1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/unistd.h> 14 #include <linux/cpu.h> 15 #include <linux/oom.h> 16 #include <linux/rcupdate.h> 17 #include <linux/export.h> 18 #include <linux/bug.h> 19 #include <linux/kthread.h> 20 #include <linux/stop_machine.h> 21 #include <linux/mutex.h> 22 #include <linux/gfp.h> 23 #include <linux/suspend.h> 24 #include <linux/lockdep.h> 25 #include <linux/tick.h> 26 #include <linux/irq.h> 27 #include <linux/nmi.h> 28 #include <linux/smpboot.h> 29 #include <linux/relay.h> 30 #include <linux/slab.h> 31 #include <linux/percpu-rwsem.h> 32 33 #include <trace/events/power.h> 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/cpuhp.h> 36 37 #include "smpboot.h" 38 39 /** 40 * cpuhp_cpu_state - Per cpu hotplug state storage 41 * @state: The current cpu state 42 * @target: The target state 43 * @thread: Pointer to the hotplug thread 44 * @should_run: Thread should execute 45 * @rollback: Perform a rollback 46 * @single: Single callback invocation 47 * @bringup: Single callback bringup or teardown selector 48 * @cb_state: The state for a single callback (install/uninstall) 49 * @result: Result of the operation 50 * @done_up: Signal completion to the issuer of the task for cpu-up 51 * @done_down: Signal completion to the issuer of the task for cpu-down 52 */ 53 struct cpuhp_cpu_state { 54 enum cpuhp_state state; 55 enum cpuhp_state target; 56 enum cpuhp_state fail; 57 #ifdef CONFIG_SMP 58 struct task_struct *thread; 59 bool should_run; 60 bool rollback; 61 bool single; 62 bool bringup; 63 bool booted_once; 64 struct hlist_node *node; 65 struct hlist_node *last; 66 enum cpuhp_state cb_state; 67 int result; 68 struct completion done_up; 69 struct completion done_down; 70 #endif 71 }; 72 73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 74 .fail = CPUHP_INVALID, 75 }; 76 77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 78 static struct lockdep_map cpuhp_state_up_map = 79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 80 static struct lockdep_map cpuhp_state_down_map = 81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 82 83 84 static inline void cpuhp_lock_acquire(bool bringup) 85 { 86 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 87 } 88 89 static inline void cpuhp_lock_release(bool bringup) 90 { 91 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 #else 94 95 static inline void cpuhp_lock_acquire(bool bringup) { } 96 static inline void cpuhp_lock_release(bool bringup) { } 97 98 #endif 99 100 /** 101 * cpuhp_step - Hotplug state machine step 102 * @name: Name of the step 103 * @startup: Startup function of the step 104 * @teardown: Teardown function of the step 105 * @cant_stop: Bringup/teardown can't be stopped at this step 106 */ 107 struct cpuhp_step { 108 const char *name; 109 union { 110 int (*single)(unsigned int cpu); 111 int (*multi)(unsigned int cpu, 112 struct hlist_node *node); 113 } startup; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } teardown; 119 struct hlist_head list; 120 bool cant_stop; 121 bool multi_instance; 122 }; 123 124 static DEFINE_MUTEX(cpuhp_state_mutex); 125 static struct cpuhp_step cpuhp_hp_states[]; 126 127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 128 { 129 return cpuhp_hp_states + state; 130 } 131 132 /** 133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 134 * @cpu: The cpu for which the callback should be invoked 135 * @state: The state to do callbacks for 136 * @bringup: True if the bringup callback should be invoked 137 * @node: For multi-instance, do a single entry callback for install/remove 138 * @lastp: For multi-instance rollback, remember how far we got 139 * 140 * Called from cpu hotplug and from the state register machinery. 141 */ 142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 143 bool bringup, struct hlist_node *node, 144 struct hlist_node **lastp) 145 { 146 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 147 struct cpuhp_step *step = cpuhp_get_step(state); 148 int (*cbm)(unsigned int cpu, struct hlist_node *node); 149 int (*cb)(unsigned int cpu); 150 int ret, cnt; 151 152 if (st->fail == state) { 153 st->fail = CPUHP_INVALID; 154 155 if (!(bringup ? step->startup.single : step->teardown.single)) 156 return 0; 157 158 return -EAGAIN; 159 } 160 161 if (!step->multi_instance) { 162 WARN_ON_ONCE(lastp && *lastp); 163 cb = bringup ? step->startup.single : step->teardown.single; 164 if (!cb) 165 return 0; 166 trace_cpuhp_enter(cpu, st->target, state, cb); 167 ret = cb(cpu); 168 trace_cpuhp_exit(cpu, st->state, state, ret); 169 return ret; 170 } 171 cbm = bringup ? step->startup.multi : step->teardown.multi; 172 if (!cbm) 173 return 0; 174 175 /* Single invocation for instance add/remove */ 176 if (node) { 177 WARN_ON_ONCE(lastp && *lastp); 178 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 179 ret = cbm(cpu, node); 180 trace_cpuhp_exit(cpu, st->state, state, ret); 181 return ret; 182 } 183 184 /* State transition. Invoke on all instances */ 185 cnt = 0; 186 hlist_for_each(node, &step->list) { 187 if (lastp && node == *lastp) 188 break; 189 190 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 191 ret = cbm(cpu, node); 192 trace_cpuhp_exit(cpu, st->state, state, ret); 193 if (ret) { 194 if (!lastp) 195 goto err; 196 197 *lastp = node; 198 return ret; 199 } 200 cnt++; 201 } 202 if (lastp) 203 *lastp = NULL; 204 return 0; 205 err: 206 /* Rollback the instances if one failed */ 207 cbm = !bringup ? step->startup.multi : step->teardown.multi; 208 if (!cbm) 209 return ret; 210 211 hlist_for_each(node, &step->list) { 212 if (!cnt--) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 /* 219 * Rollback must not fail, 220 */ 221 WARN_ON_ONCE(ret); 222 } 223 return ret; 224 } 225 226 #ifdef CONFIG_SMP 227 static bool cpuhp_is_ap_state(enum cpuhp_state state) 228 { 229 /* 230 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 231 * purposes as that state is handled explicitly in cpu_down. 232 */ 233 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 234 } 235 236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 237 { 238 struct completion *done = bringup ? &st->done_up : &st->done_down; 239 wait_for_completion(done); 240 } 241 242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 243 { 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 245 complete(done); 246 } 247 248 /* 249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 250 */ 251 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 252 { 253 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 254 } 255 256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 257 static DEFINE_MUTEX(cpu_add_remove_lock); 258 bool cpuhp_tasks_frozen; 259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 260 261 /* 262 * The following two APIs (cpu_maps_update_begin/done) must be used when 263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 264 */ 265 void cpu_maps_update_begin(void) 266 { 267 mutex_lock(&cpu_add_remove_lock); 268 } 269 270 void cpu_maps_update_done(void) 271 { 272 mutex_unlock(&cpu_add_remove_lock); 273 } 274 275 /* 276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 277 * Should always be manipulated under cpu_add_remove_lock 278 */ 279 static int cpu_hotplug_disabled; 280 281 #ifdef CONFIG_HOTPLUG_CPU 282 283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 284 285 void cpus_read_lock(void) 286 { 287 percpu_down_read(&cpu_hotplug_lock); 288 } 289 EXPORT_SYMBOL_GPL(cpus_read_lock); 290 291 int cpus_read_trylock(void) 292 { 293 return percpu_down_read_trylock(&cpu_hotplug_lock); 294 } 295 EXPORT_SYMBOL_GPL(cpus_read_trylock); 296 297 void cpus_read_unlock(void) 298 { 299 percpu_up_read(&cpu_hotplug_lock); 300 } 301 EXPORT_SYMBOL_GPL(cpus_read_unlock); 302 303 void cpus_write_lock(void) 304 { 305 percpu_down_write(&cpu_hotplug_lock); 306 } 307 308 void cpus_write_unlock(void) 309 { 310 percpu_up_write(&cpu_hotplug_lock); 311 } 312 313 void lockdep_assert_cpus_held(void) 314 { 315 percpu_rwsem_assert_held(&cpu_hotplug_lock); 316 } 317 318 static void lockdep_acquire_cpus_lock(void) 319 { 320 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 321 } 322 323 static void lockdep_release_cpus_lock(void) 324 { 325 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_); 326 } 327 328 /* 329 * Wait for currently running CPU hotplug operations to complete (if any) and 330 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 331 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 332 * hotplug path before performing hotplug operations. So acquiring that lock 333 * guarantees mutual exclusion from any currently running hotplug operations. 