xref: /linux/kernel/cpu.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <trace/events/power.h>
25 
26 #include "smpboot.h"
27 
28 #ifdef CONFIG_SMP
29 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
30 static DEFINE_MUTEX(cpu_add_remove_lock);
31 
32 /*
33  * The following two APIs (cpu_maps_update_begin/done) must be used when
34  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
35  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
36  * hotplug callback (un)registration performed using __register_cpu_notifier()
37  * or __unregister_cpu_notifier().
38  */
39 void cpu_maps_update_begin(void)
40 {
41 	mutex_lock(&cpu_add_remove_lock);
42 }
43 EXPORT_SYMBOL(cpu_notifier_register_begin);
44 
45 void cpu_maps_update_done(void)
46 {
47 	mutex_unlock(&cpu_add_remove_lock);
48 }
49 EXPORT_SYMBOL(cpu_notifier_register_done);
50 
51 static RAW_NOTIFIER_HEAD(cpu_chain);
52 
53 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
54  * Should always be manipulated under cpu_add_remove_lock
55  */
56 static int cpu_hotplug_disabled;
57 
58 #ifdef CONFIG_HOTPLUG_CPU
59 
60 static struct {
61 	struct task_struct *active_writer;
62 	/* wait queue to wake up the active_writer */
63 	wait_queue_head_t wq;
64 	/* verifies that no writer will get active while readers are active */
65 	struct mutex lock;
66 	/*
67 	 * Also blocks the new readers during
68 	 * an ongoing cpu hotplug operation.
69 	 */
70 	atomic_t refcount;
71 
72 #ifdef CONFIG_DEBUG_LOCK_ALLOC
73 	struct lockdep_map dep_map;
74 #endif
75 } cpu_hotplug = {
76 	.active_writer = NULL,
77 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
78 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
79 #ifdef CONFIG_DEBUG_LOCK_ALLOC
80 	.dep_map = {.name = "cpu_hotplug.lock" },
81 #endif
82 };
83 
84 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
85 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
86 #define cpuhp_lock_acquire_tryread() \
87 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
88 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
89 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
90 
91 
92 void get_online_cpus(void)
93 {
94 	might_sleep();
95 	if (cpu_hotplug.active_writer == current)
96 		return;
97 	cpuhp_lock_acquire_read();
98 	mutex_lock(&cpu_hotplug.lock);
99 	atomic_inc(&cpu_hotplug.refcount);
100 	mutex_unlock(&cpu_hotplug.lock);
101 }
102 EXPORT_SYMBOL_GPL(get_online_cpus);
103 
104 bool try_get_online_cpus(void)
105 {
106 	if (cpu_hotplug.active_writer == current)
107 		return true;
108 	if (!mutex_trylock(&cpu_hotplug.lock))
109 		return false;
110 	cpuhp_lock_acquire_tryread();
111 	atomic_inc(&cpu_hotplug.refcount);
112 	mutex_unlock(&cpu_hotplug.lock);
113 	return true;
114 }
115 EXPORT_SYMBOL_GPL(try_get_online_cpus);
116 
117 void put_online_cpus(void)
118 {
119 	int refcount;
120 
121 	if (cpu_hotplug.active_writer == current)
122 		return;
123 
124 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
125 	if (WARN_ON(refcount < 0)) /* try to fix things up */
126 		atomic_inc(&cpu_hotplug.refcount);
127 
128 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
129 		wake_up(&cpu_hotplug.wq);
130 
131 	cpuhp_lock_release();
132 
133 }
134 EXPORT_SYMBOL_GPL(put_online_cpus);
135 
136 /*
137  * This ensures that the hotplug operation can begin only when the
138  * refcount goes to zero.
139  *
140  * Note that during a cpu-hotplug operation, the new readers, if any,
141  * will be blocked by the cpu_hotplug.lock
142  *
143  * Since cpu_hotplug_begin() is always called after invoking
144  * cpu_maps_update_begin(), we can be sure that only one writer is active.
