xref: /linux/kernel/cpu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30 
31 #include "smpboot.h"
32 
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:	The current cpu state
36  * @target:	The target state
37  * @thread:	Pointer to the hotplug thread
38  * @should_run:	Thread should execute
39  * @rollback:	Perform a rollback
40  * @cb_stat:	The state for a single callback (install/uninstall)
41  * @cb:		Single callback function (install/uninstall)
42  * @result:	Result of the operation
43  * @done:	Signal completion to the issuer of the task
44  */
45 struct cpuhp_cpu_state {
46 	enum cpuhp_state	state;
47 	enum cpuhp_state	target;
48 #ifdef CONFIG_SMP
49 	struct task_struct	*thread;
50 	bool			should_run;
51 	bool			rollback;
52 	enum cpuhp_state	cb_state;
53 	int			(*cb)(unsigned int cpu);
54 	int			result;
55 	struct completion	done;
56 #endif
57 };
58 
59 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
60 
61 /**
62  * cpuhp_step - Hotplug state machine step
63  * @name:	Name of the step
64  * @startup:	Startup function of the step
65  * @teardown:	Teardown function of the step
66  * @skip_onerr:	Do not invoke the functions on error rollback
67  *		Will go away once the notifiers	are gone
68  * @cant_stop:	Bringup/teardown can't be stopped at this step
69  */
70 struct cpuhp_step {
71 	const char	*name;
72 	int		(*startup)(unsigned int cpu);
73 	int		(*teardown)(unsigned int cpu);
74 	bool		skip_onerr;
75 	bool		cant_stop;
76 };
77 
78 static DEFINE_MUTEX(cpuhp_state_mutex);
79 static struct cpuhp_step cpuhp_bp_states[];
80 static struct cpuhp_step cpuhp_ap_states[];
81 
82 /**
83  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
84  * @cpu:	The cpu for which the callback should be invoked
85  * @step:	The step in the state machine
86  * @cb:		The callback function to invoke
87  *
88  * Called from cpu hotplug and from the state register machinery
89  */
90 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
91 				 int (*cb)(unsigned int))
92 {
93 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
94 	int ret = 0;
95 
96 	if (cb) {
97 		trace_cpuhp_enter(cpu, st->target, step, cb);
98 		ret = cb(cpu);
99 		trace_cpuhp_exit(cpu, st->state, step, ret);
100 	}
101 	return ret;
102 }
103 
104 #ifdef CONFIG_SMP
105 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
106 static DEFINE_MUTEX(cpu_add_remove_lock);
107 bool cpuhp_tasks_frozen;
108 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
109 
110 /*
111  * The following two APIs (cpu_maps_update_begin/done) must be used when
112  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
113  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
114  * hotplug callback (un)registration performed using __register_cpu_notifier()
115  * or __unregister_cpu_notifier().
116  */
117 void cpu_maps_update_begin(void)
118 {
119 	mutex_lock(&cpu_add_remove_lock);
120 }
121 EXPORT_SYMBOL(cpu_notifier_register_begin);
122 
123 void cpu_maps_update_done(void)
124 {
125 	mutex_unlock(&cpu_add_remove_lock);
126 }
127 EXPORT_SYMBOL(cpu_notifier_register_done);
128 
129 static RAW_NOTIFIER_HEAD(cpu_chain);
130 
131 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
132  * Should always be manipulated under cpu_add_remove_lock
133  */
134 static int cpu_hotplug_disabled;
135 
136 #ifdef CONFIG_HOTPLUG_CPU
137 
138 static struct {
139 	struct task_struct *active_writer;
140 	/* wait queue to wake up the active_writer */
141 	wait_queue_head_t wq;
142 	/* verifies that no writer will get active while readers are active */
143 	struct mutex lock;
144 	/*
145 	 * Also blocks the new readers during
146 	 * an ongoing cpu hotplug operation.
147 	 */
148 	atomic_t refcount;
149 
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151 	struct lockdep_map dep_map;
152 #endif
153 } cpu_hotplug = {
154 	.active_writer = NULL,
155 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
156 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 	.dep_map = {.name = "cpu_hotplug.lock" },
159 #endif
160 };
161 
162 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
163 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire_tryread() \
165 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
166 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
167 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
168 
169 
170 void get_online_cpus(void)
171 {
172 	might_sleep();
173 	if (cpu_hotplug.active_writer == current)
174 		return;
175 	cpuhp_lock_acquire_read();
176 	mutex_lock(&cpu_hotplug.lock);
177 	atomic_inc(&cpu_hotplug.refcount);
178 	mutex_unlock(&cpu_hotplug.lock);
179 }
180 EXPORT_SYMBOL_GPL(get_online_cpus);
181 
182 void put_online_cpus(void)
183 {
184 	int refcount;
185 
186 	if (cpu_hotplug.active_writer == current)
187 		return;
188 
189 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
190 	if (WARN_ON(refcount < 0)) /* try to fix things up */
191 		atomic_inc(&cpu_hotplug.refcount);
192 
193 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
194 		wake_up(&cpu_hotplug.wq);
195 
196 	cpuhp_lock_release();
197 
198 }
199 EXPORT_SYMBOL_GPL(put_online_cpus);
200 
201 /*
202  * This ensures that the hotplug operation can begin only when the
203  * refcount goes to zero.
204  *
205  * Note that during a cpu-hotplug operation, the new readers, if any,
206  * will be blocked by the cpu_hotplug.lock
207  *
208  * Since cpu_hotplug_begin() is always called after invoking
209  * cpu_maps_update_begin(), we can be sure that only one writer is active.
210  *
211  * Note that theoretically, there is a possibility of a livelock:
212  * - Refcount goes to zero, last reader wakes up the sleeping
213  *   writer.
214  * - Last reader unlocks the cpu_hotplug.lock.
215  * - A new reader arrives at this moment, bumps up the refcount.
216  * - The writer acquires the cpu_hotplug.lock finds the refcount
217  *   non zero and goes to sleep again.
218  *
219  * However, this is very difficult to achieve in practice since
220  * get_online_cpus() not an api which is called all that often.