334 */ 335 void cpu_hotplug_disable(void) 336 { 337 cpu_maps_update_begin(); 338 cpu_hotplug_disabled++; 339 cpu_maps_update_done(); 340 } 341 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 342 343 static void __cpu_hotplug_enable(void) 344 { 345 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 346 return; 347 cpu_hotplug_disabled--; 348 } 349 350 void cpu_hotplug_enable(void) 351 { 352 cpu_maps_update_begin(); 353 __cpu_hotplug_enable(); 354 cpu_maps_update_done(); 355 } 356 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 357 358 #else 359 360 static void lockdep_acquire_cpus_lock(void) 361 { 362 } 363 364 static void lockdep_release_cpus_lock(void) 365 { 366 } 367 368 #endif /* CONFIG_HOTPLUG_CPU */ 369 370 #ifdef CONFIG_HOTPLUG_SMT 371 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 372 EXPORT_SYMBOL_GPL(cpu_smt_control); 373 374 static bool cpu_smt_available __read_mostly; 375 376 void __init cpu_smt_disable(bool force) 377 { 378 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 379 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 380 return; 381 382 if (force) { 383 pr_info("SMT: Force disabled\n"); 384 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 385 } else { 386 pr_info("SMT: disabled\n"); 387 cpu_smt_control = CPU_SMT_DISABLED; 388 } 389 } 390 391 /* 392 * The decision whether SMT is supported can only be done after the full 393 * CPU identification. Called from architecture code before non boot CPUs 394 * are brought up. 395 */ 396 void __init cpu_smt_check_topology_early(void) 397 { 398 if (!topology_smt_supported()) 399 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 400 } 401 402 /* 403 * If SMT was disabled by BIOS, detect it here, after the CPUs have been 404 * brought online. This ensures the smt/l1tf sysfs entries are consistent 405 * with reality. cpu_smt_available is set to true during the bringup of non 406 * boot CPUs when a SMT sibling is detected. Note, this may overwrite 407 * cpu_smt_control's previous setting. 408 */ 409 void __init cpu_smt_check_topology(void) 410 { 411 if (!cpu_smt_available) 412 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 413 } 414 415 static int __init smt_cmdline_disable(char *str) 416 { 417 cpu_smt_disable(str && !strcmp(str, "force")); 418 return 0; 419 } 420 early_param("nosmt", smt_cmdline_disable); 421 422 static inline bool cpu_smt_allowed(unsigned int cpu) 423 { 424 if (topology_is_primary_thread(cpu)) 425 return true; 426 427 /* 428 * If the CPU is not a 'primary' thread and the booted_once bit is 429 * set then the processor has SMT support. Store this information 430 * for the late check of SMT support in cpu_smt_check_topology(). 431 */ 432 if (per_cpu(cpuhp_state, cpu).booted_once) 433 cpu_smt_available = true; 434 435 if (cpu_smt_control == CPU_SMT_ENABLED) 436 return true; 437 438 /* 439 * On x86 it's required to boot all logical CPUs at least once so 440 * that the init code can get a chance to set CR4.MCE on each 441 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 442 * core will shutdown the machine. 443 */ 444 return !per_cpu(cpuhp_state, cpu).booted_once; 445 } 446 #else 447 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 448 #endif 449 450 static inline enum cpuhp_state 451 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 452 { 453 enum cpuhp_state prev_state = st->state; 454 455 st->rollback = false; 456 st->last = NULL; 457 458 st->target = target; 459 st->single = false; 460 st->bringup = st->state < target; 461 462 return prev_state; 463 } 464 465 static inline void 466 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 467 { 468 st->rollback = true; 469 470 /* 471 * If we have st->last we need to undo partial multi_instance of this 472 * state first. Otherwise start undo at the previous state. 473 */ 474 if (!st->last) { 475 if (st->bringup) 476 st->state--; 477 else 478 st->state++; 479 } 480 481 st->target = prev_state; 482 st->bringup = !st->bringup; 483 } 484 485 /* Regular hotplug invocation of the AP hotplug thread */ 486 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 487 { 488 if (!st->single && st->state == st->target) 489 return; 490 491 st->result = 0; 492 /* 493 * Make sure the above stores are visible before should_run becomes 494 * true. Paired with the mb() above in cpuhp_thread_fun() 495 */ 496 smp_mb(); 497 st->should_run = true; 498 wake_up_process(st->thread); 499 wait_for_ap_thread(st, st->bringup); 500 } 501 502 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 503 { 504 enum cpuhp_state prev_state; 505 int ret; 506 507 prev_state = cpuhp_set_state(st, target); 508 __cpuhp_kick_ap(st); 509 if ((ret = st->result)) { 510 cpuhp_reset_state(st, prev_state); 511 __cpuhp_kick_ap(st); 512 } 513 514 return ret; 515 } 516 517 static int bringup_wait_for_ap(unsigned int cpu) 518 { 519 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 520 521 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 522 wait_for_ap_thread(st, true); 523 if (WARN_ON_ONCE((!cpu_online(cpu)))) 524 return -ECANCELED; 525 526 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 527 stop_machine_unpark(cpu); 528 kthread_unpark(st->thread); 529 530 /* 531 * SMT soft disabling on X86 requires to bring the CPU out of the 532 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 533 * CPU marked itself as booted_once in cpu_notify_starting() so the 534 * cpu_smt_allowed() check will now return false if this is not the 535 * primary sibling. 536 */ 537 if (!cpu_smt_allowed(cpu)) 538 return -ECANCELED; 539 540 if (st->target <= CPUHP_AP_ONLINE_IDLE) 541 return 0; 542 543 return cpuhp_kick_ap(st, st->target); 544 } 545 546 static int bringup_cpu(unsigned int cpu) 547 { 548 struct task_struct *idle = idle_thread_get(cpu); 549 int ret; 550 551 /* 552 * Some architectures have to walk the irq descriptors to 553 * setup the vector space for the cpu which comes online. 554 * Prevent irq alloc/free across the bringup. 555 */ 556 irq_lock_sparse(); 557 558 /* Arch-specific enabling code. */ 559 ret = __cpu_up(cpu, idle); 560 irq_unlock_sparse(); 561 if (ret) 562 return ret; 563 return bringup_wait_for_ap(cpu); 564 } 565 566 /* 567 * Hotplug state machine related functions 568 */ 569 570 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 571 { 572 for (st->state--; st->state > st->target; st->state--) 573 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 574 } 575 576 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 577 enum cpuhp_state target) 578 { 579 enum cpuhp_state prev_state = st->state; 580 int ret = 0; 581 582 while (st->state < target) { 583 st->state++; 584 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 585 if (ret) { 586 st->target = prev_state; 587 undo_cpu_up(cpu, st); 588 break; 589 } 590 } 591 return ret; 592 } 593 594 /* 595 * The cpu hotplug threads manage the bringup and teardown of the cpus 596 */ 597 static void cpuhp_create(unsigned int cpu) 598 { 599 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 600 601 init_completion(&st->done_up); 602 init_completion(&st->done_down); 603 } 604 605 static int cpuhp_should_run(unsigned int cpu) 606 { 607 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 608 609 return st->should_run; 610 } 611 612 /* 613 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 614 * callbacks when a state gets [un]installed at runtime. 