145  *
146  * Note that theoretically, there is a possibility of a livelock:
147  * - Refcount goes to zero, last reader wakes up the sleeping
148  *   writer.
149  * - Last reader unlocks the cpu_hotplug.lock.
150  * - A new reader arrives at this moment, bumps up the refcount.
151  * - The writer acquires the cpu_hotplug.lock finds the refcount
152  *   non zero and goes to sleep again.
153  *
154  * However, this is very difficult to achieve in practice since
155  * get_online_cpus() not an api which is called all that often.
156  *
157  */
158 void cpu_hotplug_begin(void)
159 {
160 	DEFINE_WAIT(wait);
161 
162 	cpu_hotplug.active_writer = current;
163 	cpuhp_lock_acquire();
164 
165 	for (;;) {
166 		mutex_lock(&cpu_hotplug.lock);
167 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
168 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
169 				break;
170 		mutex_unlock(&cpu_hotplug.lock);
171 		schedule();
172 	}
173 	finish_wait(&cpu_hotplug.wq, &wait);
174 }
175 
176 void cpu_hotplug_done(void)
177 {
178 	cpu_hotplug.active_writer = NULL;
179 	mutex_unlock(&cpu_hotplug.lock);
180 	cpuhp_lock_release();
181 }
182 
183 /*
184  * Wait for currently running CPU hotplug operations to complete (if any) and
185  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
186  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
187  * hotplug path before performing hotplug operations. So acquiring that lock
188  * guarantees mutual exclusion from any currently running hotplug operations.
189  */
190 void cpu_hotplug_disable(void)
191 {
192 	cpu_maps_update_begin();
193 	cpu_hotplug_disabled = 1;
194 	cpu_maps_update_done();
195 }
196 
197 void cpu_hotplug_enable(void)
198 {
199 	cpu_maps_update_begin();
200 	cpu_hotplug_disabled = 0;
201 	cpu_maps_update_done();
202 }
203 
204 #endif	/* CONFIG_HOTPLUG_CPU */
205 
206 /* Need to know about CPUs going up/down? */
207 int __ref register_cpu_notifier(struct notifier_block *nb)
208 {
209 	int ret;
210 	cpu_maps_update_begin();
211 	ret = raw_notifier_chain_register(&cpu_chain, nb);
212 	cpu_maps_update_done();
213 	return ret;
214 }
215 
216 int __ref __register_cpu_notifier(struct notifier_block *nb)
217 {
218 	return raw_notifier_chain_register(&cpu_chain, nb);
219 }
220 
221 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
222 			int *nr_calls)
223 {
224 	int ret;
225 
226 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
227 					nr_calls);
228 
229 	return notifier_to_errno(ret);
230 }
231 
232 static int cpu_notify(unsigned long val, void *v)
233 {
234 	return __cpu_notify(val, v, -1, NULL);
235 }
236 
237 #ifdef CONFIG_HOTPLUG_CPU
238 
239 static void cpu_notify_nofail(unsigned long val, void *v)
240 {
241 	BUG_ON(cpu_notify(val, v));
242 }
243 EXPORT_SYMBOL(register_cpu_notifier);
244 EXPORT_SYMBOL(__register_cpu_notifier);
245 
246 void __ref unregister_cpu_notifier(struct notifier_block *nb)
247 {
248 	cpu_maps_update_begin();
249 	raw_notifier_chain_unregister(&cpu_chain, nb);
250 	cpu_maps_update_done();
251 }
252 EXPORT_SYMBOL(unregister_cpu_notifier);
253 
254 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
255 {
256 	raw_notifier_chain_unregister(&cpu_chain, nb);
257 }
258 EXPORT_SYMBOL(__unregister_cpu_notifier);
259 
260 /**
261  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
262  * @cpu: a CPU id
263  *
264  * This function walks all processes, finds a valid mm struct for each one and
265  * then clears a corresponding bit in mm's cpumask.  While this all sounds
266  * trivial, there are various non-obvious corner cases, which this function
267  * tries to solve in a safe manner.