221  *
222  */
223 void cpu_hotplug_begin(void)
224 {
225 	DEFINE_WAIT(wait);
226 
227 	cpu_hotplug.active_writer = current;
228 	cpuhp_lock_acquire();
229 
230 	for (;;) {
231 		mutex_lock(&cpu_hotplug.lock);
232 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
233 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
234 				break;
235 		mutex_unlock(&cpu_hotplug.lock);
236 		schedule();
237 	}
238 	finish_wait(&cpu_hotplug.wq, &wait);
239 }
240 
241 void cpu_hotplug_done(void)
242 {
243 	cpu_hotplug.active_writer = NULL;
244 	mutex_unlock(&cpu_hotplug.lock);
245 	cpuhp_lock_release();
246 }
247 
248 /*
249  * Wait for currently running CPU hotplug operations to complete (if any) and
250  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
251  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
252  * hotplug path before performing hotplug operations. So acquiring that lock
253  * guarantees mutual exclusion from any currently running hotplug operations.
254  */
255 void cpu_hotplug_disable(void)
256 {
257 	cpu_maps_update_begin();
258 	cpu_hotplug_disabled++;
259 	cpu_maps_update_done();
260 }
261 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
262 
263 void cpu_hotplug_enable(void)
264 {
265 	cpu_maps_update_begin();
266 	WARN_ON(--cpu_hotplug_disabled < 0);
267 	cpu_maps_update_done();
268 }
269 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
270 #endif	/* CONFIG_HOTPLUG_CPU */
271 
272 /* Need to know about CPUs going up/down? */
273 int register_cpu_notifier(struct notifier_block *nb)
274 {
275 	int ret;
276 	cpu_maps_update_begin();
277 	ret = raw_notifier_chain_register(&cpu_chain, nb);
278 	cpu_maps_update_done();
279 	return ret;
280 }
281 
282 int __register_cpu_notifier(struct notifier_block *nb)
283 {
284 	return raw_notifier_chain_register(&cpu_chain, nb);
285 }
286 
287 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
288 			int *nr_calls)
289 {
290 	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
291 	void *hcpu = (void *)(long)cpu;
292 
293 	int ret;
294 
295 	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
296 					nr_calls);
297 
298 	return notifier_to_errno(ret);
299 }
300 
301 static int cpu_notify(unsigned long val, unsigned int cpu)
302 {
303 	return __cpu_notify(val, cpu, -1, NULL);
304 }
305 
306 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
307 {
308 	BUG_ON(cpu_notify(val, cpu));
309 }
310 
311 /* Notifier wrappers for transitioning to state machine */
312 static int notify_prepare(unsigned int cpu)
313 {
314 	int nr_calls = 0;
315 	int ret;
316 
317 	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
318 	if (ret) {
319 		nr_calls--;
320 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
321 				__func__, cpu);
322 		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
323 	}
324 	return ret;
325 }
326 
327 static int notify_online(unsigned int cpu)
328 {
329 	cpu_notify(CPU_ONLINE, cpu);
330 	return 0;
331 }
332 
333 static int notify_starting(unsigned int cpu)
334 {
335 	cpu_notify(CPU_STARTING, cpu);
336 	return 0;
337 }
338 
339 static int bringup_wait_for_ap(unsigned int cpu)
340 {
341 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
342 
343 	wait_for_completion(&st->done);
344 	return st->result;
345 }
346 
347 static int bringup_cpu(unsigned int cpu)
348 {
349 	struct task_struct *idle = idle_thread_get(cpu);
350 	int ret;
351 
352 	/* Arch-specific enabling code. */
353 	ret = __cpu_up(cpu, idle);
354 	if (ret) {
355 		cpu_notify(CPU_UP_CANCELED, cpu);
356 		return ret;
357 	}
358 	ret = bringup_wait_for_ap(cpu);
359 	BUG_ON(!cpu_online(cpu));
360 	return ret;
361 }
362 
363 /*
364  * Hotplug state machine related functions
365  */
366 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
367 			  struct cpuhp_step *steps)
368 {
369 	for (st->state++; st->state < st->target; st->state++) {
370 		struct cpuhp_step *step = steps + st->state;
371 
372 		if (!step->skip_onerr)
373 			cpuhp_invoke_callback(cpu, st->state, step->startup);
374 	}
375 }
376 
377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
378 				struct cpuhp_step *steps, enum cpuhp_state target)
379 {
380 	enum cpuhp_state prev_state = st->state;
381 	int ret = 0;
382 
383 	for (; st->state > target; st->state--) {
384 		struct cpuhp_step *step = steps + st->state;
385 
386 		ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
387 		if (ret) {
388 			st->target = prev_state;
389 			undo_cpu_down(cpu, st, steps);
390 			break;
391 		}
392 	}
393 	return ret;
394 }
395 
396 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
397 			struct cpuhp_step *steps)
398 {
399 	for (st->state--; st->state > st->target; st->state--) {
400 		struct cpuhp_step *step = steps + st->state;
401 
402 		if (!step->skip_onerr)
403 			cpuhp_invoke_callback(cpu, st->state, step->teardown);
404 	}
405 }
406 
407 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
408 			      struct cpuhp_step *steps, enum cpuhp_state target)
409 {
410 	enum cpuhp_state prev_state = st->state;
411 	int ret = 0;
412 
413 	while (st->state < target) {
414 		struct cpuhp_step *step;
415 
416 		st->state++;
417 		step = steps + st->state;
418 		ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
419 		if (ret) {
420 			st->target = prev_state;
421 			undo_cpu_up(cpu, st, steps);
422 			break;
423 		}
424 	}
425 	return ret;
426 }
427 
428 /*
429  * The cpu hotplug threads manage the bringup and teardown of the cpus
430  */
431 static void cpuhp_create(unsigned int cpu)
432 {
433 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
434 
435 	init_completion(&st->done);
436 }
437 
438 static int cpuhp_should_run(unsigned int cpu)
439 {
440 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
441 
442 	return st->should_run;
443 }
444 
445 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
446 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
447 {
448 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
449 
450 	return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
451 }
452 
453 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
454 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
455 {
456 	return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
457 }
458 
459 /*
460  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
461  * callbacks when a state gets [un]installed at runtime.