615 * 616 * Each invocation of this function by the smpboot thread does a single AP 617 * state callback. 618 * 619 * It has 3 modes of operation: 620 * - single: runs st->cb_state 621 * - up: runs ++st->state, while st->state < st->target 622 * - down: runs st->state--, while st->state > st->target 623 * 624 * When complete or on error, should_run is cleared and the completion is fired. 625 */ 626 static void cpuhp_thread_fun(unsigned int cpu) 627 { 628 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 629 bool bringup = st->bringup; 630 enum cpuhp_state state; 631 632 if (WARN_ON_ONCE(!st->should_run)) 633 return; 634 635 /* 636 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 637 * that if we see ->should_run we also see the rest of the state. 638 */ 639 smp_mb(); 640 641 /* 642 * The BP holds the hotplug lock, but we're now running on the AP, 643 * ensure that anybody asserting the lock is held, will actually find 644 * it so. 645 */ 646 lockdep_acquire_cpus_lock(); 647 cpuhp_lock_acquire(bringup); 648 649 if (st->single) { 650 state = st->cb_state; 651 st->should_run = false; 652 } else { 653 if (bringup) { 654 st->state++; 655 state = st->state; 656 st->should_run = (st->state < st->target); 657 WARN_ON_ONCE(st->state > st->target); 658 } else { 659 state = st->state; 660 st->state--; 661 st->should_run = (st->state > st->target); 662 WARN_ON_ONCE(st->state < st->target); 663 } 664 } 665 666 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 667 668 if (cpuhp_is_atomic_state(state)) { 669 local_irq_disable(); 670 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 671 local_irq_enable(); 672 673 /* 674 * STARTING/DYING must not fail! 675 */ 676 WARN_ON_ONCE(st->result); 677 } else { 678 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 679 } 680 681 if (st->result) { 682 /* 683 * If we fail on a rollback, we're up a creek without no 684 * paddle, no way forward, no way back. We loose, thanks for 685 * playing. 686 */ 687 WARN_ON_ONCE(st->rollback); 688 st->should_run = false; 689 } 690 691 cpuhp_lock_release(bringup); 692 lockdep_release_cpus_lock(); 693 694 if (!st->should_run) 695 complete_ap_thread(st, bringup); 696 } 697 698 /* Invoke a single callback on a remote cpu */ 699 static int 700 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 701 struct hlist_node *node) 702 { 703 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 704 int ret; 705 706 if (!cpu_online(cpu)) 707 return 0; 708 709 cpuhp_lock_acquire(false); 710 cpuhp_lock_release(false); 711 712 cpuhp_lock_acquire(true); 713 cpuhp_lock_release(true); 714 715 /* 716 * If we are up and running, use the hotplug thread. For early calls 717 * we invoke the thread function directly. 718 */ 719 if (!st->thread) 720 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 721 722 st->rollback = false; 723 st->last = NULL; 724 725 st->node = node; 726 st->bringup = bringup; 727 st->cb_state = state; 728 st->single = true; 729 730 __cpuhp_kick_ap(st); 731 732 /* 733 * If we failed and did a partial, do a rollback. 734 */ 735 if ((ret = st->result) && st->last) { 736 st->rollback = true; 737 st->bringup = !bringup; 738 739 __cpuhp_kick_ap(st); 740 } 741 742 /* 743 * Clean up the leftovers so the next hotplug operation wont use stale 744 * data. 745 */ 746 st->node = st->last = NULL; 747 return ret; 748 } 749 750 static int cpuhp_kick_ap_work(unsigned int cpu) 751 { 752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 753 enum cpuhp_state prev_state = st->state; 754 int ret; 755 756 cpuhp_lock_acquire(false); 757 cpuhp_lock_release(false); 758 759 cpuhp_lock_acquire(true); 760 cpuhp_lock_release(true); 761 762 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 763 ret = cpuhp_kick_ap(st, st->target); 764 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 765 766 return ret; 767 } 768 769 static struct smp_hotplug_thread cpuhp_threads = { 770 .store = &cpuhp_state.thread, 771 .create = &cpuhp_create, 772 .thread_should_run = cpuhp_should_run, 773 .thread_fn = cpuhp_thread_fun, 774 .thread_comm = "cpuhp/%u", 775 .selfparking = true, 776 }; 777 778 void __init cpuhp_threads_init(void) 779 { 780 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 781 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 782 } 783 784 #ifdef CONFIG_HOTPLUG_CPU 785 /** 786 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 787 * @cpu: a CPU id 788 * 789 * This function walks all processes, finds a valid mm struct for each one and 790 * then clears a corresponding bit in mm's cpumask. While this all sounds 791 * trivial, there are various non-obvious corner cases, which this function 792 * tries to solve in a safe manner. 793 * 794 * Also note that the function uses a somewhat relaxed locking scheme, so it may 795 * be called only for an already offlined CPU. 796 */ 797 void clear_tasks_mm_cpumask(int cpu) 798 { 799 struct task_struct *p; 800 801 /* 802 * This function is called after the cpu is taken down and marked 803 * offline, so its not like new tasks will ever get this cpu set in 804 * their mm mask. -- Peter Zijlstra 805 * Thus, we may use rcu_read_lock() here, instead of grabbing 806 * full-fledged tasklist_lock. 807 */ 808 WARN_ON(cpu_online(cpu)); 809 rcu_read_lock(); 810 for_each_process(p) { 811 struct task_struct *t; 812 813 /* 814 * Main thread might exit, but other threads may still have 815 * a valid mm. Find one. 816 */ 817 t = find_lock_task_mm(p); 818 if (!t) 819 continue; 820 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 821 task_unlock(t); 822 } 823 rcu_read_unlock(); 824 } 825 826 /* Take this CPU down. */ 827 static int take_cpu_down(void *_param) 828 { 829 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 830 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 831 int err, cpu = smp_processor_id(); 832 int ret; 833 834 /* Ensure this CPU doesn't handle any more interrupts. */ 835 err = __cpu_disable(); 836 if (err < 0) 837 return err; 838 839 /* 840 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 841 * do this step again. 842 */ 843 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 844 st->state--; 845 /* Invoke the former CPU_DYING callbacks */ 846 for (; st->state > target; st->state--) { 847 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 848 /* 849 * DYING must not fail! 850 */ 851 WARN_ON_ONCE(ret); 852 } 853 854 /* Give up timekeeping duties */ 855 tick_handover_do_timer(); 856 /* Park the stopper thread */ 857 stop_machine_park(cpu); 858 return 0; 859 } 860 861 static int takedown_cpu(unsigned int cpu) 862 { 863 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 864 int err; 865 866 /* Park the smpboot threads */ 867 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 868 869 /* 870 * Prevent irq alloc/free while the dying cpu reorganizes the 871 * interrupt affinities. 872 */ 873 irq_lock_sparse(); 874 875 /* 876 * So now all preempt/rcu users must observe !cpu_active(). 877 */ 878 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 879 if (err) { 880 /* CPU refused to die */ 881 irq_unlock_sparse(); 882 /* Unpark the hotplug thread so we can rollback there */ 883 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 884 return err; 885 } 886 BUG_ON(cpu_online(cpu)); 887 888 /* 889 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 890 * all runnable tasks from the CPU, there's only the idle task left now 891 * that the migration thread is done doing the stop_machine thing. 