268  *
269  * Also note that the function uses a somewhat relaxed locking scheme, so it may
270  * be called only for an already offlined CPU.
271  */
272 void clear_tasks_mm_cpumask(int cpu)
273 {
274 	struct task_struct *p;
275 
276 	/*
277 	 * This function is called after the cpu is taken down and marked
278 	 * offline, so its not like new tasks will ever get this cpu set in
279 	 * their mm mask. -- Peter Zijlstra
280 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
281 	 * full-fledged tasklist_lock.
282 	 */
283 	WARN_ON(cpu_online(cpu));
284 	rcu_read_lock();
285 	for_each_process(p) {
286 		struct task_struct *t;
287 
288 		/*
289 		 * Main thread might exit, but other threads may still have
290 		 * a valid mm. Find one.
291 		 */
292 		t = find_lock_task_mm(p);
293 		if (!t)
294 			continue;
295 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
296 		task_unlock(t);
297 	}
298 	rcu_read_unlock();
299 }
300 
301 static inline void check_for_tasks(int dead_cpu)
302 {
303 	struct task_struct *g, *p;
304 
305 	read_lock_irq(&tasklist_lock);
306 	do_each_thread(g, p) {
307 		if (!p->on_rq)
308 			continue;
309 		/*
310 		 * We do the check with unlocked task_rq(p)->lock.
311 		 * Order the reading to do not warn about a task,
312 		 * which was running on this cpu in the past, and
313 		 * it's just been woken on another cpu.
314 		 */
315 		rmb();
316 		if (task_cpu(p) != dead_cpu)
317 			continue;
318 
319 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
320 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
321 	} while_each_thread(g, p);
322 	read_unlock_irq(&tasklist_lock);
323 }
324 
325 struct take_cpu_down_param {
326 	unsigned long mod;
327 	void *hcpu;
328 };
329 
330 /* Take this CPU down. */
331 static int __ref take_cpu_down(void *_param)
332 {
333 	struct take_cpu_down_param *param = _param;
334 	int err;
335 
336 	/* Ensure this CPU doesn't handle any more interrupts. */
337 	err = __cpu_disable();
338 	if (err < 0)
339 		return err;
340 
341 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
342 	/* Give up timekeeping duties */
343 	tick_handover_do_timer();
344 	/* Park the stopper thread */
345 	kthread_park(current);
346 	return 0;
347 }
348 
349 /* Requires cpu_add_remove_lock to be held */
350 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
351 {
352 	int err, nr_calls = 0;
353 	void *hcpu = (void *)(long)cpu;
354 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
355 	struct take_cpu_down_param tcd_param = {
356 		.mod = mod,
357 		.hcpu = hcpu,
358 	};
359 
360 	if (num_online_cpus() == 1)
361 		return -EBUSY;
362 
363 	if (!cpu_online(cpu))
364 		return -EINVAL;
365 
366 	cpu_hotplug_begin();
367 
368 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
369 	if (err) {
370 		nr_calls--;
371 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
372 		pr_warn("%s: attempt to take down CPU %u failed\n",
373 			__func__, cpu);
374 		goto out_release;
375 	}
376 
377 	/*
378 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
379 	 * and RCU users of this state to go away such that all new such users
380 	 * will observe it.
381 	 *
382 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
383 	 * not imply sync_sched(), so explicitly call both.
384 	 *
385 	 * Do sync before park smpboot threads to take care the rcu boost case.
386 	 */
387 #ifdef CONFIG_PREEMPT
388 	synchronize_sched();
389 #endif
390 	synchronize_rcu();
391 
392 	smpboot_park_threads(cpu);
393 
394 	/*
395 	 * So now all preempt/rcu users must observe !cpu_active().