462  */
463 static void cpuhp_thread_fun(unsigned int cpu)
464 {
465 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
466 	int ret = 0;
467 
468 	/*
469 	 * Paired with the mb() in cpuhp_kick_ap_work and
470 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
471 	 */
472 	smp_mb();
473 	if (!st->should_run)
474 		return;
475 
476 	st->should_run = false;
477 
478 	/* Single callback invocation for [un]install ? */
479 	if (st->cb) {
480 		if (st->cb_state < CPUHP_AP_ONLINE) {
481 			local_irq_disable();
482 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
483 			local_irq_enable();
484 		} else {
485 			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
486 		}
487 	} else if (st->rollback) {
488 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
489 
490 		undo_cpu_down(cpu, st, cpuhp_ap_states);
491 		/*
492 		 * This is a momentary workaround to keep the notifier users
493 		 * happy. Will go away once we got rid of the notifiers.
494 		 */
495 		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
496 		st->rollback = false;
497 	} else {
498 		/* Cannot happen .... */
499 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500 
501 		/* Regular hotplug work */
502 		if (st->state < st->target)
503 			ret = cpuhp_ap_online(cpu, st);
504 		else if (st->state > st->target)
505 			ret = cpuhp_ap_offline(cpu, st);
506 	}
507 	st->result = ret;
508 	complete(&st->done);
509 }
510 
511 /* Invoke a single callback on a remote cpu */
512 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
513 				    int (*cb)(unsigned int))
514 {
515 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
516 
517 	if (!cpu_online(cpu))
518 		return 0;
519 
520 	st->cb_state = state;
521 	st->cb = cb;
522 	/*
523 	 * Make sure the above stores are visible before should_run becomes
524 	 * true. Paired with the mb() above in cpuhp_thread_fun()
525 	 */
526 	smp_mb();
527 	st->should_run = true;
528 	wake_up_process(st->thread);
529 	wait_for_completion(&st->done);
530 	return st->result;
531 }
532 
533 /* Regular hotplug invocation of the AP hotplug thread */
534 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
535 {
536 	st->result = 0;
537 	st->cb = NULL;
538 	/*
539 	 * Make sure the above stores are visible before should_run becomes
540 	 * true. Paired with the mb() above in cpuhp_thread_fun()
541 	 */
542 	smp_mb();
543 	st->should_run = true;
544 	wake_up_process(st->thread);
545 }
546 
547 static int cpuhp_kick_ap_work(unsigned int cpu)
548 {
549 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550 	enum cpuhp_state state = st->state;
551 
552 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
553 	__cpuhp_kick_ap_work(st);
554 	wait_for_completion(&st->done);
555 	trace_cpuhp_exit(cpu, st->state, state, st->result);
556 	return st->result;
557 }
558 
559 static struct smp_hotplug_thread cpuhp_threads = {
560 	.store			= &cpuhp_state.thread,
561 	.create			= &cpuhp_create,
562 	.thread_should_run	= cpuhp_should_run,
563 	.thread_fn		= cpuhp_thread_fun,
564 	.thread_comm		= "cpuhp/%u",
565 	.selfparking		= true,
566 };
567 
568 void __init cpuhp_threads_init(void)
569 {
570 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
571 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
572 }
573 
574 #ifdef CONFIG_HOTPLUG_CPU
575 EXPORT_SYMBOL(register_cpu_notifier);
576 EXPORT_SYMBOL(__register_cpu_notifier);
577 void unregister_cpu_notifier(struct notifier_block *nb)
578 {
579 	cpu_maps_update_begin();
580 	raw_notifier_chain_unregister(&cpu_chain, nb);
581 	cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL(unregister_cpu_notifier);
584 
585 void __unregister_cpu_notifier(struct notifier_block *nb)
586 {
587 	raw_notifier_chain_unregister(&cpu_chain, nb);
588 }
589 EXPORT_SYMBOL(__unregister_cpu_notifier);
590 
591 /**
592  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
593  * @cpu: a CPU id
594  *
595  * This function walks all processes, finds a valid mm struct for each one and
596  * then clears a corresponding bit in mm's cpumask.  While this all sounds
597  * trivial, there are various non-obvious corner cases, which this function
598  * tries to solve in a safe manner.
599  *
600  * Also note that the function uses a somewhat relaxed locking scheme, so it may
601  * be called only for an already offlined CPU.
602  */
603 void clear_tasks_mm_cpumask(int cpu)
604 {
605 	struct task_struct *p;
606 
607 	/*
608 	 * This function is called after the cpu is taken down and marked
609 	 * offline, so its not like new tasks will ever get this cpu set in
610 	 * their mm mask. -- Peter Zijlstra
611 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
612 	 * full-fledged tasklist_lock.
613 	 */
614 	WARN_ON(cpu_online(cpu));
615 	rcu_read_lock();
616 	for_each_process(p) {
617 		struct task_struct *t;
618 
619 		/*
620 		 * Main thread might exit, but other threads may still have
621 		 * a valid mm. Find one.
622 		 */
623 		t = find_lock_task_mm(p);
624 		if (!t)
625 			continue;
626 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
627 		task_unlock(t);
628 	}
629 	rcu_read_unlock();
630 }
631 
632 static inline void check_for_tasks(int dead_cpu)
633 {
634 	struct task_struct *g, *p;
635 
636 	read_lock(&tasklist_lock);
637 	for_each_process_thread(g, p) {
638 		if (!p->on_rq)
639 			continue;
640 		/*
641 		 * We do the check with unlocked task_rq(p)->lock.
642 		 * Order the reading to do not warn about a task,
643 		 * which was running on this cpu in the past, and
644 		 * it's just been woken on another cpu.
645 		 */
646 		rmb();
647 		if (task_cpu(p) != dead_cpu)
648 			continue;
649 
650 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
651 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
652 	}
653 	read_unlock(&tasklist_lock);
654 }
655 
656 static int notify_down_prepare(unsigned int cpu)
657 {
658 	int err, nr_calls = 0;
659 
660 	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
661 	if (err) {
662 		nr_calls--;
663 		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
664 		pr_warn("%s: attempt to take down CPU %u failed\n",
665 				__func__, cpu);
666 	}
667 	return err;
668 }
669 
670 static int notify_dying(unsigned int cpu)
671 {
672 	cpu_notify(CPU_DYING, cpu);
673 	return 0;
674 }
675 
676 /* Take this CPU down. */
677 static int take_cpu_down(void *_param)
678 {
679 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
680 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
681 	int err, cpu = smp_processor_id();
682 
683 	/* Ensure this CPU doesn't handle any more interrupts. */
684 	err = __cpu_disable();
685 	if (err < 0)
686 		return err;
687 
688 	/* Invoke the former CPU_DYING callbacks */
689 	for (; st->state > target; st->state--) {
690 		struct cpuhp_step *step = cpuhp_ap_states + st->state;
691 
692 		cpuhp_invoke_callback(cpu, st->state, step->teardown);
693 	}
694 	/* Give up timekeeping duties */
695 	tick_handover_do_timer();
696 	/* Park the stopper thread */
697 	stop_machine_park(cpu);
698 	return 0;
699 }
700 
701 static int takedown_cpu(unsigned int cpu)
702 {
703 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
704 	int err;
705 
706 	/* Park the smpboot threads */
707 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
708 	smpboot_park_threads(cpu);
709 
710 	/*
711 	 * Prevent irq alloc/free while the dying cpu reorganizes the
712 	 * interrupt affinities.