892 * 893 * Wait for the stop thread to go away. 894 */ 895 wait_for_ap_thread(st, false); 896 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 897 898 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 899 irq_unlock_sparse(); 900 901 hotplug_cpu__broadcast_tick_pull(cpu); 902 /* This actually kills the CPU. */ 903 __cpu_die(cpu); 904 905 tick_cleanup_dead_cpu(cpu); 906 rcutree_migrate_callbacks(cpu); 907 return 0; 908 } 909 910 static void cpuhp_complete_idle_dead(void *arg) 911 { 912 struct cpuhp_cpu_state *st = arg; 913 914 complete_ap_thread(st, false); 915 } 916 917 void cpuhp_report_idle_dead(void) 918 { 919 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 920 921 BUG_ON(st->state != CPUHP_AP_OFFLINE); 922 rcu_report_dead(smp_processor_id()); 923 st->state = CPUHP_AP_IDLE_DEAD; 924 /* 925 * We cannot call complete after rcu_report_dead() so we delegate it 926 * to an online cpu. 927 */ 928 smp_call_function_single(cpumask_first(cpu_online_mask), 929 cpuhp_complete_idle_dead, st, 0); 930 } 931 932 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 933 { 934 for (st->state++; st->state < st->target; st->state++) 935 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 936 } 937 938 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 939 enum cpuhp_state target) 940 { 941 enum cpuhp_state prev_state = st->state; 942 int ret = 0; 943 944 for (; st->state > target; st->state--) { 945 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 946 if (ret) { 947 st->target = prev_state; 948 if (st->state < prev_state) 949 undo_cpu_down(cpu, st); 950 break; 951 } 952 } 953 return ret; 954 } 955 956 /* Requires cpu_add_remove_lock to be held */ 957 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 958 enum cpuhp_state target) 959 { 960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 961 int prev_state, ret = 0; 962 963 if (num_online_cpus() == 1) 964 return -EBUSY; 965 966 if (!cpu_present(cpu)) 967 return -EINVAL; 968 969 cpus_write_lock(); 970 971 cpuhp_tasks_frozen = tasks_frozen; 972 973 prev_state = cpuhp_set_state(st, target); 974 /* 975 * If the current CPU state is in the range of the AP hotplug thread, 976 * then we need to kick the thread. 977 */ 978 if (st->state > CPUHP_TEARDOWN_CPU) { 979 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 980 ret = cpuhp_kick_ap_work(cpu); 981 /* 982 * The AP side has done the error rollback already. Just 983 * return the error code.. 984 */ 985 if (ret) 986 goto out; 987 988 /* 989 * We might have stopped still in the range of the AP hotplug 990 * thread. Nothing to do anymore. 991 */ 992 if (st->state > CPUHP_TEARDOWN_CPU) 993 goto out; 994 995 st->target = target; 996 } 997 /* 998 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 999 * to do the further cleanups. 1000 */ 1001 ret = cpuhp_down_callbacks(cpu, st, target); 1002 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1003 cpuhp_reset_state(st, prev_state); 1004 __cpuhp_kick_ap(st); 1005 } 1006 1007 out: 1008 cpus_write_unlock(); 1009 /* 1010 * Do post unplug cleanup. This is still protected against 1011 * concurrent CPU hotplug via cpu_add_remove_lock. 1012 */ 1013 lockup_detector_cleanup(); 1014 return ret; 1015 } 1016 1017 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1018 { 1019 if (cpu_hotplug_disabled) 1020 return -EBUSY; 1021 return _cpu_down(cpu, 0, target); 1022 } 1023 1024 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1025 { 1026 int err; 1027 1028 cpu_maps_update_begin(); 1029 err = cpu_down_maps_locked(cpu, target); 1030 cpu_maps_update_done(); 1031 return err; 1032 } 1033 1034 int cpu_down(unsigned int cpu) 1035 { 1036 return do_cpu_down(cpu, CPUHP_OFFLINE); 1037 } 1038 EXPORT_SYMBOL(cpu_down); 1039 1040 #else 1041 #define takedown_cpu NULL 1042 #endif /*CONFIG_HOTPLUG_CPU*/ 1043 1044 /** 1045 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1046 * @cpu: cpu that just started 1047 * 1048 * It must be called by the arch code on the new cpu, before the new cpu 1049 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1050 */ 1051 void notify_cpu_starting(unsigned int cpu) 1052 { 1053 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1054 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1055 int ret; 1056 1057 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1058 st->booted_once = true; 1059 while (st->state < target) { 1060 st->state++; 1061 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1062 /* 1063 * STARTING must not fail! 1064 */ 1065 WARN_ON_ONCE(ret); 1066 } 1067 } 1068 1069 /* 1070 * Called from the idle task. Wake up the controlling task which brings the 1071 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1072 * the rest of the online bringup to the hotplug thread. 1073 */ 1074 void cpuhp_online_idle(enum cpuhp_state state) 1075 { 1076 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1077 1078 /* Happens for the boot cpu */ 1079 if (state != CPUHP_AP_ONLINE_IDLE) 1080 return; 1081 1082 st->state = CPUHP_AP_ONLINE_IDLE; 1083 complete_ap_thread(st, true); 1084 } 1085 1086 /* Requires cpu_add_remove_lock to be held */ 1087 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1088 { 1089 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1090 struct task_struct *idle; 1091 int ret = 0; 1092 1093 cpus_write_lock(); 1094 1095 if (!cpu_present(cpu)) { 1096 ret = -EINVAL; 1097 goto out; 1098 } 1099 1100 /* 1101 * The caller of do_cpu_up might have raced with another 1102 * caller. Ignore it for now. 1103 */ 1104 if (st->state >= target) 1105 goto out; 1106 1107 if (st->state == CPUHP_OFFLINE) { 1108 /* Let it fail before we try to bring the cpu up */ 1109 idle = idle_thread_get(cpu); 1110 if (IS_ERR(idle)) { 1111 ret = PTR_ERR(idle); 1112 goto out; 1113 } 1114 } 1115 1116 cpuhp_tasks_frozen = tasks_frozen; 1117 1118 cpuhp_set_state(st, target); 1119 /* 1120 * If the current CPU state is in the range of the AP hotplug thread, 1121 * then we need to kick the thread once more. 1122 */ 1123 if (st->state > CPUHP_BRINGUP_CPU) { 1124 ret = cpuhp_kick_ap_work(cpu); 1125 /* 1126 * The AP side has done the error rollback already. Just 1127 * return the error code.. 1128 */ 1129 if (ret) 1130 goto out; 1131 } 1132 1133 /* 1134 * Try to reach the target state. We max out on the BP at 1135 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1136 * responsible for bringing it up to the target state. 1137 */ 1138 target = min((int)target, CPUHP_BRINGUP_CPU); 1139 ret = cpuhp_up_callbacks(cpu, st, target); 1140 out: 1141 cpus_write_unlock(); 1142 return ret; 1143 } 1144 1145 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1146 { 1147 int err = 0; 1148 1149 if (!cpu_possible(cpu)) { 1150 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1151 cpu); 1152 #if defined(CONFIG_IA64) 1153 pr_err("please check additional_cpus= boot parameter\n"); 1154 #endif 1155 return -EINVAL; 1156 } 1157 1158 err = try_online_node(cpu_to_node(cpu)); 1159 if (err) 1160 return err; 1161 1162 cpu_maps_update_begin(); 1163 1164 if (cpu_hotplug_disabled) { 1165 err = -EBUSY; 1166 goto out; 1167 } 1168 if (!cpu_smt_allowed(cpu)) { 1169 err = -EPERM; 1170 goto out; 1171 } 1172 1173 err = _cpu_up(cpu, 0, target); 1174 out: 1175 cpu_maps_update_done(); 1176 return err; 1177 } 1178 1179 int cpu_up(unsigned int cpu) 1180 { 1181 return do_cpu_up(cpu, CPUHP_ONLINE); 1182 } 1183 EXPORT_SYMBOL_GPL(cpu_up); 1184 1185 #ifdef CONFIG_PM_SLEEP_SMP 1186 static cpumask_var_t frozen_cpus; 1187 1188 int freeze_secondary_cpus(int primary) 1189 { 1190 int cpu, error = 0; 1191 1192 cpu_maps_update_begin(); 1193 if (!cpu_online(primary)) 1194 primary = cpumask_first(cpu_online_mask); 1195 /* 1196 * We take down all of the non-boot CPUs in one shot to avoid races 1197 * with the userspace trying to use the CPU hotplug at the same time 1198 */ 1199 cpumask_clear(frozen_cpus); 1200 1201 pr_info("Disabling non-boot CPUs ...