396 	 */
397 
398 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
399 	if (err) {
400 		/* CPU didn't die: tell everyone.  Can't complain. */
401 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
402 		goto out_release;
403 	}
404 	BUG_ON(cpu_online(cpu));
405 
406 	/*
407 	 * The migration_call() CPU_DYING callback will have removed all
408 	 * runnable tasks from the cpu, there's only the idle task left now
409 	 * that the migration thread is done doing the stop_machine thing.
410 	 *
411 	 * Wait for the stop thread to go away.
412 	 */
413 	while (!per_cpu(cpu_dead_idle, cpu))
414 		cpu_relax();
415 	smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
416 	per_cpu(cpu_dead_idle, cpu) = false;
417 
418 	hotplug_cpu__broadcast_tick_pull(cpu);
419 	/* This actually kills the CPU. */
420 	__cpu_die(cpu);
421 
422 	/* CPU is completely dead: tell everyone.  Too late to complain. */
423 	tick_cleanup_dead_cpu(cpu);
424 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
425 
426 	check_for_tasks(cpu);
427 
428 out_release:
429 	cpu_hotplug_done();
430 	if (!err)
431 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
432 	return err;
433 }
434 
435 int __ref cpu_down(unsigned int cpu)
436 {
437 	int err;
438 
439 	cpu_maps_update_begin();
440 
441 	if (cpu_hotplug_disabled) {
442 		err = -EBUSY;
443 		goto out;
444 	}
445 
446 	err = _cpu_down(cpu, 0);
447 
448 out:
449 	cpu_maps_update_done();
450 	return err;
451 }
452 EXPORT_SYMBOL(cpu_down);
453 #endif /*CONFIG_HOTPLUG_CPU*/
454 
455 /*
456  * Unpark per-CPU smpboot kthreads at CPU-online time.
457  */
458 static int smpboot_thread_call(struct notifier_block *nfb,
459 			       unsigned long action, void *hcpu)
460 {
461 	int cpu = (long)hcpu;
462 
463 	switch (action & ~CPU_TASKS_FROZEN) {
464 
465 	case CPU_DOWN_FAILED:
466 	case CPU_ONLINE:
467 		smpboot_unpark_threads(cpu);
468 		break;
469 
470 	default:
471 		break;
472 	}
473 
474 	return NOTIFY_OK;
475 }
476 
477 static struct notifier_block smpboot_thread_notifier = {
478 	.notifier_call = smpboot_thread_call,
479 	.priority = CPU_PRI_SMPBOOT,
480 };
481 
482 void smpboot_thread_init(void)
483 {
484 	register_cpu_notifier(&smpboot_thread_notifier);
485 }
486 
487 /* Requires cpu_add_remove_lock to be held */
488 static int _cpu_up(unsigned int cpu, int tasks_frozen)
489 {
490 	int ret, nr_calls = 0;
491 	void *hcpu = (void *)(long)cpu;
492 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
493 	struct task_struct *idle;
494 
495 	cpu_hotplug_begin();
496 
497 	if (cpu_online(cpu) || !cpu_present(cpu)) {
498 		ret = -EINVAL;
499 		goto out;
500 	}
501 
502 	idle = idle_thread_get(cpu);
503 	if (IS_ERR(idle)) {
504 		ret = PTR_ERR(idle);
505 		goto out;
506 	}
507 
508 	ret = smpboot_create_threads(cpu);
509 	if (ret)
510 		goto out;
511 
512 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
513 	if (ret) {
514 		nr_calls--;
515 		pr_warn("%s: attempt to bring up CPU %u failed\n",
516 			__func__, cpu);
517 		goto out_notify;
518 	}
519 
520 	/* Arch-specific enabling code. */
521 	ret = __cpu_up(cpu, idle);
522 	if (ret != 0)
523 		goto out_notify;
524 	BUG_ON(!cpu_online(cpu));
525 
526 	/* Now call notifier in preparation. */
527 	cpu_notify(CPU_ONLINE | mod, hcpu);
528 
529 out_notify:
530 	if (ret != 0)
531 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
532 out:
533 	cpu_hotplug_done();
534 
535 	return ret;
536 }
537 
538 int cpu_up(unsigned int cpu)
