.
3146 	 *
3147 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3148 	 * does not protect readers which are not serialized against
3149 	 * concurrent hotplug operations.
3150 	 */
3151 	if (online) {
3152 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3153 			atomic_inc(&__num_online_cpus);
3154 	} else {
3155 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3156 			atomic_dec(&__num_online_cpus);
3157 	}
3158 }
3159 
3160 /*
3161  * Activate the first processor.
3162  */
3163 void __init boot_cpu_init(void)
3164 {
3165 	int cpu = smp_processor_id();
3166 
3167 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3168 	set_cpu_online(cpu, true);
3169 	set_cpu_active(cpu, true);
3170 	set_cpu_present(cpu, true);
3171 	set_cpu_possible(cpu, true);
3172 
3173 #ifdef CONFIG_SMP
3174 	__boot_cpu_id = cpu;
3175 #endif
3176 }
3177 
3178 /*
3179  * Must be called _AFTER_ setting up the per_cpu areas
3180  */
3181 void __init boot_cpu_hotplug_init(void)
3182 {
3183 #ifdef CONFIG_SMP
3184 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3185 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3186 #endif
3187 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3188 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3189 }
3190 
3191 #ifdef CONFIG_CPU_MITIGATIONS
3192 /*
3193  * These are used for a global "mitigations=" cmdline option for toggling
3194  * optional CPU mitigations.
3195  */
3196 enum cpu_mitigations {
3197 	CPU_MITIGATIONS_OFF,
3198 	CPU_MITIGATIONS_AUTO,
3199 	CPU_MITIGATIONS_AUTO_NOSMT,
3200 };
3201 
3202 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3203 
3204 static int __init mitigations_parse_cmdline(char *arg)
3205 {
3206 	if (!strcmp(arg, "off"))
3207 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3208 	else if (!strcmp(arg, "auto"))
3209 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3210 	else if (!strcmp(arg, "auto,nosmt"))
3211 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3212 	else
3213 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3214 			arg);
3215 
3216 	return 0;
3217 }
3218 
3219 /* mitigations=off */
3220 bool cpu_mitigations_off(void)
3221 {
3222 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3223 }
3224 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3225 
3226 /* mitigations=auto,nosmt */
3227 bool cpu_mitigations_auto_nosmt(void)
3228 {
3229 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3230 }
3231 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3232 #else
3233 static int __init mitigations_parse_cmdline(char *arg)
3234 {
3235 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3236 	return 0;
3237 }
3238 #endif
3239 early_param("mitigations", mitigations_parse_cmdline);
3240