\n"); 1202 for_each_online_cpu(cpu) { 1203 if (cpu == primary) 1204 continue; 1205 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1206 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1207 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1208 if (!error) 1209 cpumask_set_cpu(cpu, frozen_cpus); 1210 else { 1211 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1212 break; 1213 } 1214 } 1215 1216 if (!error) 1217 BUG_ON(num_online_cpus() > 1); 1218 else 1219 pr_err("Non-boot CPUs are not disabled\n"); 1220 1221 /* 1222 * Make sure the CPUs won't be enabled by someone else. We need to do 1223 * this even in case of failure as all disable_nonboot_cpus() users are 1224 * supposed to do enable_nonboot_cpus() on the failure path. 1225 */ 1226 cpu_hotplug_disabled++; 1227 1228 cpu_maps_update_done(); 1229 return error; 1230 } 1231 1232 void __weak arch_enable_nonboot_cpus_begin(void) 1233 { 1234 } 1235 1236 void __weak arch_enable_nonboot_cpus_end(void) 1237 { 1238 } 1239 1240 void enable_nonboot_cpus(void) 1241 { 1242 int cpu, error; 1243 1244 /* Allow everyone to use the CPU hotplug again */ 1245 cpu_maps_update_begin(); 1246 __cpu_hotplug_enable(); 1247 if (cpumask_empty(frozen_cpus)) 1248 goto out; 1249 1250 pr_info("Enabling non-boot CPUs ...\n"); 1251 1252 arch_enable_nonboot_cpus_begin(); 1253 1254 for_each_cpu(cpu, frozen_cpus) { 1255 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1256 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1257 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1258 if (!error) { 1259 pr_info("CPU%d is up\n", cpu); 1260 continue; 1261 } 1262 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1263 } 1264 1265 arch_enable_nonboot_cpus_end(); 1266 1267 cpumask_clear(frozen_cpus); 1268 out: 1269 cpu_maps_update_done(); 1270 } 1271 1272 static int __init alloc_frozen_cpus(void) 1273 { 1274 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1275 return -ENOMEM; 1276 return 0; 1277 } 1278 core_initcall(alloc_frozen_cpus); 1279 1280 /* 1281 * When callbacks for CPU hotplug notifications are being executed, we must 1282 * ensure that the state of the system with respect to the tasks being frozen 1283 * or not, as reported by the notification, remains unchanged *throughout the 1284 * duration* of the execution of the callbacks. 1285 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1286 * 1287 * This synchronization is implemented by mutually excluding regular CPU 1288 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1289 * Hibernate notifications. 1290 */ 1291 static int 1292 cpu_hotplug_pm_callback(struct notifier_block *nb, 1293 unsigned long action, void *ptr) 1294 { 1295 switch (action) { 1296 1297 case PM_SUSPEND_PREPARE: 1298 case PM_HIBERNATION_PREPARE: 1299 cpu_hotplug_disable(); 1300 break; 1301 1302 case PM_POST_SUSPEND: 1303 case PM_POST_HIBERNATION: 1304 cpu_hotplug_enable(); 1305 break; 1306 1307 default: 1308 return NOTIFY_DONE; 1309 } 1310 1311 return NOTIFY_OK; 1312 } 1313 1314 1315 static int __init cpu_hotplug_pm_sync_init(void) 1316 { 1317 /* 1318 * cpu_hotplug_pm_callback has higher priority than x86 1319 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1320 * to disable cpu hotplug to avoid cpu hotplug race. 1321 */ 1322 pm_notifier(cpu_hotplug_pm_callback, 0); 1323 return 0; 1324 } 1325 core_initcall(cpu_hotplug_pm_sync_init); 1326 1327 #endif /* CONFIG_PM_SLEEP_SMP */ 1328 1329 int __boot_cpu_id; 1330 1331 #endif /* CONFIG_SMP */ 1332 1333 /* Boot processor state steps */ 1334 static struct cpuhp_step cpuhp_hp_states[] = { 1335 [CPUHP_OFFLINE] = { 1336 .name = "offline", 1337 .startup.single = NULL, 1338 .teardown.single = NULL, 1339 }, 1340 #ifdef CONFIG_SMP 1341 [CPUHP_CREATE_THREADS]= { 1342 .name = "threads:prepare", 1343 .startup.single = smpboot_create_threads, 1344 .teardown.single = NULL, 1345 .cant_stop = true, 1346 }, 1347 [CPUHP_PERF_PREPARE] = { 1348 .name = "perf:prepare", 1349 .startup.single = perf_event_init_cpu, 1350 .teardown.single = perf_event_exit_cpu, 1351 }, 1352 [CPUHP_WORKQUEUE_PREP] = { 1353 .name = "workqueue:prepare", 1354 .startup.single = workqueue_prepare_cpu, 1355 .teardown.single = NULL, 1356 }, 1357 [CPUHP_HRTIMERS_PREPARE] = { 1358 .name = "hrtimers:prepare", 1359 .startup.single = hrtimers_prepare_cpu, 1360 .teardown.single = hrtimers_dead_cpu, 1361 }, 1362 [CPUHP_SMPCFD_PREPARE] = { 1363 .name = "smpcfd:prepare", 1364 .startup.single = smpcfd_prepare_cpu, 1365 .teardown.single = smpcfd_dead_cpu, 1366 }, 1367 [CPUHP_RELAY_PREPARE] = { 1368 .name = "relay:prepare", 1369 .startup.single = relay_prepare_cpu, 1370 .teardown.single = NULL, 1371 }, 1372 [CPUHP_SLAB_PREPARE] = { 1373 .name = "slab:prepare", 1374 .startup.single = slab_prepare_cpu, 1375 .teardown.single = slab_dead_cpu, 1376 }, 1377 [CPUHP_RCUTREE_PREP] = { 1378 .name = "RCU/tree:prepare", 1379 .startup.single = rcutree_prepare_cpu, 1380 .teardown.single = rcutree_dead_cpu, 1381 }, 1382 /* 1383 * On the tear-down path, timers_dead_cpu() must be invoked 1384 * before blk_mq_queue_reinit_notify() from notify_dead(), 1385 * otherwise a RCU stall occurs. 1386 */ 1387 [CPUHP_TIMERS_PREPARE] = { 1388 .name = "timers:prepare", 1389 .startup.single = timers_prepare_cpu, 1390 .teardown.single = timers_dead_cpu, 1391 }, 1392 /* Kicks the plugged cpu into life */ 1393 [CPUHP_BRINGUP_CPU] = { 1394 .name = "cpu:bringup", 1395 .startup.single = bringup_cpu, 1396 .teardown.single = NULL, 1397 .cant_stop = true, 1398 }, 1399 /* Final state before CPU kills itself */ 1400 [CPUHP_AP_IDLE_DEAD] = { 1401 .name = "idle:dead", 1402 }, 1403 /* 1404 * Last state before CPU enters the idle loop to die. Transient state 1405 * for synchronization. 1406 */ 1407 [CPUHP_AP_OFFLINE] = { 1408 .name = "ap:offline", 1409 .cant_stop = true, 1410 }, 1411 /* First state is scheduler control. Interrupts are disabled */ 1412 [CPUHP_AP_SCHED_STARTING] = { 1413 .name = "sched:starting", 1414 .startup.single = sched_cpu_starting, 1415 .teardown.single = sched_cpu_dying, 1416 }, 1417 [CPUHP_AP_RCUTREE_DYING] = { 1418 .name = "RCU/tree:dying", 1419 .startup.single = NULL, 1420 .teardown.single = rcutree_dying_cpu, 1421 }, 1422 [CPUHP_AP_SMPCFD_DYING] = { 1423 .name = "smpcfd:dying", 1424 .startup.single = NULL, 1425 .teardown.single = smpcfd_dying_cpu, 1426 }, 1427 /* Entry state on starting. Interrupts enabled from here on. Transient 1428 * state for synchronsization */ 1429 [CPUHP_AP_ONLINE] = { 1430 .name = "ap:online", 1431 }, 1432 /* 1433 * Handled on controll processor until the plugged processor manages 1434 * this itself. 