539 {
540 	int err = 0;
541 
542 	if (!cpu_possible(cpu)) {
543 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
544 		       cpu);
545 #if defined(CONFIG_IA64)
546 		pr_err("please check additional_cpus= boot parameter\n");
547 #endif
548 		return -EINVAL;
549 	}
550 
551 	err = try_online_node(cpu_to_node(cpu));
552 	if (err)
553 		return err;
554 
555 	cpu_maps_update_begin();
556 
557 	if (cpu_hotplug_disabled) {
558 		err = -EBUSY;
559 		goto out;
560 	}
561 
562 	err = _cpu_up(cpu, 0);
563 
564 out:
565 	cpu_maps_update_done();
566 	return err;
567 }
568 EXPORT_SYMBOL_GPL(cpu_up);
569 
570 #ifdef CONFIG_PM_SLEEP_SMP
571 static cpumask_var_t frozen_cpus;
572 
573 int disable_nonboot_cpus(void)
574 {
575 	int cpu, first_cpu, error = 0;
576 
577 	cpu_maps_update_begin();
578 	first_cpu = cpumask_first(cpu_online_mask);
579 	/*
580 	 * We take down all of the non-boot CPUs in one shot to avoid races
581 	 * with the userspace trying to use the CPU hotplug at the same time
582 	 */
583 	cpumask_clear(frozen_cpus);
584 
585 	pr_info("Disabling non-boot CPUs ...\n");
586 	for_each_online_cpu(cpu) {
587 		if (cpu == first_cpu)
588 			continue;
589 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
590 		error = _cpu_down(cpu, 1);
591 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
592 		if (!error)
593 			cpumask_set_cpu(cpu, frozen_cpus);
594 		else {
595 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
596 			break;
597 		}
598 	}
599 
600 	if (!error) {
601 		BUG_ON(num_online_cpus() > 1);
602 		/* Make sure the CPUs won't be enabled by someone else */
603 		cpu_hotplug_disabled = 1;
604 	} else {
605 		pr_err("Non-boot CPUs are not disabled\n");
606 	}
607 	cpu_maps_update_done();
608 	return error;
609 }
610 
611 void __weak arch_enable_nonboot_cpus_begin(void)
612 {
613 }
614 
615 void __weak arch_enable_nonboot_cpus_end(void)
616 {
617 }
618 
619 void __ref enable_nonboot_cpus(void)
620 {
621 	int cpu, error;
622 
623 	/* Allow everyone to use the CPU hotplug again */
624 	cpu_maps_update_begin();
625 	cpu_hotplug_disabled = 0;
626 	if (cpumask_empty(frozen_cpus))
627 		goto out;
628 
629 	pr_info("Enabling non-boot CPUs ...\n");
630 
631 	arch_enable_nonboot_cpus_begin();
632 
633 	for_each_cpu(cpu, frozen_cpus) {
634 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
635 		error = _cpu_up(cpu, 1);
636 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
637 		if (!error) {
638 			pr_info("CPU%d is up\n", cpu);
639 			continue;
640 		}
641 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
642 	}
643 
644 	arch_enable_nonboot_cpus_end();
645 
646 	cpumask_clear(frozen_cpus);
647 out:
648 	cpu_maps_update_done();
649 }
650 
651 static int __init alloc_frozen_cpus(void)
652 {
653 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
654 		return -ENOMEM;
655 	return 0;
656 }
657 core_initcall(alloc_frozen_cpus);
658 
659 /*
660  * When callbacks for CPU hotplug notifications are being executed, we must
661  * ensure that the state of the system with respect to the tasks being frozen
662  * or not, as reported by the notification, remains unchanged *throughout the
663  * duration* of the execution of the callbacks.
664  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
665  *
666  * This synchronization is implemented by mutually excluding regular CPU
667  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
668  * Hibernate notifications.