713 	 */
714 	irq_lock_sparse();
715 
716 	/*
717 	 * So now all preempt/rcu users must observe !cpu_active().
718 	 */
719 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
720 	if (err) {
721 		/* CPU refused to die */
722 		irq_unlock_sparse();
723 		/* Unpark the hotplug thread so we can rollback there */
724 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
725 		return err;
726 	}
727 	BUG_ON(cpu_online(cpu));
728 
729 	/*
730 	 * The migration_call() CPU_DYING callback will have removed all
731 	 * runnable tasks from the cpu, there's only the idle task left now
732 	 * that the migration thread is done doing the stop_machine thing.
733 	 *
734 	 * Wait for the stop thread to go away.
735 	 */
736 	wait_for_completion(&st->done);
737 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
738 
739 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
740 	irq_unlock_sparse();
741 
742 	hotplug_cpu__broadcast_tick_pull(cpu);
743 	/* This actually kills the CPU. */
744 	__cpu_die(cpu);
745 
746 	tick_cleanup_dead_cpu(cpu);
747 	return 0;
748 }
749 
750 static int notify_dead(unsigned int cpu)
751 {
752 	cpu_notify_nofail(CPU_DEAD, cpu);
753 	check_for_tasks(cpu);
754 	return 0;
755 }
756 
757 static void cpuhp_complete_idle_dead(void *arg)
758 {
759 	struct cpuhp_cpu_state *st = arg;
760 
761 	complete(&st->done);
762 }
763 
764 void cpuhp_report_idle_dead(void)
765 {
766 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
767 
768 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
769 	rcu_report_dead(smp_processor_id());
770 	st->state = CPUHP_AP_IDLE_DEAD;
771 	/*
772 	 * We cannot call complete after rcu_report_dead() so we delegate it
773 	 * to an online cpu.
774 	 */
775 	smp_call_function_single(cpumask_first(cpu_online_mask),
776 				 cpuhp_complete_idle_dead, st, 0);
777 }
778 
779 #else
780 #define notify_down_prepare	NULL
781 #define takedown_cpu		NULL
782 #define notify_dead		NULL
783 #define notify_dying		NULL
784 #endif
785 
786 #ifdef CONFIG_HOTPLUG_CPU
787 
788 /* Requires cpu_add_remove_lock to be held */
789 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
790 			   enum cpuhp_state target)
791 {
792 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
793 	int prev_state, ret = 0;
794 	bool hasdied = false;
795 
796 	if (num_online_cpus() == 1)
797 		return -EBUSY;
798 
799 	if (!cpu_present(cpu))
800 		return -EINVAL;
801 
802 	cpu_hotplug_begin();
803 
804 	cpuhp_tasks_frozen = tasks_frozen;
805 
806 	prev_state = st->state;
807 	st->target = target;
808 	/*
809 	 * If the current CPU state is in the range of the AP hotplug thread,
810 	 * then we need to kick the thread.
811 	 */
812 	if (st->state > CPUHP_TEARDOWN_CPU) {
813 		ret = cpuhp_kick_ap_work(cpu);
814 		/*
815 		 * The AP side has done the error rollback already. Just
816 		 * return the error code..
817 		 */
818 		if (ret)
819 			goto out;
820 
821 		/*
822 		 * We might have stopped still in the range of the AP hotplug
823 		 * thread. Nothing to do anymore.
824 		 */
825 		if (st->state > CPUHP_TEARDOWN_CPU)
826 			goto out;
827 	}
828 	/*
829 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
830 	 * to do the further cleanups.
831 	 */
832 	ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
833 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
834 		st->target = prev_state;
835 		st->rollback = true;
836 		cpuhp_kick_ap_work(cpu);
837 	}
838 
839 	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
840 out:
841 	cpu_hotplug_done();
842 	/* This post dead nonsense must die */
843 	if (!ret && hasdied)
844 		cpu_notify_nofail(CPU_POST_DEAD, cpu);
845 	return ret;
846 }
847 
848 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
849 {
850 	int err;
851 
852 	cpu_maps_update_begin();
853 
854 	if (cpu_hotplug_disabled) {
855 		err = -EBUSY;
856 		goto out;
857 	}
858 
859 	err = _cpu_down(cpu, 0, target);
860 
861 out:
862 	cpu_maps_update_done();
863 	return err;
864 }
865 int cpu_down(unsigned int cpu)
866 {
867 	return do_cpu_down(cpu, CPUHP_OFFLINE);
868 }
869 EXPORT_SYMBOL(cpu_down);
870 #endif /*CONFIG_HOTPLUG_CPU*/
871 
872 /**
873  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
874  * @cpu: cpu that just started
875  *
876  * This function calls the cpu_chain notifiers with CPU_STARTING.
877  * It must be called by the arch code on the new cpu, before the new cpu
878  * enables interrupts and before the "boot" cpu returns from __cpu_up().
879  */
880 void notify_cpu_starting(unsigned int cpu)
881 {
882 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
883 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
884 
885 	while (st->state < target) {
886 		struct cpuhp_step *step;
887 
888 		st->state++;
889 		step = cpuhp_ap_states + st->state;
890 		cpuhp_invoke_callback(cpu, st->state, step->startup);
891 	}
892 }
893 
894 /*
895  * Called from the idle task. We need to set active here, so we can kick off
896  * the stopper thread and unpark the smpboot threads. If the target state is
897  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
898  * cpu further.