1435 */ 1436 [CPUHP_TEARDOWN_CPU] = { 1437 .name = "cpu:teardown", 1438 .startup.single = NULL, 1439 .teardown.single = takedown_cpu, 1440 .cant_stop = true, 1441 }, 1442 /* Handle smpboot threads park/unpark */ 1443 [CPUHP_AP_SMPBOOT_THREADS] = { 1444 .name = "smpboot/threads:online", 1445 .startup.single = smpboot_unpark_threads, 1446 .teardown.single = smpboot_park_threads, 1447 }, 1448 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1449 .name = "irq/affinity:online", 1450 .startup.single = irq_affinity_online_cpu, 1451 .teardown.single = NULL, 1452 }, 1453 [CPUHP_AP_PERF_ONLINE] = { 1454 .name = "perf:online", 1455 .startup.single = perf_event_init_cpu, 1456 .teardown.single = perf_event_exit_cpu, 1457 }, 1458 [CPUHP_AP_WATCHDOG_ONLINE] = { 1459 .name = "lockup_detector:online", 1460 .startup.single = lockup_detector_online_cpu, 1461 .teardown.single = lockup_detector_offline_cpu, 1462 }, 1463 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1464 .name = "workqueue:online", 1465 .startup.single = workqueue_online_cpu, 1466 .teardown.single = workqueue_offline_cpu, 1467 }, 1468 [CPUHP_AP_RCUTREE_ONLINE] = { 1469 .name = "RCU/tree:online", 1470 .startup.single = rcutree_online_cpu, 1471 .teardown.single = rcutree_offline_cpu, 1472 }, 1473 #endif 1474 /* 1475 * The dynamically registered state space is here 1476 */ 1477 1478 #ifdef CONFIG_SMP 1479 /* Last state is scheduler control setting the cpu active */ 1480 [CPUHP_AP_ACTIVE] = { 1481 .name = "sched:active", 1482 .startup.single = sched_cpu_activate, 1483 .teardown.single = sched_cpu_deactivate, 1484 }, 1485 #endif 1486 1487 /* CPU is fully up and running. */ 1488 [CPUHP_ONLINE] = { 1489 .name = "online", 1490 .startup.single = NULL, 1491 .teardown.single = NULL, 1492 }, 1493 }; 1494 1495 /* Sanity check for callbacks */ 1496 static int cpuhp_cb_check(enum cpuhp_state state) 1497 { 1498 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1499 return -EINVAL; 1500 return 0; 1501 } 1502 1503 /* 1504 * Returns a free for dynamic slot assignment of the Online state. The states 1505 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1506 * by having no name assigned. 1507 */ 1508 static int cpuhp_reserve_state(enum cpuhp_state state) 1509 { 1510 enum cpuhp_state i, end; 1511 struct cpuhp_step *step; 1512 1513 switch (state) { 1514 case CPUHP_AP_ONLINE_DYN: 1515 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1516 end = CPUHP_AP_ONLINE_DYN_END; 1517 break; 1518 case CPUHP_BP_PREPARE_DYN: 1519 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1520 end = CPUHP_BP_PREPARE_DYN_END; 1521 break; 1522 default: 1523 return -EINVAL; 1524 } 1525 1526 for (i = state; i <= end; i++, step++) { 1527 if (!step->name) 1528 return i; 1529 } 1530 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1531 return -ENOSPC; 1532 } 1533 1534 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1535 int (*startup)(unsigned int cpu), 1536 int (*teardown)(unsigned int cpu), 1537 bool multi_instance) 1538 { 1539 /* (Un)Install the callbacks for further cpu hotplug operations */ 1540 struct cpuhp_step *sp; 1541 int ret = 0; 1542 1543 /* 1544 * If name is NULL, then the state gets removed. 1545 * 1546 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1547 * the first allocation from these dynamic ranges, so the removal 1548 * would trigger a new allocation and clear the wrong (already 1549 * empty) state, leaving the callbacks of the to be cleared state 1550 * dangling, which causes wreckage on the next hotplug operation. 1551 */ 1552 if (name && (state == CPUHP_AP_ONLINE_DYN || 1553 state == CPUHP_BP_PREPARE_DYN)) { 1554 ret = cpuhp_reserve_state(state); 1555 if (ret < 0) 1556 return ret; 1557 state = ret; 1558 } 1559 sp = cpuhp_get_step(state); 1560 if (name && sp->name) 1561 return -EBUSY; 1562 1563 sp->startup.single = startup; 1564 sp->teardown.single = teardown; 1565 sp->name = name; 1566 sp->multi_instance = multi_instance; 1567 INIT_HLIST_HEAD(&sp->list); 1568 return ret; 1569 } 1570 1571 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1572 { 1573 return cpuhp_get_step(state)->teardown.single; 1574 } 1575 1576 /* 1577 * Call the startup/teardown function for a step either on the AP or 1578 * on the current CPU. 1579 */ 1580 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1581 struct hlist_node *node) 1582 { 1583 struct cpuhp_step *sp = cpuhp_get_step(state); 1584 int ret; 1585 1586 /* 1587 * If there's nothing to do, we done. 1588 * Relies on the union for multi_instance. 1589 */ 1590 if ((bringup && !sp->startup.single) || 1591 (!bringup && !sp->teardown.single)) 1592 return 0; 1593 /* 1594 * The non AP bound callbacks can fail on bringup. On teardown 1595 * e.g. module removal we crash for now. 1596 */ 1597 #ifdef CONFIG_SMP 1598 if (cpuhp_is_ap_state(state)) 1599 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1600 else 1601 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1602 #else 1603 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1604 #endif 1605 BUG_ON(ret && !bringup); 1606 return ret; 1607 } 1608 1609 /* 1610 * Called from __cpuhp_setup_state on a recoverable failure. 1611 * 1612 * Note: The teardown callbacks for rollback are not allowed to fail! 1613 */ 1614 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1615 struct hlist_node *node) 1616 { 1617 int cpu; 1618 1619 /* Roll back the already executed steps on the other cpus */ 1620 for_each_present_cpu(cpu) { 1621 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1622 int cpustate = st->state; 1623 1624 if (cpu >= failedcpu) 1625 break; 1626 1627 /* Did we invoke the startup call on that cpu ? */ 1628 if (cpustate >= state) 1629 cpuhp_issue_call(cpu, state, false, node); 1630 } 1631 } 1632 1633 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1634 struct hlist_node *node, 1635 bool invoke) 1636 { 1637 struct cpuhp_step *sp; 1638 int cpu; 1639 int ret; 1640 1641 lockdep_assert_cpus_held(); 1642 1643 sp = cpuhp_get_step(state); 1644 if (sp->multi_instance == false) 1645 return -EINVAL; 1646 1647 mutex_lock(&cpuhp_state_mutex); 1648 1649 if (!invoke || !sp->startup.multi) 1650 goto add_node; 1651 1652 /* 1653 * Try to call the startup callback for each present cpu 1654 * depending on the hotplug state of the cpu. 1655 */ 1656 for_each_present_cpu(cpu) { 1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1658 int cpustate = st->state; 1659 1660 if (cpustate < state) 1661 continue; 1662 1663 ret = cpuhp_issue_call(cpu, state, true, node); 1664 if (ret) { 1665 if (sp->teardown.multi) 1666 cpuhp_rollback_install(cpu, state, node); 1667 goto unlock; 1668 } 1669 } 1670 add_node: 1671 ret = 0; 1672 hlist_add_head(node, &sp->list); 1673 unlock: 1674 mutex_unlock(&cpuhp_state_mutex); 1675 return ret; 1676 } 1677 1678 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1679 bool invoke) 1680 { 1681 int ret; 1682 1683 cpus_read_lock(); 1684 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1685 cpus_read_unlock(); 1686 return ret; 1687 } 1688 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1689 1690 /** 1691 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1692 * @state: The state to setup 1693 * @invoke: If true, the startup function is invoked for cpus where 1694 * cpu state >= @state 1695 * @startup: startup callback function 1696 * @teardown: teardown callback function 1697 * @multi_instance: State is set up for multiple instances which get 1698 * added afterwards. 1699 * 1700 * The caller needs to hold cpus read locked while calling this function. 1701 * Returns: 1702 * On success: 1703 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1704 * 0 for all other states 1705 * On failure: proper (negative) error code 1706 */ 1707 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1708 const char *name, bool invoke, 1709 int (*startup)(unsigned int cpu), 1710 int (*teardown)(unsigned int cpu), 1711 bool multi_instance) 1712 { 1713 int cpu, ret = 0; 1714 bool dynstate; 1715 1716 lockdep_assert_cpus_held(); 1717 1718 if (cpuhp_cb_check(state) || !name) 1719 return -EINVAL; 1720 1721 mutex_lock(&cpuhp_state_mutex); 1722 1723 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1724 multi_instance); 1725 1726 dynstate = state == CPUHP_AP_ONLINE_DYN; 1727 if (ret > 0 && dynstate) { 1728 state = ret; 1729 ret = 0; 1730 } 1731 1732 if (ret || !invoke || !startup) 1733 goto out; 1734 1735 /* 1736 * Try to call the startup callback for each present cpu 1737 * depending on the hotplug state of the cpu. 1738 */ 1739 for_each_present_cpu(cpu) { 1740 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1741 int cpustate = st->state; 1742 1743 if (cpustate < state) 1744 continue; 1745 1746 ret = cpuhp_issue_call(cpu, state, true, NULL); 1747 if (ret) { 1748 if (teardown) 1749 cpuhp_rollback_install(cpu, state, NULL); 1750 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1751 goto out; 1752 } 1753 } 1754 out: 1755 mutex_unlock(&cpuhp_state_mutex); 1756 /* 1757 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1758 * dynamically allocated state in case of success. 