669  */
670 static int
671 cpu_hotplug_pm_callback(struct notifier_block *nb,
672 			unsigned long action, void *ptr)
673 {
674 	switch (action) {
675 
676 	case PM_SUSPEND_PREPARE:
677 	case PM_HIBERNATION_PREPARE:
678 		cpu_hotplug_disable();
679 		break;
680 
681 	case PM_POST_SUSPEND:
682 	case PM_POST_HIBERNATION:
683 		cpu_hotplug_enable();
684 		break;
685 
686 	default:
687 		return NOTIFY_DONE;
688 	}
689 
690 	return NOTIFY_OK;
691 }
692 
693 
694 static int __init cpu_hotplug_pm_sync_init(void)
695 {
696 	/*
697 	 * cpu_hotplug_pm_callback has higher priority than x86
698 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
699 	 * to disable cpu hotplug to avoid cpu hotplug race.
700 	 */
701 	pm_notifier(cpu_hotplug_pm_callback, 0);
702 	return 0;
703 }
704 core_initcall(cpu_hotplug_pm_sync_init);
705 
706 #endif /* CONFIG_PM_SLEEP_SMP */
707 
708 /**
709  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
710  * @cpu: cpu that just started
711  *
712  * This function calls the cpu_chain notifiers with CPU_STARTING.
713  * It must be called by the arch code on the new cpu, before the new cpu
714  * enables interrupts and before the "boot" cpu returns from __cpu_up().
715  */
716 void notify_cpu_starting(unsigned int cpu)
717 {
718 	unsigned long val = CPU_STARTING;
719 
720 #ifdef CONFIG_PM_SLEEP_SMP
721 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
722 		val = CPU_STARTING_FROZEN;
723 #endif /* CONFIG_PM_SLEEP_SMP */
724 	cpu_notify(val, (void *)(long)cpu);
725 }
726 
727 #endif /* CONFIG_SMP */
728 
729 /*
730  * cpu_bit_bitmap[] is a special, "compressed" data structure that
731  * represents all NR_CPUS bits binary values of 1<<nr.
732  *
733  * It is used by cpumask_of() to get a constant address to a CPU
734  * mask value that has a single bit set only.
735  */
736 
737 /* cpu_bit_bitmap[0] is empty - so we can back into it */
738 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
739 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
740 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
741 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
742 
743 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
744 
745 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
746 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
747 #if BITS_PER_LONG > 32
748 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
749 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
750 #endif
751 };
752 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
753 
754 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
755 EXPORT_SYMBOL(cpu_all_bits);
756 
757 #ifdef CONFIG_INIT_ALL_POSSIBLE
758 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
759 	= CPU_BITS_ALL;
760 #else
761 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
762 #endif
763 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
764 EXPORT_SYMBOL(cpu_possible_mask);
765 
766 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
767 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
768 EXPORT_SYMBOL(cpu_online_mask);
769 
770 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
771 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
772 EXPORT_SYMBOL(cpu_present_mask);
773 
774 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
775 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
776 EXPORT_SYMBOL(cpu_active_mask);
777 
778 void set_cpu_possible(unsigned int cpu, bool possible)
779 {
780 	if (possible)
781 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
782 	else
783 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
784 }
785 
786 void set_cpu_present(unsigned int cpu, bool present)
787 {
788 	if (present)
789 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
790 	else
791 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
792 }
793 
794 void set_cpu_online(unsigned int cpu, bool online)
795 {
796 	if (online) {
797 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
798 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
799 	} else {
800 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
801 	}
802 }
803 
804 void set_cpu_active(unsigned int cpu, bool active)
805 {
806 	if (active)
807 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
808 	else
809 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
810 }
811 
812 void init_cpu_present(const struct cpumask *src)
813 {
814 	cpumask_copy(to_cpumask(cpu_present_bits), src);
815 }
816 
817 void init_cpu_possible(const struct cpumask *src)
818 {
819 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
820 }
821 
822 void init_cpu_online(const struct cpumask *src)
823 {
824 	cpumask_copy(to_cpumask(cpu_online_bits), src);
825 }
826