899  */
900 void cpuhp_online_idle(enum cpuhp_state state)
901 {
902 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
903 	unsigned int cpu = smp_processor_id();
904 
905 	/* Happens for the boot cpu */
906 	if (state != CPUHP_AP_ONLINE_IDLE)
907 		return;
908 
909 	st->state = CPUHP_AP_ONLINE_IDLE;
910 
911 	/* Unpark the stopper thread and the hotplug thread of this cpu */
912 	stop_machine_unpark(cpu);
913 	kthread_unpark(st->thread);
914 
915 	/* Should we go further up ? */
916 	if (st->target > CPUHP_AP_ONLINE_IDLE)
917 		__cpuhp_kick_ap_work(st);
918 	else
919 		complete(&st->done);
920 }
921 
922 /* Requires cpu_add_remove_lock to be held */
923 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
924 {
925 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
926 	struct task_struct *idle;
927 	int ret = 0;
928 
929 	cpu_hotplug_begin();
930 
931 	if (!cpu_present(cpu)) {
932 		ret = -EINVAL;
933 		goto out;
934 	}
935 
936 	/*
937 	 * The caller of do_cpu_up might have raced with another
938 	 * caller. Ignore it for now.
939 	 */
940 	if (st->state >= target)
941 		goto out;
942 
943 	if (st->state == CPUHP_OFFLINE) {
944 		/* Let it fail before we try to bring the cpu up */
945 		idle = idle_thread_get(cpu);
946 		if (IS_ERR(idle)) {
947 			ret = PTR_ERR(idle);
948 			goto out;
949 		}
950 	}
951 
952 	cpuhp_tasks_frozen = tasks_frozen;
953 
954 	st->target = target;
955 	/*
956 	 * If the current CPU state is in the range of the AP hotplug thread,
957 	 * then we need to kick the thread once more.
958 	 */
959 	if (st->state > CPUHP_BRINGUP_CPU) {
960 		ret = cpuhp_kick_ap_work(cpu);
961 		/*
962 		 * The AP side has done the error rollback already. Just
963 		 * return the error code..
964 		 */
965 		if (ret)
966 			goto out;
967 	}
968 
969 	/*
970 	 * Try to reach the target state. We max out on the BP at
971 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
972 	 * responsible for bringing it up to the target state.
973 	 */
974 	target = min((int)target, CPUHP_BRINGUP_CPU);
975 	ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
976 out:
977 	cpu_hotplug_done();
978 	return ret;
979 }
980 
981 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
982 {
983 	int err = 0;
984 
985 	if (!cpu_possible(cpu)) {
986 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
987 		       cpu);
988 #if defined(CONFIG_IA64)
989 		pr_err("please check additional_cpus= boot parameter\n");
990 #endif
991 		return -EINVAL;
992 	}
993 
994 	err = try_online_node(cpu_to_node(cpu));
995 	if (err)
996 		return err;
997 
998 	cpu_maps_update_begin();
999 
1000 	if (cpu_hotplug_disabled) {
1001 		err = -EBUSY;
1002 		goto out;
1003 	}
1004 
1005 	err = _cpu_up(cpu, 0, target);
1006 out:
1007 	cpu_maps_update_done();
1008 	return err;
1009 }
1010 
1011 int cpu_up(unsigned int cpu)
1012 {
1013 	return do_cpu_up(cpu, CPUHP_ONLINE);
1014 }
1015 EXPORT_SYMBOL_GPL(cpu_up);
1016 
1017 #ifdef CONFIG_PM_SLEEP_SMP
1018 static cpumask_var_t frozen_cpus;
1019 
1020 int disable_nonboot_cpus(void)
1021 {
1022 	int cpu, first_cpu, error = 0;
1023 
1024 	cpu_maps_update_begin();
1025 	first_cpu = cpumask_first(cpu_online_mask);
1026 	/*
1027 	 * We take down all of the non-boot CPUs in one shot to avoid races
1028 	 * with the userspace trying to use the CPU hotplug at the same time
1029 	 */
1030 	cpumask_clear(frozen_cpus);
1031 
1032 	pr_info("Disabling non-boot CPUs ...\n");
1033 	for_each_online_cpu(cpu) {
1034 		if (cpu == first_cpu)
1035 			continue;
1036 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1037 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1038 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1039 		if (!error)
1040 			cpumask_set_cpu(cpu, frozen_cpus);
1041 		else {
1042 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1043 			break;
1044 		}
1045 	}
1046 
1047 	if (!error)
1048 		BUG_ON(num_online_cpus() > 1);
1049 	else
1050 		pr_err("Non-boot CPUs are not disabled\n");
1051 
1052 	/*
1053 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1054 	 * this even in case of failure as all disable_nonboot_cpus() users are
1055 	 * supposed to do enable_nonboot_cpus() on the failure path.
1056 	 */
1057 	cpu_hotplug_disabled++;
1058 
1059 	cpu_maps_update_done();
1060 	return error;
1061 }
1062 
1063 void __weak arch_enable_nonboot_cpus_begin(void)
1064 {
1065 }
1066 
1067 void __weak arch_enable_nonboot_cpus_end(void)
1068 {
1069 }
1070 
1071 void enable_nonboot_cpus(void)
1072 {
1073 	int cpu, error;
1074 
1075 	/* Allow everyone to use the CPU hotplug again */
1076 	cpu_maps_update_begin();
1077 	WARN_ON(--cpu_hotplug_disabled < 0);
1078 	if (cpumask_empty(frozen_cpus))
1079 		goto out;
1080 
1081 	pr_info("Enabling non-boot CPUs ...\n");
1082 
1083 	arch_enable_nonboot_cpus_begin();
1084 
1085 	for_each_cpu(cpu, frozen_cpus) {
1086 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1087 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1088 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1089 		if (!error) {
1090 			pr_info("CPU%d is up\n", cpu);
1091 			continue;
1092 		}
1093 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1094 	}
1095 
1096 	arch_enable_nonboot_cpus_end();
1097 
1098 	cpumask_clear(frozen_cpus);
1099 out:
1100 	cpu_maps_update_done();
1101 }
1102 
1103 static int __init alloc_frozen_cpus(void)
1104 {
1105 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1106 		return -ENOMEM;
1107 	return 0;
1108 }
1109 core_initcall(alloc_frozen_cpus);
1110 
1111 /*
1112  * When callbacks for CPU hotplug notifications are being executed, we must
1113  * ensure that the state of the system with respect to the tasks being frozen
1114  * or not, as reported by the notification, remains unchanged *throughout the
1115  * duration* of the execution of the callbacks.