1759 */ 1760 if (!ret && dynstate) 1761 return state; 1762 return ret; 1763 } 1764 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1765 1766 int __cpuhp_setup_state(enum cpuhp_state state, 1767 const char *name, bool invoke, 1768 int (*startup)(unsigned int cpu), 1769 int (*teardown)(unsigned int cpu), 1770 bool multi_instance) 1771 { 1772 int ret; 1773 1774 cpus_read_lock(); 1775 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1776 teardown, multi_instance); 1777 cpus_read_unlock(); 1778 return ret; 1779 } 1780 EXPORT_SYMBOL(__cpuhp_setup_state); 1781 1782 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1783 struct hlist_node *node, bool invoke) 1784 { 1785 struct cpuhp_step *sp = cpuhp_get_step(state); 1786 int cpu; 1787 1788 BUG_ON(cpuhp_cb_check(state)); 1789 1790 if (!sp->multi_instance) 1791 return -EINVAL; 1792 1793 cpus_read_lock(); 1794 mutex_lock(&cpuhp_state_mutex); 1795 1796 if (!invoke || !cpuhp_get_teardown_cb(state)) 1797 goto remove; 1798 /* 1799 * Call the teardown callback for each present cpu depending 1800 * on the hotplug state of the cpu. This function is not 1801 * allowed to fail currently! 1802 */ 1803 for_each_present_cpu(cpu) { 1804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1805 int cpustate = st->state; 1806 1807 if (cpustate >= state) 1808 cpuhp_issue_call(cpu, state, false, node); 1809 } 1810 1811 remove: 1812 hlist_del(node); 1813 mutex_unlock(&cpuhp_state_mutex); 1814 cpus_read_unlock(); 1815 1816 return 0; 1817 } 1818 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1819 1820 /** 1821 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1822 * @state: The state to remove 1823 * @invoke: If true, the teardown function is invoked for cpus where 1824 * cpu state >= @state 1825 * 1826 * The caller needs to hold cpus read locked while calling this function. 1827 * The teardown callback is currently not allowed to fail. Think 1828 * about module removal! 1829 */ 1830 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1831 { 1832 struct cpuhp_step *sp = cpuhp_get_step(state); 1833 int cpu; 1834 1835 BUG_ON(cpuhp_cb_check(state)); 1836 1837 lockdep_assert_cpus_held(); 1838 1839 mutex_lock(&cpuhp_state_mutex); 1840 if (sp->multi_instance) { 1841 WARN(!hlist_empty(&sp->list), 1842 "Error: Removing state %d which has instances left.\n", 1843 state); 1844 goto remove; 1845 } 1846 1847 if (!invoke || !cpuhp_get_teardown_cb(state)) 1848 goto remove; 1849 1850 /* 1851 * Call the teardown callback for each present cpu depending 1852 * on the hotplug state of the cpu. This function is not 1853 * allowed to fail currently! 1854 */ 1855 for_each_present_cpu(cpu) { 1856 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1857 int cpustate = st->state; 1858 1859 if (cpustate >= state) 1860 cpuhp_issue_call(cpu, state, false, NULL); 1861 } 1862 remove: 1863 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1864 mutex_unlock(&cpuhp_state_mutex); 1865 } 1866 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1867 1868 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1869 { 1870 cpus_read_lock(); 1871 __cpuhp_remove_state_cpuslocked(state, invoke); 1872 cpus_read_unlock(); 1873 } 1874 EXPORT_SYMBOL(__cpuhp_remove_state); 1875 1876 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1877 static ssize_t show_cpuhp_state(struct device *dev, 1878 struct device_attribute *attr, char *buf) 1879 { 1880 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1881 1882 return sprintf(buf, "%d\n", st->state); 1883 } 1884 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1885 1886 static ssize_t write_cpuhp_target(struct device *dev, 1887 struct device_attribute *attr, 1888 const char *buf, size_t count) 1889 { 1890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1891 struct cpuhp_step *sp; 1892 int target, ret; 1893 1894 ret = kstrtoint(buf, 10, &target); 1895 if (ret) 1896 return ret; 1897 1898 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1899 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1900 return -EINVAL; 1901 #else 1902 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1903 return -EINVAL; 1904 #endif 1905 1906 ret = lock_device_hotplug_sysfs(); 1907 if (ret) 1908 return ret; 1909 1910 mutex_lock(&cpuhp_state_mutex); 1911 sp = cpuhp_get_step(target); 1912 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1913 mutex_unlock(&cpuhp_state_mutex); 1914 if (ret) 1915 goto out; 1916 1917 if (st->state < target) 1918 ret = do_cpu_up(dev->id, target); 1919 else 1920 ret = do_cpu_down(dev->id, target); 1921 out: 1922 unlock_device_hotplug(); 1923 return ret ? ret : count; 1924 } 1925 1926 static ssize_t show_cpuhp_target(struct device *dev, 1927 struct device_attribute *attr, char *buf) 1928 { 1929 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1930 1931 return sprintf(buf, "%d\n", st->target); 1932 } 1933 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1934 1935 1936 static ssize_t write_cpuhp_fail(struct device *dev, 1937 struct device_attribute *attr, 1938 const char *buf, size_t count) 1939 { 1940 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1941 struct cpuhp_step *sp; 1942 int fail, ret; 1943 1944 ret = kstrtoint(buf, 10, &fail); 1945 if (ret) 1946 return ret; 1947 1948 /* 1949 * Cannot fail STARTING/DYING callbacks. 1950 */ 1951 if (cpuhp_is_atomic_state(fail)) 1952 return -EINVAL; 1953 1954 /* 1955 * Cannot fail anything that doesn't have callbacks. 1956 */ 1957 mutex_lock(&cpuhp_state_mutex); 1958 sp = cpuhp_get_step(fail); 1959 if (!sp->startup.single && !sp->teardown.single) 1960 ret = -EINVAL; 1961 mutex_unlock(&cpuhp_state_mutex); 1962 if (ret) 1963 return ret; 1964 1965 st->fail = fail; 1966 1967 return count; 1968 } 1969 1970 static ssize_t show_cpuhp_fail(struct device *dev, 1971 struct device_attribute *attr, char *buf) 1972 { 1973 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1974 1975 return sprintf(buf, "%d\n", st->fail); 1976 } 1977 1978 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1979 1980 static struct attribute *cpuhp_cpu_attrs[] = { 1981 &dev_attr_state.attr, 1982 &dev_attr_target.attr, 1983 &dev_attr_fail.attr, 1984 NULL 1985 }; 1986 1987 static const struct attribute_group cpuhp_cpu_attr_group = { 1988 .attrs = cpuhp_cpu_attrs, 1989 .name = "hotplug", 1990 NULL 1991 }; 1992 1993 static ssize_t show_cpuhp_states(struct device *dev, 1994 struct device_attribute *attr, char *buf) 1995 { 1996 ssize_t cur, res = 0; 1997 int i; 1998 1999 mutex_lock(&cpuhp_state_mutex); 2000 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2001 struct cpuhp_step *sp = cpuhp_get_step(i); 2002 2003 if (sp->name) { 2004 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2005 buf += cur; 2006 res += cur; 2007 } 2008 } 2009 mutex_unlock(&cpuhp_state_mutex); 2010 return res; 2011 } 2012 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2013 2014 static struct attribute *cpuhp_cpu_root_attrs[] = { 2015 &dev_attr_states.attr, 2016 NULL 2017 }; 2018 2019 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2020 .attrs = cpuhp_cpu_root_attrs, 2021 .name = "hotplug", 2022 NULL 2023 }; 2024 2025 #ifdef CONFIG_HOTPLUG_SMT 2026 2027 static const char *smt_states[] = { 2028 [CPU_SMT_ENABLED] = "on", 2029 [CPU_SMT_DISABLED] = "off", 2030 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2031 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2032 }; 2033 2034 static ssize_t 2035 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2036 { 2037 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]); 2038 } 2039 2040 static void cpuhp_offline_cpu_device(unsigned int cpu) 2041 { 2042 struct device *dev = get_cpu_device(cpu); 2043 2044 dev->offline = true; 2045 /* Tell user space about the state change */ 2046 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2047 } 2048 2049 static void cpuhp_online_cpu_device(unsigned int cpu) 2050 { 2051 struct device *dev = get_cpu_device(cpu); 2052 2053 dev->offline = false; 2054 /* Tell user space about the state change */ 2055 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2056 } 2057 2058 /* 2059 * Architectures that need SMT-specific errata handling during SMT hotplug 2060 * should override this. 2061 */ 2062 void __weak arch_smt_update(void) { }; 2063 2064 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2065 { 2066 int cpu, ret = 0; 2067 2068 cpu_maps_update_begin(); 2069 for_each_online_cpu(cpu) { 2070 if (topology_is_primary_thread(cpu)) 2071 continue; 2072 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2073 if (ret) 2074 break; 2075 /* 2076 * As this needs to hold the cpu maps lock it's impossible 2077 * to call device_offline() because that ends up calling 2078 * cpu_down() which takes cpu maps lock. cpu maps lock 2079 * needs to be held as this might race against in kernel 2080 * abusers of the hotplug machinery (thermal management). 2081 * 2082 * So nothing would update device:offline state. That would 2083 * leave the sysfs entry stale and prevent onlining after 2084 * smt control has been changed to 'off' again. This is 2085 * called under the sysfs hotplug lock, so it is properly 2086 * serialized against the regular offline usage. 2087 */ 2088 cpuhp_offline_cpu_device(cpu); 2089 } 2090 if (!ret) { 2091 cpu_smt_control = ctrlval; 2092 arch_smt_update(); 2093 } 2094 cpu_maps_update_done(); 2095 return ret; 2096 } 2097 2098 static int cpuhp_smt_enable(void) 2099 { 2100 int cpu, ret = 0; 2101 2102 cpu_maps_update_begin(); 2103 cpu_smt_control = CPU_SMT_ENABLED; 2104 arch_smt_update(); 2105 for_each_present_cpu(cpu) { 2106 /* Skip online CPUs and CPUs on offline nodes */ 2107 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2108 continue; 2109 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2110 if (ret) 2111 break; 2112 /* See comment in cpuhp_smt_disable() */ 2113 cpuhp_online_cpu_device(cpu); 2114 } 2115 cpu_maps_update_done(); 2116 return ret; 2117 } 2118 2119 static ssize_t 2120 store_smt_control(struct device *dev, struct device_attribute *attr, 2121 const char *buf, size_t count) 2122 { 2123 int ctrlval, ret; 2124 2125 if (sysfs_streq(buf, "on")) 2126 ctrlval = CPU_SMT_ENABLED; 2127 else if (sysfs_streq(buf, "off")) 2128 ctrlval = CPU_SMT_DISABLED; 2129 else if (sysfs_streq(buf, "forceoff")) 2130 ctrlval = CPU_SMT_FORCE_DISABLED; 2131 else 2132 return -EINVAL; 2133 2134 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2135 return -EPERM; 2136 2137 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2138 return -ENODEV; 2139 2140 ret = lock_device_hotplug_sysfs(); 2141 if (ret) 2142 return ret; 2143 2144 if (ctrlval != cpu_smt_control) { 2145 switch (ctrlval) { 2146 case CPU_SMT_ENABLED: 2147 ret = cpuhp_smt_enable(); 2148 break; 2149 case CPU_SMT_DISABLED: 2150 case CPU_SMT_FORCE_DISABLED: 2151 ret = cpuhp_smt_disable(ctrlval); 2152 break; 2153 } 2154 } 2155 2156 unlock_device_hotplug(); 2157 return ret ? ret : count; 2158 } 2159 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2160 2161 static ssize_t 2162 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2163 { 2164 bool active = topology_max_smt_threads() > 1; 2165 2166 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active); 2167 } 2168 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2169 2170 static struct attribute *cpuhp_smt_attrs[] = { 2171 &dev_attr_control.attr, 2172 &dev_attr_active.attr, 2173 NULL 2174 }; 2175 2176 static const struct attribute_group cpuhp_smt_attr_group = { 2177 .attrs = cpuhp_smt_attrs, 2178 .name = "smt", 2179 NULL 2180 }; 2181 2182 static int __init cpu_smt_state_init(void) 2183 { 2184 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2185 &cpuhp_smt_attr_group); 2186 } 2187 2188 #else 2189 static inline int cpu_smt_state_init(void) { return 0; } 2190 #endif 2191 2192 static int __init cpuhp_sysfs_init(void) 2193 { 2194 int cpu, ret; 2195 2196 ret = cpu_smt_state_init(); 2197 if (ret) 2198 return ret; 2199 2200 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2201 &cpuhp_cpu_root_attr_group); 2202 if (ret) 2203 return ret; 2204 2205 for_each_possible_cpu(cpu) { 2206 struct device *dev = get_cpu_device(cpu); 2207 2208 if (!dev) 2209 continue; 2210 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2211 if (ret) 2212 return ret; 2213 } 2214 return 0; 2215 } 2216 device_initcall(cpuhp_sysfs_init); 2217 #endif 2218 2219 /* 2220 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2221 * represents all NR_CPUS bits binary values of 1<<nr. 2222 * 2223 * It is used by cpumask_of() to get a constant address to a CPU 2224 * mask value that has a single bit set only. 2225 */ 2226 2227 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2228 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2229 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2230 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2231 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2232 2233 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2234 2235 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2236 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2237 #if BITS_PER_LONG > 32 2238 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2239 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2240 #endif 2241 }; 2242 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2243 2244 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2245 EXPORT_SYMBOL(cpu_all_bits); 2246 2247 #ifdef CONFIG_INIT_ALL_POSSIBLE 2248 struct cpumask __cpu_possible_mask __read_mostly 2249 = {CPU_BITS_ALL}; 2250 #else 2251 struct cpumask __cpu_possible_mask __read_mostly; 2252 #endif 2253 EXPORT_SYMBOL(__cpu_possible_mask); 2254 2255 struct cpumask __cpu_online_mask __read_mostly; 2256 EXPORT_SYMBOL(__cpu_online_mask); 2257 2258 struct cpumask __cpu_present_mask __read_mostly; 2259 EXPORT_SYMBOL(__cpu_present_mask); 2260 2261 struct cpumask __cpu_active_mask __read_mostly; 2262 EXPORT_SYMBOL(__cpu_active_mask); 2263 2264 void init_cpu_present(const struct cpumask *src) 2265 { 2266 cpumask_copy(&__cpu_present_mask, src); 2267 } 2268 2269 void init_cpu_possible(const struct cpumask *src) 2270 { 2271 cpumask_copy(&__cpu_possible_mask, src); 2272 } 2273 2274 void init_cpu_online(const struct cpumask *src) 2275 { 2276 cpumask_copy(&__cpu_online_mask, src); 2277 } 2278 2279 /* 2280 * Activate the first processor. 2281 */ 2282 void __init boot_cpu_init(void) 2283 { 2284 int cpu = smp_processor_id(); 2285 2286 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2287 set_cpu_online(cpu, true); 2288 set_cpu_active(cpu, true); 2289 set_cpu_present(cpu, true); 2290 set_cpu_possible(cpu, true); 2291 2292 #ifdef CONFIG_SMP 2293 __boot_cpu_id = cpu; 2294 #endif 2295 } 2296 2297 /* 2298 * Must be called _AFTER_ setting up the per_cpu areas 2299 */ 2300 void __init boot_cpu_hotplug_init(void) 2301 { 2302 #ifdef CONFIG_SMP 2303 this_cpu_write(cpuhp_state.booted_once, true); 2304 #endif 2305 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2306 } 2307