1116  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1117  *
1118  * This synchronization is implemented by mutually excluding regular CPU
1119  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1120  * Hibernate notifications.
1121  */
1122 static int
1123 cpu_hotplug_pm_callback(struct notifier_block *nb,
1124 			unsigned long action, void *ptr)
1125 {
1126 	switch (action) {
1127 
1128 	case PM_SUSPEND_PREPARE:
1129 	case PM_HIBERNATION_PREPARE:
1130 		cpu_hotplug_disable();
1131 		break;
1132 
1133 	case PM_POST_SUSPEND:
1134 	case PM_POST_HIBERNATION:
1135 		cpu_hotplug_enable();
1136 		break;
1137 
1138 	default:
1139 		return NOTIFY_DONE;
1140 	}
1141 
1142 	return NOTIFY_OK;
1143 }
1144 
1145 
1146 static int __init cpu_hotplug_pm_sync_init(void)
1147 {
1148 	/*
1149 	 * cpu_hotplug_pm_callback has higher priority than x86
1150 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1151 	 * to disable cpu hotplug to avoid cpu hotplug race.
1152 	 */
1153 	pm_notifier(cpu_hotplug_pm_callback, 0);
1154 	return 0;
1155 }
1156 core_initcall(cpu_hotplug_pm_sync_init);
1157 
1158 #endif /* CONFIG_PM_SLEEP_SMP */
1159 
1160 #endif /* CONFIG_SMP */
1161 
1162 /* Boot processor state steps */
1163 static struct cpuhp_step cpuhp_bp_states[] = {
1164 	[CPUHP_OFFLINE] = {
1165 		.name			= "offline",
1166 		.startup		= NULL,
1167 		.teardown		= NULL,
1168 	},
1169 #ifdef CONFIG_SMP
1170 	[CPUHP_CREATE_THREADS]= {
1171 		.name			= "threads:create",
1172 		.startup		= smpboot_create_threads,
1173 		.teardown		= NULL,
1174 		.cant_stop		= true,
1175 	},
1176 	/*
1177 	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1178 	 * are converted to states.
1179 	 */
1180 	[CPUHP_NOTIFY_PREPARE] = {
1181 		.name			= "notify:prepare",
1182 		.startup		= notify_prepare,
1183 		.teardown		= notify_dead,
1184 		.skip_onerr		= true,
1185 		.cant_stop		= true,
1186 	},
1187 	/* Kicks the plugged cpu into life */
1188 	[CPUHP_BRINGUP_CPU] = {
1189 		.name			= "cpu:bringup",
1190 		.startup		= bringup_cpu,
1191 		.teardown		= NULL,
1192 		.cant_stop		= true,
1193 	},
1194 	/*
1195 	 * Handled on controll processor until the plugged processor manages
1196 	 * this itself.
1197 	 */
1198 	[CPUHP_TEARDOWN_CPU] = {
1199 		.name			= "cpu:teardown",
1200 		.startup		= NULL,
1201 		.teardown		= takedown_cpu,
1202 		.cant_stop		= true,
1203 	},
1204 #endif
1205 };
1206 
1207 /* Application processor state steps */
1208 static struct cpuhp_step cpuhp_ap_states[] = {
1209 #ifdef CONFIG_SMP
1210 	/* Final state before CPU kills itself */
1211 	[CPUHP_AP_IDLE_DEAD] = {
1212 		.name			= "idle:dead",
1213 	},
1214 	/*
1215 	 * Last state before CPU enters the idle loop to die. Transient state
1216 	 * for synchronization.
1217 	 */
1218 	[CPUHP_AP_OFFLINE] = {
1219 		.name			= "ap:offline",
1220 		.cant_stop		= true,
1221 	},
1222 	/* First state is scheduler control. Interrupts are disabled */
1223 	[CPUHP_AP_SCHED_STARTING] = {
1224 		.name			= "sched:starting",
1225 		.startup		= sched_cpu_starting,
1226 		.teardown		= sched_cpu_dying,
1227 	},
1228 	/*
1229 	 * Low level startup/teardown notifiers. Run with interrupts
1230 	 * disabled. Will be removed once the notifiers are converted to
1231 	 * states.
1232 	 */
1233 	[CPUHP_AP_NOTIFY_STARTING] = {
1234 		.name			= "notify:starting",
1235 		.startup		= notify_starting,
1236 		.teardown		= notify_dying,
1237 		.skip_onerr		= true,
1238 		.cant_stop		= true,
1239 	},
1240 	/* Entry state on starting. Interrupts enabled from here on. Transient
1241 	 * state for synchronsization */
1242 	[CPUHP_AP_ONLINE] = {
1243 		.name			= "ap:online",
1244 	},
1245 	/* Handle smpboot threads park/unpark */
1246 	[CPUHP_AP_SMPBOOT_THREADS] = {
1247 		.name			= "smpboot:threads",
1248 		.startup		= smpboot_unpark_threads,
1249 		.teardown		= NULL,
1250 	},
1251 	/*
1252 	 * Online/down_prepare notifiers. Will be removed once the notifiers
1253 	 * are converted to states.
1254 	 */
1255 	[CPUHP_AP_NOTIFY_ONLINE] = {
1256 		.name			= "notify:online",
1257 		.startup		= notify_online,
1258 		.teardown		= notify_down_prepare,
1259 		.skip_onerr		= true,
1260 	},
1261 #endif
1262 	/*
1263 	 * The dynamically registered state space is here
1264 	 */
1265 
1266 #ifdef CONFIG_SMP
1267 	/* Last state is scheduler control setting the cpu active */
1268 	[CPUHP_AP_ACTIVE] = {
1269 		.name			= "sched:active",
1270 		.startup		= sched_cpu_activate,
1271 		.teardown		= sched_cpu_deactivate,
1272 	},
1273 #endif
1274 
1275 	/* CPU is fully up and running. */
1276 	[CPUHP_ONLINE] = {
1277 		.name			= "online",
1278 		.startup		= NULL,
1279 		.teardown		= NULL,
1280 	},
1281 };
1282 
1283 /* Sanity check for callbacks */
1284 static int cpuhp_cb_check(enum cpuhp_state state)
1285 {
1286 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1287 		return -EINVAL;
1288 	return 0;
1289 }
1290 
1291 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1292 {
1293 	/*
1294 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1295 	 * purposes as that state is handled explicitely in cpu_down.
1296 	 */
1297 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1298 }
1299 
1300 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1301 {
1302 	struct cpuhp_step *sp;
1303 
1304 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1305 	return sp + state;
1306 }
1307 
1308 static void cpuhp_store_callbacks(enum cpuhp_state state,
1309 				  const char *name,
1310 				  int (*startup)(unsigned int cpu),
1311 				  int (*teardown)(unsigned int cpu))
1312 {
1313 	/* (Un)Install the callbacks for further cpu hotplug operations */
1314 	struct cpuhp_step *sp;
1315 
1316 	mutex_lock(&cpuhp_state_mutex);
1317 	sp = cpuhp_get_step(state);
1318 	sp->startup = startup;
1319 	sp->teardown = teardown;
1320 	sp->name = name;
1321 	mutex_unlock(&cpuhp_state_mutex);
1322 }
1323 
1324 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1325 {
1326 	return cpuhp_get_step(state)->teardown;
1327 }
1328 
1329 /*
1330  * Call the startup/teardown function for a step either on the AP or
1331  * on the current CPU.
1332  */
1333 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1334 			    int (*cb)(unsigned int), bool bringup)
1335 {
1336 	int ret;
1337 
1338 	if (!cb)
1339 		return 0;
1340 	/*
1341 	 * The non AP bound callbacks can fail on bringup. On teardown
1342 	 * e.g. module removal we crash for now.
1343 	 */
1344 #ifdef CONFIG_SMP
1345 	if (cpuhp_is_ap_state(state))
1346 		ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1347 	else
1348 		ret = cpuhp_invoke_callback(cpu, state, cb);
1349 #else
1350 	ret = cpuhp_invoke_callback(cpu, state, cb);
1351 #endif
1352 	BUG_ON(ret && !bringup);
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Called from __cpuhp_setup_state on a recoverable failure.
1358  *
1359  * Note: The teardown callbacks for rollback are not allowed to fail!
1360  */
1361 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1362 				   int (*teardown)(unsigned int cpu))
1363 {
1364 	int cpu;
1365 
1366 	if (!teardown)
1367 		return;
1368 
1369 	/* Roll back the already executed steps on the other cpus */
1370 	for_each_present_cpu(cpu) {
1371 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1372 		int cpustate = st->state;
1373 
1374 		if (cpu >= failedcpu)
1375 			break;
1376 
1377 		/* Did we invoke the startup call on that cpu ? */
1378 		if (cpustate >= state)
1379 			cpuhp_issue_call(cpu, state, teardown, false);
1380 	}
1381 }
1382 
1383 /*
1384  * Returns a free for dynamic slot assignment of the Online state. The states
1385  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1386  * by having no name assigned.
1387  */
1388 static int cpuhp_reserve_state(enum cpuhp_state state)
1389 {
1390 	enum cpuhp_state i;
1391 
1392 	mutex_lock(&cpuhp_state_mutex);
1393 	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1394 		if (cpuhp_ap_states[i].name)
1395 			continue;
1396 
1397 		cpuhp_ap_states[i].name = "Reserved";
1398 		mutex_unlock(&cpuhp_state_mutex);
1399 		return i;
1400 	}
1401 	mutex_unlock(&cpuhp_state_mutex);
1402 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1403 	return -ENOSPC;
1404 }
1405 
1406 /**
1407  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1408  * @state:	The state to setup
1409  * @invoke:	If true, the startup function is invoked for cpus where
1410  *		cpu state >= @state
1411  * @startup:	startup callback function
1412  * @teardown:	teardown callback function
1413  *
1414  * Returns 0 if successful, otherwise a proper error code
1415  */
1416 int __cpuhp_setup_state(enum cpuhp_state state,
1417 			const char *name, bool invoke,
1418 			int (*startup)(unsigned int cpu),
1419 			int (*teardown)(unsigned int cpu))
1420 {
1421 	int cpu, ret = 0;
1422 	int dyn_state = 0;
1423 
1424 	if (cpuhp_cb_check(state) || !name)
1425 		return -EINVAL;
1426 
1427 	get_online_cpus();
1428 
1429 	/* currently assignments for the ONLINE state are possible */
1430 	if (state == CPUHP_AP_ONLINE_DYN) {
1431 		dyn_state = 1;
1432 		ret = cpuhp_reserve_state(state);
1433 		if (ret < 0)
1434 			goto out;
1435 		state = ret;
1436 	}
1437 
1438 	cpuhp_store_callbacks(state, name, startup, teardown);
1439 
1440 	if (!invoke || !startup)
1441 		goto out;
1442 
1443 	/*
1444 	 * Try to call the startup callback for each present cpu
1445 	 * depending on the hotplug state of the cpu.
1446 	 */
1447 	for_each_present_cpu(cpu) {
1448 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1449 		int cpustate = st->state;
1450 
1451 		if (cpustate < state)
1452 			continue;
1453 
1454 		ret = cpuhp_issue_call(cpu, state, startup, true);
1455 		if (ret) {
1456 			cpuhp_rollback_install(cpu, state, teardown);
1457 			cpuhp_store_callbacks(state, NULL, NULL, NULL);
1458 			goto out;
1459 		}
1460 	}
1461 out:
1462 	put_online_cpus();
1463 	if (!ret && dyn_state)
1464 		return state;
1465 	return ret;
1466 }
1467 EXPORT_SYMBOL(__cpuhp_setup_state);
1468 
1469 /**
1470  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1471  * @state:	The state to remove
1472  * @invoke:	If true, the teardown function is invoked for cpus where
1473  *		cpu state >= @state
1474  *
1475  * The teardown callback is currently not allowed to fail. Think
1476  * about module removal!
1477  */
1478 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1479 {
1480 	int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1481 	int cpu;
1482 
1483 	BUG_ON(cpuhp_cb_check(state));
1484 
1485 	get_online_cpus();
1486 
1487 	if (!invoke || !teardown)
1488 		goto remove;
1489 
1490 	/*
1491 	 * Call the teardown callback for each present cpu depending
1492 	 * on the hotplug state of the cpu. This function is not
1493 	 * allowed to fail currently!
1494 	 */
1495 	for_each_present_cpu(cpu) {
1496 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1497 		int cpustate = st->state;
1498 
1499 		if (cpustate >= state)
1500 			cpuhp_issue_call(cpu, state, teardown, false);
1501 	}
1502 remove:
1503 	cpuhp_store_callbacks(state, NULL, NULL, NULL);
1504 	put_online_cpus();
1505 }
1506 EXPORT_SYMBOL(__cpuhp_remove_state);
1507 
1508 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1509 static ssize_t show_cpuhp_state(struct device *dev,
1510 				struct device_attribute *attr, char *buf)
1511 {
1512 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1513 
1514 	return sprintf(buf, "%d\n", st->state);
1515 }
1516 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1517 
1518 static ssize_t write_cpuhp_target(struct device *dev,
1519 				  struct device_attribute *attr,
1520 				  const char *buf, size_t count)
1521 {
1522 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1523 	struct cpuhp_step *sp;
1524 	int target, ret;
1525 
1526 	ret = kstrtoint(buf, 10, &target);
1527 	if (ret)
1528 		return ret;
1529 
1530 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1531 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1532 		return -EINVAL;
1533 #else
1534 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1535 		return -EINVAL;
1536 #endif
1537 
1538 	ret = lock_device_hotplug_sysfs();
1539 	if (ret)
1540 		return ret;
1541 
1542 	mutex_lock(&cpuhp_state_mutex);
1543 	sp = cpuhp_get_step(target);
1544 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1545 	mutex_unlock(&cpuhp_state_mutex);
1546 	if (ret)
1547 		return ret;
1548 
1549 	if (st->state < target)
1550 		ret = do_cpu_up(dev->id, target);
1551 	else
1552 		ret = do_cpu_down(dev->id, target);
1553 
1554 	unlock_device_hotplug();
1555 	return ret ? ret : count;
1556 }
1557 
1558 static ssize_t show_cpuhp_target(struct device *dev,
1559 				 struct device_attribute *attr, char *buf)
1560 {
1561 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1562 
1563 	return sprintf(buf, "%d\n", st->target);
1564 }
1565 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1566 
1567 static struct attribute *cpuhp_cpu_attrs[] = {
1568 	&dev_attr_state.attr,
1569 	&dev_attr_target.attr,
1570 	NULL
1571 };
1572 
1573 static struct attribute_group cpuhp_cpu_attr_group = {
1574 	.attrs = cpuhp_cpu_attrs,
1575 	.name = "hotplug",
1576 	NULL
1577 };
1578 
1579 static ssize_t show_cpuhp_states(struct device *dev,
1580 				 struct device_attribute *attr, char *buf)
1581 {
1582 	ssize_t cur, res = 0;
1583 	int i;
1584 
1585 	mutex_lock(&cpuhp_state_mutex);
1586 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1587 		struct cpuhp_step *sp = cpuhp_get_step(i);
1588 
1589 		if (sp->name) {
1590 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1591 			buf += cur;
1592 			res += cur;
1593 		}
1594 	}
1595 	mutex_unlock(&cpuhp_state_mutex);
1596 	return res;
1597 }
1598 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1599 
1600 static struct attribute *cpuhp_cpu_root_attrs[] = {
1601 	&dev_attr_states.attr,
1602 	NULL
1603 };
1604 
1605 static struct attribute_group cpuhp_cpu_root_attr_group = {
1606 	.attrs = cpuhp_cpu_root_attrs,
1607 	.name = "hotplug",
1608 	NULL
1609 };
1610 
1611 static int __init cpuhp_sysfs_init(void)
1612 {
1613 	int cpu, ret;
1614 
1615 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1616 				 &cpuhp_cpu_root_attr_group);
1617 	if (ret)
1618 		return ret;
1619 
1620 	for_each_possible_cpu(cpu) {
1621 		struct device *dev = get_cpu_device(cpu);
1622 
1623 		if (!dev)
1624 			continue;
1625 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1626 		if (ret)
1627 			return ret;
1628 	}
1629 	return 0;
1630 }
1631 device_initcall(cpuhp_sysfs_init);
1632 #endif
1633 
1634 /*
1635  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1636  * represents all NR_CPUS bits binary values of 1<<nr.
1637  *
1638  * It is used by cpumask_of() to get a constant address to a CPU
1639  * mask value that has a single bit set only.
1640  */
1641 
1642 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1643 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1644 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1645 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1646 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1647 
1648 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1649 
1650 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1651 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1652 #if BITS_PER_LONG > 32
1653 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1654 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1655 #endif
1656 };
1657 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1658 
1659 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1660 EXPORT_SYMBOL(cpu_all_bits);
1661 
1662 #ifdef CONFIG_INIT_ALL_POSSIBLE
1663 struct cpumask __cpu_possible_mask __read_mostly
1664 	= {CPU_BITS_ALL};
1665 #else
1666 struct cpumask __cpu_possible_mask __read_mostly;
1667 #endif
1668 EXPORT_SYMBOL(__cpu_possible_mask);
1669 
1670 struct cpumask __cpu_online_mask __read_mostly;
1671 EXPORT_SYMBOL(__cpu_online_mask);
1672 
1673 struct cpumask __cpu_present_mask __read_mostly;
1674 EXPORT_SYMBOL(__cpu_present_mask);
1675 
1676 struct cpumask __cpu_active_mask __read_mostly;
1677 EXPORT_SYMBOL(__cpu_active_mask);
1678 
1679 void init_cpu_present(const struct cpumask *src)
1680 {
1681 	cpumask_copy(&__cpu_present_mask, src);
1682 }
1683 
1684 void init_cpu_possible(const struct cpumask *src)
1685 {
1686 	cpumask_copy(&__cpu_possible_mask, src);
1687 }
1688 
1689 void init_cpu_online(const struct cpumask *src)
1690 {
1691 	cpumask_copy(&__cpu_online_mask, src);
1692 }
1693 
1694 /*
1695  * Activate the first processor.
1696  */
1697 void __init boot_cpu_init(void)
1698 {
1699 	int cpu = smp_processor_id();
1700 
1701 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1702 	set_cpu_online(cpu, true);
1703 	set_cpu_active(cpu, true);
1704 	set_cpu_present(cpu, true);
1705 	set_cpu_possible(cpu, true);
1706 }
1707 
1708 /*
1709  * Must be called _AFTER_ setting up the per_cpu areas
1710  */
1711 void __init boot_cpu_state_init(void)
1712 {
1713 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1714 }
1715